]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/sock.c
[NET]: Auto-zero the allocated sock object
[karo-tx-linux.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:     $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:     Ross Biro
13  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *              Alan Cox        :       Numerous verify_area() problems
19  *              Alan Cox        :       Connecting on a connecting socket
20  *                                      now returns an error for tcp.
21  *              Alan Cox        :       sock->protocol is set correctly.
22  *                                      and is not sometimes left as 0.
23  *              Alan Cox        :       connect handles icmp errors on a
24  *                                      connect properly. Unfortunately there
25  *                                      is a restart syscall nasty there. I
26  *                                      can't match BSD without hacking the C
27  *                                      library. Ideas urgently sought!
28  *              Alan Cox        :       Disallow bind() to addresses that are
29  *                                      not ours - especially broadcast ones!!
30  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
31  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
32  *                                      instead they leave that for the DESTROY timer.
33  *              Alan Cox        :       Clean up error flag in accept
34  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
35  *                                      was buggy. Put a remove_sock() in the handler
36  *                                      for memory when we hit 0. Also altered the timer
37  *                                      code. The ACK stuff can wait and needs major
38  *                                      TCP layer surgery.
39  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
40  *                                      and fixed timer/inet_bh race.
41  *              Alan Cox        :       Added zapped flag for TCP
42  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
43  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
45  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
48  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
49  *      Pauline Middelink       :       identd support
50  *              Alan Cox        :       Fixed connect() taking signals I think.
51  *              Alan Cox        :       SO_LINGER supported
52  *              Alan Cox        :       Error reporting fixes
53  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
54  *              Alan Cox        :       inet sockets don't set sk->type!
55  *              Alan Cox        :       Split socket option code
56  *              Alan Cox        :       Callbacks
57  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
58  *              Alex            :       Removed restriction on inet fioctl
59  *              Alan Cox        :       Splitting INET from NET core
60  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
61  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
62  *              Alan Cox        :       Split IP from generic code
63  *              Alan Cox        :       New kfree_skbmem()
64  *              Alan Cox        :       Make SO_DEBUG superuser only.
65  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
66  *                                      (compatibility fix)
67  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
68  *              Alan Cox        :       Allocator for a socket is settable.
69  *              Alan Cox        :       SO_ERROR includes soft errors.
70  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
71  *              Alan Cox        :       Generic socket allocation to make hooks
72  *                                      easier (suggested by Craig Metz).
73  *              Michael Pall    :       SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
81  *              Andi Kleen      :       Fix write_space callback
82  *              Chris Evans     :       Security fixes - signedness again
83  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *              This program is free software; you can redistribute it and/or
89  *              modify it under the terms of the GNU General Public License
90  *              as published by the Free Software Foundation; either version
91  *              2 of the License, or (at your option) any later version.
92  */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-29"          ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS         256
203 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218         struct timeval tv;
219
220         if (optlen < sizeof(tv))
221                 return -EINVAL;
222         if (copy_from_user(&tv, optval, sizeof(tv)))
223                 return -EFAULT;
224         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225                 return -EDOM;
226
227         if (tv.tv_sec < 0) {
228                 static int warned __read_mostly;
229
230                 *timeo_p = 0;
231                 if (warned < 10 && net_ratelimit())
232                         warned++;
233                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234                                "tries to set negative timeout\n",
235                                 current->comm, task_pid_nr(current));
236                 return 0;
237         }
238         *timeo_p = MAX_SCHEDULE_TIMEOUT;
239         if (tv.tv_sec == 0 && tv.tv_usec == 0)
240                 return 0;
241         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243         return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248         static int warned;
249         static char warncomm[TASK_COMM_LEN];
250         if (strcmp(warncomm, current->comm) && warned < 5) {
251                 strcpy(warncomm,  current->comm);
252                 printk(KERN_WARNING "process `%s' is using obsolete "
253                        "%s SO_BSDCOMPAT\n", warncomm, name);
254                 warned++;
255         }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260         if (sock_flag(sk, SOCK_TIMESTAMP)) {
261                 sock_reset_flag(sk, SOCK_TIMESTAMP);
262                 net_disable_timestamp();
263         }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269         int err = 0;
270         int skb_len;
271
272         /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273            number of warnings when compiling with -W --ANK
274          */
275         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276             (unsigned)sk->sk_rcvbuf) {
277                 err = -ENOMEM;
278                 goto out;
279         }
280
281         err = sk_filter(sk, skb);
282         if (err)
283                 goto out;
284
285         skb->dev = NULL;
286         skb_set_owner_r(skb, sk);
287
288         /* Cache the SKB length before we tack it onto the receive
289          * queue.  Once it is added it no longer belongs to us and
290          * may be freed by other threads of control pulling packets
291          * from the queue.
292          */
293         skb_len = skb->len;
294
295         skb_queue_tail(&sk->sk_receive_queue, skb);
296
297         if (!sock_flag(sk, SOCK_DEAD))
298                 sk->sk_data_ready(sk, skb_len);
299 out:
300         return err;
301 }
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
303
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305 {
306         int rc = NET_RX_SUCCESS;
307
308         if (sk_filter(sk, skb))
309                 goto discard_and_relse;
310
311         skb->dev = NULL;
312
313         if (nested)
314                 bh_lock_sock_nested(sk);
315         else
316                 bh_lock_sock(sk);
317         if (!sock_owned_by_user(sk)) {
318                 /*
319                  * trylock + unlock semantics:
320                  */
321                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322
323                 rc = sk->sk_backlog_rcv(sk, skb);
324
325                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326         } else
327                 sk_add_backlog(sk, skb);
328         bh_unlock_sock(sk);
329 out:
330         sock_put(sk);
331         return rc;
332 discard_and_relse:
333         kfree_skb(skb);
334         goto out;
335 }
336 EXPORT_SYMBOL(sk_receive_skb);
337
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339 {
340         struct dst_entry *dst = sk->sk_dst_cache;
341
342         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343                 sk->sk_dst_cache = NULL;
344                 dst_release(dst);
345                 return NULL;
346         }
347
348         return dst;
349 }
350 EXPORT_SYMBOL(__sk_dst_check);
351
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353 {
354         struct dst_entry *dst = sk_dst_get(sk);
355
356         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357                 sk_dst_reset(sk);
358                 dst_release(dst);
359                 return NULL;
360         }
361
362         return dst;
363 }
364 EXPORT_SYMBOL(sk_dst_check);
365
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367 {
368         int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370         struct net *net = sk->sk_net;
371         char devname[IFNAMSIZ];
372         int index;
373
374         /* Sorry... */
375         ret = -EPERM;
376         if (!capable(CAP_NET_RAW))
377                 goto out;
378
379         ret = -EINVAL;
380         if (optlen < 0)
381                 goto out;
382
383         /* Bind this socket to a particular device like "eth0",
384          * as specified in the passed interface name. If the
385          * name is "" or the option length is zero the socket
386          * is not bound.
