2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119 /* Adapt the MSS value used to make delayed ack decision to the
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
124 struct inet_connection_sock *icsk = inet_csk(sk);
125 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 icsk->icsk_ack.last_seg_size = 0;
130 /* skb->len may jitter because of SACKs, even if peer
131 * sends good full-sized frames.
133 len = skb_shinfo(skb)->gso_size ? : skb->len;
134 if (len >= icsk->icsk_ack.rcv_mss) {
135 icsk->icsk_ack.rcv_mss = len;
137 /* Otherwise, we make more careful check taking into account,
138 * that SACKs block is variable.
140 * "len" is invariant segment length, including TCP header.
142 len += skb->data - skb_transport_header(skb);
143 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144 /* If PSH is not set, packet should be
145 * full sized, provided peer TCP is not badly broken.
146 * This observation (if it is correct 8)) allows
147 * to handle super-low mtu links fairly.
149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151 /* Subtract also invariant (if peer is RFC compliant),
152 * tcp header plus fixed timestamp option length.
153 * Resulting "len" is MSS free of SACK jitter.
155 len -= tcp_sk(sk)->tcp_header_len;
156 icsk->icsk_ack.last_seg_size = len;
158 icsk->icsk_ack.rcv_mss = len;
162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
168 static void tcp_incr_quickack(struct sock *sk)
170 struct inet_connection_sock *icsk = inet_csk(sk);
171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175 if (quickacks > icsk->icsk_ack.quick)
176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 void tcp_enter_quickack_mode(struct sock *sk)
181 struct inet_connection_sock *icsk = inet_csk(sk);
182 tcp_incr_quickack(sk);
183 icsk->icsk_ack.pingpong = 0;
184 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 /* Send ACKs quickly, if "quick" count is not exhausted
188 * and the session is not interactive.
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 const struct inet_connection_sock *icsk = inet_csk(sk);
194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
199 if (tp->ecn_flags & TCP_ECN_OK)
200 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
205 if (tcp_hdr(skb)->cwr)
206 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
216 if (tp->ecn_flags & TCP_ECN_OK) {
217 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 /* Funny extension: if ECT is not set on a segment,
220 * it is surely retransmit. It is not in ECN RFC,
221 * but Linux follows this rule. */
222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 tcp_enter_quickack_mode((struct sock *)tp);
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
229 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230 tp->ecn_flags &= ~TCP_ECN_OK;
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236 tp->ecn_flags &= ~TCP_ECN_OK;
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
241 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
246 /* Buffer size and advertised window tuning.
248 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 static void tcp_fixup_sndbuf(struct sock *sk)
253 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 sizeof(struct sk_buff);
256 if (sk->sk_sndbuf < 3 * sndmem)
257 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262 * All tcp_full_space() is split to two parts: "network" buffer, allocated
263 * forward and advertised in receiver window (tp->rcv_wnd) and
264 * "application buffer", required to isolate scheduling/application
265 * latencies from network.
266 * window_clamp is maximal advertised window. It can be less than
267 * tcp_full_space(), in this case tcp_full_space() - window_clamp
268 * is reserved for "application" buffer. The less window_clamp is
269 * the smoother our behaviour from viewpoint of network, but the lower
270 * throughput and the higher sensitivity of the connection to losses. 8)
272 * rcv_ssthresh is more strict window_clamp used at "slow start"
273 * phase to predict further behaviour of this connection.
274 * It is used for two goals:
275 * - to enforce header prediction at sender, even when application
276 * requires some significant "application buffer". It is check #1.
277 * - to prevent pruning of receive queue because of misprediction
278 * of receiver window. Check #2.
280 * The scheme does not work when sender sends good segments opening
281 * window and then starts to feed us spaghetti. But it should work
282 * in common situations. Otherwise, we have to rely on queue collapsing.
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
288 struct tcp_sock *tp = tcp_sk(sk);
290 int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
293 while (tp->rcv_ssthresh <= window) {
294 if (truesize <= skb->len)
295 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
305 struct tcp_sock *tp = tcp_sk(sk);
308 if (tp->rcv_ssthresh < tp->window_clamp &&
309 (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 !tcp_memory_pressure) {
313 /* Check #2. Increase window, if skb with such overhead
314 * will fit to rcvbuf in future.
316 if (tcp_win_from_space(skb->truesize) <= skb->len)
317 incr = 2 * tp->advmss;
319 incr = __tcp_grow_window(sk, skb);
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
324 inet_csk(sk)->icsk_ack.quick |= 1;
329 /* 3. Tuning rcvbuf, when connection enters established state. */
331 static void tcp_fixup_rcvbuf(struct sock *sk)
333 struct tcp_sock *tp = tcp_sk(sk);
334 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
336 /* Try to select rcvbuf so that 4 mss-sized segments
337 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 * (was 3; 4 is minimum to allow fast retransmit to work.)
340 while (tcp_win_from_space(rcvmem) < tp->advmss)
342 if (sk->sk_rcvbuf < 4 * rcvmem)
343 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 /* 4. Try to fixup all. It is made immediately after connection enters
349 static void tcp_init_buffer_space(struct sock *sk)
351 struct tcp_sock *tp = tcp_sk(sk);
354 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 tcp_fixup_rcvbuf(sk);
356 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 tcp_fixup_sndbuf(sk);
359 tp->rcvq_space.space = tp->rcv_wnd;
361 maxwin = tcp_full_space(sk);
363 if (tp->window_clamp >= maxwin) {
364 tp->window_clamp = maxwin;
366 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 tp->window_clamp = max(maxwin -
368 (maxwin >> sysctl_tcp_app_win),
372 /* Force reservation of one segment. */
373 if (sysctl_tcp_app_win &&
374 tp->window_clamp > 2 * tp->advmss &&
375 tp->window_clamp + tp->advmss > maxwin)
376 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
378 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 tp->snd_cwnd_stamp = tcp_time_stamp;
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
385 struct tcp_sock *tp = tcp_sk(sk);
386 struct inet_connection_sock *icsk = inet_csk(sk);
388 icsk->icsk_ack.quick = 0;
390 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 !tcp_memory_pressure &&
393 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 /* Initialize RCV_MSS value.
402 * RCV_MSS is an our guess about MSS used by the peer.
403 * We haven't any direct information about the MSS.
404 * It's better to underestimate the RCV_MSS rather than overestimate.
405 * Overestimations make us ACKing less frequently than needed.
406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
408 void tcp_initialize_rcv_mss(struct sock *sk)
410 struct tcp_sock *tp = tcp_sk(sk);
411 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
413 hint = min(hint, tp->rcv_wnd / 2);
414 hint = min(hint, TCP_MIN_RCVMSS);
415 hint = max(hint, TCP_MIN_MSS);
417 inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 /* Receiver "autotuning" code.
422 * The algorithm for RTT estimation w/o timestamps is based on
423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
426 * More detail on this code can be found at
427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428 * though this reference is out of date. A new paper
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
433 u32 new_sample = tp->rcv_rtt_est.rtt;
439 if (new_sample != 0) {
440 /* If we sample in larger samples in the non-timestamp
441 * case, we could grossly overestimate the RTT especially
442 * with chatty applications or bulk transfer apps which
443 * are stalled on filesystem I/O.
445 * Also, since we are only going for a minimum in the
446 * non-timestamp case, we do not smooth things out
447 * else with timestamps disabled convergence takes too
451 m -= (new_sample >> 3);
453 } else if (m < new_sample)
456 /* No previous measure. */
460 if (tp->rcv_rtt_est.rtt != new_sample)
461 tp->rcv_rtt_est.rtt = new_sample;
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
466 if (tp->rcv_rtt_est.time == 0)
468 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
470 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 tp->rcv_rtt_est.time = tcp_time_stamp;
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 const struct sk_buff *skb)
480 struct tcp_sock *tp = tcp_sk(sk);
481 if (tp->rx_opt.rcv_tsecr &&
482 (TCP_SKB_CB(skb)->end_seq -
483 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
488 * This function should be called every time data is copied to user space.
489 * It calculates the appropriate TCP receive buffer space.
491 void tcp_rcv_space_adjust(struct sock *sk)
493 struct tcp_sock *tp = tcp_sk(sk);
497 if (tp->rcvq_space.time == 0)
500 time = tcp_time_stamp - tp->rcvq_space.time;
501 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
506 space = max(tp->rcvq_space.space, space);
508 if (tp->rcvq_space.space != space) {
511 tp->rcvq_space.space = space;
513 if (sysctl_tcp_moderate_rcvbuf &&
514 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515 int new_clamp = space;
517 /* Receive space grows, normalize in order to
518 * take into account packet headers and sk_buff
519 * structure overhead.
