]> git.karo-electronics.de Git - mv-sheeva.git/blob - net/core/sock.c
Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/bwh/sfc...
[mv-sheeva.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *              Alan Cox        :       Numerous verify_area() problems
17  *              Alan Cox        :       Connecting on a connecting socket
18  *                                      now returns an error for tcp.
19  *              Alan Cox        :       sock->protocol is set correctly.
20  *                                      and is not sometimes left as 0.
21  *              Alan Cox        :       connect handles icmp errors on a
22  *                                      connect properly. Unfortunately there
23  *                                      is a restart syscall nasty there. I
24  *                                      can't match BSD without hacking the C
25  *                                      library. Ideas urgently sought!
26  *              Alan Cox        :       Disallow bind() to addresses that are
27  *                                      not ours - especially broadcast ones!!
28  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
29  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
30  *                                      instead they leave that for the DESTROY timer.
31  *              Alan Cox        :       Clean up error flag in accept
32  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
33  *                                      was buggy. Put a remove_sock() in the handler
34  *                                      for memory when we hit 0. Also altered the timer
35  *                                      code. The ACK stuff can wait and needs major
36  *                                      TCP layer surgery.
37  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
38  *                                      and fixed timer/inet_bh race.
39  *              Alan Cox        :       Added zapped flag for TCP
40  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
41  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
43  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
46  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
47  *      Pauline Middelink       :       identd support
48  *              Alan Cox        :       Fixed connect() taking signals I think.
49  *              Alan Cox        :       SO_LINGER supported
50  *              Alan Cox        :       Error reporting fixes
51  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
52  *              Alan Cox        :       inet sockets don't set sk->type!
53  *              Alan Cox        :       Split socket option code
54  *              Alan Cox        :       Callbacks
55  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
56  *              Alex            :       Removed restriction on inet fioctl
57  *              Alan Cox        :       Splitting INET from NET core
58  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
59  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
60  *              Alan Cox        :       Split IP from generic code
61  *              Alan Cox        :       New kfree_skbmem()
62  *              Alan Cox        :       Make SO_DEBUG superuser only.
63  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
64  *                                      (compatibility fix)
65  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
66  *              Alan Cox        :       Allocator for a socket is settable.
67  *              Alan Cox        :       SO_ERROR includes soft errors.
68  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
69  *              Alan Cox        :       Generic socket allocation to make hooks
70  *                                      easier (suggested by Craig Metz).
71  *              Michael Pall    :       SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
79  *              Andi Kleen      :       Fix write_space callback
80  *              Chris Evans     :       Security fixes - signedness again
81  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *              This program is free software; you can redistribute it and/or
87  *              modify it under the terms of the GNU General Public License
88  *              as published by the Free Software Foundation; either version
89  *              2 of the License, or (at your option) any later version.
90  */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
117
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
128
129 #include <linux/filter.h>
130
131 #ifdef CONFIG_INET
132 #include <net/tcp.h>
133 #endif
134
135 /*
136  * Each address family might have different locking rules, so we have
137  * one slock key per address family:
138  */
139 static struct lock_class_key af_family_keys[AF_MAX];
140 static struct lock_class_key af_family_slock_keys[AF_MAX];
141
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *const af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
160   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" ,
161   "sk_lock-AF_MAX"
162 };
163 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
164   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
165   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
166   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
167   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
168   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
169   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
170   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
171   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
172   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
173   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
174   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
175   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
176   "slock-AF_IEEE802154", "slock-AF_CAIF" ,
177   "slock-AF_MAX"
178 };
179 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
180   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
181   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
182   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
183   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
184   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
185   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
186   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
187   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
188   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
189   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
190   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
191   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
192   "clock-AF_IEEE802154", "clock-AF_CAIF" ,
193   "clock-AF_MAX"
194 };
195
196 /*
197  * sk_callback_lock locking rules are per-address-family,
198  * so split the lock classes by using a per-AF key:
199  */
200 static struct lock_class_key af_callback_keys[AF_MAX];
201
202 /* Take into consideration the size of the struct sk_buff overhead in the
203  * determination of these values, since that is non-constant across
204  * platforms.  This makes socket queueing behavior and performance
205  * not depend upon such differences.
206  */
207 #define _SK_MEM_PACKETS         256
208 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
209 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
211
212 /* Run time adjustable parameters. */
213 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
215 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
216 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
217
218 /* Maximal space eaten by iovec or ancilliary data plus some space */
219 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
220 EXPORT_SYMBOL(sysctl_optmem_max);
221
222 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
223 int net_cls_subsys_id = -1;
224 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
225 #endif
226
227 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
228 {
229         struct timeval tv;
230
231         if (optlen < sizeof(tv))
232                 return -EINVAL;
233         if (copy_from_user(&tv, optval, sizeof(tv)))
234                 return -EFAULT;
235         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
236                 return -EDOM;
237
238         if (tv.tv_sec < 0) {
239                 static int warned __read_mostly;
240
241                 *timeo_p = 0;
242                 if (warned < 10 && net_ratelimit()) {
243                         warned++;
244                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
245                                "tries to set negative timeout\n",
246                                 current->comm, task_pid_nr(current));
247                 }
248                 return 0;
249         }
250         *timeo_p = MAX_SCHEDULE_TIMEOUT;
251         if (tv.tv_sec == 0 && tv.tv_usec == 0)
252                 return 0;
253         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
254                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
255         return 0;
256 }
257
258 static void sock_warn_obsolete_bsdism(const char *name)
259 {
260         static int warned;
261         static char warncomm[TASK_COMM_LEN];
262         if (strcmp(warncomm, current->comm) && warned < 5) {
263                 strcpy(warncomm,  current->comm);
264                 printk(KERN_WARNING "process `%s' is using obsolete "
265                        "%s SO_BSDCOMPAT\n", warncomm, name);
266                 warned++;
267         }
268 }
269
270 static void sock_disable_timestamp(struct sock *sk, int flag)
271 {
272         if (sock_flag(sk, flag)) {
273                 sock_reset_flag(sk, flag);
274                 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
275                     !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
276                         net_disable_timestamp();
277                 }
278         }
279 }
280
281
282 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
283 {
284         int err;
285         int skb_len;
286         unsigned long flags;
287         struct sk_buff_head *list = &sk->sk_receive_queue;
288
289         /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
290            number of warnings when compiling with -W --ANK
291          */
292         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
293             (unsigned)sk->sk_rcvbuf) {
294                 atomic_inc(&sk->sk_drops);
295                 return -ENOMEM;
296         }
297
298         err = sk_filter(sk, skb);
299         if (err)
300                 return err;
301
302         if (!sk_rmem_schedule(sk, skb->truesize)) {
303                 atomic_inc(&sk->sk_drops);
304                 return -ENOBUFS;
305         }
306
307         skb->dev = NULL;
308         skb_set_owner_r(skb, sk);
309
310         /* Cache the SKB length before we tack it onto the receive
311          * queue.  Once it is added it no longer belongs to us and
312          * may be freed by other threads of control pulling packets
313          * from the queue.
314          */
315         skb_len = skb->len;
316
317         /* we escape from rcu protected region, make sure we dont leak
318          * a norefcounted dst
319          */
320         skb_dst_force(skb);
321
322         spin_lock_irqsave(&list->lock, flags);
323         skb->dropcount = atomic_read(&sk->sk_drops);
324         __skb_queue_tail(list, skb);
325         spin_unlock_irqrestore(&list->lock, flags);
326
327         if (!sock_flag(sk, SOCK_DEAD))
328                 sk->sk_data_ready(sk, skb_len);
329         return 0;
330 }
331 EXPORT_SYMBOL(sock_queue_rcv_skb);
332
333 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
334 {
335         int rc = NET_RX_SUCCESS;
336
337         if (sk_filter(sk, skb))
338                 goto discard_and_relse;
339
340         skb->dev = NULL;
341
342         if (sk_rcvqueues_full(sk, skb)) {
343                 atomic_inc(&sk->sk_drops);
344                 goto discard_and_relse;
345         }
346         if (nested)
347                 bh_lock_sock_nested(sk);
348         else
349                 bh_lock_sock(sk);
350         if (!sock_owned_by_user(sk)) {
351                 /*
352                  * trylock + unlock semantics:
353                  */
354                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
355
356                 rc = sk_backlog_rcv(sk, skb);
357
358                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
359         } else if (sk_add_backlog(sk, skb)) {
360                 bh_unlock_sock(sk);
361                 atomic_inc(&sk->sk_drops);
362                 goto discard_and_relse;
363         }
364
365         bh_unlock_sock(sk);
366 out:
367         sock_put(sk);
368         return rc;
369 discard_and_relse:
370         kfree_skb(skb);
371         goto out;
372 }
373 EXPORT_SYMBOL(sk_receive_skb);
374
375 void sk_reset_txq(struct sock *sk)
376 {
377         sk_tx_queue_clear(sk);
378 }
379 EXPORT_SYMBOL(sk_reset_txq);
380
381 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
382 {
383         struct dst_entry *dst = __sk_dst_get(sk);
384
385         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
386                 sk_tx_queue_clear(sk);
387                 rcu_assign_pointer(sk->sk_dst_cache, NULL);
388                 dst_release(dst);
389                 return NULL;
390         }
391
392         return dst;
393 }
394 EXPORT_SYMBOL(__sk_dst_check);
395
396 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
397 {
398         struct dst_entry *dst = sk_dst_get(sk);
399
400         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
401                 sk_dst_reset(sk);
402                 dst_release(dst);
403                 return NULL;
404         }
405
406         return dst;
407 }
408 EXPORT_SYMBOL(sk_dst_check);
409
410 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
411 {
412         int ret = -ENOPROTOOPT;
413 #ifdef CONFIG_NETDEVICES
414         struct net *net = sock_net(sk);
415         char devname[IFNAMSIZ];
416         int index;
417
418         /* Sorry... */
419         ret = -EPERM;
420         if (!capable(CAP_NET_RAW))
421                 goto out;
422
423         ret = -EINVAL;
424         if (optlen < 0)
425                 goto out;
426
427         /* Bind this socket to a particular device like "eth0",
428          * as specified in the passed interface name. If the
429          * name is "" or the option length is zero the socket
430          * is not bound.
