]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/decnet/dn_neigh.c
f123c6c6748c10b98e7e7500c108936dc634a128
[karo-tx-linux.git] / net / decnet / dn_neigh.c
1 /*
2  * DECnet       An implementation of the DECnet protocol suite for the LINUX
3  *              operating system.  DECnet is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              DECnet Neighbour Functions (Adjacency Database and
7  *                                                        On-Ethernet Cache)
8  *
9  * Author:      Steve Whitehouse <SteveW@ACM.org>
10  *
11  *
12  * Changes:
13  *     Steve Whitehouse     : Fixed router listing routine
14  *     Steve Whitehouse     : Added error_report functions
15  *     Steve Whitehouse     : Added default router detection
16  *     Steve Whitehouse     : Hop counts in outgoing messages
17  *     Steve Whitehouse     : Fixed src/dst in outgoing messages so
18  *                            forwarding now stands a good chance of
19  *                            working.
20  *     Steve Whitehouse     : Fixed neighbour states (for now anyway).
21  *     Steve Whitehouse     : Made error_report functions dummies. This
22  *                            is not the right place to return skbs.
23  *     Steve Whitehouse     : Convert to seq_file
24  *
25  */
26
27 #include <linux/net.h>
28 #include <linux/module.h>
29 #include <linux/socket.h>
30 #include <linux/if_arp.h>
31 #include <linux/slab.h>
32 #include <linux/if_ether.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/string.h>
36 #include <linux/netfilter_decnet.h>
37 #include <linux/spinlock.h>
38 #include <linux/seq_file.h>
39 #include <linux/rcupdate.h>
40 #include <linux/jhash.h>
41 #include <linux/atomic.h>
42 #include <net/net_namespace.h>
43 #include <net/neighbour.h>
44 #include <net/dst.h>
45 #include <net/flow.h>
46 #include <net/dn.h>
47 #include <net/dn_dev.h>
48 #include <net/dn_neigh.h>
49 #include <net/dn_route.h>
50
51 static int dn_neigh_construct(struct neighbour *);
52 static void dn_long_error_report(struct neighbour *, struct sk_buff *);
53 static void dn_short_error_report(struct neighbour *, struct sk_buff *);
54 static int dn_long_output(struct neighbour *, struct sk_buff *);
55 static int dn_short_output(struct neighbour *, struct sk_buff *);
56 static int dn_phase3_output(struct neighbour *, struct sk_buff *);
57
58
59 /*
60  * For talking to broadcast devices: Ethernet & PPP
61  */
62 static const struct neigh_ops dn_long_ops = {
63         .family =               AF_DECnet,
64         .error_report =         dn_long_error_report,
65         .output =               dn_long_output,
66         .connected_output =     dn_long_output,
67 };
68
69 /*
70  * For talking to pointopoint and multidrop devices: DDCMP and X.25
71  */
72 static const struct neigh_ops dn_short_ops = {
73         .family =               AF_DECnet,
74         .error_report =         dn_short_error_report,
75         .output =               dn_short_output,
76         .connected_output =     dn_short_output,
77 };
78
79 /*
80  * For talking to DECnet phase III nodes
81  */
82 static const struct neigh_ops dn_phase3_ops = {
83         .family =               AF_DECnet,
84         .error_report =         dn_short_error_report, /* Can use short version here */
85         .output =               dn_phase3_output,
86         .connected_output =     dn_phase3_output,
87 };
88
89 static u32 dn_neigh_hash(const void *pkey,
90                          const struct net_device *dev,
91                          __u32 *hash_rnd)
92 {
93         return jhash_2words(*(__u16 *)pkey, 0, hash_rnd[0]);
94 }
95
96 struct neigh_table dn_neigh_table = {
97         .family =                       PF_DECnet,
98         .entry_size =                   NEIGH_ENTRY_SIZE(sizeof(struct dn_neigh)),