524 rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 16 + sizeof(struct sk_buff));
526 while (tcp_win_from_space(rcvmem) < tp->advmss)
529 space = min(space, sysctl_tcp_rmem[2]);
530 if (space > sk->sk_rcvbuf) {
531 sk->sk_rcvbuf = space;
533 /* Make the window clamp follow along. */
534 tp->window_clamp = new_clamp;
540 tp->rcvq_space.seq = tp->copied_seq;
541 tp->rcvq_space.time = tcp_time_stamp;
544 /* There is something which you must keep in mind when you analyze the
545 * behavior of the tp->ato delayed ack timeout interval. When a
546 * connection starts up, we want to ack as quickly as possible. The
547 * problem is that "good" TCP's do slow start at the beginning of data
548 * transmission. The means that until we send the first few ACK's the
549 * sender will sit on his end and only queue most of his data, because
550 * he can only send snd_cwnd unacked packets at any given time. For
551 * each ACK we send, he increments snd_cwnd and transmits more of his
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
556 struct tcp_sock *tp = tcp_sk(sk);
557 struct inet_connection_sock *icsk = inet_csk(sk);
560 inet_csk_schedule_ack(sk);
562 tcp_measure_rcv_mss(sk, skb);
564 tcp_rcv_rtt_measure(tp);
566 now = tcp_time_stamp;
568 if (!icsk->icsk_ack.ato) {
569 /* The _first_ data packet received, initialize
570 * delayed ACK engine.
572 tcp_incr_quickack(sk);
573 icsk->icsk_ack.ato = TCP_ATO_MIN;
575 int m = now - icsk->icsk_ack.lrcvtime;
577 if (m <= TCP_ATO_MIN / 2) {
578 /* The fastest case is the first. */
579 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 } else if (m < icsk->icsk_ack.ato) {
581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 icsk->icsk_ack.ato = icsk->icsk_rto;
584 } else if (m > icsk->icsk_rto) {
585 /* Too long gap. Apparently sender failed to
586 * restart window, so that we send ACKs quickly.
588 tcp_incr_quickack(sk);
592 icsk->icsk_ack.lrcvtime = now;
594 TCP_ECN_check_ce(tp, skb);
597 tcp_grow_window(sk, skb);
600 static u32 tcp_rto_min(struct sock *sk)
602 struct dst_entry *dst = __sk_dst_get(sk);
603 u32 rto_min = TCP_RTO_MIN;
605 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
606 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
621 struct tcp_sock *tp = tcp_sk(sk);
622 long m = mrtt; /* RTT */
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
627 * This is designed to be as fast as possible
628 * m stands for "measurement".
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
635 * too slowly, when it should be increased quickly, decrease too quickly
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
643 m -= (tp->srtt >> 3); /* m is now error in rtt est */
644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
646 m = -m; /* m is now abs(error) */
647 m -= (tp->mdev >> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
659 m -= (tp->mdev >> 2); /* similar update on mdev */
661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp->mdev > tp->mdev_max) {
663 tp->mdev_max = tp->mdev;
664 if (tp->mdev_max > tp->rttvar)
665 tp->rttvar = tp->mdev_max;
667 if (after(tp->snd_una, tp->rtt_seq)) {
668 if (tp->mdev_max < tp->rttvar)
669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670 tp->rtt_seq = tp->snd_nxt;
671 tp->mdev_max = tcp_rto_min(sk);
674 /* no previous measure. */
675 tp->srtt = m << 3; /* take the measured time to be rtt */
676 tp->mdev = m << 1; /* make sure rto = 3*rtt */
677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678 tp->rtt_seq = tp->snd_nxt;
682 /* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
685 static inline void tcp_set_rto(struct sock *sk)
687 const struct tcp_sock *tp = tcp_sk(sk);
688 /* Old crap is replaced with new one. 8)
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
696 * ACKs in some circumstances.
698 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
703 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
709 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
710 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 /* Save metrics learned by this TCP session.
714 This function is called only, when TCP finishes successfully
715 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
717 void tcp_update_metrics(struct sock *sk)
719 struct tcp_sock *tp = tcp_sk(sk);
720 struct dst_entry *dst = __sk_dst_get(sk);
722 if (sysctl_tcp_nometrics_save)
727 if (dst && (dst->flags & DST_HOST)) {
728 const struct inet_connection_sock *icsk = inet_csk(sk);
732 if (icsk->icsk_backoff || !tp->srtt) {
733 /* This session failed to estimate rtt. Why?
734 * Probably, no packets returned in time.
737 if (!(dst_metric_locked(dst, RTAX_RTT)))
738 dst->metrics[RTAX_RTT - 1] = 0;
742 rtt = dst_metric_rtt(dst, RTAX_RTT);
745 /* If newly calculated rtt larger than stored one,
746 * store new one. Otherwise, use EWMA. Remember,
747 * rtt overestimation is always better than underestimation.
749 if (!(dst_metric_locked(dst, RTAX_RTT))) {
751 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
753 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
761 /* Scale deviation to rttvar fixed point */
766 var = dst_metric_rtt(dst, RTAX_RTTVAR);
770 var -= (var - m) >> 2;
772 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775 if (tp->snd_ssthresh >= 0xFFFF) {
776 /* Slow start still did not finish. */
777 if (dst_metric(dst, RTAX_SSTHRESH) &&
778 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781 if (!dst_metric_locked(dst, RTAX_CWND) &&
782 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
785 icsk->icsk_ca_state == TCP_CA_Open) {
786 /* Cong. avoidance phase, cwnd is reliable. */
787 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788 dst->metrics[RTAX_SSTHRESH-1] =
789 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790 if (!dst_metric_locked(dst, RTAX_CWND))
791 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
793 /* Else slow start did not finish, cwnd is non-sense,
794 ssthresh may be also invalid.
796 if (!dst_metric_locked(dst, RTAX_CWND))
797 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
798 if (dst_metric(dst, RTAX_SSTHRESH) &&
799 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
801 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
806 tp->reordering != sysctl_tcp_reordering)
807 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
812 /* Numbers are taken from RFC3390.
814 * John Heffner states:
816 * The RFC specifies a window of no more than 4380 bytes
817 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
818 * is a bit misleading because they use a clamp at 4380 bytes
819 * rather than use a multiplier in the relevant range.
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
823 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826 if (tp->mss_cache > 1460)
829 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
831 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837 struct tcp_sock *tp = tcp_sk(sk);
838 const struct inet_connection_sock *icsk = inet_csk(sk);
840 tp->prior_ssthresh = 0;
842 if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846 tp->snd_cwnd = min(tp->snd_cwnd,
847 tcp_packets_in_flight(tp) + 1U);
848 tp->snd_cwnd_cnt = 0;
849 tp->high_seq = tp->snd_nxt;
850 tp->snd_cwnd_stamp = tcp_time_stamp;
851 TCP_ECN_queue_cwr(tp);
853 tcp_set_ca_state(sk, TCP_CA_CWR);
858 * Packet counting of FACK is based on in-order assumptions, therefore TCP
859 * disables it when reordering is detected
861 static void tcp_disable_fack(struct tcp_sock *tp)
863 /* RFC3517 uses different metric in lost marker => reset on change */
865 tp->lost_skb_hint = NULL;
866 tp->rx_opt.sack_ok &= ~2;
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
872 tp->rx_opt.sack_ok |= 4;
875 /* Initialize metrics on socket. */
877 static void tcp_init_metrics(struct sock *sk)
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 tcp_disable_fack(tp);
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900 if (dst_metric(dst, RTAX_RTT) == 0)
903 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
911 * A bit of theory. RTT is time passed after "normal" sized packet
912 * is sent until it is ACKed. In normal circumstances sending small
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
920 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
924 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932 tp->snd_cwnd_stamp = tcp_time_stamp;
936 /* Play conservative. If timestamps are not
937 * supported, TCP will fail to recalculate correct
938 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
943 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947 static void tcp_update_reordering(struct sock *sk, const int metric,
950 struct tcp_sock *tp = tcp_sk(sk);
951 if (metric > tp->reordering) {
954 tp->reordering = min(TCP_MAX_REORDERING, metric);
956 /* This exciting event is worth to be remembered. 8) */
958 mib_idx = LINUX_MIB_TCPTSREORDER;
959 else if (tcp_is_reno(tp))
960 mib_idx = LINUX_MIB_TCPRENOREORDER;
961 else if (tcp_is_fack(tp))
962 mib_idx = LINUX_MIB_TCPFACKREORDER;
964 mib_idx = LINUX_MIB_TCPSACKREORDER;
966 NET_INC_STATS_BH(sock_net(sk), mib_idx);
967 #if FASTRETRANS_DEBUG > 1
968 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 tp->undo_marker ? tp->undo_retrans : 0);
975 tcp_disable_fack(tp);
979 /* This must be called before lost_out is incremented */
980 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
982 if ((tp->retransmit_skb_hint == NULL) ||
983 before(TCP_SKB_CB(skb)->seq,
984 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
985 tp->retransmit_skb_hint = skb;
988 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
989 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
992 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
994 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
995 tcp_verify_retransmit_hint(tp, skb);
997 tp->lost_out += tcp_skb_pcount(skb);
998 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1003 struct sk_buff *skb)
1005 tcp_verify_retransmit_hint(tp, skb);
1007 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1008 tp->lost_out += tcp_skb_pcount(skb);
1009 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013 /* This procedure tags the retransmission queue when SACKs arrive.