431          */
432         if (optlen > IFNAMSIZ - 1)
433                 optlen = IFNAMSIZ - 1;
434         memset(devname, 0, sizeof(devname));
435
436         ret = -EFAULT;
437         if (copy_from_user(devname, optval, optlen))
438                 goto out;
439
440         index = 0;
441         if (devname[0] != '\0') {
442                 struct net_device *dev;
443
444                 rcu_read_lock();
445                 dev = dev_get_by_name_rcu(net, devname);
446                 if (dev)
447                         index = dev->ifindex;
448                 rcu_read_unlock();
449                 ret = -ENODEV;
450                 if (!dev)
451                         goto out;
452         }
453
454         lock_sock(sk);
455         sk->sk_bound_dev_if = index;
456         sk_dst_reset(sk);
457         release_sock(sk);
458
459         ret = 0;
460
461 out:
462 #endif
463
464         return ret;
465 }
466
467 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
468 {
469         if (valbool)
470                 sock_set_flag(sk, bit);
471         else
472                 sock_reset_flag(sk, bit);
473 }
474
475 /*
476  *      This is meant for all protocols to use and covers goings on
477  *      at the socket level. Everything here is generic.
478  */
479
480 int sock_setsockopt(struct socket *sock, int level, int optname,
481                     char __user *optval, unsigned int optlen)
482 {
483         struct sock *sk = sock->sk;
484         int val;
485         int valbool;
486         struct linger ling;
487         int ret = 0;
488
489         /*
490          *      Options without arguments
491          */
492
493         if (optname == SO_BINDTODEVICE)
494                 return sock_bindtodevice(sk, optval, optlen);
495
496         if (optlen < sizeof(int))
497                 return -EINVAL;
498
499         if (get_user(val, (int __user *)optval))
500                 return -EFAULT;
501
502         valbool = val ? 1 : 0;
503
504         lock_sock(sk);
505
506         switch (optname) {
507         case SO_DEBUG:
508                 if (val && !capable(CAP_NET_ADMIN))
509                         ret = -EACCES;
510                 else
511                         sock_valbool_flag(sk, SOCK_DBG, valbool);
512                 break;
513         case SO_REUSEADDR:
514                 sk->sk_reuse = valbool;
515                 break;
516         case SO_TYPE:
517         case SO_PROTOCOL:
518         case SO_DOMAIN:
519         case SO_ERROR:
520                 ret = -ENOPROTOOPT;
521                 break;
522         case SO_DONTROUTE:
523                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
524                 break;
525         case SO_BROADCAST:
526                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
527                 break;
528         case SO_SNDBUF:
529                 /* Don't error on this BSD doesn't and if you think
530                    about it this is right. Otherwise apps have to
531                    play 'guess the biggest size' games. RCVBUF/SNDBUF
532                    are treated in BSD as hints */
533
534                 if (val > sysctl_wmem_max)
535                         val = sysctl_wmem_max;
536 set_sndbuf:
537                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
538                 if ((val * 2) < SOCK_MIN_SNDBUF)
539                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
540                 else
541                         sk->sk_sndbuf = val * 2;
542
543                 /*
544                  *      Wake up sending tasks if we
545                  *      upped the value.
546                  */
547                 sk->sk_write_space(sk);
548                 break;
549
550         case SO_SNDBUFFORCE:
551                 if (!capable(CAP_NET_ADMIN)) {
552                         ret = -EPERM;
553                         break;
554                 }
555                 goto set_sndbuf;
556
557         case SO_RCVBUF:
558                 /* Don't error on this BSD doesn't and if you think
559                    about it this is right. Otherwise apps have to
560                    play 'guess the biggest size' games. RCVBUF/SNDBUF
561                    are treated in BSD as hints */
562
563                 if (val > sysctl_rmem_max)
564                         val = sysctl_rmem_max;
565 set_rcvbuf:
566                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
567                 /*
568                  * We double it on the way in to account for
569                  * "struct sk_buff" etc. overhead.   Applications
570                  * assume that the SO_RCVBUF setting they make will
571                  * allow that much actual data to be received on that
572                  * socket.
573                  *
574                  * Applications are unaware that "struct sk_buff" and
575                  * other overheads allocate from the receive buffer
576                  * during socket buffer allocation.
577                  *
578                  * And after considering the possible alternatives,
579                  * returning the value we actually used in getsockopt
580                  * is the most desirable behavior.
581                  */
582                 if ((val * 2) < SOCK_MIN_RCVBUF)
583                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
584                 else
585                         sk->sk_rcvbuf = val * 2;
586                 break;
587
588         case SO_RCVBUFFORCE:
589                 if (!capable(CAP_NET_ADMIN)) {
590                         ret = -EPERM;
591                         break;
592                 }
593                 goto set_rcvbuf;
594
595         case SO_KEEPALIVE:
596 #ifdef CONFIG_INET
597                 if (sk->sk_protocol == IPPROTO_TCP)
598                         tcp_set_keepalive(sk, valbool);
599 #endif
600                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
601                 break;
602
603         case SO_OOBINLINE:
604                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
605                 break;
606
607         case SO_NO_CHECK:
608                 sk->sk_no_check = valbool;
609                 break;
610
611         case SO_PRIORITY:
612                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
613                         sk->sk_priority = val;
614                 else
615                         ret = -EPERM;
616                 break;
617
618         case SO_LINGER:
619                 if (optlen < sizeof(ling)) {
620                         ret = -EINVAL;  /* 1003.1g */
621                         break;
622                 }
623                 if (copy_from_user(&ling, optval, sizeof(ling))) {
624                         ret = -EFAULT;
625                         break;
626                 }
627                 if (!ling.l_onoff)
628                         sock_reset_flag(sk, SOCK_LINGER);
629                 else {
630 #if (BITS_PER_LONG == 32)
631                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
632                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
633                         else
634 #endif
635                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
636                         sock_set_flag(sk, SOCK_LINGER);
637                 }
638                 break;
639
640         case SO_BSDCOMPAT:
641                 sock_warn_obsolete_bsdism("setsockopt");
642                 break;
643
644         case SO_PASSCRED:
645                 if (valbool)
646                         set_bit(SOCK_PASSCRED, &sock->flags);
647                 else
648                         clear_bit(SOCK_PASSCRED, &sock->flags);
649                 break;
650
651         case SO_TIMESTAMP:
652         case SO_TIMESTAMPNS:
653                 if (valbool)  {
654                         if (optname == SO_TIMESTAMP)
655                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
656                         else
657                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
658                         sock_set_flag(sk, SOCK_RCVTSTAMP);
659                         sock_enable_timestamp(sk, SOCK_TIMESTAMP);
660                 } else {
661                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
662                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
663                 }
664                 break;
665
666         case SO_TIMESTAMPING:
667                 if (val & ~SOF_TIMESTAMPING_MASK) {
668                         ret = -EINVAL;
669                         break;
670                 }
671                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
672                                   val & SOF_TIMESTAMPING_TX_HARDWARE);
673                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
674                                   val & SOF_TIMESTAMPING_TX_SOFTWARE);
675                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
676                                   val & SOF_TIMESTAMPING_RX_HARDWARE);
677                 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
678                         sock_enable_timestamp(sk,
679                                               SOCK_TIMESTAMPING_RX_SOFTWARE);
680                 else
681                         sock_disable_timestamp(sk,
682                                                SOCK_TIMESTAMPING_RX_SOFTWARE);
683                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
684                                   val & SOF_TIMESTAMPING_SOFTWARE);
685                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
686                                   val & SOF_TIMESTAMPING_SYS_HARDWARE);
687                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
688                                   val & SOF_TIMESTAMPING_RAW_HARDWARE);
689                 break;
690
691         case SO_RCVLOWAT:
692                 if (val < 0)
693                         val = INT_MAX;
694                 sk->sk_rcvlowat = val ? : 1;
695                 break;
696
697         case SO_RCVTIMEO:
698                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
699                 break;
700
701         case SO_SNDTIMEO:
702                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
703                 break;
704
705         case SO_ATTACH_FILTER:
706                 ret = -EINVAL;
707                 if (optlen == sizeof(struct sock_fprog)) {
708                         struct sock_fprog fprog;
709
710                         ret = -EFAULT;
711                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
712                                 break;
713
714                         ret = sk_attach_filter(&fprog, sk);
715                 }
716                 break;
717
718         case SO_DETACH_FILTER:
719                 ret = sk_detach_filter(sk);
720                 break;
721
722         case SO_PASSSEC:
723                 if (valbool)
724                         set_bit(SOCK_PASSSEC, &sock->flags);
725                 else
726                         clear_bit(SOCK_PASSSEC, &sock->flags);
727                 break;
728         case SO_MARK:
729                 if (!capable(CAP_NET_ADMIN))
730                         ret = -EPERM;
731                 else
732                         sk->sk_mark = val;
733                 break;
734
735                 /* We implement the SO_SNDLOWAT etc to
736                    not be settable (1003.1g 5.3) */
737         case SO_RXQ_OVFL:
738                 if (valbool)
739                         sock_set_flag(sk, SOCK_RXQ_OVFL);
740                 else
741                         sock_reset_flag(sk, SOCK_RXQ_OVFL);
742                 break;
743         default:
744                 ret = -ENOPROTOOPT;
745                 break;
746         }
747         release_sock(sk);
748         return ret;
749 }
750 EXPORT_SYMBOL(sock_setsockopt);
751
752
753 void cred_to_ucred(struct pid *pid, const struct cred *cred,
754                    struct ucred *ucred)
755 {
756         ucred->pid = pid_vnr(pid);
757         ucred->uid = ucred->gid = -1;
758         if (cred) {
759                 struct user_namespace *current_ns = current_user_ns();
760
761                 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
762                 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
763         }
764 }
765 EXPORT_SYMBOL_GPL(cred_to_ucred);
766
767 int sock_getsockopt(struct socket *sock, int level, int optname,
768                     char __user *optval, int __user *optlen)
769 {
770         struct sock *sk = sock->sk;
771
772         union {
773                 int val;
774                 struct linger ling;
775                 struct timeval tm;
776         } v;
777
778         int lv = sizeof(int);
779         int len;
780
781         if (get_user(len, optlen))
782                 return -EFAULT;
783         if (len < 0)
784                 return -EINVAL;
785
786         memset(&v, 0, sizeof(v));
787
788         switch (optname) {
789         case SO_DEBUG:
790                 v.val = sock_flag(sk, SOCK_DBG);
791                 break;
792
793         case SO_DONTROUTE:
794                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
795                 break;
796
797         case SO_BROADCAST:
798                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
799                 break;
800
801         case SO_SNDBUF:
802                 v.val = sk->sk_sndbuf;
803                 break;
804
805         case SO_RCVBUF:
806                 v.val = sk->sk_rcvbuf;
807                 break;
808
809         case SO_REUSEADDR:
810                 v.val = sk->sk_reuse;
811                 break;
812
813         case SO_KEEPALIVE:
814                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
815                 break;
816
817         case SO_TYPE:
818                 v.val = sk->sk_type;
819                 break;
820
821         case SO_PROTOCOL:
822                 v.val = sk->sk_protocol;
823                 break;
824
825         case SO_DOMAIN:
826                 v.val = sk->sk_family;
827                 break;
828
829         case SO_ERROR:
830                 v.val = -sock_error(sk);
831                 if (v.val == 0)
832                         v.val = xchg(&sk->sk_err_soft, 0);
833                 break;
834
835         case SO_OOBINLINE:
836                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
837                 break;
838
839         case SO_NO_CHECK:
840                 v.val = sk->sk_no_check;
841                 break;
842
843         case SO_PRIORITY:
844                 v.val = sk->sk_priority;
845                 break;
846
847         case SO_LINGER:
848                 lv              = sizeof(v.ling);
849                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
850                 v.ling.l_linger = sk->sk_lingertime / HZ;
851                 break;
852
853         case SO_BSDCOMPAT:
854                 sock_warn_obsolete_bsdism("getsockopt");
855                 break;
856
857         case SO_TIMESTAMP:
858                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
859                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
860                 break;
861
862         case SO_TIMESTAMPNS:
863                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
864                 break;
865
866         case SO_TIMESTAMPING:
867                 v.val = 0;
868                 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
869                         v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
870                 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
871                         v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
872                 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
873                         v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
874                 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
875                         v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
876                 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
877                         v.val |= SOF_TIMESTAMPING_SOFTWARE;
878                 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
879                         v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
880                 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
881                         v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
882                 break;
883
884         case SO_RCVTIMEO:
885                 lv = sizeof(struct timeval);
886                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
887                         v.tm.tv_sec = 0;
888                         v.tm.tv_usec = 0;
889                 } else {
890                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
891                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
892                 }
893                 break;
894
895         case SO_SNDTIMEO:
896                 lv = sizeof(struct timeval);
897                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
898                         v.tm.tv_sec = 0;
899                         v.tm.tv_usec = 0;
900                 } else {
901                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
902                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
903                 }
904                 break;
905
906         case SO_RCVLOWAT:
907                 v.val = sk->sk_rcvlowat;
908                 break;
909
910         case SO_SNDLOWAT:
911                 v.val = 1;
912                 break;
913
914         case SO_PASSCRED:
915                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
916                 break;
917
918         case SO_PEERCRED:
919         {
920                 struct ucred peercred;
921                 if (len > sizeof(peercred))
922                         len = sizeof(peercred);
923                 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
924                 if (copy_to_user(optval, &peercred, len))
925                         return -EFAULT;
926                 goto lenout;
927         }
928
929         case SO_PEERNAME:
930         {
931                 char address[128];
932
933                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
934                         return -ENOTCONN;
935                 if (lv < len)
936                         return -EINVAL;
937                 if (copy_to_user(optval, address, len))
938                         return -EFAULT;
939                 goto lenout;
940         }
941
942         /* Dubious BSD thing... Probably nobody even uses it, but
943          * the UNIX standard wants it for whatever reason... -DaveM
944          */
945         case SO_ACCEPTCONN:
946                 v.val = sk->sk_state == TCP_LISTEN;
947                 break;
948
949         case SO_PASSSEC:
950                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
951                 break;
952
953         case SO_PEERSEC:
954                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
955
956         case SO_MARK:
957                 v.val = sk->sk_mark;
958                 break;
959
960         case SO_RXQ_OVFL:
961                 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
962                 break;
963
964         default:
965                 return -ENOPROTOOPT;
966         }
967
968         if (len > lv)
969                 len = lv;
970         if (copy_to_user(optval, &v, len))
971                 return -EFAULT;
972 lenout:
973         if (put_user(len, optlen))
974                 return -EFAULT;
975         return 0;
976 }
977
978 /*
979  * Initialize an sk_lock.
980  *
981  * (We also register the sk_lock with the lock validator.)
982  */
983 static inline void sock_lock_init(struct sock *sk)
984 {
985         sock_lock_init_class_and_name(sk,
986                         af_family_slock_key_strings[sk->sk_family],
987                         af_family_slock_keys + sk->sk_family,
988                         af_family_key_strings[sk->sk_family],
989                         af_family_keys + sk->sk_family);
990 }
991
992 /*
993  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
994  * even temporarly, because of RCU lookups. sk_node should also be left as is.
995  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
996  */
997 static void sock_copy(struct sock *nsk, const struct sock *osk)
998 {
999 #ifdef CONFIG_SECURITY_NETWORK
1000         void *sptr = nsk->sk_security;
1001 #endif
1002         memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1003
1004         memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1005                osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1006
1007 #ifdef CONFIG_SECURITY_NETWORK
1008         nsk->sk_security = sptr;
1009         security_sk_clone(osk, nsk);
1010 #endif
1011 }
1012
1013 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1014                 int family)
1015 {
1016         struct sock *sk;
1017         struct kmem_cache *slab;
1018
1019         slab = prot->slab;
1020         if (slab != NULL) {
1021                 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1022                 if (!sk)
1023                         return sk;
1024                 if (priority & __GFP_ZERO) {
1025                         /*
1026                          * caches using SLAB_DESTROY_BY_RCU should let
1027                          * sk_node.next un-modified. Special care is taken
1028                          * when initializing object to zero.