387          */
388         if (optlen > IFNAMSIZ - 1)
389                 optlen = IFNAMSIZ - 1;
390         memset(devname, 0, sizeof(devname));
391
392         ret = -EFAULT;
393         if (copy_from_user(devname, optval, optlen))
394                 goto out;
395
396         if (devname[0] == '\0') {
397                 index = 0;
398         } else {
399                 struct net_device *dev = dev_get_by_name(net, devname);
400
401                 ret = -ENODEV;
402                 if (!dev)
403                         goto out;
404
405                 index = dev->ifindex;
406                 dev_put(dev);
407         }
408
409         lock_sock(sk);
410         sk->sk_bound_dev_if = index;
411         sk_dst_reset(sk);
412         release_sock(sk);
413
414         ret = 0;
415
416 out:
417 #endif
418
419         return ret;
420 }
421
422 /*
423  *      This is meant for all protocols to use and covers goings on
424  *      at the socket level. Everything here is generic.
425  */
426
427 int sock_setsockopt(struct socket *sock, int level, int optname,
428                     char __user *optval, int optlen)
429 {
430         struct sock *sk=sock->sk;
431         int val;
432         int valbool;
433         struct linger ling;
434         int ret = 0;
435
436         /*
437          *      Options without arguments
438          */
439
440 #ifdef SO_DONTLINGER            /* Compatibility item... */
441         if (optname == SO_DONTLINGER) {
442                 lock_sock(sk);
443                 sock_reset_flag(sk, SOCK_LINGER);
444                 release_sock(sk);
445                 return 0;
446         }
447 #endif
448
449         if (optname == SO_BINDTODEVICE)
450                 return sock_bindtodevice(sk, optval, optlen);
451
452         if (optlen < sizeof(int))
453                 return -EINVAL;
454
455         if (get_user(val, (int __user *)optval))
456                 return -EFAULT;
457
458         valbool = val?1:0;
459
460         lock_sock(sk);
461
462         switch(optname) {
463         case SO_DEBUG:
464                 if (val && !capable(CAP_NET_ADMIN)) {
465                         ret = -EACCES;
466                 }
467                 else if (valbool)
468                         sock_set_flag(sk, SOCK_DBG);
469                 else
470                         sock_reset_flag(sk, SOCK_DBG);
471                 break;
472         case SO_REUSEADDR:
473                 sk->sk_reuse = valbool;
474                 break;
475         case SO_TYPE:
476         case SO_ERROR:
477                 ret = -ENOPROTOOPT;
478                 break;
479         case SO_DONTROUTE:
480                 if (valbool)
481                         sock_set_flag(sk, SOCK_LOCALROUTE);
482                 else
483                         sock_reset_flag(sk, SOCK_LOCALROUTE);
484                 break;
485         case SO_BROADCAST:
486                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487                 break;
488         case SO_SNDBUF:
489                 /* Don't error on this BSD doesn't and if you think
490                    about it this is right. Otherwise apps have to
491                    play 'guess the biggest size' games. RCVBUF/SNDBUF
492                    are treated in BSD as hints */
493
494                 if (val > sysctl_wmem_max)
495                         val = sysctl_wmem_max;
496 set_sndbuf:
497                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498                 if ((val * 2) < SOCK_MIN_SNDBUF)
499                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500                 else
501                         sk->sk_sndbuf = val * 2;
502
503                 /*
504                  *      Wake up sending tasks if we
505                  *      upped the value.
506                  */
507                 sk->sk_write_space(sk);
508                 break;
509
510         case SO_SNDBUFFORCE:
511                 if (!capable(CAP_NET_ADMIN)) {
512                         ret = -EPERM;
513                         break;
514                 }
515                 goto set_sndbuf;
516
517         case SO_RCVBUF:
518                 /* Don't error on this BSD doesn't and if you think
519                    about it this is right. Otherwise apps have to
520                    play 'guess the biggest size' games. RCVBUF/SNDBUF
521                    are treated in BSD as hints */
522
523                 if (val > sysctl_rmem_max)
524                         val = sysctl_rmem_max;
525 set_rcvbuf:
526                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527                 /*
528                  * We double it on the way in to account for
529                  * "struct sk_buff" etc. overhead.   Applications
530                  * assume that the SO_RCVBUF setting they make will
531                  * allow that much actual data to be received on that
532                  * socket.
533                  *
534                  * Applications are unaware that "struct sk_buff" and
535                  * other overheads allocate from the receive buffer
536                  * during socket buffer allocation.
537                  *
538                  * And after considering the possible alternatives,
539                  * returning the value we actually used in getsockopt
540                  * is the most desirable behavior.
541                  */
542                 if ((val * 2) < SOCK_MIN_RCVBUF)
543                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544                 else
545                         sk->sk_rcvbuf = val * 2;
546                 break;
547
548         case SO_RCVBUFFORCE:
549                 if (!capable(CAP_NET_ADMIN)) {
550                         ret = -EPERM;
551                         break;
552                 }
553                 goto set_rcvbuf;
554
555         case SO_KEEPALIVE:
556 #ifdef CONFIG_INET
557                 if (sk->sk_protocol == IPPROTO_TCP)
558                         tcp_set_keepalive(sk, valbool);
559 #endif
560                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561                 break;
562
563         case SO_OOBINLINE:
564                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565                 break;
566
567         case SO_NO_CHECK:
568                 sk->sk_no_check = valbool;
569                 break;
570
571         case SO_PRIORITY:
572                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573                         sk->sk_priority = val;
574                 else
575                         ret = -EPERM;
576                 break;
577
578         case SO_LINGER:
579                 if (optlen < sizeof(ling)) {
580                         ret = -EINVAL;  /* 1003.1g */
581                         break;
582                 }
583                 if (copy_from_user(&ling,optval,sizeof(ling))) {
584                         ret = -EFAULT;
585                         break;
586                 }
587                 if (!ling.l_onoff)
588                         sock_reset_flag(sk, SOCK_LINGER);
589                 else {
590 #if (BITS_PER_LONG == 32)
591                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593                         else
594 #endif
595                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596                         sock_set_flag(sk, SOCK_LINGER);
597                 }
598                 break;
599
600         case SO_BSDCOMPAT:
601                 sock_warn_obsolete_bsdism("setsockopt");
602                 break;
603
604         case SO_PASSCRED:
605                 if (valbool)
606                         set_bit(SOCK_PASSCRED, &sock->flags);
607                 else
608                         clear_bit(SOCK_PASSCRED, &sock->flags);
609                 break;
610
611         case SO_TIMESTAMP:
612         case SO_TIMESTAMPNS:
613                 if (valbool)  {
614                         if (optname == SO_TIMESTAMP)
615                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616                         else
617                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618                         sock_set_flag(sk, SOCK_RCVTSTAMP);
619                         sock_enable_timestamp(sk);
620                 } else {
621                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
622                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623                 }
624                 break;
625
626         case SO_RCVLOWAT:
627                 if (val < 0)
628                         val = INT_MAX;
629                 sk->sk_rcvlowat = val ? : 1;
630                 break;
631
632         case SO_RCVTIMEO:
633                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634                 break;
635
636         case SO_SNDTIMEO:
637                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638                 break;
639
640         case SO_ATTACH_FILTER:
641                 ret = -EINVAL;
642                 if (optlen == sizeof(struct sock_fprog)) {
643                         struct sock_fprog fprog;
644
645                         ret = -EFAULT;
646                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
647                                 break;
648
649                         ret = sk_attach_filter(&fprog, sk);
650                 }
651                 break;
652
653         case SO_DETACH_FILTER:
654                 ret = sk_detach_filter(sk);
655                 break;
656
657         case SO_PASSSEC:
658                 if (valbool)
659                         set_bit(SOCK_PASSSEC, &sock->flags);
660                 else
661                         clear_bit(SOCK_PASSSEC, &sock->flags);
662                 break;
663
664                 /* We implement the SO_SNDLOWAT etc to
665                    not be settable (1003.1g 5.3) */
666         default:
667                 ret = -ENOPROTOOPT;
668                 break;
669         }
670         release_sock(sk);
671         return ret;
672 }
673
674
675 int sock_getsockopt(struct socket *sock, int level, int optname,
676                     char __user *optval, int __user *optlen)
677 {
678         struct sock *sk = sock->sk;
679
680         union {
681                 int val;
682                 struct linger ling;
683                 struct timeval tm;
684         } v;
685
686         unsigned int lv = sizeof(int);
687         int len;
688
689         if (get_user(len, optlen))
690                 return -EFAULT;
691         if (len < 0)
692                 return -EINVAL;
693
694         switch(optname) {
695         case SO_DEBUG:
696                 v.val = sock_flag(sk, SOCK_DBG);
697                 break;
698
699         case SO_DONTROUTE:
700                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
701                 break;
702
703         case SO_BROADCAST:
704                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
705                 break;
706
707         case SO_SNDBUF:
708                 v.val = sk->sk_sndbuf;
709                 break;
710
711         case SO_RCVBUF:
712                 v.val = sk->sk_rcvbuf;
713                 break;
714
715         case SO_REUSEADDR:
716                 v.val = sk->sk_reuse;
717                 break;
718
719         case SO_KEEPALIVE:
720                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
721                 break;
722
723         case SO_TYPE:
724                 v.val = sk->sk_type;
725                 break;
726
727         case SO_ERROR:
728                 v.val = -sock_error(sk);
729                 if (v.val==0)
730                         v.val = xchg(&sk->sk_err_soft, 0);
731                 break;
732
733         case SO_OOBINLINE:
734                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
735                 break;
736
737         case SO_NO_CHECK:
738                 v.val = sk->sk_no_check;
739                 break;
740
741         case SO_PRIORITY:
742                 v.val = sk->sk_priority;
743                 break;
744
745         case SO_LINGER:
746                 lv              = sizeof(v.ling);
747                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
748                 v.ling.l_linger = sk->sk_lingertime / HZ;
749                 break;
750
751         case SO_BSDCOMPAT:
752                 sock_warn_obsolete_bsdism("getsockopt");
753                 break;
754
755         case SO_TIMESTAMP:
756                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
757                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
758                 break;
759
760         case SO_TIMESTAMPNS:
761                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
762                 break;
763
764         case SO_RCVTIMEO:
765                 lv=sizeof(struct timeval);
766                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
767                         v.tm.tv_sec = 0;
768                         v.tm.tv_usec = 0;
769                 } else {
770                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
771                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
772                 }
773                 break;
774
775         case SO_SNDTIMEO:
776                 lv=sizeof(struct timeval);
777                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
778                         v.tm.tv_sec = 0;
779                         v.tm.tv_usec = 0;
780                 } else {
781                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
782                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
783                 }
784                 break;
785
786         case SO_RCVLOWAT:
787                 v.val = sk->sk_rcvlowat;
788                 break;
789
790         case SO_SNDLOWAT:
791                 v.val=1;
792                 break;
793
794         case SO_PASSCRED:
795                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
796                 break;
797
798         case SO_PEERCRED:
799                 if (len > sizeof(sk->sk_peercred))
800                         len = sizeof(sk->sk_peercred);
801                 if (copy_to_user(optval, &sk->sk_peercred, len))
802                         return -EFAULT;
803                 goto lenout;
804
805         case SO_PEERNAME:
806         {
807                 char address[128];
808
809                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
810                         return -ENOTCONN;
811                 if (lv < len)
812                         return -EINVAL;
813                 if (copy_to_user(optval, address, len))
814                         return -EFAULT;
815                 goto lenout;
816         }
817
818         /* Dubious BSD thing... Probably nobody even uses it, but
819          * the UNIX standard wants it for whatever reason... -DaveM
820          */
821         case SO_ACCEPTCONN:
822                 v.val = sk->sk_state == TCP_LISTEN;
823                 break;
824
825         case SO_PASSSEC:
826                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
827                 break;
828
829         case SO_PEERSEC:
830                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
831
832         default:
833                 return -ENOPROTOOPT;
834         }
835
836         if (len > lv)
837                 len = lv;
838         if (copy_to_user(optval, &v, len))
839                 return -EFAULT;
840 lenout:
841         if (put_user(len, optlen))
842                 return -EFAULT;
843         return 0;
844 }
845
846 /*
847  * Initialize an sk_lock.
848  *
849  * (We also register the sk_lock with the lock validator.)
