2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
129 #include <linux/filter.h>
131 #include <trace/events/sock.h>
138 * Each address family might have different locking rules, so we have
139 * one slock key per address family:
141 static struct lock_class_key af_family_keys[AF_MAX];
142 static struct lock_class_key af_family_slock_keys[AF_MAX];
145 * Make lock validator output more readable. (we pre-construct these
146 * strings build-time, so that runtime initialization of socket
149 static const char *const af_family_key_strings[AF_MAX+1] = {
150 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
151 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
152 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
153 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
154 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
155 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
156 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
157 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
158 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
159 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
160 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
161 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
162 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
163 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
165 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
166 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
167 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
168 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
169 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
170 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
171 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
172 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
173 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
174 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
175 "slock-27" , "slock-28" , "slock-AF_CAN" ,
176 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
177 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
178 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
179 "slock-AF_NFC" , "slock-AF_MAX"
181 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
182 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
183 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
184 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
185 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
186 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
187 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
188 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
189 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
190 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
191 "clock-27" , "clock-28" , "clock-AF_CAN" ,
192 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
193 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
194 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
195 "clock-AF_NFC" , "clock-AF_MAX"
199 * sk_callback_lock locking rules are per-address-family,
200 * so split the lock classes by using a per-AF key:
202 static struct lock_class_key af_callback_keys[AF_MAX];
204 /* Take into consideration the size of the struct sk_buff overhead in the
205 * determination of these values, since that is non-constant across
206 * platforms. This makes socket queueing behavior and performance
207 * not depend upon such differences.
209 #define _SK_MEM_PACKETS 256
210 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
211 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
212 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
214 /* Run time adjustable parameters. */
215 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
216 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
217 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
218 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
220 /* Maximal space eaten by iovec or ancillary data plus some space */
221 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
222 EXPORT_SYMBOL(sysctl_optmem_max);
224 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
225 int net_cls_subsys_id = -1;
226 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
229 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
233 if (optlen < sizeof(tv))
235 if (copy_from_user(&tv, optval, sizeof(tv)))
237 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
241 static int warned __read_mostly;
244 if (warned < 10 && net_ratelimit()) {
246 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
247 "tries to set negative timeout\n",
248 current->comm, task_pid_nr(current));
252 *timeo_p = MAX_SCHEDULE_TIMEOUT;
253 if (tv.tv_sec == 0 && tv.tv_usec == 0)
255 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
256 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
260 static void sock_warn_obsolete_bsdism(const char *name)
263 static char warncomm[TASK_COMM_LEN];
264 if (strcmp(warncomm, current->comm) && warned < 5) {
265 strcpy(warncomm, current->comm);
266 printk(KERN_WARNING "process `%s' is using obsolete "
267 "%s SO_BSDCOMPAT\n", warncomm, name);
272 static void sock_disable_timestamp(struct sock *sk, int flag)
274 if (sock_flag(sk, flag)) {
275 sock_reset_flag(sk, flag);
276 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
277 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
278 net_disable_timestamp();
284 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
289 struct sk_buff_head *list = &sk->sk_receive_queue;
291 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
292 number of warnings when compiling with -W --ANK
294 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
295 (unsigned)sk->sk_rcvbuf) {
296 atomic_inc(&sk->sk_drops);
297 trace_sock_rcvqueue_full(sk, skb);
301 err = sk_filter(sk, skb);
305 if (!sk_rmem_schedule(sk, skb->truesize)) {
306 atomic_inc(&sk->sk_drops);
311 skb_set_owner_r(skb, sk);
313 /* Cache the SKB length before we tack it onto the receive
314 * queue. Once it is added it no longer belongs to us and
315 * may be freed by other threads of control pulling packets
320 /* we escape from rcu protected region, make sure we dont leak
325 spin_lock_irqsave(&list->lock, flags);
326 skb->dropcount = atomic_read(&sk->sk_drops);
327 __skb_queue_tail(list, skb);
328 spin_unlock_irqrestore(&list->lock, flags);
330 if (!sock_flag(sk, SOCK_DEAD))
331 sk->sk_data_ready(sk, skb_len);
334 EXPORT_SYMBOL(sock_queue_rcv_skb);
336 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
338 int rc = NET_RX_SUCCESS;
340 if (sk_filter(sk, skb))
341 goto discard_and_relse;
345 if (sk_rcvqueues_full(sk, skb)) {
346 atomic_inc(&sk->sk_drops);
347 goto discard_and_relse;
350 bh_lock_sock_nested(sk);
353 if (!sock_owned_by_user(sk)) {
355 * trylock + unlock semantics:
357 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
359 rc = sk_backlog_rcv(sk, skb);
361 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
362 } else if (sk_add_backlog(sk, skb)) {
364 atomic_inc(&sk->sk_drops);
365 goto discard_and_relse;
376 EXPORT_SYMBOL(sk_receive_skb);
378 void sk_reset_txq(struct sock *sk)
380 sk_tx_queue_clear(sk);
382 EXPORT_SYMBOL(sk_reset_txq);
384 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
386 struct dst_entry *dst = __sk_dst_get(sk);
388 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
389 sk_tx_queue_clear(sk);
390 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
397 EXPORT_SYMBOL(__sk_dst_check);
399 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
401 struct dst_entry *dst = sk_dst_get(sk);
403 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
411 EXPORT_SYMBOL(sk_dst_check);
413 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
415 int ret = -ENOPROTOOPT;
416 #ifdef CONFIG_NETDEVICES
417 struct net *net = sock_net(sk);
418 char devname[IFNAMSIZ];
423 if (!capable(CAP_NET_RAW))
430 /* Bind this socket to a particular device like "eth0",
431 * as specified in the passed interface name. If the
432 * name is "" or the option length is zero the socket
435 if (optlen > IFNAMSIZ - 1)
436 optlen = IFNAMSIZ - 1;
437 memset(devname, 0, sizeof(devname));
440 if (copy_from_user(devname, optval, optlen))
444 if (devname[0] != '\0') {
445 struct net_device *dev;
448 dev = dev_get_by_name_rcu(net, devname);
450 index = dev->ifindex;
458 sk->sk_bound_dev_if = index;
470 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
473 sock_set_flag(sk, bit);
475 sock_reset_flag(sk, bit);
479 * This is meant for all protocols to use and covers goings on
480 * at the socket level. Everything here is generic.