1029                          */
1030                         if (offsetof(struct sock, sk_node.next) != 0)
1031                                 memset(sk, 0, offsetof(struct sock, sk_node.next));
1032                         memset(&sk->sk_node.pprev, 0,
1033                                prot->obj_size - offsetof(struct sock,
1034                                                          sk_node.pprev));
1035                 }
1036         }
1037         else
1038                 sk = kmalloc(prot->obj_size, priority);
1039
1040         if (sk != NULL) {
1041                 kmemcheck_annotate_bitfield(sk, flags);
1042
1043                 if (security_sk_alloc(sk, family, priority))
1044                         goto out_free;
1045
1046                 if (!try_module_get(prot->owner))
1047                         goto out_free_sec;
1048                 sk_tx_queue_clear(sk);
1049         }
1050
1051         return sk;
1052
1053 out_free_sec:
1054         security_sk_free(sk);
1055 out_free:
1056         if (slab != NULL)
1057                 kmem_cache_free(slab, sk);
1058         else
1059                 kfree(sk);
1060         return NULL;
1061 }
1062
1063 static void sk_prot_free(struct proto *prot, struct sock *sk)
1064 {
1065         struct kmem_cache *slab;
1066         struct module *owner;
1067
1068         owner = prot->owner;
1069         slab = prot->slab;
1070
1071         security_sk_free(sk);
1072         if (slab != NULL)
1073                 kmem_cache_free(slab, sk);
1074         else
1075                 kfree(sk);
1076         module_put(owner);
1077 }
1078
1079 #ifdef CONFIG_CGROUPS
1080 void sock_update_classid(struct sock *sk)
1081 {
1082         u32 classid;
1083
1084         rcu_read_lock();  /* doing current task, which cannot vanish. */
1085         classid = task_cls_classid(current);
1086         rcu_read_unlock();
1087         if (classid && classid != sk->sk_classid)
1088                 sk->sk_classid = classid;
1089 }
1090 EXPORT_SYMBOL(sock_update_classid);
1091 #endif
1092
1093 /**
1094  *      sk_alloc - All socket objects are allocated here
1095  *      @net: the applicable net namespace
1096  *      @family: protocol family
1097  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1098  *      @prot: struct proto associated with this new sock instance
1099  */
1100 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1101                       struct proto *prot)
1102 {
1103         struct sock *sk;
1104
1105         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1106         if (sk) {
1107                 sk->sk_family = family;
1108                 /*
1109                  * See comment in struct sock definition to understand
1110                  * why we need sk_prot_creator -acme
1111                  */
1112                 sk->sk_prot = sk->sk_prot_creator = prot;
1113                 sock_lock_init(sk);
1114                 sock_net_set(sk, get_net(net));
1115                 atomic_set(&sk->sk_wmem_alloc, 1);
1116
1117                 sock_update_classid(sk);
1118         }
1119
1120         return sk;
1121 }
1122 EXPORT_SYMBOL(sk_alloc);
1123
1124 static void __sk_free(struct sock *sk)
1125 {
1126         struct sk_filter *filter;
1127
1128         if (sk->sk_destruct)
1129                 sk->sk_destruct(sk);
1130
1131         filter = rcu_dereference_check(sk->sk_filter,
1132                                        atomic_read(&sk->sk_wmem_alloc) == 0);
1133         if (filter) {
1134                 sk_filter_uncharge(sk, filter);
1135                 rcu_assign_pointer(sk->sk_filter, NULL);
1136         }
1137
1138         sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1139         sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1140
1141         if (atomic_read(&sk->sk_omem_alloc))
1142                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1143                        __func__, atomic_read(&sk->sk_omem_alloc));
1144
1145         if (sk->sk_peer_cred)
1146                 put_cred(sk->sk_peer_cred);
1147         put_pid(sk->sk_peer_pid);
1148         put_net(sock_net(sk));
1149         sk_prot_free(sk->sk_prot_creator, sk);
1150 }
1151
1152 void sk_free(struct sock *sk)
1153 {
1154         /*
1155          * We substract one from sk_wmem_alloc and can know if
1156          * some packets are still in some tx queue.
1157          * If not null, sock_wfree() will call __sk_free(sk) later
1158          */
1159         if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1160                 __sk_free(sk);
1161 }
1162 EXPORT_SYMBOL(sk_free);
1163
1164 /*
1165  * Last sock_put should drop referrence to sk->sk_net. It has already
1166  * been dropped in sk_change_net. Taking referrence to stopping namespace
1167  * is not an option.
1168  * Take referrence to a socket to remove it from hash _alive_ and after that
1169  * destroy it in the context of init_net.
1170  */
1171 void sk_release_kernel(struct sock *sk)
1172 {
1173         if (sk == NULL || sk->sk_socket == NULL)
1174                 return;
1175
1176         sock_hold(sk);
1177         sock_release(sk->sk_socket);
1178         release_net(sock_net(sk));
1179         sock_net_set(sk, get_net(&init_net));
1180         sock_put(sk);
1181 }
1182 EXPORT_SYMBOL(sk_release_kernel);
1183
1184 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1185 {
1186         struct sock *newsk;
1187
1188         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1189         if (newsk != NULL) {
1190                 struct sk_filter *filter;
1191
1192                 sock_copy(newsk, sk);
1193
1194                 /* SANITY */
1195                 get_net(sock_net(newsk));
1196                 sk_node_init(&newsk->sk_node);
1197                 sock_lock_init(newsk);
1198                 bh_lock_sock(newsk);
1199                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1200                 newsk->sk_backlog.len = 0;
1201
1202                 atomic_set(&newsk->sk_rmem_alloc, 0);
1203                 /*
1204                  * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1205                  */
1206                 atomic_set(&newsk->sk_wmem_alloc, 1);
1207                 atomic_set(&newsk->sk_omem_alloc, 0);
1208                 skb_queue_head_init(&newsk->sk_receive_queue);
1209                 skb_queue_head_init(&newsk->sk_write_queue);
1210 #ifdef CONFIG_NET_DMA
1211                 skb_queue_head_init(&newsk->sk_async_wait_queue);
1212 #endif
1213
1214                 spin_lock_init(&newsk->sk_dst_lock);
1215                 rwlock_init(&newsk->sk_callback_lock);
1216                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1217                                 af_callback_keys + newsk->sk_family,
1218                                 af_family_clock_key_strings[newsk->sk_family]);
1219
1220                 newsk->sk_dst_cache     = NULL;
1221                 newsk->sk_wmem_queued   = 0;
1222                 newsk->sk_forward_alloc = 0;
1223                 newsk->sk_send_head     = NULL;
1224                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1225
1226                 sock_reset_flag(newsk, SOCK_DONE);
1227                 skb_queue_head_init(&newsk->sk_error_queue);
1228
1229                 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1230                 if (filter != NULL)
1231                         sk_filter_charge(newsk, filter);
1232
1233                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1234                         /* It is still raw copy of parent, so invalidate
1235                          * destructor and make plain sk_free() */
1236                         newsk->sk_destruct = NULL;
1237                         sk_free(newsk);
1238                         newsk = NULL;
1239                         goto out;
1240                 }
1241
1242                 newsk->sk_err      = 0;
1243                 newsk->sk_priority = 0;
1244                 /*
1245                  * Before updating sk_refcnt, we must commit prior changes to memory
1246                  * (Documentation/RCU/rculist_nulls.txt for details)
1247                  */
1248                 smp_wmb();
1249                 atomic_set(&newsk->sk_refcnt, 2);
1250
1251                 /*
1252                  * Increment the counter in the same struct proto as the master
1253                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1254                  * is the same as sk->sk_prot->socks, as this field was copied
1255                  * with memcpy).
1256                  *
1257                  * This _changes_ the previous behaviour, where
1258                  * tcp_create_openreq_child always was incrementing the
1259                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1260                  * to be taken into account in all callers. -acme
1261                  */
1262                 sk_refcnt_debug_inc(newsk);
1263                 sk_set_socket(newsk, NULL);
1264                 newsk->sk_wq = NULL;
1265
1266                 if (newsk->sk_prot->sockets_allocated)
1267                         percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1268
1269                 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1270                     sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1271                         net_enable_timestamp();
1272         }
1273 out:
1274         return newsk;
1275 }
1276 EXPORT_SYMBOL_GPL(sk_clone);
1277
1278 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1279 {
1280         __sk_dst_set(sk, dst);
1281         sk->sk_route_caps = dst->dev->features;
1282         if (sk->sk_route_caps & NETIF_F_GSO)
1283                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1284         sk->sk_route_caps &= ~sk->sk_route_nocaps;
1285         if (sk_can_gso(sk)) {
1286                 if (dst->header_len) {
1287                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1288                 } else {
1289                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1290                         sk->sk_gso_max_size = dst->dev->gso_max_size;
1291                 }
1292         }
1293 }
1294 EXPORT_SYMBOL_GPL(sk_setup_caps);
1295
1296 void __init sk_init(void)
1297 {
1298         if (totalram_pages <= 4096) {
1299                 sysctl_wmem_max = 32767;
1300                 sysctl_rmem_max = 32767;
1301                 sysctl_wmem_default = 32767;
1302                 sysctl_rmem_default = 32767;
1303         } else if (totalram_pages >= 131072) {
1304                 sysctl_wmem_max = 131071;
1305                 sysctl_rmem_max = 131071;
1306         }
1307 }
1308
1309 /*
1310  *      Simple resource managers for sockets.
1311  */
1312
1313
1314 /*
1315  * Write buffer destructor automatically called from kfree_skb.
1316  */
1317 void sock_wfree(struct sk_buff *skb)
1318 {
1319         struct sock *sk = skb->sk;
1320         unsigned int len = skb->truesize;
1321
1322         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1323                 /*
1324                  * Keep a reference on sk_wmem_alloc, this will be released
1325                  * after sk_write_space() call
1326                  */
1327                 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1328                 sk->sk_write_space(sk);
1329                 len = 1;
1330         }
1331         /*
1332          * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1333          * could not do because of in-flight packets
1334          */
1335         if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1336                 __sk_free(sk);
1337 }
1338 EXPORT_SYMBOL(sock_wfree);
1339
1340 /*
1341  * Read buffer destructor automatically called from kfree_skb.