1015 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1016 * Packets in queue with these bits set are counted in variables
1017 * sacked_out, retrans_out and lost_out, correspondingly.
1019 * Valid combinations are:
1020 * Tag InFlight Description
1021 * 0 1 - orig segment is in flight.
1022 * S 0 - nothing flies, orig reached receiver.
1023 * L 0 - nothing flies, orig lost by net.
1024 * R 2 - both orig and retransmit are in flight.
1025 * L|R 1 - orig is lost, retransmit is in flight.
1026 * S|R 1 - orig reached receiver, retrans is still in flight.
1027 * (L|S|R is logically valid, it could occur when L|R is sacked,
1028 * but it is equivalent to plain S and code short-curcuits it to S.
1029 * L|S is logically invalid, it would mean -1 packet in flight 8))
1031 * These 6 states form finite state machine, controlled by the following events:
1032 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1033 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1034 * 3. Loss detection event of one of three flavors:
1035 * A. Scoreboard estimator decided the packet is lost.
1036 * A'. Reno "three dupacks" marks head of queue lost.
1037 * A''. Its FACK modfication, head until snd.fack is lost.
1038 * B. SACK arrives sacking data transmitted after never retransmitted
1039 * hole was sent out.
1040 * C. SACK arrives sacking SND.NXT at the moment, when the
1041 * segment was retransmitted.
1042 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1044 * It is pleasant to note, that state diagram turns out to be commutative,
1045 * so that we are allowed not to be bothered by order of our actions,
1046 * when multiple events arrive simultaneously. (see the function below).
1048 * Reordering detection.
1049 * --------------------
1050 * Reordering metric is maximal distance, which a packet can be displaced
1051 * in packet stream. With SACKs we can estimate it:
1053 * 1. SACK fills old hole and the corresponding segment was not
1054 * ever retransmitted -> reordering. Alas, we cannot use it
1055 * when segment was retransmitted.
1056 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1057 * for retransmitted and already SACKed segment -> reordering..
1058 * Both of these heuristics are not used in Loss state, when we cannot
1059 * account for retransmits accurately.
1061 * SACK block validation.
1062 * ----------------------
1064 * SACK block range validation checks that the received SACK block fits to
1065 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1066 * Note that SND.UNA is not included to the range though being valid because
1067 * it means that the receiver is rather inconsistent with itself reporting
1068 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1069 * perfectly valid, however, in light of RFC2018 which explicitly states
1070 * that "SACK block MUST reflect the newest segment. Even if the newest
1071 * segment is going to be discarded ...", not that it looks very clever
1072 * in case of head skb. Due to potentional receiver driven attacks, we
1073 * choose to avoid immediate execution of a walk in write queue due to
1074 * reneging and defer head skb's loss recovery to standard loss recovery
1075 * procedure that will eventually trigger (nothing forbids us doing this).
1077 * Implements also blockage to start_seq wrap-around. Problem lies in the
1078 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1079 * there's no guarantee that it will be before snd_nxt (n). The problem
1080 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1083 * <- outs wnd -> <- wrapzone ->
1084 * u e n u_w e_w s n_w
1086 * |<------------+------+----- TCP seqno space --------------+---------->|
1087 * ...-- <2^31 ->| |<--------...
1088 * ...---- >2^31 ------>| |<--------...
1090 * Current code wouldn't be vulnerable but it's better still to discard such
1091 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1092 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1093 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1094 * equal to the ideal case (infinite seqno space without wrap caused issues).
1096 * With D-SACK the lower bound is extended to cover sequence space below
1097 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1098 * again, D-SACK block must not to go across snd_una (for the same reason as
1099 * for the normal SACK blocks, explained above). But there all simplicity
1100 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1101 * fully below undo_marker they do not affect behavior in anyway and can
1102 * therefore be safely ignored. In rare cases (which are more or less
1103 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1104 * fragmentation and packet reordering past skb's retransmission. To consider
1105 * them correctly, the acceptable range must be extended even more though
1106 * the exact amount is rather hard to quantify. However, tp->max_window can
1107 * be used as an exaggerated estimate.
1109 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1110 u32 start_seq, u32 end_seq)
1112 /* Too far in future, or reversed (interpretation is ambiguous) */
1113 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1116 /* Nasty start_seq wrap-around check (see comments above) */
1117 if (!before(start_seq, tp->snd_nxt))
1120 /* In outstanding window? ...This is valid exit for D-SACKs too.
1121 * start_seq == snd_una is non-sensical (see comments above)
1123 if (after(start_seq, tp->snd_una))
1126 if (!is_dsack || !tp->undo_marker)
1129 /* ...Then it's D-SACK, and must reside below snd_una completely */
1130 if (!after(end_seq, tp->snd_una))
1133 if (!before(start_seq, tp->undo_marker))
1137 if (!after(end_seq, tp->undo_marker))
1140 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1141 * start_seq < undo_marker and end_seq >= undo_marker.
1143 return !before(start_seq, end_seq - tp->max_window);
1146 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1147 * Event "C". Later note: FACK people cheated me again 8), we have to account
1148 * for reordering! Ugly, but should help.
1150 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1151 * less than what is now known to be received by the other end (derived from
1152 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1153 * retransmitted skbs to avoid some costly processing per ACKs.
1155 static void tcp_mark_lost_retrans(struct sock *sk)
1157 const struct inet_connection_sock *icsk = inet_csk(sk);
1158 struct tcp_sock *tp = tcp_sk(sk);
1159 struct sk_buff *skb;
1161 u32 new_low_seq = tp->snd_nxt;
1162 u32 received_upto = tcp_highest_sack_seq(tp);
1164 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1165 !after(received_upto, tp->lost_retrans_low) ||
1166 icsk->icsk_ca_state != TCP_CA_Recovery)
1169 tcp_for_write_queue(skb, sk) {
1170 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1172 if (skb == tcp_send_head(sk))
1174 if (cnt == tp->retrans_out)
1176 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1179 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1182 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1183 * constraint here (see above) but figuring out that at
1184 * least tp->reordering SACK blocks reside between ack_seq
1185 * and received_upto is not easy task to do cheaply with
1186 * the available datastructures.
1188 * Whether FACK should check here for tp->reordering segs
1189 * in-between one could argue for either way (it would be
1190 * rather simple to implement as we could count fack_count
1191 * during the walk and do tp->fackets_out - fack_count).