850  */
851 static inline void sock_lock_init(struct sock *sk)
852 {
853         sock_lock_init_class_and_name(sk,
854                         af_family_slock_key_strings[sk->sk_family],
855                         af_family_slock_keys + sk->sk_family,
856                         af_family_key_strings[sk->sk_family],
857                         af_family_keys + sk->sk_family);
858 }
859
860 static void sock_copy(struct sock *nsk, const struct sock *osk)
861 {
862 #ifdef CONFIG_SECURITY_NETWORK
863         void *sptr = nsk->sk_security;
864 #endif
865
866         memcpy(nsk, osk, osk->sk_prot->obj_size);
867 #ifdef CONFIG_SECURITY_NETWORK
868         nsk->sk_security = sptr;
869         security_sk_clone(osk, nsk);
870 #endif
871 }
872
873 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority)
874 {
875         struct sock *sk;
876         struct kmem_cache *slab;
877
878         slab = prot->slab;
879         if (slab != NULL)
880                 sk = kmem_cache_alloc(slab, priority);
881         else
882                 sk = kmalloc(prot->obj_size, priority);
883
884         return sk;
885 }
886
887 static void sk_prot_free(struct proto *prot, struct sock *sk)
888 {
889         struct kmem_cache *slab;
890
891         slab = prot->slab;
892         if (slab != NULL)
893                 kmem_cache_free(slab, sk);
894         else
895                 kfree(sk);
896 }
897
898 /**
899  *      sk_alloc - All socket objects are allocated here
900  *      @net: the applicable net namespace
901  *      @family: protocol family
902  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
903  *      @prot: struct proto associated with this new sock instance
904  *      @zero_it: if we should zero the newly allocated sock
905  */
906 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
907                       struct proto *prot, int zero_it)
908 {
909         struct sock *sk;
910
911         if (zero_it)
912                 priority |= __GFP_ZERO;
913
914         sk = sk_prot_alloc(prot, priority);
915         if (sk) {
916                 if (zero_it) {
917                         sk->sk_family = family;
918                         /*
919                          * See comment in struct sock definition to understand
920                          * why we need sk_prot_creator -acme
921                          */
922                         sk->sk_prot = sk->sk_prot_creator = prot;
923                         sock_lock_init(sk);
924                         sk->sk_net = get_net(net);
925                 }
926
927                 if (security_sk_alloc(sk, family, priority))
928                         goto out_free;
929
930                 if (!try_module_get(prot->owner))
931                         goto out_free;
932         }
933         return sk;
934
935 out_free:
936         sk_prot_free(prot, sk);
937         return NULL;
938 }
939
940 void sk_free(struct sock *sk)
941 {
942         struct sk_filter *filter;
943         struct module *owner = sk->sk_prot_creator->owner;
944
945         if (sk->sk_destruct)
946                 sk->sk_destruct(sk);
947
948         filter = rcu_dereference(sk->sk_filter);
949         if (filter) {
950                 sk_filter_uncharge(sk, filter);
951                 rcu_assign_pointer(sk->sk_filter, NULL);
952         }
953
954         sock_disable_timestamp(sk);
955
956         if (atomic_read(&sk->sk_omem_alloc))
957                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
958                        __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
959
960         security_sk_free(sk);
961         put_net(sk->sk_net);
962         sk_prot_free(sk->sk_prot_creator, sk);
963         module_put(owner);
964 }
965
966 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
967 {
968         struct sock *newsk = sk_alloc(sk->sk_net, sk->sk_family, priority, sk->sk_prot, 0);
969
970         if (newsk != NULL) {
971                 struct sk_filter *filter;
972
973                 sock_copy(newsk, sk);
974
975                 /* SANITY */
976                 get_net(newsk->sk_net);
977                 sk_node_init(&newsk->sk_node);
978                 sock_lock_init(newsk);
979                 bh_lock_sock(newsk);
980                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
981
982                 atomic_set(&newsk->sk_rmem_alloc, 0);
983                 atomic_set(&newsk->sk_wmem_alloc, 0);
984                 atomic_set(&newsk->sk_omem_alloc, 0);
985                 skb_queue_head_init(&newsk->sk_receive_queue);
986                 skb_queue_head_init(&newsk->sk_write_queue);
987 #ifdef CONFIG_NET_DMA
988                 skb_queue_head_init(&newsk->sk_async_wait_queue);
989 #endif
990
991                 rwlock_init(&newsk->sk_dst_lock);
992                 rwlock_init(&newsk->sk_callback_lock);
993                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
994                                 af_callback_keys + newsk->sk_family,
995                                 af_family_clock_key_strings[newsk->sk_family]);
996
997                 newsk->sk_dst_cache     = NULL;
998                 newsk->sk_wmem_queued   = 0;
999                 newsk->sk_forward_alloc = 0;
1000                 newsk->sk_send_head     = NULL;
1001                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1002
1003                 sock_reset_flag(newsk, SOCK_DONE);
1004                 skb_queue_head_init(&newsk->sk_error_queue);
1005
1006                 filter = newsk->sk_filter;
1007                 if (filter != NULL)
1008                         sk_filter_charge(newsk, filter);
1009
1010                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1011                         /* It is still raw copy of parent, so invalidate
1012                          * destructor and make plain sk_free() */
1013                         newsk->sk_destruct = NULL;
1014                         sk_free(newsk);
1015                         newsk = NULL;
1016                         goto out;
1017                 }
1018
1019                 newsk->sk_err      = 0;
1020                 newsk->sk_priority = 0;
1021                 atomic_set(&newsk->sk_refcnt, 2);
1022
1023                 /*
1024                  * Increment the counter in the same struct proto as the master
1025                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1026                  * is the same as sk->sk_prot->socks, as this field was copied
1027                  * with memcpy).
1028                  *
1029                  * This _changes_ the previous behaviour, where
1030                  * tcp_create_openreq_child always was incrementing the
1031                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1032                  * to be taken into account in all callers. -acme
1033                  */
1034                 sk_refcnt_debug_inc(newsk);
1035                 newsk->sk_socket = NULL;
1036                 newsk->sk_sleep  = NULL;
1037
1038                 if (newsk->sk_prot->sockets_allocated)
1039                         atomic_inc(newsk->sk_prot->sockets_allocated);
1040         }
1041 out:
1042         return newsk;
1043 }
1044
1045 EXPORT_SYMBOL_GPL(sk_clone);
1046
1047 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1048 {
1049         __sk_dst_set(sk, dst);
1050         sk->sk_route_caps = dst->dev->features;
1051         if (sk->sk_route_caps & NETIF_F_GSO)
1052                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1053         if (sk_can_gso(sk)) {
1054                 if (dst->header_len)
1055                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1056                 else
1057                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1058         }
1059 }
1060 EXPORT_SYMBOL_GPL(sk_setup_caps);
1061
1062 void __init sk_init(void)
1063 {
1064         if (num_physpages <= 4096) {
1065                 sysctl_wmem_max = 32767;
1066                 sysctl_rmem_max = 32767;
1067                 sysctl_wmem_default = 32767;
1068                 sysctl_rmem_default = 32767;
1069         } else if (num_physpages >= 131072) {
1070                 sysctl_wmem_max = 131071;
1071                 sysctl_rmem_max = 131071;
1072         }
1073 }
1074
1075 /*
1076  *      Simple resource managers for sockets.
1077  */
1078
1079
1080 /*
1081  * Write buffer destructor automatically called from kfree_skb.
1082  */
1083 void sock_wfree(struct sk_buff *skb)
1084 {
1085         struct sock *sk = skb->sk;
1086
1087         /* In case it might be waiting for more memory. */
1088         atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1089         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1090                 sk->sk_write_space(sk);
1091         sock_put(sk);
1092 }
1093
1094 /*
1095  * Read buffer destructor automatically called from kfree_skb.
1096  */
1097 void sock_rfree(struct sk_buff *skb)
1098 {
1099         struct sock *sk = skb->sk;
1100
1101         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1102 }
1103
1104
1105 int sock_i_uid(struct sock *sk)
1106 {
1107         int uid;
1108
1109         read_lock(&sk->sk_callback_lock);
1110         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1111         read_unlock(&sk->sk_callback_lock);
1112         return uid;
1113 }
1114
1115 unsigned long sock_i_ino(struct sock *sk)
1116 {
1117         unsigned long ino;
1118
1119         read_lock(&sk->sk_callback_lock);
1120         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1121         read_unlock(&sk->sk_callback_lock);
1122         return ino;
1123 }
1124
1125 /*
1126  * Allocate a skb from the socket's send buffer.
1127  */
1128 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1129                              gfp_t priority)
1130 {
1131         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1132                 struct sk_buff * skb = alloc_skb(size, priority);
1133                 if (skb) {
1134                         skb_set_owner_w(skb, sk);
1135                         return skb;
1136                 }
1137         }
1138         return NULL;
1139 }
1140
1141 /*
1142  * Allocate a skb from the socket's receive buffer.