1342  */
1343 void sock_rfree(struct sk_buff *skb)
1344 {
1345         struct sock *sk = skb->sk;
1346         unsigned int len = skb->truesize;
1347
1348         atomic_sub(len, &sk->sk_rmem_alloc);
1349         sk_mem_uncharge(sk, len);
1350 }
1351 EXPORT_SYMBOL(sock_rfree);
1352
1353
1354 int sock_i_uid(struct sock *sk)
1355 {
1356         int uid;
1357
1358         read_lock_bh(&sk->sk_callback_lock);
1359         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1360         read_unlock_bh(&sk->sk_callback_lock);
1361         return uid;
1362 }
1363 EXPORT_SYMBOL(sock_i_uid);
1364
1365 unsigned long sock_i_ino(struct sock *sk)
1366 {
1367         unsigned long ino;
1368
1369         read_lock_bh(&sk->sk_callback_lock);
1370         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1371         read_unlock_bh(&sk->sk_callback_lock);
1372         return ino;
1373 }
1374 EXPORT_SYMBOL(sock_i_ino);
1375
1376 /*
1377  * Allocate a skb from the socket's send buffer.
1378  */
1379 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1380                              gfp_t priority)
1381 {
1382         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1383                 struct sk_buff *skb = alloc_skb(size, priority);
1384                 if (skb) {
1385                         skb_set_owner_w(skb, sk);
1386                         return skb;
1387                 }
1388         }
1389         return NULL;
1390 }
1391 EXPORT_SYMBOL(sock_wmalloc);
1392
1393 /*
1394  * Allocate a skb from the socket's receive buffer.
1395  */
1396 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1397                              gfp_t priority)
1398 {
1399         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1400                 struct sk_buff *skb = alloc_skb(size, priority);
1401                 if (skb) {
1402                         skb_set_owner_r(skb, sk);
1403                         return skb;
1404                 }
1405         }
1406         return NULL;
1407 }
1408
1409 /*
1410  * Allocate a memory block from the socket's option memory buffer.
1411  */
1412 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1413 {
1414         if ((unsigned)size <= sysctl_optmem_max &&
1415             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1416                 void *mem;
1417                 /* First do the add, to avoid the race if kmalloc
1418                  * might sleep.
1419                  */
1420                 atomic_add(size, &sk->sk_omem_alloc);
1421                 mem = kmalloc(size, priority);
1422                 if (mem)
1423                         return mem;
1424                 atomic_sub(size, &sk->sk_omem_alloc);
1425         }
1426         return NULL;
1427 }
1428 EXPORT_SYMBOL(sock_kmalloc);
1429
1430 /*
1431  * Free an option memory block.
1432  */
1433 void sock_kfree_s(struct sock *sk, void *mem, int size)
1434 {
1435         kfree(mem);
1436         atomic_sub(size, &sk->sk_omem_alloc);
1437 }
1438 EXPORT_SYMBOL(sock_kfree_s);
1439
1440 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1441    I think, these locks should be removed for datagram sockets.
1442  */
1443 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1444 {
1445         DEFINE_WAIT(wait);
1446
1447         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1448         for (;;) {
1449                 if (!timeo)
1450                         break;
1451                 if (signal_pending(current))
1452                         break;
1453                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1454                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1455                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1456                         break;
1457                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1458                         break;
1459                 if (sk->sk_err)
1460                         break;
1461                 timeo = schedule_timeout(timeo);
1462         }
1463         finish_wait(sk_sleep(sk), &wait);
1464         return timeo;
1465 }
1466
1467
1468 /*
1469  *      Generic send/receive buffer handlers
1470  */
1471
1472 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1473                                      unsigned long data_len, int noblock,
1474                                      int *errcode)
1475 {
1476         struct sk_buff *skb;
1477         gfp_t gfp_mask;
1478         long timeo;
1479         int err;
1480
1481         gfp_mask = sk->sk_allocation;
1482         if (gfp_mask & __GFP_WAIT)
1483                 gfp_mask |= __GFP_REPEAT;
1484
1485         timeo = sock_sndtimeo(sk, noblock);
1486         while (1) {
1487                 err = sock_error(sk);
1488                 if (err != 0)
1489                         goto failure;
1490
1491                 err = -EPIPE;
1492                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1493                         goto failure;
1494
1495                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1496                         skb = alloc_skb(header_len, gfp_mask);
1497                         if (skb) {
1498                                 int npages;
1499                                 int i;
1500
1501                                 /* No pages, we're done... */
1502                                 if (!data_len)
1503                                         break;
1504
1505                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1506                                 skb->truesize += data_len;
1507                                 skb_shinfo(skb)->nr_frags = npages;
1508                                 for (i = 0; i < npages; i++) {
1509                                         struct page *page;
1510                                         skb_frag_t *frag;
1511
1512                                         page = alloc_pages(sk->sk_allocation, 0);
1513                                         if (!page) {
1514                                                 err = -ENOBUFS;
1515                                                 skb_shinfo(skb)->nr_frags = i;
1516                                                 kfree_skb(skb);
1517                                                 goto failure;
1518                                         }
1519
1520                                         frag = &skb_shinfo(skb)->frags[i];
1521                                         frag->page = page;
1522                                         frag->page_offset = 0;
1523                                         frag->size = (data_len >= PAGE_SIZE ?
1524                                                       PAGE_SIZE :
1525                                                       data_len);
1526                                         data_len -= PAGE_SIZE;
1527                                 }
1528
1529                                 /* Full success... */
1530                                 break;
1531                         }
1532                         err = -ENOBUFS;
1533                         goto failure;
1534                 }
1535                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1536                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1537                 err = -EAGAIN;
1538                 if (!timeo)
1539                         goto failure;
1540                 if (signal_pending(current))
1541                         goto interrupted;
1542                 timeo = sock_wait_for_wmem(sk, timeo);
1543         }
1544
1545         skb_set_owner_w(skb, sk);
1546         return skb;
1547
1548 interrupted:
1549         err = sock_intr_errno(timeo);
1550 failure:
1551         *errcode = err;
1552         return NULL;
1553 }
1554 EXPORT_SYMBOL(sock_alloc_send_pskb);
1555
1556 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1557                                     int noblock, int *errcode)
1558 {
1559         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1560 }
1561 EXPORT_SYMBOL(sock_alloc_send_skb);
1562
1563 static void __lock_sock(struct sock *sk)
1564         __releases(&sk->sk_lock.slock)
1565         __acquires(&sk->sk_lock.slock)
1566 {
1567         DEFINE_WAIT(wait);
1568
1569         for (;;) {
1570                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1571                                         TASK_UNINTERRUPTIBLE);
1572                 spin_unlock_bh(&sk->sk_lock.slock);
1573                 schedule();
1574                 spin_lock_bh(&sk->sk_lock.slock);
1575                 if (!sock_owned_by_user(sk))
1576                         break;
1577         }
1578         finish_wait(&sk->sk_lock.wq, &wait);
1579 }
1580
1581 static void __release_sock(struct sock *sk)
1582         __releases(&sk->sk_lock.slock)
1583         __acquires(&sk->sk_lock.slock)
1584 {
1585         struct sk_buff *skb = sk->sk_backlog.head;
1586
1587         do {
1588                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1589                 bh_unlock_sock(sk);
1590
1591                 do {
1592                         struct sk_buff *next = skb->next;
1593
1594                         WARN_ON_ONCE(skb_dst_is_noref(skb));
1595                         skb->next = NULL;
1596                         sk_backlog_rcv(sk, skb);
1597
1598                         /*
1599                          * We are in process context here with softirqs
1600                          * disabled, use cond_resched_softirq() to preempt.
1601                          * This is safe to do because we've taken the backlog
1602                          * queue private:
1603                          */
1604                         cond_resched_softirq();
1605
1606                         skb = next;
1607                 } while (skb != NULL);
1608
1609                 bh_lock_sock(sk);
1610         } while ((skb = sk->sk_backlog.head) != NULL);
1611
1612         /*
1613          * Doing the zeroing here guarantee we can not loop forever
1614          * while a wild producer attempts to flood us.
1615          */
1616         sk->sk_backlog.len = 0;
1617 }
1618
1619 /**
1620  * sk_wait_data - wait for data to arrive at sk_receive_queue
1621  * @sk:    sock to wait on
1622  * @timeo: for how long
1623  *
1624  * Now socket state including sk->sk_err is changed only under lock,
1625  * hence we may omit checks after joining wait queue.
1626  * We check receive queue before schedule() only as optimization;
1627  * it is very likely that release_sock() added new data.
1628  */
1629 int sk_wait_data(struct sock *sk, long *timeo)
1630 {
1631         int rc;
1632         DEFINE_WAIT(wait);
1633
1634         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1635         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1636         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1637         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1638         finish_wait(sk_sleep(sk), &wait);
1639         return rc;
1640 }
1641 EXPORT_SYMBOL(sk_wait_data);
1642
1643 /**
1644  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1645  *      @sk: socket
1646  *      @size: memory size to allocate
1647  *      @kind: allocation type
1648  *
1649  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1650  *      rmem allocation. This function assumes that protocols which have
1651  *      memory_pressure use sk_wmem_queued as write buffer accounting.