1193 if (after(received_upto, ack_seq)) {
1194 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1195 tp->retrans_out -= tcp_skb_pcount(skb);
1197 tcp_skb_mark_lost_uncond_verify(tp, skb);
1198 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1200 if (before(ack_seq, new_low_seq))
1201 new_low_seq = ack_seq;
1202 cnt += tcp_skb_pcount(skb);
1206 if (tp->retrans_out)
1207 tp->lost_retrans_low = new_low_seq;
1210 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1211 struct tcp_sack_block_wire *sp, int num_sacks,
1214 struct tcp_sock *tp = tcp_sk(sk);
1215 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1216 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1219 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1223 } else if (num_sacks > 1) {
1224 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1225 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1227 if (!after(end_seq_0, end_seq_1) &&
1228 !before(start_seq_0, start_seq_1)) {
1231 NET_INC_STATS_BH(sock_net(sk),
1232 LINUX_MIB_TCPDSACKOFORECV);
1236 /* D-SACK for already forgotten data... Do dumb counting. */
1238 !after(end_seq_0, prior_snd_una) &&
1239 after(end_seq_0, tp->undo_marker))
1245 struct tcp_sacktag_state {
1251 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1252 * the incoming SACK may not exactly match but we can find smaller MSS
1253 * aligned portion of it that matches. Therefore we might need to fragment
1254 * which may fail and creates some hassle (caller must handle error case
1257 * FIXME: this could be merged to shift decision code
1259 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1260 u32 start_seq, u32 end_seq)
1263 unsigned int pkt_len;
1266 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1267 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1269 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1270 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1271 mss = tcp_skb_mss(skb);
1272 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1275 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1279 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1284 /* Round if necessary so that SACKs cover only full MSSes
1285 * and/or the remaining small portion (if present)
1287 if (pkt_len > mss) {
1288 unsigned int new_len = (pkt_len / mss) * mss;
1289 if (!in_sack && new_len < pkt_len) {
1291 if (new_len > skb->len)
1296 err = tcp_fragment(sk, skb, pkt_len, mss);
1304 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1305 struct tcp_sacktag_state *state,
1306 int dup_sack, int pcount)
1308 struct tcp_sock *tp = tcp_sk(sk);
1309 u8 sacked = TCP_SKB_CB(skb)->sacked;
1310 int fack_count = state->fack_count;
1312 /* Account D-SACK for retransmitted packet. */
1313 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1314 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1316 if (sacked & TCPCB_SACKED_ACKED)
1317 state->reord = min(fack_count, state->reord);
1320 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1321 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1324 if (!(sacked & TCPCB_SACKED_ACKED)) {
1325 if (sacked & TCPCB_SACKED_RETRANS) {
1326 /* If the segment is not tagged as lost,
1327 * we do not clear RETRANS, believing
1328 * that retransmission is still in flight.
1330 if (sacked & TCPCB_LOST) {
1331 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1332 tp->lost_out -= pcount;
1333 tp->retrans_out -= pcount;
1336 if (!(sacked & TCPCB_RETRANS)) {
1337 /* New sack for not retransmitted frame,
1338 * which was in hole. It is reordering.
1340 if (before(TCP_SKB_CB(skb)->seq,
1341 tcp_highest_sack_seq(tp)))
1342 state->reord = min(fack_count,
1345 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1346 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1347 state->flag |= FLAG_ONLY_ORIG_SACKED;
1350 if (sacked & TCPCB_LOST) {
1351 sacked &= ~TCPCB_LOST;
1352 tp->lost_out -= pcount;
1356 sacked |= TCPCB_SACKED_ACKED;
1357 state->flag |= FLAG_DATA_SACKED;
1358 tp->sacked_out += pcount;
1360 fack_count += pcount;
1362 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1363 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1364 before(TCP_SKB_CB(skb)->seq,
1365 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1366 tp->lost_cnt_hint += pcount;
1368 if (fack_count > tp->fackets_out)
1369 tp->fackets_out = fack_count;
1372 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1373 * frames and clear it. undo_retrans is decreased above, L|R frames
1374 * are accounted above as well.
1376 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1377 sacked &= ~TCPCB_SACKED_RETRANS;
1378 tp->retrans_out -= pcount;
1384 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1385 struct tcp_sacktag_state *state,
1386 unsigned int pcount, int shifted, int mss,
1389 struct tcp_sock *tp = tcp_sk(sk);
1390 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1394 /* Tweak before seqno plays */
1395 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1396 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1397 tp->lost_cnt_hint += pcount;
1399 TCP_SKB_CB(prev)->end_seq += shifted;
1400 TCP_SKB_CB(skb)->seq += shifted;
1402 skb_shinfo(prev)->gso_segs += pcount;
1403 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1404 skb_shinfo(skb)->gso_segs -= pcount;
1406 /* When we're adding to gso_segs == 1, gso_size will be zero,
1407 * in theory this shouldn't be necessary but as long as DSACK
1408 * code can come after this skb later on it's better to keep
1409 * setting gso_size to something.
1411 if (!skb_shinfo(prev)->gso_size) {
1412 skb_shinfo(prev)->gso_size = mss;
1413 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1416 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1417 if (skb_shinfo(skb)->gso_segs <= 1) {
1418 skb_shinfo(skb)->gso_size = 0;
1419 skb_shinfo(skb)->gso_type = 0;
1422 /* We discard results */
1423 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1425 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1426 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1429 BUG_ON(!tcp_skb_pcount(skb));
1430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1434 /* Whole SKB was eaten :-) */
1436 if (skb == tp->retransmit_skb_hint)
1437 tp->retransmit_skb_hint = prev;
1438 if (skb == tp->scoreboard_skb_hint)
1439 tp->scoreboard_skb_hint = prev;
1440 if (skb == tp->lost_skb_hint) {
1441 tp->lost_skb_hint = prev;
1442 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1445 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1446 if (skb == tcp_highest_sack(sk))
1447 tcp_advance_highest_sack(sk, skb);
1449 tcp_unlink_write_queue(skb, sk);
1450 sk_wmem_free_skb(sk, skb);
1452 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1457 /* I wish gso_size would have a bit more sane initialization than
1458 * something-or-zero which complicates things
1460 static int tcp_skb_seglen(struct sk_buff *skb)
1462 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1465 /* Shifting pages past head area doesn't work */
1466 static int skb_can_shift(struct sk_buff *skb)
1468 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1471 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1474 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1475 struct tcp_sacktag_state *state,
1476 u32 start_seq, u32 end_seq,
1479 struct tcp_sock *tp = tcp_sk(sk);
1480 struct sk_buff *prev;
1486 if (!sk_can_gso(sk))
1489 /* Normally R but no L won't result in plain S */
1491 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1493 if (!skb_can_shift(skb))
1495 /* This frame is about to be dropped (was ACKed). */
1496 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1499 /* Can only happen with delayed DSACK + discard craziness */
1500 if (unlikely(skb == tcp_write_queue_head(sk)))
1502 prev = tcp_write_queue_prev(sk, skb);
1504 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1507 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1508 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1512 pcount = tcp_skb_pcount(skb);
1513 mss = tcp_skb_seglen(skb);
1515 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1516 * drop this restriction as unnecessary
1518 if (mss != tcp_skb_seglen(prev))
1521 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1523 /* CHECKME: This is non-MSS split case only?, this will
1524 * cause skipped skbs due to advancing loop btw, original
1525 * has that feature too
1527 if (tcp_skb_pcount(skb) <= 1)
1530 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1532 /* TODO: head merge to next could be attempted here
1533 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1534 * though it might not be worth of the additional hassle
1536 * ...we can probably just fallback to what was done
1537 * previously. We could try merging non-SACKed ones
1538 * as well but it probably isn't going to buy off
1539 * because later SACKs might again split them, and
1540 * it would make skb timestamp tracking considerably
1546 len = end_seq - TCP_SKB_CB(skb)->seq;
1548 BUG_ON(len > skb->len);
1550 /* MSS boundaries should be honoured or else pcount will
1551 * severely break even though it makes things bit trickier.
1552 * Optimize common case to avoid most of the divides
1554 mss = tcp_skb_mss(skb);
1556 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1557 * drop this restriction as unnecessary
1559 if (mss != tcp_skb_seglen(prev))
1564 } else if (len < mss) {
1572 if (!skb_shift(prev, skb, len))
1574 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1577 /* Hole filled allows collapsing with the next as well, this is very
1578 * useful when hole on every nth skb pattern happens
1580 if (prev == tcp_write_queue_tail(sk))
1582 skb = tcp_write_queue_next(sk, prev);
1584 if (!skb_can_shift(skb) ||
1585 (skb == tcp_send_head(sk)) ||
1586 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1587 (mss != tcp_skb_seglen(skb)))
1591 if (skb_shift(prev, skb, len)) {
1592 pcount += tcp_skb_pcount(skb);
1593 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1597 state->fack_count += pcount;
1604 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1608 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1609 struct tcp_sack_block *next_dup,
1610 struct tcp_sacktag_state *state,
1611 u32 start_seq, u32 end_seq,
1614 struct tcp_sock *tp = tcp_sk(sk);
1615 struct sk_buff *tmp;
1617 tcp_for_write_queue_from(skb, sk) {
1619 int dup_sack = dup_sack_in;
1621 if (skb == tcp_send_head(sk))
1624 /* queue is in-order => we can short-circuit the walk early */
1625 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1628 if ((next_dup != NULL) &&
1629 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1630 in_sack = tcp_match_skb_to_sack(sk, skb,
1631 next_dup->start_seq,
1637 /* skb reference here is a bit tricky to get right, since
1638 * shifting can eat and free both this skb and the next,
1639 * so not even _safe variant of the loop is enough.