1143  */
1144 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1145                              gfp_t priority)
1146 {
1147         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1148                 struct sk_buff *skb = alloc_skb(size, priority);
1149                 if (skb) {
1150                         skb_set_owner_r(skb, sk);
1151                         return skb;
1152                 }
1153         }
1154         return NULL;
1155 }
1156
1157 /*
1158  * Allocate a memory block from the socket's option memory buffer.
1159  */
1160 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1161 {
1162         if ((unsigned)size <= sysctl_optmem_max &&
1163             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1164                 void *mem;
1165                 /* First do the add, to avoid the race if kmalloc
1166                  * might sleep.
1167                  */
1168                 atomic_add(size, &sk->sk_omem_alloc);
1169                 mem = kmalloc(size, priority);
1170                 if (mem)
1171                         return mem;
1172                 atomic_sub(size, &sk->sk_omem_alloc);
1173         }
1174         return NULL;
1175 }
1176
1177 /*
1178  * Free an option memory block.
1179  */
1180 void sock_kfree_s(struct sock *sk, void *mem, int size)
1181 {
1182         kfree(mem);
1183         atomic_sub(size, &sk->sk_omem_alloc);
1184 }
1185
1186 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1187    I think, these locks should be removed for datagram sockets.
1188  */
1189 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1190 {
1191         DEFINE_WAIT(wait);
1192
1193         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1194         for (;;) {
1195                 if (!timeo)
1196                         break;
1197                 if (signal_pending(current))
1198                         break;
1199                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1200                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1201                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1202                         break;
1203                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1204                         break;
1205                 if (sk->sk_err)
1206                         break;
1207                 timeo = schedule_timeout(timeo);
1208         }
1209         finish_wait(sk->sk_sleep, &wait);
1210         return timeo;
1211 }
1212
1213
1214 /*
1215  *      Generic send/receive buffer handlers
1216  */
1217
1218 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1219                                             unsigned long header_len,
1220                                             unsigned long data_len,
1221                                             int noblock, int *errcode)
1222 {
1223         struct sk_buff *skb;
1224         gfp_t gfp_mask;
1225         long timeo;
1226         int err;
1227
1228         gfp_mask = sk->sk_allocation;
1229         if (gfp_mask & __GFP_WAIT)
1230                 gfp_mask |= __GFP_REPEAT;
1231
1232         timeo = sock_sndtimeo(sk, noblock);
1233         while (1) {
1234                 err = sock_error(sk);
1235                 if (err != 0)
1236                         goto failure;
1237
1238                 err = -EPIPE;
1239                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1240                         goto failure;
1241
1242                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1243                         skb = alloc_skb(header_len, gfp_mask);
1244                         if (skb) {
1245                                 int npages;
1246                                 int i;
1247
1248                                 /* No pages, we're done... */
1249                                 if (!data_len)
1250                                         break;
1251
1252                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1253                                 skb->truesize += data_len;
1254                                 skb_shinfo(skb)->nr_frags = npages;
1255                                 for (i = 0; i < npages; i++) {
1256                                         struct page *page;
1257                                         skb_frag_t *frag;
1258
1259                                         page = alloc_pages(sk->sk_allocation, 0);
1260                                         if (!page) {
1261                                                 err = -ENOBUFS;
1262                                                 skb_shinfo(skb)->nr_frags = i;
1263                                                 kfree_skb(skb);
1264                                                 goto failure;
1265                                         }
1266
1267                                         frag = &skb_shinfo(skb)->frags[i];
1268                                         frag->page = page;
1269                                         frag->page_offset = 0;
1270                                         frag->size = (data_len >= PAGE_SIZE ?
1271                                                       PAGE_SIZE :
1272                                                       data_len);
1273                                         data_len -= PAGE_SIZE;
1274                                 }
1275
1276                                 /* Full success... */
1277                                 break;
1278                         }
1279                         err = -ENOBUFS;
1280                         goto failure;
1281                 }
1282                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1283                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1284                 err = -EAGAIN;
1285                 if (!timeo)
1286                         goto failure;
1287                 if (signal_pending(current))
1288                         goto interrupted;
1289                 timeo = sock_wait_for_wmem(sk, timeo);
1290         }
1291
1292         skb_set_owner_w(skb, sk);
1293         return skb;
1294
1295 interrupted:
1296         err = sock_intr_errno(timeo);
1297 failure:
1298         *errcode = err;
1299         return NULL;
1300 }
1301
1302 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1303                                     int noblock, int *errcode)
1304 {
1305         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1306 }
1307
1308 static void __lock_sock(struct sock *sk)
1309 {
1310         DEFINE_WAIT(wait);
1311
1312         for (;;) {
1313                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1314                                         TASK_UNINTERRUPTIBLE);
1315                 spin_unlock_bh(&sk->sk_lock.slock);
1316                 schedule();
1317                 spin_lock_bh(&sk->sk_lock.slock);
1318                 if (!sock_owned_by_user(sk))
1319                         break;
1320         }
1321         finish_wait(&sk->sk_lock.wq, &wait);
1322 }
1323
1324 static void __release_sock(struct sock *sk)
1325 {
1326         struct sk_buff *skb = sk->sk_backlog.head;
1327
1328         do {
1329                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1330                 bh_unlock_sock(sk);
1331
1332                 do {
1333                         struct sk_buff *next = skb->next;
1334
1335                         skb->next = NULL;
1336                         sk->sk_backlog_rcv(sk, skb);
1337
1338                         /*
1339                          * We are in process context here with softirqs
1340                          * disabled, use cond_resched_softirq() to preempt.
1341                          * This is safe to do because we've taken the backlog
1342                          * queue private:
1343                          */
1344                         cond_resched_softirq();
1345
1346                         skb = next;
1347                 } while (skb != NULL);
1348
1349                 bh_lock_sock(sk);
1350         } while ((skb = sk->sk_backlog.head) != NULL);
1351 }
1352
1353 /**
1354  * sk_wait_data - wait for data to arrive at sk_receive_queue
1355  * @sk:    sock to wait on
1356  * @timeo: for how long
1357  *
1358  * Now socket state including sk->sk_err is changed only under lock,
1359  * hence we may omit checks after joining wait queue.
1360  * We check receive queue before schedule() only as optimization;
1361  * it is very likely that release_sock() added new data.
1362  */
1363 int sk_wait_data(struct sock *sk, long *timeo)
1364 {
1365         int rc;
1366         DEFINE_WAIT(wait);
1367
1368         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1369         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1370         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1371         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1372         finish_wait(sk->sk_sleep, &wait);
1373         return rc;
1374 }
1375
1376 EXPORT_SYMBOL(sk_wait_data);
1377
1378 /*
1379  * Set of default routines for initialising struct proto_ops when
1380  * the protocol does not support a particular function. In certain
1381  * cases where it makes no sense for a protocol to have a "do nothing"
1382  * function, some default processing is provided.