1652  */
1653 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1654 {
1655         struct proto *prot = sk->sk_prot;
1656         int amt = sk_mem_pages(size);
1657         long allocated;
1658
1659         sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1660         allocated = atomic_long_add_return(amt, prot->memory_allocated);
1661
1662         /* Under limit. */
1663         if (allocated <= prot->sysctl_mem[0]) {
1664                 if (prot->memory_pressure && *prot->memory_pressure)
1665                         *prot->memory_pressure = 0;
1666                 return 1;
1667         }
1668
1669         /* Under pressure. */
1670         if (allocated > prot->sysctl_mem[1])
1671                 if (prot->enter_memory_pressure)
1672                         prot->enter_memory_pressure(sk);
1673
1674         /* Over hard limit. */
1675         if (allocated > prot->sysctl_mem[2])
1676                 goto suppress_allocation;
1677
1678         /* guarantee minimum buffer size under pressure */
1679         if (kind == SK_MEM_RECV) {
1680                 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1681                         return 1;
1682         } else { /* SK_MEM_SEND */
1683                 if (sk->sk_type == SOCK_STREAM) {
1684                         if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1685                                 return 1;
1686                 } else if (atomic_read(&sk->sk_wmem_alloc) <
1687                            prot->sysctl_wmem[0])
1688                                 return 1;
1689         }
1690
1691         if (prot->memory_pressure) {
1692                 int alloc;
1693
1694                 if (!*prot->memory_pressure)
1695                         return 1;
1696                 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1697                 if (prot->sysctl_mem[2] > alloc *
1698                     sk_mem_pages(sk->sk_wmem_queued +
1699                                  atomic_read(&sk->sk_rmem_alloc) +
1700                                  sk->sk_forward_alloc))
1701                         return 1;
1702         }
1703
1704 suppress_allocation:
1705
1706         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1707                 sk_stream_moderate_sndbuf(sk);
1708
1709                 /* Fail only if socket is _under_ its sndbuf.
1710                  * In this case we cannot block, so that we have to fail.
1711                  */
1712                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1713                         return 1;
1714         }
1715
1716         /* Alas. Undo changes. */
1717         sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1718         atomic_long_sub(amt, prot->memory_allocated);
1719         return 0;
1720 }
1721 EXPORT_SYMBOL(__sk_mem_schedule);
1722
1723 /**
1724  *      __sk_reclaim - reclaim memory_allocated
1725  *      @sk: socket
1726  */
1727 void __sk_mem_reclaim(struct sock *sk)
1728 {
1729         struct proto *prot = sk->sk_prot;
1730
1731         atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1732                    prot->memory_allocated);
1733         sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1734
1735         if (prot->memory_pressure && *prot->memory_pressure &&
1736             (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1737                 *prot->memory_pressure = 0;
1738 }
1739 EXPORT_SYMBOL(__sk_mem_reclaim);
1740
1741
1742 /*
1743  * Set of default routines for initialising struct proto_ops when
1744  * the protocol does not support a particular function. In certain
1745  * cases where it makes no sense for a protocol to have a "do nothing"
1746  * function, some default processing is provided.
1747  */
1748
1749 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1750 {
1751         return -EOPNOTSUPP;
1752 }
1753 EXPORT_SYMBOL(sock_no_bind);
1754
1755 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1756                     int len, int flags)
1757 {
1758         return -EOPNOTSUPP;
1759 }
1760 EXPORT_SYMBOL(sock_no_connect);
1761
1762 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1763 {
1764         return -EOPNOTSUPP;
1765 }
1766 EXPORT_SYMBOL(sock_no_socketpair);
1767
1768 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1769 {
1770         return -EOPNOTSUPP;
1771 }
1772 EXPORT_SYMBOL(sock_no_accept);
1773
1774 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1775                     int *len, int peer)
1776 {
1777         return -EOPNOTSUPP;
1778 }
1779 EXPORT_SYMBOL(sock_no_getname);
1780
1781 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1782 {
1783         return 0;
1784 }
1785 EXPORT_SYMBOL(sock_no_poll);
1786
1787 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1788 {
1789         return -EOPNOTSUPP;
1790 }
1791 EXPORT_SYMBOL(sock_no_ioctl);
1792
1793 int sock_no_listen(struct socket *sock, int backlog)
1794 {
1795         return -EOPNOTSUPP;
1796 }
1797 EXPORT_SYMBOL(sock_no_listen);
1798
1799 int sock_no_shutdown(struct socket *sock, int how)
1800 {
1801         return -EOPNOTSUPP;
1802 }
1803 EXPORT_SYMBOL(sock_no_shutdown);
1804
1805 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1806                     char __user *optval, unsigned int optlen)
1807 {
1808         return -EOPNOTSUPP;
1809 }
1810 EXPORT_SYMBOL(sock_no_setsockopt);
1811
1812 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1813                     char __user *optval, int __user *optlen)
1814 {
1815         return -EOPNOTSUPP;
1816 }
1817 EXPORT_SYMBOL(sock_no_getsockopt);
1818
1819 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1820                     size_t len)
1821 {
1822         return -EOPNOTSUPP;
1823 }
1824 EXPORT_SYMBOL(sock_no_sendmsg);
1825
1826 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1827                     size_t len, int flags)
1828 {
1829         return -EOPNOTSUPP;
1830 }
1831 EXPORT_SYMBOL(sock_no_recvmsg);
1832
1833 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1834 {
1835         /* Mirror missing mmap method error code */
1836         return -ENODEV;
1837 }
1838 EXPORT_SYMBOL(sock_no_mmap);
1839
1840 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1841 {
1842         ssize_t res;
1843         struct msghdr msg = {.msg_flags = flags};
1844         struct kvec iov;
1845         char *kaddr = kmap(page);
1846         iov.iov_base = kaddr + offset;
1847         iov.iov_len = size;
1848         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1849         kunmap(page);
1850         return res;
1851 }
1852 EXPORT_SYMBOL(sock_no_sendpage);
1853
1854 /*
1855  *      Default Socket Callbacks
1856  */
1857
1858 static void sock_def_wakeup(struct sock *sk)
1859 {
1860         struct socket_wq *wq;
1861
1862         rcu_read_lock();
1863         wq = rcu_dereference(sk->sk_wq);
1864         if (wq_has_sleeper(wq))
1865                 wake_up_interruptible_all(&wq->wait);
1866         rcu_read_unlock();
1867 }
1868
1869 static void sock_def_error_report(struct sock *sk)
1870 {
1871         struct socket_wq *wq;
1872
1873         rcu_read_lock();
1874         wq = rcu_dereference(sk->sk_wq);
1875         if (wq_has_sleeper(wq))
1876                 wake_up_interruptible_poll(&wq->wait, POLLERR);
1877         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1878         rcu_read_unlock();
1879 }
1880
1881 static void sock_def_readable(struct sock *sk, int len)
1882 {
1883         struct socket_wq *wq;
1884
1885         rcu_read_lock();
1886         wq = rcu_dereference(sk->sk_wq);
1887         if (wq_has_sleeper(wq))
1888                 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1889                                                 POLLRDNORM | POLLRDBAND);
1890         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1891         rcu_read_unlock();
1892 }
1893
1894 static void sock_def_write_space(struct sock *sk)
1895 {
1896         struct socket_wq *wq;
1897
1898         rcu_read_lock();
1899
1900         /* Do not wake up a writer until he can make "significant"
1901          * progress.  --DaveM
1902          */
1903         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1904                 wq = rcu_dereference(sk->sk_wq);
1905                 if (wq_has_sleeper(wq))
1906                         wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1907                                                 POLLWRNORM | POLLWRBAND);
1908
1909                 /* Should agree with poll, otherwise some programs break */
1910                 if (sock_writeable(sk))
1911                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1912         }
1913
1914         rcu_read_unlock();
1915 }
1916
1917 static void sock_def_destruct(struct sock *sk)
1918 {
1919         kfree(sk->sk_protinfo);
1920 }
1921
1922 void sk_send_sigurg(struct sock *sk)
1923 {
1924         if (sk->sk_socket && sk->sk_socket->file)
1925                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1926                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1927 }
1928 EXPORT_SYMBOL(sk_send_sigurg);
1929
1930 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1931                     unsigned long expires)
1932 {
1933         if (!mod_timer(timer, expires))
1934                 sock_hold(sk);
1935 }
1936 EXPORT_SYMBOL(sk_reset_timer);
1937
1938 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1939 {
1940         if (timer_pending(timer) && del_timer(timer))
1941                 __sock_put(sk);
1942 }
1943 EXPORT_SYMBOL(sk_stop_timer);
1944
1945 void sock_init_data(struct socket *sock, struct sock *sk)
1946 {
1947         skb_queue_head_init(&sk->sk_receive_queue);
1948         skb_queue_head_init(&sk->sk_write_queue);
1949         skb_queue_head_init(&sk->sk_error_queue);
1950 #ifdef CONFIG_NET_DMA
1951         skb_queue_head_init(&sk->sk_async_wait_queue);
1952 #endif
1953
1954         sk->sk_send_head        =       NULL;
1955