1642 tmp = tcp_shift_skb_data(sk, skb, state,
1643 start_seq, end_seq, dup_sack);
1652 in_sack = tcp_match_skb_to_sack(sk, skb,
1658 if (unlikely(in_sack < 0))
1662 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1665 tcp_skb_pcount(skb));
1667 if (!before(TCP_SKB_CB(skb)->seq,
1668 tcp_highest_sack_seq(tp)))
1669 tcp_advance_highest_sack(sk, skb);
1672 state->fack_count += tcp_skb_pcount(skb);
1677 /* Avoid all extra work that is being done by sacktag while walking in
1680 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1681 struct tcp_sacktag_state *state,
1684 tcp_for_write_queue_from(skb, sk) {
1685 if (skb == tcp_send_head(sk))
1688 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1691 state->fack_count += tcp_skb_pcount(skb);
1696 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1698 struct tcp_sack_block *next_dup,
1699 struct tcp_sacktag_state *state,
1702 if (next_dup == NULL)
1705 if (before(next_dup->start_seq, skip_to_seq)) {
1706 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1707 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1708 next_dup->start_seq, next_dup->end_seq,
1715 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1717 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1721 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1724 const struct inet_connection_sock *icsk = inet_csk(sk);
1725 struct tcp_sock *tp = tcp_sk(sk);
1726 unsigned char *ptr = (skb_transport_header(ack_skb) +
1727 TCP_SKB_CB(ack_skb)->sacked);
1728 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1729 struct tcp_sack_block sp[TCP_NUM_SACKS];
1730 struct tcp_sack_block *cache;
1731 struct tcp_sacktag_state state;
1732 struct sk_buff *skb;
1733 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1735 int found_dup_sack = 0;
1737 int first_sack_index;
1740 state.reord = tp->packets_out;
1742 if (!tp->sacked_out) {
1743 if (WARN_ON(tp->fackets_out))
1744 tp->fackets_out = 0;
1745 tcp_highest_sack_reset(sk);
1748 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1749 num_sacks, prior_snd_una);
1751 state.flag |= FLAG_DSACKING_ACK;
1753 /* Eliminate too old ACKs, but take into
1754 * account more or less fresh ones, they can
1755 * contain valid SACK info.
1757 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1760 if (!tp->packets_out)
1764 first_sack_index = 0;
1765 for (i = 0; i < num_sacks; i++) {
1766 int dup_sack = !i && found_dup_sack;
1768 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1769 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1771 if (!tcp_is_sackblock_valid(tp, dup_sack,
1772 sp[used_sacks].start_seq,
1773 sp[used_sacks].end_seq)) {
1777 if (!tp->undo_marker)
1778 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1780 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1782 /* Don't count olds caused by ACK reordering */
1783 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1784 !after(sp[used_sacks].end_seq, tp->snd_una))
1786 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1789 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1791 first_sack_index = -1;
1795 /* Ignore very old stuff early */
1796 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1802 /* order SACK blocks to allow in order walk of the retrans queue */
1803 for (i = used_sacks - 1; i > 0; i--) {
1804 for (j = 0; j < i; j++) {
1805 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1806 swap(sp[j], sp[j + 1]);
1808 /* Track where the first SACK block goes to */
1809 if (j == first_sack_index)
1810 first_sack_index = j + 1;
1815 skb = tcp_write_queue_head(sk);
1816 state.fack_count = 0;
1819 if (!tp->sacked_out) {
1820 /* It's already past, so skip checking against it */
1821 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1823 cache = tp->recv_sack_cache;
1824 /* Skip empty blocks in at head of the cache */
1825 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1830 while (i < used_sacks) {
1831 u32 start_seq = sp[i].start_seq;
1832 u32 end_seq = sp[i].end_seq;
1833 int dup_sack = (found_dup_sack && (i == first_sack_index));
1834 struct tcp_sack_block *next_dup = NULL;
1836 if (found_dup_sack && ((i + 1) == first_sack_index))
1837 next_dup = &sp[i + 1];
1839 /* Event "B" in the comment above. */
1840 if (after(end_seq, tp->high_seq))
1841 state.flag |= FLAG_DATA_LOST;
1843 /* Skip too early cached blocks */
1844 while (tcp_sack_cache_ok(tp, cache) &&
1845 !before(start_seq, cache->end_seq))
1848 /* Can skip some work by looking recv_sack_cache? */
1849 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1850 after(end_seq, cache->start_seq)) {
1853 if (before(start_seq, cache->start_seq)) {
1854 skb = tcp_sacktag_skip(skb, sk, &state,
1856 skb = tcp_sacktag_walk(skb, sk, next_dup,
1863 /* Rest of the block already fully processed? */
1864 if (!after(end_seq, cache->end_seq))
1867 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1871 /* ...tail remains todo... */
1872 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1873 /* ...but better entrypoint exists! */
1874 skb = tcp_highest_sack(sk);
1877 state.fack_count = tp->fackets_out;
1882 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1883 /* Check overlap against next cached too (past this one already) */
1888 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1889 skb = tcp_highest_sack(sk);
1892 state.fack_count = tp->fackets_out;
1894 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1897 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1898 start_seq, end_seq, dup_sack);
1901 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1902 * due to in-order walk
1904 if (after(end_seq, tp->frto_highmark))
1905 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1910 /* Clear the head of the cache sack blocks so we can skip it next time */
1911 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1912 tp->recv_sack_cache[i].start_seq = 0;
1913 tp->recv_sack_cache[i].end_seq = 0;
1915 for (j = 0; j < used_sacks; j++)
1916 tp->recv_sack_cache[i++] = sp[j];
1918 tcp_mark_lost_retrans(sk);
1920 tcp_verify_left_out(tp);
1922 if ((state.reord < tp->fackets_out) &&
1923 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1924 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1925 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1929 #if FASTRETRANS_DEBUG > 0
1930 WARN_ON((int)tp->sacked_out < 0);
1931 WARN_ON((int)tp->lost_out < 0);
1932 WARN_ON((int)tp->retrans_out < 0);
1933 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1938 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1939 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1941 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1945 holes = max(tp->lost_out, 1U);
1946 holes = min(holes, tp->packets_out);
1948 if ((tp->sacked_out + holes) > tp->packets_out) {
1949 tp->sacked_out = tp->packets_out - holes;
1955 /* If we receive more dupacks than we expected counting segments
1956 * in assumption of absent reordering, interpret this as reordering.
1957 * The only another reason could be bug in receiver TCP.
1959 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1961 struct tcp_sock *tp = tcp_sk(sk);
1962 if (tcp_limit_reno_sacked(tp))
1963 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1966 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1968 static void tcp_add_reno_sack(struct sock *sk)
1970 struct tcp_sock *tp = tcp_sk(sk);
1972 tcp_check_reno_reordering(sk, 0);
1973 tcp_verify_left_out(tp);
1976 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1978 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1980 struct tcp_sock *tp = tcp_sk(sk);
1983 /* One ACK acked hole. The rest eat duplicate ACKs. */
1984 if (acked - 1 >= tp->sacked_out)
1987 tp->sacked_out -= acked - 1;
1989 tcp_check_reno_reordering(sk, acked);
1990 tcp_verify_left_out(tp);
1993 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1998 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2000 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2003 /* F-RTO can only be used if TCP has never retransmitted anything other than
2004 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2006 int tcp_use_frto(struct sock *sk)
2008 const struct tcp_sock *tp = tcp_sk(sk);
2009 const struct inet_connection_sock *icsk = inet_csk(sk);
2010 struct sk_buff *skb;
2012 if (!sysctl_tcp_frto)
2015 /* MTU probe and F-RTO won't really play nicely along currently */
2016 if (icsk->icsk_mtup.probe_size)
2019 if (tcp_is_sackfrto(tp))
2022 /* Avoid expensive walking of rexmit queue if possible */
2023 if (tp->retrans_out > 1)
2026 skb = tcp_write_queue_head(sk);
2027 if (tcp_skb_is_last(sk, skb))
2029 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2030 tcp_for_write_queue_from(skb, sk) {
2031 if (skb == tcp_send_head(sk))
2033 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2035 /* Short-circuit when first non-SACKed skb has been checked */
2036 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2042 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2043 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2044 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2045 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2046 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2047 * bits are handled if the Loss state is really to be entered (in
2048 * tcp_enter_frto_loss).
2050 * Do like tcp_enter_loss() would; when RTO expires the second time it
2052 * "Reduce ssthresh if it has not yet been made inside this window."