483 int sock_setsockopt(struct socket *sock, int level, int optname,
484 char __user *optval, unsigned int optlen)
486 struct sock *sk = sock->sk;
493 * Options without arguments
496 if (optname == SO_BINDTODEVICE)
497 return sock_bindtodevice(sk, optval, optlen);
499 if (optlen < sizeof(int))
502 if (get_user(val, (int __user *)optval))
505 valbool = val ? 1 : 0;
511 if (val && !capable(CAP_NET_ADMIN))
514 sock_valbool_flag(sk, SOCK_DBG, valbool);
517 sk->sk_reuse = valbool;
526 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
529 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
532 /* Don't error on this BSD doesn't and if you think
533 about it this is right. Otherwise apps have to
534 play 'guess the biggest size' games. RCVBUF/SNDBUF
535 are treated in BSD as hints */
537 if (val > sysctl_wmem_max)
538 val = sysctl_wmem_max;
540 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
541 if ((val * 2) < SOCK_MIN_SNDBUF)
542 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
544 sk->sk_sndbuf = val * 2;
547 * Wake up sending tasks if we
550 sk->sk_write_space(sk);
554 if (!capable(CAP_NET_ADMIN)) {
561 /* Don't error on this BSD doesn't and if you think
562 about it this is right. Otherwise apps have to
563 play 'guess the biggest size' games. RCVBUF/SNDBUF
564 are treated in BSD as hints */
566 if (val > sysctl_rmem_max)
567 val = sysctl_rmem_max;
569 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
571 * We double it on the way in to account for
572 * "struct sk_buff" etc. overhead. Applications
573 * assume that the SO_RCVBUF setting they make will
574 * allow that much actual data to be received on that
577 * Applications are unaware that "struct sk_buff" and
578 * other overheads allocate from the receive buffer
579 * during socket buffer allocation.
581 * And after considering the possible alternatives,
582 * returning the value we actually used in getsockopt
583 * is the most desirable behavior.
585 if ((val * 2) < SOCK_MIN_RCVBUF)
586 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
588 sk->sk_rcvbuf = val * 2;
592 if (!capable(CAP_NET_ADMIN)) {
600 if (sk->sk_protocol == IPPROTO_TCP)
601 tcp_set_keepalive(sk, valbool);
603 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
607 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
611 sk->sk_no_check = valbool;
615 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
616 sk->sk_priority = val;
622 if (optlen < sizeof(ling)) {
623 ret = -EINVAL; /* 1003.1g */
626 if (copy_from_user(&ling, optval, sizeof(ling))) {
631 sock_reset_flag(sk, SOCK_LINGER);
633 #if (BITS_PER_LONG == 32)
634 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
635 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
638 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
639 sock_set_flag(sk, SOCK_LINGER);
644 sock_warn_obsolete_bsdism("setsockopt");
649 set_bit(SOCK_PASSCRED, &sock->flags);
651 clear_bit(SOCK_PASSCRED, &sock->flags);
657 if (optname == SO_TIMESTAMP)
658 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
660 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
661 sock_set_flag(sk, SOCK_RCVTSTAMP);
662 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
664 sock_reset_flag(sk, SOCK_RCVTSTAMP);
665 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
669 case SO_TIMESTAMPING:
670 if (val & ~SOF_TIMESTAMPING_MASK) {
674 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
675 val & SOF_TIMESTAMPING_TX_HARDWARE);
676 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
677 val & SOF_TIMESTAMPING_TX_SOFTWARE);
678 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
679 val & SOF_TIMESTAMPING_RX_HARDWARE);
680 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
681 sock_enable_timestamp(sk,
682 SOCK_TIMESTAMPING_RX_SOFTWARE);
684 sock_disable_timestamp(sk,
685 SOCK_TIMESTAMPING_RX_SOFTWARE);
686 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
687 val & SOF_TIMESTAMPING_SOFTWARE);
688 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
689 val & SOF_TIMESTAMPING_SYS_HARDWARE);
690 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
691 val & SOF_TIMESTAMPING_RAW_HARDWARE);
697 sk->sk_rcvlowat = val ? : 1;
701 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
705 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
708 case SO_ATTACH_FILTER:
710 if (optlen == sizeof(struct sock_fprog)) {
711 struct sock_fprog fprog;
714 if (copy_from_user(&fprog, optval, sizeof(fprog)))
717 ret = sk_attach_filter(&fprog, sk);
721 case SO_DETACH_FILTER:
722 ret = sk_detach_filter(sk);
727 set_bit(SOCK_PASSSEC, &sock->flags);
729 clear_bit(SOCK_PASSSEC, &sock->flags);
732 if (!capable(CAP_NET_ADMIN))
738 /* We implement the SO_SNDLOWAT etc to
739 not be settable (1003.1g 5.3) */
741 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
750 EXPORT_SYMBOL(sock_setsockopt);
753 void cred_to_ucred(struct pid *pid, const struct cred *cred,
756 ucred->pid = pid_vnr(pid);
757 ucred->uid = ucred->gid = -1;
759 struct user_namespace *current_ns = current_user_ns();
761 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
762 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
765 EXPORT_SYMBOL_GPL(cred_to_ucred);
767 int sock_getsockopt(struct socket *sock, int level, int optname,
768 char __user *optval, int __user *optlen)
770 struct sock *sk = sock->sk;
778 int lv = sizeof(int);
781 if (get_user(len, optlen))
786 memset(&v, 0, sizeof(v));
790 v.val = sock_flag(sk, SOCK_DBG);
794 v.val = sock_flag(sk, SOCK_LOCALROUTE);
798 v.val = !!sock_flag(sk, SOCK_BROADCAST);
802 v.val = sk->sk_sndbuf;
806 v.val = sk->sk_rcvbuf;
810 v.val = sk->sk_reuse;
814 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
822 v.val = sk->sk_protocol;
826 v.val = sk->sk_family;
830 v.val = -sock_error(sk);
832 v.val = xchg(&sk->sk_err_soft, 0);
836 v.val = !!sock_flag(sk, SOCK_URGINLINE);
840 v.val = sk->sk_no_check;
844 v.val = sk->sk_priority;
849 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
850 v.ling.l_linger = sk->sk_lingertime / HZ;
854 sock_warn_obsolete_bsdism("getsockopt");
858 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
859 !sock_flag(sk, SOCK_RCVTSTAMPNS);
863 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
866 case SO_TIMESTAMPING:
868 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
869 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
870 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
871 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
872 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
873 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
874 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
875 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
876 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
877 v.val |= SOF_TIMESTAMPING_SOFTWARE;
878 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
879 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
880 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
881 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
885 lv = sizeof(struct timeval);
886 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
890 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
891 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
896 lv = sizeof(struct timeval);
897 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
901 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
902 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
907 v.val = sk->sk_rcvlowat;
915 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
920 struct ucred peercred;
921 if (len > sizeof(peercred))
922 len = sizeof(peercred);
923 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
924 if (copy_to_user(optval, &peercred, len))
933 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
937 if (copy_to_user(optval, address, len))
942 /* Dubious BSD thing... Probably nobody even uses it, but
943 * the UNIX standard wants it for whatever reason... -DaveM
946 v.val = sk->sk_state == TCP_LISTEN;
950 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
954 return security_socket_getpeersec_stream(sock, optval, optlen, len);
961 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
970 if (copy_to_user(optval, &v, len))
973 if (put_user(len, optlen))
979 * Initialize an sk_lock.