99         .key_len =                      sizeof(__le16),
100         .protocol =                     cpu_to_be16(ETH_P_DNA_RT),
101         .hash =                         dn_neigh_hash,
102         .constructor =                  dn_neigh_construct,
103         .id =                           "dn_neigh_cache",
104         .parms ={
105                 .tbl =                  &dn_neigh_table,
106                 .reachable_time =       30 * HZ,
107                 .data = {
108                         [NEIGH_VAR_MCAST_PROBES] = 0,
109                         [NEIGH_VAR_UCAST_PROBES] = 0,
110                         [NEIGH_VAR_APP_PROBES] = 0,
111                         [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
112                         [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
113                         [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
114                         [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
115                         [NEIGH_VAR_QUEUE_LEN_BYTES] = 64*1024,
116                         [NEIGH_VAR_PROXY_QLEN] = 0,
117                         [NEIGH_VAR_ANYCAST_DELAY] = 0,
118                         [NEIGH_VAR_PROXY_DELAY] = 0,
119                         [NEIGH_VAR_LOCKTIME] = 1 * HZ,
120                 },
121         },
122         .gc_interval =                  30 * HZ,
123         .gc_thresh1 =                   128,
124         .gc_thresh2 =                   512,
125         .gc_thresh3 =                   1024,
126 };
127
128 static int dn_neigh_construct(struct neighbour *neigh)
129 {
130         struct net_device *dev = neigh->dev;
131         struct dn_neigh *dn = (struct dn_neigh *)neigh;
132         struct dn_dev *dn_db;
133         struct neigh_parms *parms;
134
135         rcu_read_lock();
136         dn_db = rcu_dereference(dev->dn_ptr);
137         if (dn_db == NULL) {
138                 rcu_read_unlock();
139                 return -EINVAL;
140         }
141
142         parms = dn_db->neigh_parms;
143         if (!parms) {
144                 rcu_read_unlock();
145                 return -EINVAL;
146         }
147
148         __neigh_parms_put(neigh->parms);
149         neigh->parms = neigh_parms_clone(parms);
150
151         if (dn_db->use_long)
152                 neigh->ops = &dn_long_ops;
153         else
154                 neigh->ops = &dn_short_ops;
155         rcu_read_unlock();
156
157         if (dn->flags & DN_NDFLAG_P3)
158                 neigh->ops = &dn_phase3_ops;
159
160         neigh->nud_state = NUD_NOARP;
161         neigh->output = neigh->ops->connected_output;
162
163         if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
164                 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
165         else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
166                 dn_dn2eth(neigh->ha, dn->addr);
167         else {
168                 net_dbg_ratelimited("Trying to create neigh for hw %d\n",
169                                     dev->type);
170                 return -EINVAL;
171         }
172
173         /*
174          * Make an estimate of the remote block size by assuming that its
175          * two less then the device mtu, which it true for ethernet (and
176          * other things which support long format headers) since there is
177          * an extra length field (of 16 bits) which isn't part of the
178          * ethernet headers and which the DECnet specs won't admit is part
179          * of the DECnet routing headers either.
180          *
181          * If we over estimate here its no big deal, the NSP negotiations
182          * will prevent us from sending packets which are too large for the
183          * remote node to handle. In any case this figure is normally updated
184          * by a hello message in most cases.