1383  */
1384
1385 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1386 {
1387         return -EOPNOTSUPP;
1388 }
1389
1390 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1391                     int len, int flags)
1392 {
1393         return -EOPNOTSUPP;
1394 }
1395
1396 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1397 {
1398         return -EOPNOTSUPP;
1399 }
1400
1401 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1402 {
1403         return -EOPNOTSUPP;
1404 }
1405
1406 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1407                     int *len, int peer)
1408 {
1409         return -EOPNOTSUPP;
1410 }
1411
1412 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1413 {
1414         return 0;
1415 }
1416
1417 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1418 {
1419         return -EOPNOTSUPP;
1420 }
1421
1422 int sock_no_listen(struct socket *sock, int backlog)
1423 {
1424         return -EOPNOTSUPP;
1425 }
1426
1427 int sock_no_shutdown(struct socket *sock, int how)
1428 {
1429         return -EOPNOTSUPP;
1430 }
1431
1432 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1433                     char __user *optval, int optlen)
1434 {
1435         return -EOPNOTSUPP;
1436 }
1437
1438 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1439                     char __user *optval, int __user *optlen)
1440 {
1441         return -EOPNOTSUPP;
1442 }
1443
1444 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1445                     size_t len)
1446 {
1447         return -EOPNOTSUPP;
1448 }
1449
1450 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1451                     size_t len, int flags)
1452 {
1453         return -EOPNOTSUPP;
1454 }
1455
1456 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1457 {
1458         /* Mirror missing mmap method error code */
1459         return -ENODEV;
1460 }
1461
1462 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1463 {
1464         ssize_t res;
1465         struct msghdr msg = {.msg_flags = flags};
1466         struct kvec iov;
1467         char *kaddr = kmap(page);
1468         iov.iov_base = kaddr + offset;
1469         iov.iov_len = size;
1470         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1471         kunmap(page);
1472         return res;
1473 }
1474
1475 /*
1476  *      Default Socket Callbacks
1477  */
1478
1479 static void sock_def_wakeup(struct sock *sk)
1480 {
1481         read_lock(&sk->sk_callback_lock);
1482         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1483                 wake_up_interruptible_all(sk->sk_sleep);
1484         read_unlock(&sk->sk_callback_lock);
1485 }
1486
1487 static void sock_def_error_report(struct sock *sk)
1488 {
1489         read_lock(&sk->sk_callback_lock);
1490         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1491                 wake_up_interruptible(sk->sk_sleep);
1492         sk_wake_async(sk,0,POLL_ERR);
1493         read_unlock(&sk->sk_callback_lock);
1494 }
1495
1496 static void sock_def_readable(struct sock *sk, int len)
1497 {
1498         read_lock(&sk->sk_callback_lock);
1499         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1500                 wake_up_interruptible(sk->sk_sleep);
1501         sk_wake_async(sk,1,POLL_IN);
1502         read_unlock(&sk->sk_callback_lock);
1503 }
1504
1505 static void sock_def_write_space(struct sock *sk)
1506 {
1507         read_lock(&sk->sk_callback_lock);
1508
1509         /* Do not wake up a writer until he can make "significant"
1510          * progress.  --DaveM
1511          */
1512         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1513                 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1514                         wake_up_interruptible(sk->sk_sleep);
1515
1516                 /* Should agree with poll, otherwise some programs break */
1517                 if (sock_writeable(sk))
1518                         sk_wake_async(sk, 2, POLL_OUT);
1519         }
1520
1521         read_unlock(&sk->sk_callback_lock);
1522 }
1523
1524 static void sock_def_destruct(struct sock *sk)
1525 {
1526         kfree(sk->sk_protinfo);
1527 }
1528
1529 void sk_send_sigurg(struct sock *sk)
1530 {
1531         if (sk->sk_socket && sk->sk_socket->file)
1532                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1533                         sk_wake_async(sk, 3, POLL_PRI);
1534 }
1535
1536 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1537                     unsigned long expires)
1538 {
1539         if (!mod_timer(timer, expires))
1540                 sock_hold(sk);
1541 }
1542
1543 EXPORT_SYMBOL(sk_reset_timer);
1544
1545 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1546 {
1547         if (timer_pending(timer) && del_timer(timer))
1548                 __sock_put(sk);
1549 }
1550
1551 EXPORT_SYMBOL(sk_stop_timer);
1552
1553 void sock_init_data(struct socket *sock, struct sock *sk)
1554 {
1555         skb_queue_head_init(&sk->sk_receive_queue);
1556         skb_queue_head_init(&sk->sk_write_queue);
1557         skb_queue_head_init(&sk->sk_error_queue);
1558 #ifdef CONFIG_NET_DMA
1559         skb_queue_head_init(&sk->sk_async_wait_queue);
1560 #endif
1561
1562         sk->sk_send_head        =       NULL;
1563
1564         init_timer(&sk->sk_timer);
1565
1566         sk->sk_allocation       =       GFP_KERNEL;
1567         sk->sk_rcvbuf           =       sysctl_rmem_default;
1568         sk->sk_sndbuf           =       sysctl_wmem_default;
1569         sk->sk_state            =       TCP_CLOSE;
1570         sk->sk_socket           =       sock;
1571
1572         sock_set_flag(sk, SOCK_ZAPPED);
1573
1574         if (sock) {
1575                 sk->sk_type     =       sock->type;
1576                 sk->sk_sleep    =       &sock->wait;
1577                 sock->sk        =       sk;
1578         } else
1579                 sk->sk_sleep    =       NULL;
1580
1581         rwlock_init(&sk->sk_dst_lock);
1582         rwlock_init(&sk->sk_callback_lock);
1583         lockdep_set_class_and_name(&sk->sk_callback_lock,
1584                         af_callback_keys + sk->sk_family,
1585                         af_family_clock_key_strings[sk->sk_family]);
1586
1587         sk->sk_state_change     =       sock_def_wakeup;
1588         sk->sk_data_ready       =       sock_def_readable;
1589         sk->sk_write_space      =       sock_def_write_space;
1590         sk->sk_error_report     =       sock_def_error_report;
1591         sk->sk_destruct         =       sock_def_destruct;
1592
1593         sk->sk_sndmsg_page      =       NULL;
1594         sk->sk_sndmsg_off       =       0;
1595
1596         sk->sk_peercred.pid     =       0;
1597         sk->sk_peercred.uid     =       -1;
1598         sk->sk_peercred.gid     =       -1;
1599         sk->sk_write_pending    =       0;
1600         sk->sk_rcvlowat         =       1;
1601         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1602         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1603
1604         sk->sk_stamp = ktime_set(-1L, -1L);
1605
1606         atomic_set(&sk->sk_refcnt, 1);
1607 }
1608
1609 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1610 {
1611         might_sleep();
1612         spin_lock_bh(&sk->sk_lock.slock);
1613         if (sk->sk_lock.owned)
1614                 __lock_sock(sk);
1615         sk->sk_lock.owned = 1;
1616         spin_unlock(&sk->sk_lock.slock);
1617         /*
1618          * The sk_lock has mutex_lock() semantics here:
1619          */
1620         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1621         local_bh_enable();
1622 }
1623
1624 EXPORT_SYMBOL(lock_sock_nested);
1625
1626 void fastcall release_sock(struct sock *sk)
1627 {
1628         /*
1629          * The sk_lock has mutex_unlock() semantics:
1630          */
1631         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1632
1633         spin_lock_bh(&sk->sk_lock.slock);
1634         if (sk->sk_backlog.tail)
1635                 __release_sock(sk);
1636         sk->sk_lock.owned = 0;
1637         if (waitqueue_active(&sk->sk_lock.wq))
1638                 wake_up(&sk->sk_lock.wq);
1639         spin_unlock_bh(&sk->sk_lock.slock);
1640 }
1641 EXPORT_SYMBOL(release_sock);
1642
1643 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1644 {
1645         struct timeval tv;
1646         if (!sock_flag(sk, SOCK_TIMESTAMP))
1647                 sock_enable_timestamp(sk);
1648         tv = ktime_to_timeval(sk->sk_stamp);
1649         if (tv.tv_sec == -1)
1650                 return -ENOENT;
1651         if (tv.tv_sec == 0) {
1652                 sk->sk_stamp = ktime_get_real();
1653                 tv = ktime_to_timeval(sk->sk_stamp);
1654         }
1655         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1656 }
1657 EXPORT_SYMBOL(sock_get_timestamp);
1658
1659 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1660 {
1661         struct timespec ts;
1662         if (!sock_flag(sk, SOCK_TIMESTAMP))
1663                 sock_enable_timestamp(sk);
1664         ts = ktime_to_timespec(sk->sk_stamp);
1665         if (ts.tv_sec == -1)
1666                 return -ENOENT;
1667         if (ts.tv_sec == 0) {
1668                 sk->sk_stamp = ktime_get_real();
1669                 ts = ktime_to_timespec(sk->sk_stamp);
1670         }
1671         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1672 }
1673 EXPORT_SYMBOL(sock_get_timestampns);
1674
1675 void sock_enable_timestamp(struct sock *sk)
1676 {
1677         if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1678                 sock_set_flag(sk, SOCK_TIMESTAMP);
1679                 net_enable_timestamp();
1680         }
1681 }
1682
1683 /*
1684  *      Get a socket option on an socket.