981 * (We also register the sk_lock with the lock validator.)
983 static inline void sock_lock_init(struct sock *sk)
985 sock_lock_init_class_and_name(sk,
986 af_family_slock_key_strings[sk->sk_family],
987 af_family_slock_keys + sk->sk_family,
988 af_family_key_strings[sk->sk_family],
989 af_family_keys + sk->sk_family);
993 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
994 * even temporarly, because of RCU lookups. sk_node should also be left as is.
995 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
997 static void sock_copy(struct sock *nsk, const struct sock *osk)
999 #ifdef CONFIG_SECURITY_NETWORK
1000 void *sptr = nsk->sk_security;
1002 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1004 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1005 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1007 #ifdef CONFIG_SECURITY_NETWORK
1008 nsk->sk_security = sptr;
1009 security_sk_clone(osk, nsk);
1014 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1015 * un-modified. Special care is taken when initializing object to zero.
1017 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1019 if (offsetof(struct sock, sk_node.next) != 0)
1020 memset(sk, 0, offsetof(struct sock, sk_node.next));
1021 memset(&sk->sk_node.pprev, 0,
1022 size - offsetof(struct sock, sk_node.pprev));
1025 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1027 unsigned long nulls1, nulls2;
1029 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1030 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1031 if (nulls1 > nulls2)
1032 swap(nulls1, nulls2);
1035 memset((char *)sk, 0, nulls1);
1036 memset((char *)sk + nulls1 + sizeof(void *), 0,
1037 nulls2 - nulls1 - sizeof(void *));
1038 memset((char *)sk + nulls2 + sizeof(void *), 0,
1039 size - nulls2 - sizeof(void *));
1041 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1043 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1047 struct kmem_cache *slab;
1051 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1054 if (priority & __GFP_ZERO) {
1056 prot->clear_sk(sk, prot->obj_size);
1058 sk_prot_clear_nulls(sk, prot->obj_size);
1061 sk = kmalloc(prot->obj_size, priority);
1064 kmemcheck_annotate_bitfield(sk, flags);
1066 if (security_sk_alloc(sk, family, priority))
1069 if (!try_module_get(prot->owner))
1071 sk_tx_queue_clear(sk);
1077 security_sk_free(sk);
1080 kmem_cache_free(slab, sk);
1086 static void sk_prot_free(struct proto *prot, struct sock *sk)
1088 struct kmem_cache *slab;
1089 struct module *owner;
1091 owner = prot->owner;
1094 security_sk_free(sk);
1096 kmem_cache_free(slab, sk);
1102 #ifdef CONFIG_CGROUPS
1103 void sock_update_classid(struct sock *sk)
1107 rcu_read_lock(); /* doing current task, which cannot vanish. */
1108 classid = task_cls_classid(current);
1110 if (classid && classid != sk->sk_classid)
1111 sk->sk_classid = classid;
1113 EXPORT_SYMBOL(sock_update_classid);
1117 * sk_alloc - All socket objects are allocated here
1118 * @net: the applicable net namespace
1119 * @family: protocol family
1120 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1121 * @prot: struct proto associated with this new sock instance
1123 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1128 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1130 sk->sk_family = family;
1132 * See comment in struct sock definition to understand
1133 * why we need sk_prot_creator -acme
1135 sk->sk_prot = sk->sk_prot_creator = prot;
1137 sock_net_set(sk, get_net(net));
1138 atomic_set(&sk->sk_wmem_alloc, 1);
1140 sock_update_classid(sk);
1145 EXPORT_SYMBOL(sk_alloc);
1147 static void __sk_free(struct sock *sk)
1149 struct sk_filter *filter;
1151 if (sk->sk_destruct)
1152 sk->sk_destruct(sk);
1154 filter = rcu_dereference_check(sk->sk_filter,
1155 atomic_read(&sk->sk_wmem_alloc) == 0);
1157 sk_filter_uncharge(sk, filter);
1158 RCU_INIT_POINTER(sk->sk_filter, NULL);
1161 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1162 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1164 if (atomic_read(&sk->sk_omem_alloc))
1165 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1166 __func__, atomic_read(&sk->sk_omem_alloc));
1168 if (sk->sk_peer_cred)
1169 put_cred(sk->sk_peer_cred);
1170 put_pid(sk->sk_peer_pid);
1171 put_net(sock_net(sk));
1172 sk_prot_free(sk->sk_prot_creator, sk);
1175 void sk_free(struct sock *sk)
1178 * We subtract one from sk_wmem_alloc and can know if
1179 * some packets are still in some tx queue.
1180 * If not null, sock_wfree() will call __sk_free(sk) later
1182 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1185 EXPORT_SYMBOL(sk_free);
1188 * Last sock_put should drop reference to sk->sk_net. It has already
1189 * been dropped in sk_change_net. Taking reference to stopping namespace
1191 * Take reference to a socket to remove it from hash _alive_ and after that
1192 * destroy it in the context of init_net.