2054 void tcp_enter_frto(struct sock *sk)
2056 const struct inet_connection_sock *icsk = inet_csk(sk);
2057 struct tcp_sock *tp = tcp_sk(sk);
2058 struct sk_buff *skb;
2060 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2061 tp->snd_una == tp->high_seq ||
2062 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2063 !icsk->icsk_retransmits)) {
2064 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2065 /* Our state is too optimistic in ssthresh() call because cwnd
2066 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2067 * recovery has not yet completed. Pattern would be this: RTO,
2068 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2070 * RFC4138 should be more specific on what to do, even though
2071 * RTO is quite unlikely to occur after the first Cumulative ACK
2072 * due to back-off and complexity of triggering events ...
2074 if (tp->frto_counter) {
2076 stored_cwnd = tp->snd_cwnd;
2078 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2079 tp->snd_cwnd = stored_cwnd;
2081 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2083 /* ... in theory, cong.control module could do "any tricks" in
2084 * ssthresh(), which means that ca_state, lost bits and lost_out
2085 * counter would have to be faked before the call occurs. We
2086 * consider that too expensive, unlikely and hacky, so modules
2087 * using these in ssthresh() must deal these incompatibility
2088 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2090 tcp_ca_event(sk, CA_EVENT_FRTO);
2093 tp->undo_marker = tp->snd_una;
2094 tp->undo_retrans = 0;
2096 skb = tcp_write_queue_head(sk);
2097 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2098 tp->undo_marker = 0;
2099 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2100 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2101 tp->retrans_out -= tcp_skb_pcount(skb);
2103 tcp_verify_left_out(tp);
2105 /* Too bad if TCP was application limited */
2106 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2108 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2109 * The last condition is necessary at least in tp->frto_counter case.
2111 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2112 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2113 after(tp->high_seq, tp->snd_una)) {
2114 tp->frto_highmark = tp->high_seq;
2116 tp->frto_highmark = tp->snd_nxt;
2118 tcp_set_ca_state(sk, TCP_CA_Disorder);
2119 tp->high_seq = tp->snd_nxt;
2120 tp->frto_counter = 1;
2123 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2124 * which indicates that we should follow the traditional RTO recovery,
2125 * i.e. mark everything lost and do go-back-N retransmission.
2127 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2129 struct tcp_sock *tp = tcp_sk(sk);
2130 struct sk_buff *skb;
2133 tp->retrans_out = 0;
2134 if (tcp_is_reno(tp))
2135 tcp_reset_reno_sack(tp);
2137 tcp_for_write_queue(skb, sk) {
2138 if (skb == tcp_send_head(sk))
2141 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2143 * Count the retransmission made on RTO correctly (only when
2144 * waiting for the first ACK and did not get it)...
2146 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2147 /* For some reason this R-bit might get cleared? */
2148 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2149 tp->retrans_out += tcp_skb_pcount(skb);
2150 /* ...enter this if branch just for the first segment */
2151 flag |= FLAG_DATA_ACKED;
2153 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2154 tp->undo_marker = 0;
2155 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2158 /* Marking forward transmissions that were made after RTO lost
2159 * can cause unnecessary retransmissions in some scenarios,
2160 * SACK blocks will mitigate that in some but not in all cases.
2161 * We used to not mark them but it was causing break-ups with
2162 * receivers that do only in-order receival.
2164 * TODO: we could detect presence of such receiver and select
2165 * different behavior per flow.
2167 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2168 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2169 tp->lost_out += tcp_skb_pcount(skb);
2170 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2173 tcp_verify_left_out(tp);
2175 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2176 tp->snd_cwnd_cnt = 0;
2177 tp->snd_cwnd_stamp = tcp_time_stamp;
2178 tp->frto_counter = 0;
2179 tp->bytes_acked = 0;
2181 tp->reordering = min_t(unsigned int, tp->reordering,
2182 sysctl_tcp_reordering);
2183 tcp_set_ca_state(sk, TCP_CA_Loss);
2184 tp->high_seq = tp->snd_nxt;
2185 TCP_ECN_queue_cwr(tp);
2187 tcp_clear_all_retrans_hints(tp);
2190 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2192 tp->retrans_out = 0;
2195 tp->undo_marker = 0;
2196 tp->undo_retrans = 0;
2199 void tcp_clear_retrans(struct tcp_sock *tp)
2201 tcp_clear_retrans_partial(tp);
2203 tp->fackets_out = 0;
2207 /* Enter Loss state. If "how" is not zero, forget all SACK information
2208 * and reset tags completely, otherwise preserve SACKs. If receiver
2209 * dropped its ofo queue, we will know this due to reneging detection.
2211 void tcp_enter_loss(struct sock *sk, int how)
2213 const struct inet_connection_sock *icsk = inet_csk(sk);
2214 struct tcp_sock *tp = tcp_sk(sk);
2215 struct sk_buff *skb;
2217 /* Reduce ssthresh if it has not yet been made inside this window. */
2218 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2219 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2220 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2221 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2222 tcp_ca_event(sk, CA_EVENT_LOSS);
2225 tp->snd_cwnd_cnt = 0;
2226 tp->snd_cwnd_stamp = tcp_time_stamp;
2228 tp->bytes_acked = 0;
2229 tcp_clear_retrans_partial(tp);
2231 if (tcp_is_reno(tp))
2232 tcp_reset_reno_sack(tp);
2235 /* Push undo marker, if it was plain RTO and nothing
2236 * was retransmitted. */
2237 tp->undo_marker = tp->snd_una;
2240 tp->fackets_out = 0;
2242 tcp_clear_all_retrans_hints(tp);
2244 tcp_for_write_queue(skb, sk) {
2245 if (skb == tcp_send_head(sk))
2248 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2249 tp->undo_marker = 0;
2250 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2251 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2252 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2253 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2254 tp->lost_out += tcp_skb_pcount(skb);
2255 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2258 tcp_verify_left_out(tp);
2260 tp->reordering = min_t(unsigned int, tp->reordering,
2261 sysctl_tcp_reordering);
2262 tcp_set_ca_state(sk, TCP_CA_Loss);
2263 tp->high_seq = tp->snd_nxt;
2264 TCP_ECN_queue_cwr(tp);
2265 /* Abort F-RTO algorithm if one is in progress */
2266 tp->frto_counter = 0;
2269 /* If ACK arrived pointing to a remembered SACK, it means that our
2270 * remembered SACKs do not reflect real state of receiver i.e.
2271 * receiver _host_ is heavily congested (or buggy).
2273 * Do processing similar to RTO timeout.
2275 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2277 if (flag & FLAG_SACK_RENEGING) {
2278 struct inet_connection_sock *icsk = inet_csk(sk);
2279 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2281 tcp_enter_loss(sk, 1);
2282 icsk->icsk_retransmits++;
2283 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2284 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2285 icsk->icsk_rto, TCP_RTO_MAX);
2291 static inline int tcp_fackets_out(struct tcp_sock *tp)
2293 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2296 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2297 * counter when SACK is enabled (without SACK, sacked_out is used for
2300 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2301 * segments up to the highest received SACK block so far and holes in
2304 * With reordering, holes may still be in flight, so RFC3517 recovery
2305 * uses pure sacked_out (total number of SACKed segments) even though
2306 * it violates the RFC that uses duplicate ACKs, often these are equal
2307 * but when e.g. out-of-window ACKs or packet duplication occurs,
2308 * they differ. Since neither occurs due to loss, TCP should really
2311 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2313 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2316 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2318 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2321 static inline int tcp_head_timedout(struct sock *sk)
2323 struct tcp_sock *tp = tcp_sk(sk);
2325 return tp->packets_out &&
2326 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2329 /* Linux NewReno/SACK/FACK/ECN state machine.
2330 * --------------------------------------
2332 * "Open" Normal state, no dubious events, fast path.
2333 * "Disorder" In all the respects it is "Open",
2334 * but requires a bit more attention. It is entered when
2335 * we see some SACKs or dupacks. It is split of "Open"
2336 * mainly to move some processing from fast path to slow one.
2337 * "CWR" CWND was reduced due to some Congestion Notification event.
2338 * It can be ECN, ICMP source quench, local device congestion.
2339 * "Recovery" CWND was reduced, we are fast-retransmitting.
2340 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2342 * tcp_fastretrans_alert() is entered:
2343 * - each incoming ACK, if state is not "Open"
2344 * - when arrived ACK is unusual, namely:
2349 * Counting packets in flight is pretty simple.
2351 * in_flight = packets_out - left_out + retrans_out
2353 * packets_out is SND.NXT-SND.UNA counted in packets.
2355 * retrans_out is number of retransmitted segments.
2357 * left_out is number of segments left network, but not ACKed yet.