1956         init_timer(&sk->sk_timer);
1957
1958         sk->sk_allocation       =       GFP_KERNEL;
1959         sk->sk_rcvbuf           =       sysctl_rmem_default;
1960         sk->sk_sndbuf           =       sysctl_wmem_default;
1961         sk->sk_state            =       TCP_CLOSE;
1962         sk_set_socket(sk, sock);
1963
1964         sock_set_flag(sk, SOCK_ZAPPED);
1965
1966         if (sock) {
1967                 sk->sk_type     =       sock->type;
1968                 sk->sk_wq       =       sock->wq;
1969                 sock->sk        =       sk;
1970         } else
1971                 sk->sk_wq       =       NULL;
1972
1973         spin_lock_init(&sk->sk_dst_lock);
1974         rwlock_init(&sk->sk_callback_lock);
1975         lockdep_set_class_and_name(&sk->sk_callback_lock,
1976                         af_callback_keys + sk->sk_family,
1977                         af_family_clock_key_strings[sk->sk_family]);
1978
1979         sk->sk_state_change     =       sock_def_wakeup;
1980         sk->sk_data_ready       =       sock_def_readable;
1981         sk->sk_write_space      =       sock_def_write_space;
1982         sk->sk_error_report     =       sock_def_error_report;
1983         sk->sk_destruct         =       sock_def_destruct;
1984
1985         sk->sk_sndmsg_page      =       NULL;
1986         sk->sk_sndmsg_off       =       0;
1987
1988         sk->sk_peer_pid         =       NULL;
1989         sk->sk_peer_cred        =       NULL;
1990         sk->sk_write_pending    =       0;
1991         sk->sk_rcvlowat         =       1;
1992         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1993         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1994
1995         sk->sk_stamp = ktime_set(-1L, 0);
1996
1997         /*
1998          * Before updating sk_refcnt, we must commit prior changes to memory
1999          * (Documentation/RCU/rculist_nulls.txt for details)
2000          */
2001         smp_wmb();
2002         atomic_set(&sk->sk_refcnt, 1);
2003         atomic_set(&sk->sk_drops, 0);
2004 }
2005 EXPORT_SYMBOL(sock_init_data);
2006
2007 void lock_sock_nested(struct sock *sk, int subclass)
2008 {
2009         might_sleep();
2010         spin_lock_bh(&sk->sk_lock.slock);
2011         if (sk->sk_lock.owned)
2012                 __lock_sock(sk);
2013         sk->sk_lock.owned = 1;
2014         spin_unlock(&sk->sk_lock.slock);
2015         /*
2016          * The sk_lock has mutex_lock() semantics here:
2017          */
2018         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2019         local_bh_enable();
2020 }
2021 EXPORT_SYMBOL(lock_sock_nested);
2022
2023 void release_sock(struct sock *sk)
2024 {
2025         /*
2026          * The sk_lock has mutex_unlock() semantics:
2027          */
2028         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2029
2030         spin_lock_bh(&sk->sk_lock.slock);
2031         if (sk->sk_backlog.tail)
2032                 __release_sock(sk);
2033         sk->sk_lock.owned = 0;
2034         if (waitqueue_active(&sk->sk_lock.wq))
2035                 wake_up(&sk->sk_lock.wq);
2036         spin_unlock_bh(&sk->sk_lock.slock);
2037 }
2038 EXPORT_SYMBOL(release_sock);
2039
2040 /**
2041  * lock_sock_fast - fast version of lock_sock
2042  * @sk: socket
2043  *
2044  * This version should be used for very small section, where process wont block
2045  * return false if fast path is taken
2046  *   sk_lock.slock locked, owned = 0, BH disabled
2047  * return true if slow path is taken
2048  *   sk_lock.slock unlocked, owned = 1, BH enabled
2049  */
2050 bool lock_sock_fast(struct sock *sk)
2051 {
2052         might_sleep();
2053         spin_lock_bh(&sk->sk_lock.slock);
2054
2055         if (!sk->sk_lock.owned)
2056                 /*
2057                  * Note : We must disable BH
2058                  */
2059                 return false;
2060
2061         __lock_sock(sk);
2062         sk->sk_lock.owned = 1;
2063         spin_unlock(&sk->sk_lock.slock);
2064         /*
2065          * The sk_lock has mutex_lock() semantics here:
2066          */
2067         mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2068         local_bh_enable();
2069         return true;
2070 }
2071 EXPORT_SYMBOL(lock_sock_fast);
2072
2073 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2074 {
2075         struct timeval tv;
2076         if (!sock_flag(sk, SOCK_TIMESTAMP))
2077                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2078         tv = ktime_to_timeval(sk->sk_stamp);
2079         if (tv.tv_sec == -1)
2080                 return -ENOENT;
2081         if (tv.tv_sec == 0) {
2082                 sk->sk_stamp = ktime_get_real();
2083                 tv = ktime_to_timeval(sk->sk_stamp);
2084         }
2085         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2086 }
2087 EXPORT_SYMBOL(sock_get_timestamp);
2088
2089 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2090 {
2091         struct timespec ts;
2092         if (!sock_flag(sk, SOCK_TIMESTAMP))
2093                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2094         ts = ktime_to_timespec(sk->sk_stamp);
2095         if (ts.tv_sec == -1)
2096                 return -ENOENT;
2097         if (ts.tv_sec == 0) {
2098                 sk->sk_stamp = ktime_get_real();
2099                 ts = ktime_to_timespec(sk->sk_stamp);
2100         }
2101         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2102 }
2103 EXPORT_SYMBOL(sock_get_timestampns);
2104
2105 void sock_enable_timestamp(struct sock *sk, int flag)
2106 {
2107         if (!sock_flag(sk, flag)) {
2108                 sock_set_flag(sk, flag);
2109                 /*
2110                  * we just set one of the two flags which require net
2111                  * time stamping, but time stamping might have been on
2112                  * already because of the other one
2113                  */
2114                 if (!sock_flag(sk,
2115                                 flag == SOCK_TIMESTAMP ?
2116                                 SOCK_TIMESTAMPING_RX_SOFTWARE :
2117                                 SOCK_TIMESTAMP))
2118                         net_enable_timestamp();
2119         }
2120 }
2121
2122 /*
2123  *      Get a socket option on an socket.
2124  *
2125  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
2126  *      asynchronous errors should be reported by getsockopt. We assume
2127  *      this means if you specify SO_ERROR (otherwise whats the point of it).
2128  */
2129 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2130                            char __user *optval, int __user *optlen)
2131 {
2132         struct sock *sk = sock->sk;
2133
2134         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2135 }
2136 EXPORT_SYMBOL(sock_common_getsockopt);
2137
2138 #ifdef CONFIG_COMPAT
2139 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2140                                   char __user *optval, int __user *optlen)
2141 {
2142         struct sock *sk = sock->sk;
2143
2144         if (sk->sk_prot->compat_getsockopt != NULL)
2145                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2146                                                       optval, optlen);
2147         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2148 }
2149 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2150 #endif
2151
2152 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2153                         struct msghdr *msg, size_t size, int flags)
2154 {
2155         struct sock *sk = sock->sk;
2156         int addr_len = 0;
2157         int err;
2158
2159         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2160                                    flags & ~MSG_DONTWAIT, &addr_len);
2161         if (err >= 0)
2162                 msg->msg_namelen = addr_len;
2163         return err;
2164 }
2165 EXPORT_SYMBOL(sock_common_recvmsg);
2166
2167 /*
2168  *      Set socket options on an inet socket.
2169  */
2170 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2171                            char __user *optval, unsigned int optlen)
2172 {
2173         struct sock *sk = sock->sk;
2174
2175         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2176 }
2177 EXPORT_SYMBOL(sock_common_setsockopt);
2178
2179 #ifdef CONFIG_COMPAT
2180 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2181                                   char __user *optval, unsigned int optlen)
2182 {
2183         struct sock *sk = sock->sk;
2184
2185         if (sk->sk_prot->compat_setsockopt != NULL)
2186                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2187                                                       optval, optlen);
2188         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2189 }
2190 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2191 #endif
2192
2193 void sk_common_release(struct sock *sk)
2194 {
2195         if (sk->sk_prot->destroy)
2196                 sk->sk_prot->destroy(sk);
2197
2198         /*
2199          * Observation: when sock_common_release is called, processes have
2200          * no access to socket. But net still has.
2201          * Step one, detach it from networking:
2202          *
2203          * A. Remove from hash tables.
2204          */
2205
2206         sk->sk_prot->unhash(sk);
2207
2208         /*
2209          * In this point socket cannot receive new packets, but it is possible
2210          * that some packets are in flight because some CPU runs receiver and
2211          * did hash table lookup before we unhashed socket. They will achieve
2212          * receive queue and will be purged by socket destructor.
2213          *
2214          * Also we still have packets pending on receive queue and probably,
2215          * our own packets waiting in device queues. sock_destroy will drain
2216          * receive queue, but transmitted packets will delay socket destruction
2217          * until the last reference will be released.