1194 void sk_release_kernel(struct sock *sk)
1196 if (sk == NULL || sk->sk_socket == NULL)
1200 sock_release(sk->sk_socket);
1201 release_net(sock_net(sk));
1202 sock_net_set(sk, get_net(&init_net));
1205 EXPORT_SYMBOL(sk_release_kernel);
1207 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1211 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1212 if (newsk != NULL) {
1213 struct sk_filter *filter;
1215 sock_copy(newsk, sk);
1218 get_net(sock_net(newsk));
1219 sk_node_init(&newsk->sk_node);
1220 sock_lock_init(newsk);
1221 bh_lock_sock(newsk);
1222 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1223 newsk->sk_backlog.len = 0;
1225 atomic_set(&newsk->sk_rmem_alloc, 0);
1227 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1229 atomic_set(&newsk->sk_wmem_alloc, 1);
1230 atomic_set(&newsk->sk_omem_alloc, 0);
1231 skb_queue_head_init(&newsk->sk_receive_queue);
1232 skb_queue_head_init(&newsk->sk_write_queue);
1233 #ifdef CONFIG_NET_DMA
1234 skb_queue_head_init(&newsk->sk_async_wait_queue);
1237 spin_lock_init(&newsk->sk_dst_lock);
1238 rwlock_init(&newsk->sk_callback_lock);
1239 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1240 af_callback_keys + newsk->sk_family,
1241 af_family_clock_key_strings[newsk->sk_family]);
1243 newsk->sk_dst_cache = NULL;
1244 newsk->sk_wmem_queued = 0;
1245 newsk->sk_forward_alloc = 0;
1246 newsk->sk_send_head = NULL;
1247 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1249 sock_reset_flag(newsk, SOCK_DONE);
1250 skb_queue_head_init(&newsk->sk_error_queue);
1252 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1254 sk_filter_charge(newsk, filter);
1256 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1257 /* It is still raw copy of parent, so invalidate
1258 * destructor and make plain sk_free() */
1259 newsk->sk_destruct = NULL;
1260 bh_unlock_sock(newsk);
1267 newsk->sk_priority = 0;
1269 * Before updating sk_refcnt, we must commit prior changes to memory
1270 * (Documentation/RCU/rculist_nulls.txt for details)
1273 atomic_set(&newsk->sk_refcnt, 2);
1276 * Increment the counter in the same struct proto as the master
1277 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1278 * is the same as sk->sk_prot->socks, as this field was copied
1281 * This _changes_ the previous behaviour, where
1282 * tcp_create_openreq_child always was incrementing the
1283 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1284 * to be taken into account in all callers. -acme
1286 sk_refcnt_debug_inc(newsk);
1287 sk_set_socket(newsk, NULL);
1288 newsk->sk_wq = NULL;
1290 if (newsk->sk_prot->sockets_allocated)
1291 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1293 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1294 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1295 net_enable_timestamp();
1300 EXPORT_SYMBOL_GPL(sk_clone);
1302 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1304 __sk_dst_set(sk, dst);
1305 sk->sk_route_caps = dst->dev->features;
1306 if (sk->sk_route_caps & NETIF_F_GSO)
1307 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1308 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1309 if (sk_can_gso(sk)) {
1310 if (dst->header_len) {
1311 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1313 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1314 sk->sk_gso_max_size = dst->dev->gso_max_size;
1318 EXPORT_SYMBOL_GPL(sk_setup_caps);
1320 void __init sk_init(void)
1322 if (totalram_pages <= 4096) {
1323 sysctl_wmem_max = 32767;
1324 sysctl_rmem_max = 32767;
1325 sysctl_wmem_default = 32767;
1326 sysctl_rmem_default = 32767;
1327 } else if (totalram_pages >= 131072) {
1328 sysctl_wmem_max = 131071;
1329 sysctl_rmem_max = 131071;
1334 * Simple resource managers for sockets.
1339 * Write buffer destructor automatically called from kfree_skb.
1341 void sock_wfree(struct sk_buff *skb)
1343 struct sock *sk = skb->sk;
1344 unsigned int len = skb->truesize;
1346 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1348 * Keep a reference on sk_wmem_alloc, this will be released
1349 * after sk_write_space() call
1351 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1352 sk->sk_write_space(sk);
1356 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1357 * could not do because of in-flight packets
1359 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1362 EXPORT_SYMBOL(sock_wfree);
1365 * Read buffer destructor automatically called from kfree_skb.
1367 void sock_rfree(struct sk_buff *skb)
1369 struct sock *sk = skb->sk;
1370 unsigned int len = skb->truesize;
1372 atomic_sub(len, &sk->sk_rmem_alloc);
1373 sk_mem_uncharge(sk, len);
1375 EXPORT_SYMBOL(sock_rfree);
1378 int sock_i_uid(struct sock *sk)
1382 read_lock_bh(&sk->sk_callback_lock);
1383 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1384 read_unlock_bh(&sk->sk_callback_lock);
1387 EXPORT_SYMBOL(sock_i_uid);
1389 unsigned long sock_i_ino(struct sock *sk)
1393 read_lock_bh(&sk->sk_callback_lock);
1394 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1395 read_unlock_bh(&sk->sk_callback_lock);
1398 EXPORT_SYMBOL(sock_i_ino);
1401 * Allocate a skb from the socket's send buffer.
1403 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1406 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1407 struct sk_buff *skb = alloc_skb(size, priority);
1409 skb_set_owner_w(skb, sk);
1415 EXPORT_SYMBOL(sock_wmalloc);
1418 * Allocate a skb from the socket's receive buffer.
1420 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1423 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1424 struct sk_buff *skb = alloc_skb(size, priority);
1426 skb_set_owner_r(skb, sk);
1434 * Allocate a memory block from the socket's option memory buffer.
1436 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1438 if ((unsigned)size <= sysctl_optmem_max &&
1439 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1441 /* First do the add, to avoid the race if kmalloc
1444 atomic_add(size, &sk->sk_omem_alloc);
1445 mem = kmalloc(size, priority);
1448 atomic_sub(size, &sk->sk_omem_alloc);
1452 EXPORT_SYMBOL(sock_kmalloc);
1455 * Free an option memory block.
1457 void sock_kfree_s(struct sock *sk, void *mem, int size)
1460 atomic_sub(size, &sk->sk_omem_alloc);
1462 EXPORT_SYMBOL(sock_kfree_s);
1464 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1465 I think, these locks should be removed for datagram sockets.