2359 * left_out = sacked_out + lost_out
2361 * sacked_out: Packets, which arrived to receiver out of order
2362 * and hence not ACKed. With SACKs this number is simply
2363 * amount of SACKed data. Even without SACKs
2364 * it is easy to give pretty reliable estimate of this number,
2365 * counting duplicate ACKs.
2367 * lost_out: Packets lost by network. TCP has no explicit
2368 * "loss notification" feedback from network (for now).
2369 * It means that this number can be only _guessed_.
2370 * Actually, it is the heuristics to predict lossage that
2371 * distinguishes different algorithms.
2373 * F.e. after RTO, when all the queue is considered as lost,
2374 * lost_out = packets_out and in_flight = retrans_out.
2376 * Essentially, we have now two algorithms counting
2379 * FACK: It is the simplest heuristics. As soon as we decided
2380 * that something is lost, we decide that _all_ not SACKed
2381 * packets until the most forward SACK are lost. I.e.
2382 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2383 * It is absolutely correct estimate, if network does not reorder
2384 * packets. And it loses any connection to reality when reordering
2385 * takes place. We use FACK by default until reordering
2386 * is suspected on the path to this destination.
2388 * NewReno: when Recovery is entered, we assume that one segment
2389 * is lost (classic Reno). While we are in Recovery and
2390 * a partial ACK arrives, we assume that one more packet
2391 * is lost (NewReno). This heuristics are the same in NewReno
2394 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2395 * deflation etc. CWND is real congestion window, never inflated, changes
2396 * only according to classic VJ rules.
2398 * Really tricky (and requiring careful tuning) part of algorithm
2399 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2400 * The first determines the moment _when_ we should reduce CWND and,
2401 * hence, slow down forward transmission. In fact, it determines the moment
2402 * when we decide that hole is caused by loss, rather than by a reorder.
2404 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2405 * holes, caused by lost packets.
2407 * And the most logically complicated part of algorithm is undo
2408 * heuristics. We detect false retransmits due to both too early
2409 * fast retransmit (reordering) and underestimated RTO, analyzing
2410 * timestamps and D-SACKs. When we detect that some segments were
2411 * retransmitted by mistake and CWND reduction was wrong, we undo
2412 * window reduction and abort recovery phase. This logic is hidden
2413 * inside several functions named tcp_try_undo_<something>.
2416 /* This function decides, when we should leave Disordered state
2417 * and enter Recovery phase, reducing congestion window.
2419 * Main question: may we further continue forward transmission
2420 * with the same cwnd?
2422 static int tcp_time_to_recover(struct sock *sk)
2424 struct tcp_sock *tp = tcp_sk(sk);
2427 /* Do not perform any recovery during F-RTO algorithm */
2428 if (tp->frto_counter)
2431 /* Trick#1: The loss is proven. */
2435 /* Not-A-Trick#2 : Classic rule... */
2436 if (tcp_dupack_heurestics(tp) > tp->reordering)
2439 /* Trick#3 : when we use RFC2988 timer restart, fast
2440 * retransmit can be triggered by timeout of queue head.
2442 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2445 /* Trick#4: It is still not OK... But will it be useful to delay
2448 packets_out = tp->packets_out;
2449 if (packets_out <= tp->reordering &&
2450 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2451 !tcp_may_send_now(sk)) {
2452 /* We have nothing to send. This connection is limited
2453 * either by receiver window or by application.
2461 /* New heuristics: it is possible only after we switched to restart timer
2462 * each time when something is ACKed. Hence, we can detect timed out packets
2463 * during fast retransmit without falling to slow start.
2465 * Usefulness of this as is very questionable, since we should know which of
2466 * the segments is the next to timeout which is relatively expensive to find
2467 * in general case unless we add some data structure just for that. The
2468 * current approach certainly won't find the right one too often and when it
2469 * finally does find _something_ it usually marks large part of the window
2470 * right away (because a retransmission with a larger timestamp blocks the
2471 * loop from advancing). -ij
2473 static void tcp_timeout_skbs(struct sock *sk)
2475 struct tcp_sock *tp = tcp_sk(sk);
2476 struct sk_buff *skb;
2478 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2481 skb = tp->scoreboard_skb_hint;
2482 if (tp->scoreboard_skb_hint == NULL)
2483 skb = tcp_write_queue_head(sk);
2485 tcp_for_write_queue_from(skb, sk) {
2486 if (skb == tcp_send_head(sk))
2488 if (!tcp_skb_timedout(sk, skb))
2491 tcp_skb_mark_lost(tp, skb);
2494 tp->scoreboard_skb_hint = skb;
2496 tcp_verify_left_out(tp);
2499 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2500 * is against sacked "cnt", otherwise it's against facked "cnt"
2502 static void tcp_mark_head_lost(struct sock *sk, int packets)
2504 struct tcp_sock *tp = tcp_sk(sk);
2505 struct sk_buff *skb;
2510 WARN_ON(packets > tp->packets_out);
2511 if (tp->lost_skb_hint) {
2512 skb = tp->lost_skb_hint;
2513 cnt = tp->lost_cnt_hint;
2515 skb = tcp_write_queue_head(sk);
2519 tcp_for_write_queue_from(skb, sk) {
2520 if (skb == tcp_send_head(sk))
2522 /* TODO: do this better */
2523 /* this is not the most efficient way to do this... */
2524 tp->lost_skb_hint = skb;
2525 tp->lost_cnt_hint = cnt;
2527 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2531 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2532 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2533 cnt += tcp_skb_pcount(skb);
2535 if (cnt > packets) {
2536 if (tcp_is_sack(tp) || (oldcnt >= packets))
2539 mss = skb_shinfo(skb)->gso_size;
2540 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2546 tcp_skb_mark_lost(tp, skb);
2548 tcp_verify_left_out(tp);
2551 /* Account newly detected lost packet(s) */
2553 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2555 struct tcp_sock *tp = tcp_sk(sk);
2557 if (tcp_is_reno(tp)) {
2558 tcp_mark_head_lost(sk, 1);
2559 } else if (tcp_is_fack(tp)) {
2560 int lost = tp->fackets_out - tp->reordering;
2563 tcp_mark_head_lost(sk, lost);
2565 int sacked_upto = tp->sacked_out - tp->reordering;
2566 if (sacked_upto < fast_rexmit)
2567 sacked_upto = fast_rexmit;
2568 tcp_mark_head_lost(sk, sacked_upto);
2571 tcp_timeout_skbs(sk);
2574 /* CWND moderation, preventing bursts due to too big ACKs
2575 * in dubious situations.
2577 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2579 tp->snd_cwnd = min(tp->snd_cwnd,
2580 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2581 tp->snd_cwnd_stamp = tcp_time_stamp;
2584 /* Lower bound on congestion window is slow start threshold
2585 * unless congestion avoidance choice decides to overide it.
2587 static inline u32 tcp_cwnd_min(const struct sock *sk)
2589 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2591 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2594 /* Decrease cwnd each second ack. */
2595 static void tcp_cwnd_down(struct sock *sk, int flag)
2597 struct tcp_sock *tp = tcp_sk(sk);
2598 int decr = tp->snd_cwnd_cnt + 1;
2600 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2601 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2602 tp->snd_cwnd_cnt = decr & 1;
2605 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2606 tp->snd_cwnd -= decr;
2608 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2609 tp->snd_cwnd_stamp = tcp_time_stamp;
2613 /* Nothing was retransmitted or returned timestamp is less
2614 * than timestamp of the first retransmission.
2616 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2618 return !tp->retrans_stamp ||
2619 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2620 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2623 /* Undo procedures. */
2625 #if FASTRETRANS_DEBUG > 1
2626 static void DBGUNDO(struct sock *sk, const char *msg)
2628 struct tcp_sock *tp = tcp_sk(sk);
2629 struct inet_sock *inet = inet_sk(sk);
2631 if (sk->sk_family == AF_INET) {
2632 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2634 &inet->daddr, ntohs(inet->dport),
2635 tp->snd_cwnd, tcp_left_out(tp),
2636 tp->snd_ssthresh, tp->prior_ssthresh,
2639 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2640 else if (sk->sk_family == AF_INET6) {
2641 struct ipv6_pinfo *np = inet6_sk(sk);
2642 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2644 &np->daddr, ntohs(inet->dport),
2645 tp->snd_cwnd, tcp_left_out(tp),
2646 tp->snd_ssthresh, tp->prior_ssthresh,
2652 #define DBGUNDO(x...) do { } while (0)
2655 static void tcp_undo_cwr(struct sock *sk, const int undo)
2657 struct tcp_sock *tp = tcp_sk(sk);
2659 if (tp->prior_ssthresh) {
2660 const struct inet_connection_sock *icsk = inet_csk(sk);
2662 if (icsk->icsk_ca_ops->undo_cwnd)
2663 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2665 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2667 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2668 tp->snd_ssthresh = tp->prior_ssthresh;
2669 TCP_ECN_withdraw_cwr(tp);
2672 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2674 tcp_moderate_cwnd(tp);
2675 tp->snd_cwnd_stamp = tcp_time_stamp;
2678 static inline int tcp_may_undo(struct tcp_sock *tp)
2680 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2683 /* People celebrate: "We love our President!" */
2684 static int tcp_try_undo_recovery(struct sock *sk)
2686 struct tcp_sock *tp = tcp_sk(sk);
2688 if (tcp_may_undo(tp)) {
2691 /* Happy end! We did not retransmit anything
2692 * or our original transmission succeeded.