185          */
186         dn->blksize = dev->mtu - 2;
187
188         return 0;
189 }
190
191 static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
192 {
193         printk(KERN_DEBUG "dn_long_error_report: called\n");
194         kfree_skb(skb);
195 }
196
197
198 static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
199 {
200         printk(KERN_DEBUG "dn_short_error_report: called\n");
201         kfree_skb(skb);
202 }
203
204 static int dn_neigh_output_packet(struct sk_buff *skb)
205 {
206         struct dst_entry *dst = skb_dst(skb);
207         struct dn_route *rt = (struct dn_route *)dst;
208         struct neighbour *neigh = rt->n;
209         struct net_device *dev = neigh->dev;
210         char mac_addr[ETH_ALEN];
211         unsigned int seq;
212         int err;
213
214         dn_dn2eth(mac_addr, rt->rt_local_src);
215         do {
216                 seq = read_seqbegin(&neigh->ha_lock);
217                 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
218                                       neigh->ha, mac_addr, skb->len);
219         } while (read_seqretry(&neigh->ha_lock, seq));
220
221         if (err >= 0)
222                 err = dev_queue_xmit(skb);
223         else {
224                 kfree_skb(skb);
225                 err = -EINVAL;
226         }
227         return err;
228 }
229
230 static int dn_long_output(struct neighbour *neigh, struct sk_buff *skb)
231 {
232         struct net_device *dev = neigh->dev;
233         int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
234         unsigned char *data;
235         struct dn_long_packet *lp;
236         struct dn_skb_cb *cb = DN_SKB_CB(skb);
237
238
239         if (skb_headroom(skb) < headroom) {
240                 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
241                 if (skb2 == NULL) {
242                         net_crit_ratelimited("dn_long_output: no memory\n");
243                         kfree_skb(skb);
244                         return -ENOBUFS;
245                 }
246                 consume_skb(skb);
247                 skb = skb2;
248                 net_info_ratelimited("dn_long_output: Increasing headroom\n");
249         }
250
251         data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
252         lp = (struct dn_long_packet *)(data+3);
253
254         *((__le16 *)data) = cpu_to_le16(skb->len - 2);
255         *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
256
257         lp->msgflg   = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
258         lp->d_area   = lp->d_subarea = 0;
259         dn_dn2eth(lp->d_id, cb->dst);
260         lp->s_area   = lp->s_subarea = 0;
261         dn_dn2eth(lp->s_id, cb->src);
262         lp->nl2      = 0;
263         lp->visit_ct = cb->hops & 0x3f;
264         lp->s_class  = 0;
265         lp->pt       = 0;
266
267         skb_reset_network_header(skb);
268
269         return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
270                        neigh->dev, dn_neigh_output_packet);
271 }
272
273 static int dn_short_output(struct neighbour *neigh, struct sk_buff *skb)
274 {
275         struct net_device *dev = neigh->dev;
276         int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
277         struct dn_short_packet *sp;
278         unsigned char *data;
279         struct dn_skb_cb *cb = DN_SKB_CB(skb);
280
281
282         if (skb_headroom(skb) < headroom) {
283                 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
284                 if (skb2 == NULL) {
285                         net_crit_ratelimited("dn_short_output: no memory\n");
286                         kfree_skb(skb);
287                         return -ENOBUFS;
288                 }
289                 consume_skb(skb);
290                 skb = skb2;
291                 net_info_ratelimited("dn_short_output: Increasing headroom\n");
292         }
293
294         data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
295         *((__le16 *)data) = cpu_to_le16(skb->len - 2);
296         sp = (struct dn_short_packet *)(data+2);
297
298         sp->msgflg     = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
299         sp->dstnode    = cb->dst;
300         sp->srcnode    = cb->src;
301         sp->forward    = cb->hops & 0x3f;
302
303         skb_reset_network_header(skb);
304
305         return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
306                        neigh->dev, dn_neigh_output_packet);
307 }
308
309 /*
310  * Phase 3 output is the same is short output, execpt that
311  * it clears the area bits before transmission.