1467 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1471 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1475 if (signal_pending(current))
1477 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1478 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1479 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1481 if (sk->sk_shutdown & SEND_SHUTDOWN)
1485 timeo = schedule_timeout(timeo);
1487 finish_wait(sk_sleep(sk), &wait);
1493 * Generic send/receive buffer handlers
1496 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1497 unsigned long data_len, int noblock,
1500 struct sk_buff *skb;
1505 gfp_mask = sk->sk_allocation;
1506 if (gfp_mask & __GFP_WAIT)
1507 gfp_mask |= __GFP_REPEAT;
1509 timeo = sock_sndtimeo(sk, noblock);
1511 err = sock_error(sk);
1516 if (sk->sk_shutdown & SEND_SHUTDOWN)
1519 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1520 skb = alloc_skb(header_len, gfp_mask);
1525 /* No pages, we're done... */
1529 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1530 skb->truesize += data_len;
1531 skb_shinfo(skb)->nr_frags = npages;
1532 for (i = 0; i < npages; i++) {
1535 page = alloc_pages(sk->sk_allocation, 0);
1538 skb_shinfo(skb)->nr_frags = i;
1543 __skb_fill_page_desc(skb, i,
1545 (data_len >= PAGE_SIZE ?
1548 data_len -= PAGE_SIZE;
1551 /* Full success... */
1557 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1558 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1562 if (signal_pending(current))
1564 timeo = sock_wait_for_wmem(sk, timeo);
1567 skb_set_owner_w(skb, sk);
1571 err = sock_intr_errno(timeo);
1576 EXPORT_SYMBOL(sock_alloc_send_pskb);
1578 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1579 int noblock, int *errcode)
1581 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1583 EXPORT_SYMBOL(sock_alloc_send_skb);
1585 static void __lock_sock(struct sock *sk)
1586 __releases(&sk->sk_lock.slock)
1587 __acquires(&sk->sk_lock.slock)
1592 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1593 TASK_UNINTERRUPTIBLE);
1594 spin_unlock_bh(&sk->sk_lock.slock);
1596 spin_lock_bh(&sk->sk_lock.slock);
1597 if (!sock_owned_by_user(sk))
1600 finish_wait(&sk->sk_lock.wq, &wait);
1603 static void __release_sock(struct sock *sk)
1604 __releases(&sk->sk_lock.slock)
1605 __acquires(&sk->sk_lock.slock)
1607 struct sk_buff *skb = sk->sk_backlog.head;
1610 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1614 struct sk_buff *next = skb->next;
1616 WARN_ON_ONCE(skb_dst_is_noref(skb));
1618 sk_backlog_rcv(sk, skb);
1621 * We are in process context here with softirqs
1622 * disabled, use cond_resched_softirq() to preempt.
1623 * This is safe to do because we've taken the backlog
1626 cond_resched_softirq();
1629 } while (skb != NULL);
1632 } while ((skb = sk->sk_backlog.head) != NULL);
1635 * Doing the zeroing here guarantee we can not loop forever
1636 * while a wild producer attempts to flood us.
1638 sk->sk_backlog.len = 0;
1642 * sk_wait_data - wait for data to arrive at sk_receive_queue
1643 * @sk: sock to wait on
1644 * @timeo: for how long
1646 * Now socket state including sk->sk_err is changed only under lock,
1647 * hence we may omit checks after joining wait queue.
1648 * We check receive queue before schedule() only as optimization;
1649 * it is very likely that release_sock() added new data.
1651 int sk_wait_data(struct sock *sk, long *timeo)
1656 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1657 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1658 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1659 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1660 finish_wait(sk_sleep(sk), &wait);
1663 EXPORT_SYMBOL(sk_wait_data);
1666 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1668 * @size: memory size to allocate
1669 * @kind: allocation type
1671 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1672 * rmem allocation. This function assumes that protocols which have
1673 * memory_pressure use sk_wmem_queued as write buffer accounting.
1675 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1677 struct proto *prot = sk->sk_prot;
1678 int amt = sk_mem_pages(size);
1681 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1682 allocated = atomic_long_add_return(amt, prot->memory_allocated);
1685 if (allocated <= prot->sysctl_mem[0]) {
1686 if (prot->memory_pressure && *prot->memory_pressure)
1687 *prot->memory_pressure = 0;
1691 /* Under pressure. */
1692 if (allocated > prot->sysctl_mem[1])
1693 if (prot->enter_memory_pressure)
1694 prot->enter_memory_pressure(sk);
1696 /* Over hard limit. */
1697 if (allocated > prot->sysctl_mem[2])
1698 goto suppress_allocation;
1700 /* guarantee minimum buffer size under pressure */
1701 if (kind == SK_MEM_RECV) {
1702 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1704 } else { /* SK_MEM_SEND */
1705 if (sk->sk_type == SOCK_STREAM) {
1706 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1708 } else if (atomic_read(&sk->sk_wmem_alloc) <
1709 prot->sysctl_wmem[0])
1713 if (prot->memory_pressure) {
1716 if (!*prot->memory_pressure)
1718 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1719 if (prot->sysctl_mem[2] > alloc *
1720 sk_mem_pages(sk->sk_wmem_queued +
1721 atomic_read(&sk->sk_rmem_alloc) +
1722 sk->sk_forward_alloc))
1726 suppress_allocation:
1728 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1729 sk_stream_moderate_sndbuf(sk);
1731 /* Fail only if socket is _under_ its sndbuf.
1732 * In this case we cannot block, so that we have to fail.
1734 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1738 trace_sock_exceed_buf_limit(sk, prot, allocated);
1740 /* Alas. Undo changes. */
1741 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1742 atomic_long_sub(amt, prot->memory_allocated);
1745 EXPORT_SYMBOL(__sk_mem_schedule);
1748 * __sk_reclaim - reclaim memory_allocated
1751 void __sk_mem_reclaim(struct sock *sk)
1753 struct proto *prot = sk->sk_prot;
1755 atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1756 prot->memory_allocated);
1757 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1759 if (prot->memory_pressure && *prot->memory_pressure &&
1760 (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1761 *prot->memory_pressure = 0;
1763 EXPORT_SYMBOL(__sk_mem_reclaim);
1767 * Set of default routines for initialising struct proto_ops when
1768 * the protocol does not support a particular function. In certain
1769 * cases where it makes no sense for a protocol to have a "do nothing"
1770 * function, some default processing is provided.