1685  *
1686  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1687  *      asynchronous errors should be reported by getsockopt. We assume
1688  *      this means if you specify SO_ERROR (otherwise whats the point of it).
1689  */
1690 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1691                            char __user *optval, int __user *optlen)
1692 {
1693         struct sock *sk = sock->sk;
1694
1695         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1696 }
1697
1698 EXPORT_SYMBOL(sock_common_getsockopt);
1699
1700 #ifdef CONFIG_COMPAT
1701 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1702                                   char __user *optval, int __user *optlen)
1703 {
1704         struct sock *sk = sock->sk;
1705
1706         if (sk->sk_prot->compat_getsockopt != NULL)
1707                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1708                                                       optval, optlen);
1709         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1710 }
1711 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1712 #endif
1713
1714 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1715                         struct msghdr *msg, size_t size, int flags)
1716 {
1717         struct sock *sk = sock->sk;
1718         int addr_len = 0;
1719         int err;
1720
1721         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1722                                    flags & ~MSG_DONTWAIT, &addr_len);
1723         if (err >= 0)
1724                 msg->msg_namelen = addr_len;
1725         return err;
1726 }
1727
1728 EXPORT_SYMBOL(sock_common_recvmsg);
1729
1730 /*
1731  *      Set socket options on an inet socket.
1732  */
1733 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1734                            char __user *optval, int optlen)
1735 {
1736         struct sock *sk = sock->sk;
1737
1738         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1739 }
1740
1741 EXPORT_SYMBOL(sock_common_setsockopt);
1742
1743 #ifdef CONFIG_COMPAT
1744 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1745                                   char __user *optval, int optlen)
1746 {
1747         struct sock *sk = sock->sk;
1748
1749         if (sk->sk_prot->compat_setsockopt != NULL)
1750                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1751                                                       optval, optlen);
1752         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1753 }
1754 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1755 #endif
1756
1757 void sk_common_release(struct sock *sk)
1758 {
1759         if (sk->sk_prot->destroy)
1760                 sk->sk_prot->destroy(sk);
1761
1762         /*
1763          * Observation: when sock_common_release is called, processes have
1764          * no access to socket. But net still has.
1765          * Step one, detach it from networking:
1766          *
1767          * A. Remove from hash tables.
1768          */
1769
1770         sk->sk_prot->unhash(sk);
1771
1772         /*
1773          * In this point socket cannot receive new packets, but it is possible
1774          * that some packets are in flight because some CPU runs receiver and
1775          * did hash table lookup before we unhashed socket. They will achieve
1776          * receive queue and will be purged by socket destructor.
1777          *
1778          * Also we still have packets pending on receive queue and probably,
1779          * our own packets waiting in device queues. sock_destroy will drain
1780          * receive queue, but transmitted packets will delay socket destruction
1781          * until the last reference will be released.
1782          */
1783
1784         sock_orphan(sk);
1785
1786         xfrm_sk_free_policy(sk);
1787
1788         sk_refcnt_debug_release(sk);
1789         sock_put(sk);
1790 }
1791
1792 EXPORT_SYMBOL(sk_common_release);
1793
1794 static DEFINE_RWLOCK(proto_list_lock);
1795 static LIST_HEAD(proto_list);
1796
1797 int proto_register(struct proto *prot, int alloc_slab)
1798 {
1799         char *request_sock_slab_name = NULL;
1800         char *timewait_sock_slab_name;
1801         int rc = -ENOBUFS;
1802
1803         if (alloc_slab) {
1804                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1805                                                SLAB_HWCACHE_ALIGN, NULL);
1806
1807                 if (prot->slab == NULL) {
1808                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1809                                prot->name);
1810                         goto out;
1811                 }
1812
1813                 if (prot->rsk_prot != NULL) {
1814                         static const char mask[] = "request_sock_%s";
1815
1816                         request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1817                         if (request_sock_slab_name == NULL)
1818                                 goto out_free_sock_slab;
1819
1820                         sprintf(request_sock_slab_name, mask, prot->name);
1821                         prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1822                                                                  prot->rsk_prot->obj_size, 0,
1823                                                                  SLAB_HWCACHE_ALIGN, NULL);
1824
1825                         if (prot->rsk_prot->slab == NULL) {
1826                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1827                                        prot->name);
1828                                 goto out_free_request_sock_slab_name;
1829                         }
1830                 }
1831
1832                 if (prot->twsk_prot != NULL) {
1833                         static const char mask[] = "tw_sock_%s";
1834
1835                         timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1836
1837                         if (timewait_sock_slab_name == NULL)
1838                                 goto out_free_request_sock_slab;
1839
1840                         sprintf(timewait_sock_slab_name, mask, prot->name);
1841                         prot->twsk_prot->twsk_slab =
1842                                 kmem_cache_create(timewait_sock_slab_name,
1843                                                   prot->twsk_prot->twsk_obj_size,
1844                                                   0, SLAB_HWCACHE_ALIGN,
1845                                                   NULL);
1846                         if (prot->twsk_prot->twsk_slab == NULL)
1847                                 goto out_free_timewait_sock_slab_name;
1848                 }
1849         }
1850
1851         write_lock(&proto_list_lock);
1852         list_add(&prot->node, &proto_list);
1853         write_unlock(&proto_list_lock);
1854         rc = 0;
1855 out:
1856         return rc;