312  */
313 static int dn_phase3_output(struct neighbour *neigh, struct sk_buff *skb)
314 {
315         struct net_device *dev = neigh->dev;
316         int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
317         struct dn_short_packet *sp;
318         unsigned char *data;
319         struct dn_skb_cb *cb = DN_SKB_CB(skb);
320
321         if (skb_headroom(skb) < headroom) {
322                 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
323                 if (skb2 == NULL) {
324                         net_crit_ratelimited("dn_phase3_output: no memory\n");
325                         kfree_skb(skb);
326                         return -ENOBUFS;
327                 }
328                 consume_skb(skb);
329                 skb = skb2;
330                 net_info_ratelimited("dn_phase3_output: Increasing headroom\n");
331         }
332
333         data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
334         *((__le16 *)data) = cpu_to_le16(skb->len - 2);
335         sp = (struct dn_short_packet *)(data + 2);
336
337         sp->msgflg   = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
338         sp->dstnode  = cb->dst & cpu_to_le16(0x03ff);
339         sp->srcnode  = cb->src & cpu_to_le16(0x03ff);
340         sp->forward  = cb->hops & 0x3f;
341
342         skb_reset_network_header(skb);
343
344         return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
345                        neigh->dev, dn_neigh_output_packet);
346 }
347
348 /*
349  * Unfortunately, the neighbour code uses the device in its hash
350  * function, so we don't get any advantage from it. This function
351  * basically does a neigh_lookup(), but without comparing the device
352  * field. This is required for the On-Ethernet cache
353  */
354
355 /*
356  * Pointopoint link receives a hello message
357  */
358 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
359 {
360         kfree_skb(skb);
361 }
362
363 /*
364  * Ethernet router hello message received
365  */
366 int dn_neigh_router_hello(struct sk_buff *skb)
367 {
368         struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
369
370         struct neighbour *neigh;
371         struct dn_neigh *dn;
372         struct dn_dev *dn_db;
373         __le16 src;
374
375         src = dn_eth2dn(msg->id);
376
377         neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
378
379         dn = (struct dn_neigh *)neigh;
380
381         if (neigh) {
382                 write_lock(&neigh->lock);
383
384                 neigh->used = jiffies;
385                 dn_db = rcu_dereference(neigh->dev->dn_ptr);
386
387                 if (!(neigh->nud_state & NUD_PERMANENT)) {
388                         neigh->updated = jiffies;
389
390                         if (neigh->dev->type == ARPHRD_ETHER)
391                                 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
392
393                         dn->blksize  = le16_to_cpu(msg->blksize);
394                         dn->priority = msg->priority;
395
396                         dn->flags &= ~DN_NDFLAG_P3;
397
398                         switch (msg->iinfo & DN_RT_INFO_TYPE) {
399                         case DN_RT_INFO_L1RT:
400                                 dn->flags &=~DN_NDFLAG_R2;
401                                 dn->flags |= DN_NDFLAG_R1;
402                                 break;
403                         case DN_RT_INFO_L2RT:
404                                 dn->flags |= DN_NDFLAG_R2;
405                         }
406                 }
407
408                 /* Only use routers in our area */
409                 if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
410                         if (!dn_db->router) {
411                                 dn_db->router = neigh_clone(neigh);
412                         } else {
413                                 if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
414                                         neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
415                         }
416                 }
417                 write_unlock(&neigh->lock);
418                 neigh_release(neigh);
419         }
420
421         kfree_skb(skb);
422         return 0;
423 }
424
425 /*
426  * Endnode hello message received
427  */
428 int dn_neigh_endnode_hello(struct sk_buff *skb)
429 {
430         struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
431         struct neighbour *neigh;
432         struct dn_neigh *dn;
433         __le16 src;
434
435         src = dn_eth2dn(msg->id);
436
437         neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
438
439         dn = (struct dn_neigh *)neigh;
440
441         if (neigh) {
442                 write_lock(&neigh->lock);
443
444                 neigh->used = jiffies;
445
446                 if (!(neigh->nud_state & NUD_PERMANENT)) {
447                         neigh->updated = jiffies;