1773 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1777 EXPORT_SYMBOL(sock_no_bind);
1779 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1784 EXPORT_SYMBOL(sock_no_connect);
1786 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1790 EXPORT_SYMBOL(sock_no_socketpair);
1792 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1796 EXPORT_SYMBOL(sock_no_accept);
1798 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1803 EXPORT_SYMBOL(sock_no_getname);
1805 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1809 EXPORT_SYMBOL(sock_no_poll);
1811 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1815 EXPORT_SYMBOL(sock_no_ioctl);
1817 int sock_no_listen(struct socket *sock, int backlog)
1821 EXPORT_SYMBOL(sock_no_listen);
1823 int sock_no_shutdown(struct socket *sock, int how)
1827 EXPORT_SYMBOL(sock_no_shutdown);
1829 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1830 char __user *optval, unsigned int optlen)
1834 EXPORT_SYMBOL(sock_no_setsockopt);
1836 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1837 char __user *optval, int __user *optlen)
1841 EXPORT_SYMBOL(sock_no_getsockopt);
1843 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1848 EXPORT_SYMBOL(sock_no_sendmsg);
1850 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1851 size_t len, int flags)
1855 EXPORT_SYMBOL(sock_no_recvmsg);
1857 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1859 /* Mirror missing mmap method error code */
1862 EXPORT_SYMBOL(sock_no_mmap);
1864 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1867 struct msghdr msg = {.msg_flags = flags};
1869 char *kaddr = kmap(page);
1870 iov.iov_base = kaddr + offset;
1872 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1876 EXPORT_SYMBOL(sock_no_sendpage);
1879 * Default Socket Callbacks
1882 static void sock_def_wakeup(struct sock *sk)
1884 struct socket_wq *wq;
1887 wq = rcu_dereference(sk->sk_wq);
1888 if (wq_has_sleeper(wq))
1889 wake_up_interruptible_all(&wq->wait);
1893 static void sock_def_error_report(struct sock *sk)
1895 struct socket_wq *wq;
1898 wq = rcu_dereference(sk->sk_wq);
1899 if (wq_has_sleeper(wq))
1900 wake_up_interruptible_poll(&wq->wait, POLLERR);
1901 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1905 static void sock_def_readable(struct sock *sk, int len)
1907 struct socket_wq *wq;
1910 wq = rcu_dereference(sk->sk_wq);
1911 if (wq_has_sleeper(wq))
1912 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1913 POLLRDNORM | POLLRDBAND);
1914 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1918 static void sock_def_write_space(struct sock *sk)
1920 struct socket_wq *wq;
1924 /* Do not wake up a writer until he can make "significant"
1927 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1928 wq = rcu_dereference(sk->sk_wq);
1929 if (wq_has_sleeper(wq))
1930 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1931 POLLWRNORM | POLLWRBAND);
1933 /* Should agree with poll, otherwise some programs break */
1934 if (sock_writeable(sk))
1935 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1941 static void sock_def_destruct(struct sock *sk)
1943 kfree(sk->sk_protinfo);
1946 void sk_send_sigurg(struct sock *sk)
1948 if (sk->sk_socket && sk->sk_socket->file)
1949 if (send_sigurg(&sk->sk_socket->file->f_owner))
1950 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1952 EXPORT_SYMBOL(sk_send_sigurg);
1954 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1955 unsigned long expires)
1957 if (!mod_timer(timer, expires))
1960 EXPORT_SYMBOL(sk_reset_timer);
1962 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1964 if (timer_pending(timer) && del_timer(timer))
1967 EXPORT_SYMBOL(sk_stop_timer);
1969 void sock_init_data(struct socket *sock, struct sock *sk)
1971 skb_queue_head_init(&sk->sk_receive_queue);
1972 skb_queue_head_init(&sk->sk_write_queue);
1973 skb_queue_head_init(&sk->sk_error_queue);
1974 #ifdef CONFIG_NET_DMA
1975 skb_queue_head_init(&sk->sk_async_wait_queue);
1978 sk->sk_send_head = NULL;
1980 init_timer(&sk->sk_timer);
1982 sk->sk_allocation = GFP_KERNEL;
1983 sk->sk_rcvbuf = sysctl_rmem_default;
1984 sk->sk_sndbuf = sysctl_wmem_default;
1985 sk->sk_state = TCP_CLOSE;
1986 sk_set_socket(sk, sock);
1988 sock_set_flag(sk, SOCK_ZAPPED);
1991 sk->sk_type = sock->type;
1992 sk->sk_wq = sock->wq;
1997 spin_lock_init(&sk->sk_dst_lock);
1998 rwlock_init(&sk->sk_callback_lock);
1999 lockdep_set_class_and_name(&sk->sk_callback_lock,
2000 af_callback_keys + sk->sk_family,
2001 af_family_clock_key_strings[sk->sk_family]);
2003 sk->sk_state_change = sock_def_wakeup;
2004 sk->sk_data_ready = sock_def_readable;
2005 sk->sk_write_space = sock_def_write_space;
2006 sk->sk_error_report = sock_def_error_report;
2007 sk->sk_destruct = sock_def_destruct;
2009 sk->sk_sndmsg_page = NULL;
2010 sk->sk_sndmsg_off = 0;
2012 sk->sk_peer_pid = NULL;
2013 sk->sk_peer_cred = NULL;
2014 sk->sk_write_pending = 0;
2015 sk->sk_rcvlowat = 1;
2016 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2017 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2019 sk->sk_stamp = ktime_set(-1L, 0);
2022 * Before updating sk_refcnt, we must commit prior changes to memory
2023 * (Documentation/RCU/rculist_nulls.txt for details)
2026 atomic_set(&sk->sk_refcnt, 1);
2027 atomic_set(&sk->sk_drops, 0);
2029 EXPORT_SYMBOL(sock_init_data);
2031 void lock_sock_nested(struct sock *sk, int subclass)