1857 out_free_timewait_sock_slab_name:
1858         kfree(timewait_sock_slab_name);
1859 out_free_request_sock_slab:
1860         if (prot->rsk_prot && prot->rsk_prot->slab) {
1861                 kmem_cache_destroy(prot->rsk_prot->slab);
1862                 prot->rsk_prot->slab = NULL;
1863         }
1864 out_free_request_sock_slab_name:
1865         kfree(request_sock_slab_name);
1866 out_free_sock_slab:
1867         kmem_cache_destroy(prot->slab);
1868         prot->slab = NULL;
1869         goto out;
1870 }
1871
1872 EXPORT_SYMBOL(proto_register);
1873
1874 void proto_unregister(struct proto *prot)
1875 {
1876         write_lock(&proto_list_lock);
1877         list_del(&prot->node);
1878         write_unlock(&proto_list_lock);
1879
1880         if (prot->slab != NULL) {
1881                 kmem_cache_destroy(prot->slab);
1882                 prot->slab = NULL;
1883         }
1884
1885         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1886                 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1887
1888                 kmem_cache_destroy(prot->rsk_prot->slab);
1889                 kfree(name);
1890                 prot->rsk_prot->slab = NULL;
1891         }
1892
1893         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1894                 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1895
1896                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1897                 kfree(name);
1898                 prot->twsk_prot->twsk_slab = NULL;
1899         }
1900 }
1901
1902 EXPORT_SYMBOL(proto_unregister);
1903
1904 #ifdef CONFIG_PROC_FS
1905 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1906 {
1907         read_lock(&proto_list_lock);
1908         return seq_list_start_head(&proto_list, *pos);
1909 }
1910
1911 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1912 {
1913         return seq_list_next(v, &proto_list, pos);
1914 }
1915
1916 static void proto_seq_stop(struct seq_file *seq, void *v)
1917 {
1918         read_unlock(&proto_list_lock);
1919 }
1920
1921 static char proto_method_implemented(const void *method)
1922 {
1923         return method == NULL ? 'n' : 'y';
1924 }
1925
1926 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1927 {
1928         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1929                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1930                    proto->name,
1931                    proto->obj_size,
1932                    proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1933                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1934                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1935                    proto->max_header,
1936                    proto->slab == NULL ? "no" : "yes",
1937                    module_name(proto->owner),
1938                    proto_method_implemented(proto->close),
1939                    proto_method_implemented(proto->connect),
1940                    proto_method_implemented(proto->disconnect),
1941                    proto_method_implemented(proto->accept),
1942                    proto_method_implemented(proto->ioctl),
1943                    proto_method_implemented(proto->init),
1944                    proto_method_implemented(proto->destroy),
1945                    proto_method_implemented(proto->shutdown),
1946                    proto_method_implemented(proto->setsockopt),
1947                    proto_method_implemented(proto->getsockopt),
1948                    proto_method_implemented(proto->sendmsg),
1949                    proto_method_implemented(proto->recvmsg),
1950                    proto_method_implemented(proto->sendpage),
1951                    proto_method_implemented(proto->bind),
1952                    proto_method_implemented(proto->backlog_rcv),
1953                    proto_method_implemented(proto->hash),
1954                    proto_method_implemented(proto->unhash),
1955                    proto_method_implemented(proto->get_port),
1956                    proto_method_implemented(proto->enter_memory_pressure));
1957 }
1958
1959 static int proto_seq_show(struct seq_file *seq, void *v)
1960 {
1961         if (v == &proto_list)
1962                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1963                            "protocol",
1964                            "size",
1965                            "sockets",
1966                            "memory",
1967                            "press",
1968                            "maxhdr",
1969                            "slab",
1970                            "module",
1971                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1972         else
1973                 proto_seq_printf(seq, list_entry(v, struct proto, node));
1974         return 0;
1975 }
1976
1977 static const struct seq_operations proto_seq_ops = {
1978         .start  = proto_seq_start,
1979         .next   = proto_seq_next,
1980         .stop   = proto_seq_stop,
1981         .show   = proto_seq_show,
1982 };
1983
1984 static int proto_seq_open(struct inode *inode, struct file *file)
1985 {
1986         return seq_open(file, &proto_seq_ops);
1987 }
1988
1989 static const struct file_operations proto_seq_fops = {
1990         .owner          = THIS_MODULE,
1991         .open           = proto_seq_open,
1992         .read           = seq_read,
1993         .llseek         = seq_lseek,
1994         .release        = seq_release,
1995 };
1996
1997 static int __init proto_init(void)
1998 {
1999         /* register /proc/net/protocols */
2000         return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2001 }
2002
2003 subsys_initcall(proto_init);
2004
2005 #endif /* PROC_FS */
2006
2007 EXPORT_SYMBOL(sk_alloc);
2008 EXPORT_SYMBOL(sk_free);
2009 EXPORT_SYMBOL(sk_send_sigurg);
2010 EXPORT_SYMBOL(sock_alloc_send_skb);
2011 EXPORT_SYMBOL(sock_init_data);
2012 EXPORT_SYMBOL(sock_kfree_s);
2013 EXPORT_SYMBOL(sock_kmalloc);
2014 EXPORT_SYMBOL(sock_no_accept);
2015 EXPORT_SYMBOL(sock_no_bind);
2016 EXPORT_SYMBOL(sock_no_connect);
2017 EXPORT_SYMBOL(sock_no_getname);
2018 EXPORT_SYMBOL(sock_no_getsockopt);
2019 EXPORT_SYMBOL(sock_no_ioctl);
2020 EXPORT_SYMBOL(sock_no_listen);
2021 EXPORT_SYMBOL(sock_no_mmap);
2022 EXPORT_SYMBOL(sock_no_poll);
2023 EXPORT_SYMBOL(sock_no_recvmsg);
2024 EXPORT_SYMBOL(sock_no_sendmsg);
2025 EXPORT_SYMBOL(sock_no_sendpage);
2026 EXPORT_SYMBOL(sock_no_setsockopt);
2027 EXPORT_SYMBOL(sock_no_shutdown);
2028 EXPORT_SYMBOL(sock_no_socketpair);
2029 EXPORT_SYMBOL(sock_rfree);
2030 EXPORT_SYMBOL(sock_setsockopt);
2031 EXPORT_SYMBOL(sock_wfree);
2032 EXPORT_SYMBOL(sock_wmalloc);
2033 EXPORT_SYMBOL(sock_i_uid);
2034 EXPORT_SYMBOL(sock_i_ino);
2035 EXPORT_SYMBOL(sysctl_optmem_max);
2036 #ifdef CONFIG_SYSCTL
2037 EXPORT_SYMBOL(sysctl_rmem_max);
2038 EXPORT_SYMBOL(sysctl_wmem_max);
2039 #endif