448
449                         if (neigh->dev->type == ARPHRD_ETHER)
450                                 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
451                         dn->flags   &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
452                         dn->blksize  = le16_to_cpu(msg->blksize);
453                         dn->priority = 0;
454                 }
455
456                 write_unlock(&neigh->lock);
457                 neigh_release(neigh);
458         }
459
460         kfree_skb(skb);
461         return 0;
462 }
463
464 static char *dn_find_slot(char *base, int max, int priority)
465 {
466         int i;
467         unsigned char *min = NULL;
468
469         base += 6; /* skip first id */
470
471         for(i = 0; i < max; i++) {
472                 if (!min || (*base < *min))
473                         min = base;
474                 base += 7; /* find next priority */
475         }
476
477         if (!min)
478                 return NULL;
479
480         return (*min < priority) ? (min - 6) : NULL;
481 }
482
483 struct elist_cb_state {
484         struct net_device *dev;
485         unsigned char *ptr;
486         unsigned char *rs;
487         int t, n;
488 };
489
490 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
491 {
492         struct elist_cb_state *s = _info;
493         struct dn_neigh *dn;
494
495         if (neigh->dev != s->dev)
496                 return;
497
498         dn = (struct dn_neigh *) neigh;
499         if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
500                 return;
501
502         if (s->t == s->n)
503                 s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
504         else
505                 s->t++;
506         if (s->rs == NULL)
507                 return;
508
509         dn_dn2eth(s->rs, dn->addr);
510         s->rs += 6;
511         *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
512         *(s->rs) |= dn->priority;
513         s->rs++;
514 }
515
516 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
517 {
518         struct elist_cb_state state;
519
520         state.dev = dev;
521         state.t = 0;
522         state.n = n;
523         state.ptr = ptr;
524         state.rs = ptr;
525
526         neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
527
528         return state.t;
529 }
530
531
532 #ifdef CONFIG_PROC_FS
533
534 static inline void dn_neigh_format_entry(struct seq_file *seq,
535                                          struct neighbour *n)
536 {
537         struct dn_neigh *dn = (struct dn_neigh *) n;
538         char buf[DN_ASCBUF_LEN];
539
540         read_lock(&n->lock);
541         seq_printf(seq, "%-7s %s%s%s   %02x    %02d  %07ld %-8s\n",
542                    dn_addr2asc(le16_to_cpu(dn->addr), buf),
543                    (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
544                    (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
545                    (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
546                    dn->n.nud_state,
547                    atomic_read(&dn->n.refcnt),
548                    dn->blksize,
549                    (dn->n.dev) ? dn->n.dev->name : "?");
550         read_unlock(&n->lock);
551 }
552
553 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
554 {
555         if (v == SEQ_START_TOKEN) {
556                 seq_puts(seq, "Addr    Flags State Use Blksize Dev\n");
557         } else {
558                 dn_neigh_format_entry(seq, v);
559         }
560
561         return 0;
562 }
563
564 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
565 {
566         return neigh_seq_start(seq, pos, &dn_neigh_table,
567                                NEIGH_SEQ_NEIGH_ONLY);
568 }
569
570 static const struct seq_operations dn_neigh_seq_ops = {
571         .start = dn_neigh_seq_start,
572         .next  = neigh_seq_next,
573         .stop  = neigh_seq_stop,
574         .show  = dn_neigh_seq_show,
575 };
576
577 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
578 {
579         return seq_open_net(inode, file, &dn_neigh_seq_ops,
580                             sizeof(struct neigh_seq_state));
581 }
582
583 static const struct file_operations dn_neigh_seq_fops = {
584         .owner          = THIS_MODULE,
585         .open           = dn_neigh_seq_open,
586         .read           = seq_read,
587         .llseek         = seq_lseek,
588         .release        = seq_release_net,
589 };
590
591 #endif
592
593 void __init dn_neigh_init(void)
594 {
595         neigh_table_init(NEIGH_DN_TABLE, &dn_neigh_table);
596         proc_create("decnet_neigh", S_IRUGO, init_net.proc_net,
597                     &dn_neigh_seq_fops);
598 }
599
600 void __exit dn_neigh_cleanup(void)
601 {
602         remove_proc_entry("decnet_neigh", init_net.proc_net);
603         neigh_table_clear(NEIGH_DN_TABLE, &dn_neigh_table);
604 }