2034 spin_lock_bh(&sk->sk_lock.slock);
2035 if (sk->sk_lock.owned)
2037 sk->sk_lock.owned = 1;
2038 spin_unlock(&sk->sk_lock.slock);
2040 * The sk_lock has mutex_lock() semantics here:
2042 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2045 EXPORT_SYMBOL(lock_sock_nested);
2047 void release_sock(struct sock *sk)
2050 * The sk_lock has mutex_unlock() semantics:
2052 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2054 spin_lock_bh(&sk->sk_lock.slock);
2055 if (sk->sk_backlog.tail)
2057 sk->sk_lock.owned = 0;
2058 if (waitqueue_active(&sk->sk_lock.wq))
2059 wake_up(&sk->sk_lock.wq);
2060 spin_unlock_bh(&sk->sk_lock.slock);
2062 EXPORT_SYMBOL(release_sock);
2065 * lock_sock_fast - fast version of lock_sock
2068 * This version should be used for very small section, where process wont block
2069 * return false if fast path is taken
2070 * sk_lock.slock locked, owned = 0, BH disabled
2071 * return true if slow path is taken
2072 * sk_lock.slock unlocked, owned = 1, BH enabled
2074 bool lock_sock_fast(struct sock *sk)
2077 spin_lock_bh(&sk->sk_lock.slock);
2079 if (!sk->sk_lock.owned)
2081 * Note : We must disable BH
2086 sk->sk_lock.owned = 1;
2087 spin_unlock(&sk->sk_lock.slock);
2089 * The sk_lock has mutex_lock() semantics here:
2091 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2095 EXPORT_SYMBOL(lock_sock_fast);
2097 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2100 if (!sock_flag(sk, SOCK_TIMESTAMP))
2101 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2102 tv = ktime_to_timeval(sk->sk_stamp);
2103 if (tv.tv_sec == -1)
2105 if (tv.tv_sec == 0) {
2106 sk->sk_stamp = ktime_get_real();
2107 tv = ktime_to_timeval(sk->sk_stamp);
2109 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2111 EXPORT_SYMBOL(sock_get_timestamp);
2113 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2116 if (!sock_flag(sk, SOCK_TIMESTAMP))
2117 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2118 ts = ktime_to_timespec(sk->sk_stamp);
2119 if (ts.tv_sec == -1)
2121 if (ts.tv_sec == 0) {
2122 sk->sk_stamp = ktime_get_real();
2123 ts = ktime_to_timespec(sk->sk_stamp);
2125 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2127 EXPORT_SYMBOL(sock_get_timestampns);
2129 void sock_enable_timestamp(struct sock *sk, int flag)
2131 if (!sock_flag(sk, flag)) {
2132 sock_set_flag(sk, flag);
2134 * we just set one of the two flags which require net
2135 * time stamping, but time stamping might have been on
2136 * already because of the other one
2139 flag == SOCK_TIMESTAMP ?
2140 SOCK_TIMESTAMPING_RX_SOFTWARE :
2142 net_enable_timestamp();
2147 * Get a socket option on an socket.
2149 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2150 * asynchronous errors should be reported by getsockopt. We assume
2151 * this means if you specify SO_ERROR (otherwise whats the point of it).
2153 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2154 char __user *optval, int __user *optlen)
2156 struct sock *sk = sock->sk;
2158 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2160 EXPORT_SYMBOL(sock_common_getsockopt);
2162 #ifdef CONFIG_COMPAT
2163 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2164 char __user *optval, int __user *optlen)
2166 struct sock *sk = sock->sk;
2168 if (sk->sk_prot->compat_getsockopt != NULL)
2169 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2171 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2173 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2176 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2177 struct msghdr *msg, size_t size, int flags)
2179 struct sock *sk = sock->sk;
2183 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2184 flags & ~MSG_DONTWAIT, &addr_len);
2186 msg->msg_namelen = addr_len;
2189 EXPORT_SYMBOL(sock_common_recvmsg);
2192 * Set socket options on an inet socket.
2194 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2195 char __user *optval, unsigned int optlen)
2197 struct sock *sk = sock->sk;
2199 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2201 EXPORT_SYMBOL(sock_common_setsockopt);
2203 #ifdef CONFIG_COMPAT
2204 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2205 char __user *optval, unsigned int optlen)
2207 struct sock *sk = sock->sk;
2209 if (sk->sk_prot->compat_setsockopt != NULL)
2210 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2212 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2214 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2217 void sk_common_release(struct sock *sk)
2219 if (sk->sk_prot->destroy)
2220 sk->sk_prot->destroy(sk);
2223 * Observation: when sock_common_release is called, processes have
2224 * no access to socket. But net still has.
2225 * Step one, detach it from networking:
2227 * A. Remove from hash tables.
2230 sk->sk_prot->unhash(sk);
2233 * In this point socket cannot receive new packets, but it is possible
2234 * that some packets are in flight because some CPU runs receiver and
2235 * did hash table lookup before we unhashed socket. They will achieve
2236 * receive queue and will be purged by socket destructor.
2238 * Also we still have packets pending on receive queue and probably,
2239 * our own packets waiting in device queues. sock_destroy will drain
2240 * receive queue, but transmitted packets will delay socket destruction
2241 * until the last reference will be released.