2218          */
2219
2220         sock_orphan(sk);
2221
2222         xfrm_sk_free_policy(sk);
2223
2224         sk_refcnt_debug_release(sk);
2225         sock_put(sk);
2226 }
2227 EXPORT_SYMBOL(sk_common_release);
2228
2229 static DEFINE_RWLOCK(proto_list_lock);
2230 static LIST_HEAD(proto_list);
2231
2232 #ifdef CONFIG_PROC_FS
2233 #define PROTO_INUSE_NR  64      /* should be enough for the first time */
2234 struct prot_inuse {
2235         int val[PROTO_INUSE_NR];
2236 };
2237
2238 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2239
2240 #ifdef CONFIG_NET_NS
2241 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2242 {
2243         __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2244 }
2245 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2246
2247 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2248 {
2249         int cpu, idx = prot->inuse_idx;
2250         int res = 0;
2251
2252         for_each_possible_cpu(cpu)
2253                 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2254
2255         return res >= 0 ? res : 0;
2256 }
2257 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2258
2259 static int __net_init sock_inuse_init_net(struct net *net)
2260 {
2261         net->core.inuse = alloc_percpu(struct prot_inuse);
2262         return net->core.inuse ? 0 : -ENOMEM;
2263 }
2264
2265 static void __net_exit sock_inuse_exit_net(struct net *net)
2266 {
2267         free_percpu(net->core.inuse);
2268 }
2269
2270 static struct pernet_operations net_inuse_ops = {
2271         .init = sock_inuse_init_net,
2272         .exit = sock_inuse_exit_net,
2273 };
2274
2275 static __init int net_inuse_init(void)
2276 {
2277         if (register_pernet_subsys(&net_inuse_ops))
2278                 panic("Cannot initialize net inuse counters");
2279
2280         return 0;
2281 }
2282
2283 core_initcall(net_inuse_init);
2284 #else
2285 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2286
2287 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2288 {
2289         __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2290 }
2291 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2292
2293 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2294 {
2295         int cpu, idx = prot->inuse_idx;
2296         int res = 0;
2297
2298         for_each_possible_cpu(cpu)
2299                 res += per_cpu(prot_inuse, cpu).val[idx];
2300
2301         return res >= 0 ? res : 0;
2302 }
2303 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2304 #endif
2305
2306 static void assign_proto_idx(struct proto *prot)
2307 {
2308         prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2309
2310         if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2311                 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2312                 return;
2313         }
2314
2315         set_bit(prot->inuse_idx, proto_inuse_idx);
2316 }
2317
2318 static void release_proto_idx(struct proto *prot)
2319 {
2320         if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2321                 clear_bit(prot->inuse_idx, proto_inuse_idx);
2322 }
2323 #else
2324 static inline void assign_proto_idx(struct proto *prot)
2325 {
2326 }
2327
2328 static inline void release_proto_idx(struct proto *prot)
2329 {
2330 }
2331 #endif
2332
2333 int proto_register(struct proto *prot, int alloc_slab)
2334 {
2335         if (alloc_slab) {
2336                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2337                                         SLAB_HWCACHE_ALIGN | prot->slab_flags,
2338                                         NULL);
2339
2340                 if (prot->slab == NULL) {
2341                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2342                                prot->name);
2343                         goto out;
2344                 }
2345
2346                 if (prot->rsk_prot != NULL) {
2347                         prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2348                         if (prot->rsk_prot->slab_name == NULL)
2349                                 goto out_free_sock_slab;
2350
2351                         prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2352                                                                  prot->rsk_prot->obj_size, 0,
2353                                                                  SLAB_HWCACHE_ALIGN, NULL);
2354
2355                         if (prot->rsk_prot->slab == NULL) {
2356                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2357                                        prot->name);
2358                                 goto out_free_request_sock_slab_name;
2359                         }
2360                 }
2361
2362                 if (prot->twsk_prot != NULL) {
2363                         prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2364
2365                         if (prot->twsk_prot->twsk_slab_name == NULL)
2366                                 goto out_free_request_sock_slab;
2367
2368                         prot->twsk_prot->twsk_slab =
2369                                 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2370                                                   prot->twsk_prot->twsk_obj_size,
2371                                                   0,
2372                                                   SLAB_HWCACHE_ALIGN |
2373                                                         prot->slab_flags,
2374                                                   NULL);
2375                         if (prot->twsk_prot->twsk_slab == NULL)
2376                                 goto out_free_timewait_sock_slab_name;
2377                 }
2378         }
2379
2380         write_lock(&proto_list_lock);
2381         list_add(&prot->node, &proto_list);
2382         assign_proto_idx(prot);
2383         write_unlock(&proto_list_lock);
2384         return 0;
2385
2386 out_free_timewait_sock_slab_name:
2387         kfree(prot->twsk_prot->twsk_slab_name);
2388 out_free_request_sock_slab:
2389         if (prot->rsk_prot && prot->rsk_prot->slab) {
2390                 kmem_cache_destroy(prot->rsk_prot->slab);
2391                 prot->rsk_prot->slab = NULL;
2392         }
2393 out_free_request_sock_slab_name:
2394         if (prot->rsk_prot)
2395                 kfree(prot->rsk_prot->slab_name);
2396 out_free_sock_slab:
2397         kmem_cache_destroy(prot->slab);
2398         prot->slab = NULL;
2399 out:
2400         return -ENOBUFS;
2401 }
2402 EXPORT_SYMBOL(proto_register);
2403
2404 void proto_unregister(struct proto *prot)
2405 {
2406         write_lock(&proto_list_lock);
2407         release_proto_idx(prot);
2408         list_del(&prot->node);
2409         write_unlock(&proto_list_lock);
2410
2411         if (prot->slab != NULL) {
2412                 kmem_cache_destroy(prot->slab);
2413                 prot->slab = NULL;
2414         }
2415
2416         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2417                 kmem_cache_destroy(prot->rsk_prot->slab);
2418                 kfree(prot->rsk_prot->slab_name);
2419                 prot->rsk_prot->slab = NULL;
2420         }
2421
2422         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2423                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2424                 kfree(prot->twsk_prot->twsk_slab_name);
2425                 prot->twsk_prot->twsk_slab = NULL;
2426         }
2427 }
2428 EXPORT_SYMBOL(proto_unregister);
2429
2430 #ifdef CONFIG_PROC_FS
2431 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2432         __acquires(proto_list_lock)
2433 {
2434         read_lock(&proto_list_lock);
2435         return seq_list_start_head(&proto_list, *pos);
2436 }
2437
2438 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2439 {
2440         return seq_list_next(v, &proto_list, pos);
2441 }
2442
2443 static void proto_seq_stop(struct seq_file *seq, void *v)
2444         __releases(proto_list_lock)
2445 {
2446         read_unlock(&proto_list_lock);
2447 }
2448
2449 static char proto_method_implemented(const void *method)
2450 {
2451         return method == NULL ? 'n' : 'y';
2452 }
2453
2454 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2455 {
2456         seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2457                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2458                    proto->name,
2459                    proto->obj_size,
2460                    sock_prot_inuse_get(seq_file_net(seq), proto),
2461                    proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2462                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2463                    proto->max_header,
2464                    proto->slab == NULL ? "no" : "yes",
2465                    module_name(proto->owner),
2466                    proto_method_implemented(proto->close),
2467                    proto_method_implemented(proto->connect),
2468                    proto_method_implemented(proto->disconnect),
2469                    proto_method_implemented(proto->accept),
2470                    proto_method_implemented(proto->ioctl),
2471                    proto_method_implemented(proto->init),
2472                    proto_method_implemented(proto->destroy),
2473                    proto_method_implemented(proto->shutdown),
2474                    proto_method_implemented(proto->setsockopt),
2475                    proto_method_implemented(proto->getsockopt),
2476                    proto_method_implemented(proto->sendmsg),
2477                    proto_method_implemented(proto->recvmsg),
2478                    proto_method_implemented(proto->sendpage),
2479                    proto_method_implemented(proto->bind),
2480                    proto_method_implemented(proto->backlog_rcv),
2481                    proto_method_implemented(proto->hash),
2482                    proto_method_implemented(proto->unhash),
2483                    proto_method_implemented(proto->get_port),
2484                    proto_method_implemented(proto->enter_memory_pressure));
2485 }
2486
2487 static int proto_seq_show(struct seq_file *seq, void *v)
2488 {
2489         if (v == &proto_list)
2490                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2491                            "protocol",
2492                            "size",
2493                            "sockets",
2494                            "memory",
2495                            "press",
2496                            "maxhdr",
2497                            "slab",
2498                            "module",
2499                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2500         else
2501                 proto_seq_printf(seq, list_entry(v, struct proto, node));
2502         return 0;
2503 }
2504
2505 static const struct seq_operations proto_seq_ops = {
2506         .start  = proto_seq_start,
2507         .next   = proto_seq_next,
2508         .stop   = proto_seq_stop,
2509         .show   = proto_seq_show,
2510 };
2511
2512 static int proto_seq_open(struct inode *inode, struct file *file)
2513 {
2514         return seq_open_net(inode, file, &proto_seq_ops,
2515                             sizeof(struct seq_net_private));
2516 }
2517
2518 static const struct file_operations proto_seq_fops = {
2519         .owner          = THIS_MODULE,
2520         .open           = proto_seq_open,
2521         .read           = seq_read,
2522         .llseek         = seq_lseek,
2523         .release        = seq_release_net,
2524 };
2525
2526 static __net_init int proto_init_net(struct net *net)
2527 {
2528         if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2529                 return -ENOMEM;
2530
2531         return 0;
2532 }
2533
2534 static __net_exit void proto_exit_net(struct net *net)
2535 {
2536         proc_net_remove(net, "protocols");
2537 }
2538
2539
2540 static __net_initdata struct pernet_operations proto_net_ops = {
2541         .init = proto_init_net,
2542         .exit = proto_exit_net,
2543 };
2544
2545 static int __init proto_init(void)
2546 {
2547         return register_pernet_subsys(&proto_net_ops);
2548 }
2549
2550 subsys_initcall(proto_init);
2551
2552 #endif /* PROC_FS */