2246 xfrm_sk_free_policy(sk);
2248 sk_refcnt_debug_release(sk);
2251 EXPORT_SYMBOL(sk_common_release);
2253 static DEFINE_RWLOCK(proto_list_lock);
2254 static LIST_HEAD(proto_list);
2256 #ifdef CONFIG_PROC_FS
2257 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2259 int val[PROTO_INUSE_NR];
2262 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2264 #ifdef CONFIG_NET_NS
2265 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2267 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2269 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2271 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2273 int cpu, idx = prot->inuse_idx;
2276 for_each_possible_cpu(cpu)
2277 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2279 return res >= 0 ? res : 0;
2281 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2283 static int __net_init sock_inuse_init_net(struct net *net)
2285 net->core.inuse = alloc_percpu(struct prot_inuse);
2286 return net->core.inuse ? 0 : -ENOMEM;
2289 static void __net_exit sock_inuse_exit_net(struct net *net)
2291 free_percpu(net->core.inuse);
2294 static struct pernet_operations net_inuse_ops = {
2295 .init = sock_inuse_init_net,
2296 .exit = sock_inuse_exit_net,
2299 static __init int net_inuse_init(void)
2301 if (register_pernet_subsys(&net_inuse_ops))
2302 panic("Cannot initialize net inuse counters");
2307 core_initcall(net_inuse_init);
2309 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2311 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2313 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2315 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2317 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2319 int cpu, idx = prot->inuse_idx;
2322 for_each_possible_cpu(cpu)
2323 res += per_cpu(prot_inuse, cpu).val[idx];
2325 return res >= 0 ? res : 0;
2327 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2330 static void assign_proto_idx(struct proto *prot)
2332 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2334 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2335 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2339 set_bit(prot->inuse_idx, proto_inuse_idx);
2342 static void release_proto_idx(struct proto *prot)
2344 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2345 clear_bit(prot->inuse_idx, proto_inuse_idx);
2348 static inline void assign_proto_idx(struct proto *prot)
2352 static inline void release_proto_idx(struct proto *prot)
2357 int proto_register(struct proto *prot, int alloc_slab)
2360 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2361 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2364 if (prot->slab == NULL) {
2365 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2370 if (prot->rsk_prot != NULL) {
2371 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2372 if (prot->rsk_prot->slab_name == NULL)
2373 goto out_free_sock_slab;
2375 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2376 prot->rsk_prot->obj_size, 0,
2377 SLAB_HWCACHE_ALIGN, NULL);
2379 if (prot->rsk_prot->slab == NULL) {
2380 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2382 goto out_free_request_sock_slab_name;
2386 if (prot->twsk_prot != NULL) {
2387 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2389 if (prot->twsk_prot->twsk_slab_name == NULL)
2390 goto out_free_request_sock_slab;
2392 prot->twsk_prot->twsk_slab =
2393 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2394 prot->twsk_prot->twsk_obj_size,
2396 SLAB_HWCACHE_ALIGN |
2399 if (prot->twsk_prot->twsk_slab == NULL)
2400 goto out_free_timewait_sock_slab_name;
2404 write_lock(&proto_list_lock);
2405 list_add(&prot->node, &proto_list);
2406 assign_proto_idx(prot);
2407 write_unlock(&proto_list_lock);
2410 out_free_timewait_sock_slab_name:
2411 kfree(prot->twsk_prot->twsk_slab_name);
2412 out_free_request_sock_slab:
2413 if (prot->rsk_prot && prot->rsk_prot->slab) {
2414 kmem_cache_destroy(prot->rsk_prot->slab);
2415 prot->rsk_prot->slab = NULL;
2417 out_free_request_sock_slab_name:
2419 kfree(prot->rsk_prot->slab_name);
2421 kmem_cache_destroy(prot->slab);
2426 EXPORT_SYMBOL(proto_register);
2428 void proto_unregister(struct proto *prot)
2430 write_lock(&proto_list_lock);
2431 release_proto_idx(prot);
2432 list_del(&prot->node);
2433 write_unlock(&proto_list_lock);
2435 if (prot->slab != NULL) {
2436 kmem_cache_destroy(prot->slab);
2440 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2441 kmem_cache_destroy(prot->rsk_prot->slab);
2442 kfree(prot->rsk_prot->slab_name);
2443 prot->rsk_prot->slab = NULL;
2446 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2447 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2448 kfree(prot->twsk_prot->twsk_slab_name);
2449 prot->twsk_prot->twsk_slab = NULL;
2452 EXPORT_SYMBOL(proto_unregister);
2454 #ifdef CONFIG_PROC_FS
2455 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2456 __acquires(proto_list_lock)
2458 read_lock(&proto_list_lock);
2459 return seq_list_start_head(&proto_list, *pos);
2462 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2464 return seq_list_next(v, &proto_list, pos);
2467 static void proto_seq_stop(struct seq_file *seq, void *v)
2468 __releases(proto_list_lock)
2470 read_unlock(&proto_list_lock);
2473 static char proto_method_implemented(const void *method)
2475 return method == NULL ? 'n' : 'y';
2478 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2480 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2481 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2484 sock_prot_inuse_get(seq_file_net(seq), proto),
2485 proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2486 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2488 proto->slab == NULL ? "no" : "yes",
2489 module_name(proto->owner),
2490 proto_method_implemented(proto->close),
2491 proto_method_implemented(proto->connect),
2492 proto_method_implemented(proto->disconnect),
2493 proto_method_implemented(proto->accept),
2494 proto_method_implemented(proto->ioctl),
2495 proto_method_implemented(proto->init),
2496 proto_method_implemented(proto->destroy),
2497 proto_method_implemented(proto->shutdown),
2498 proto_method_implemented(proto->setsockopt),
2499 proto_method_implemented(proto->getsockopt),
2500 proto_method_implemented(proto->sendmsg),
2501 proto_method_implemented(proto->recvmsg),
2502 proto_method_implemented(proto->sendpage),
2503 proto_method_implemented(proto->bind),
2504 proto_method_implemented(proto->backlog_rcv),
2505 proto_method_implemented(proto->hash),
2506 proto_method_implemented(proto->unhash),
2507 proto_method_implemented(proto->get_port),
2508 proto_method_implemented(proto->enter_memory_pressure));
2511 static int proto_seq_show(struct seq_file *seq, void *v)
2513 if (v == &proto_list)
2514 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2523 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2525 proto_seq_printf(seq, list_entry(v, struct proto, node));
2529 static const struct seq_operations proto_seq_ops = {
2530 .start = proto_seq_start,
2531 .next = proto_seq_next,
2532 .stop = proto_seq_stop,
2533 .show = proto_seq_show,
2536 static int proto_seq_open(struct inode *inode, struct file *file)
2538 return seq_open_net(inode, file, &proto_seq_ops,
2539 sizeof(struct seq_net_private));
2542 static const struct file_operations proto_seq_fops = {
2543 .owner = THIS_MODULE,
2544 .open = proto_seq_open,
2546 .llseek = seq_lseek,
2547 .release = seq_release_net,
2550 static __net_init int proto_init_net(struct net *net)
2552 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2558 static __net_exit void proto_exit_net(struct net *net)
2560 proc_net_remove(net, "protocols");
2564 static __net_initdata struct pernet_operations proto_net_ops = {
2565 .init = proto_init_net,
2566 .exit = proto_exit_net,
2569 static int __init proto_init(void)
2571 return register_pernet_subsys(&proto_net_ops);
2574 subsys_initcall(proto_init);
2576 #endif /* PROC_FS */