2694 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2695 tcp_undo_cwr(sk, 1);
2696 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2697 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2699 mib_idx = LINUX_MIB_TCPFULLUNDO;
2701 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2702 tp->undo_marker = 0;
2704 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2705 /* Hold old state until something *above* high_seq
2706 * is ACKed. For Reno it is MUST to prevent false
2707 * fast retransmits (RFC2582). SACK TCP is safe. */
2708 tcp_moderate_cwnd(tp);
2711 tcp_set_ca_state(sk, TCP_CA_Open);
2715 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2716 static void tcp_try_undo_dsack(struct sock *sk)
2718 struct tcp_sock *tp = tcp_sk(sk);
2720 if (tp->undo_marker && !tp->undo_retrans) {
2721 DBGUNDO(sk, "D-SACK");
2722 tcp_undo_cwr(sk, 1);
2723 tp->undo_marker = 0;
2724 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2728 /* Undo during fast recovery after partial ACK. */
2730 static int tcp_try_undo_partial(struct sock *sk, int acked)
2732 struct tcp_sock *tp = tcp_sk(sk);
2733 /* Partial ACK arrived. Force Hoe's retransmit. */
2734 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2736 if (tcp_may_undo(tp)) {
2737 /* Plain luck! Hole if filled with delayed
2738 * packet, rather than with a retransmit.
2740 if (tp->retrans_out == 0)
2741 tp->retrans_stamp = 0;
2743 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2746 tcp_undo_cwr(sk, 0);
2747 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2749 /* So... Do not make Hoe's retransmit yet.
2750 * If the first packet was delayed, the rest
2751 * ones are most probably delayed as well.
2758 /* Undo during loss recovery after partial ACK. */
2759 static int tcp_try_undo_loss(struct sock *sk)
2761 struct tcp_sock *tp = tcp_sk(sk);
2763 if (tcp_may_undo(tp)) {
2764 struct sk_buff *skb;
2765 tcp_for_write_queue(skb, sk) {
2766 if (skb == tcp_send_head(sk))
2768 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2771 tcp_clear_all_retrans_hints(tp);
2773 DBGUNDO(sk, "partial loss");
2775 tcp_undo_cwr(sk, 1);
2776 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2777 inet_csk(sk)->icsk_retransmits = 0;
2778 tp->undo_marker = 0;
2779 if (tcp_is_sack(tp))
2780 tcp_set_ca_state(sk, TCP_CA_Open);
2786 static inline void tcp_complete_cwr(struct sock *sk)
2788 struct tcp_sock *tp = tcp_sk(sk);
2789 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2790 tp->snd_cwnd_stamp = tcp_time_stamp;
2791 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2794 static void tcp_try_keep_open(struct sock *sk)
2796 struct tcp_sock *tp = tcp_sk(sk);
2797 int state = TCP_CA_Open;
2799 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2800 state = TCP_CA_Disorder;
2802 if (inet_csk(sk)->icsk_ca_state != state) {
2803 tcp_set_ca_state(sk, state);
2804 tp->high_seq = tp->snd_nxt;
2808 static void tcp_try_to_open(struct sock *sk, int flag)
2810 struct tcp_sock *tp = tcp_sk(sk);
2812 tcp_verify_left_out(tp);
2814 if (!tp->frto_counter && tp->retrans_out == 0)
2815 tp->retrans_stamp = 0;
2817 if (flag & FLAG_ECE)
2818 tcp_enter_cwr(sk, 1);
2820 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2821 tcp_try_keep_open(sk);
2822 tcp_moderate_cwnd(tp);
2824 tcp_cwnd_down(sk, flag);
2828 static void tcp_mtup_probe_failed(struct sock *sk)
2830 struct inet_connection_sock *icsk = inet_csk(sk);
2832 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2833 icsk->icsk_mtup.probe_size = 0;
2836 static void tcp_mtup_probe_success(struct sock *sk)
2838 struct tcp_sock *tp = tcp_sk(sk);
2839 struct inet_connection_sock *icsk = inet_csk(sk);
2841 /* FIXME: breaks with very large cwnd */
2842 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2843 tp->snd_cwnd = tp->snd_cwnd *
2844 tcp_mss_to_mtu(sk, tp->mss_cache) /
2845 icsk->icsk_mtup.probe_size;
2846 tp->snd_cwnd_cnt = 0;
2847 tp->snd_cwnd_stamp = tcp_time_stamp;
2848 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2850 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2851 icsk->icsk_mtup.probe_size = 0;
2852 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2855 /* Do a simple retransmit without using the backoff mechanisms in
2856 * tcp_timer. This is used for path mtu discovery.
2857 * The socket is already locked here.
2859 void tcp_simple_retransmit(struct sock *sk)
2861 const struct inet_connection_sock *icsk = inet_csk(sk);
2862 struct tcp_sock *tp = tcp_sk(sk);
2863 struct sk_buff *skb;
2864 unsigned int mss = tcp_current_mss(sk);
2865 u32 prior_lost = tp->lost_out;
2867 tcp_for_write_queue(skb, sk) {
2868 if (skb == tcp_send_head(sk))
2870 if (tcp_skb_seglen(skb) > mss &&
2871 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2872 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2873 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2874 tp->retrans_out -= tcp_skb_pcount(skb);
2876 tcp_skb_mark_lost_uncond_verify(tp, skb);
2880 tcp_clear_retrans_hints_partial(tp);
2882 if (prior_lost == tp->lost_out)
2885 if (tcp_is_reno(tp))
2886 tcp_limit_reno_sacked(tp);
2888 tcp_verify_left_out(tp);
2890 /* Don't muck with the congestion window here.
2891 * Reason is that we do not increase amount of _data_
2892 * in network, but units changed and effective
2893 * cwnd/ssthresh really reduced now.
2895 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2896 tp->high_seq = tp->snd_nxt;
2897 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2898 tp->prior_ssthresh = 0;
2899 tp->undo_marker = 0;
2900 tcp_set_ca_state(sk, TCP_CA_Loss);
2902 tcp_xmit_retransmit_queue(sk);
2905 /* Process an event, which can update packets-in-flight not trivially.
2906 * Main goal of this function is to calculate new estimate for left_out,
2907 * taking into account both packets sitting in receiver's buffer and
2908 * packets lost by network.
2910 * Besides that it does CWND reduction, when packet loss is detected
2911 * and changes state of machine.
2913 * It does _not_ decide what to send, it is made in function
2914 * tcp_xmit_retransmit_queue().
2916 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2918 struct inet_connection_sock *icsk = inet_csk(sk);
2919 struct tcp_sock *tp = tcp_sk(sk);
2920 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2921 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2922 (tcp_fackets_out(tp) > tp->reordering));
2923 int fast_rexmit = 0, mib_idx;
2925 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2927 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2928 tp->fackets_out = 0;
2930 /* Now state machine starts.
2931 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2932 if (flag & FLAG_ECE)
2933 tp->prior_ssthresh = 0;
2935 /* B. In all the states check for reneging SACKs. */
2936 if (tcp_check_sack_reneging(sk, flag))
2939 /* C. Process data loss notification, provided it is valid. */
2940 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2941 before(tp->snd_una, tp->high_seq) &&
2942 icsk->icsk_ca_state != TCP_CA_Open &&
2943 tp->fackets_out > tp->reordering) {
2944 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2945 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2948 /* D. Check consistency of the current state. */
2949 tcp_verify_left_out(tp);
2951 /* E. Check state exit conditions. State can be terminated
2952 * when high_seq is ACKed. */
2953 if (icsk->icsk_ca_state == TCP_CA_Open) {
2954 WARN_ON(tp->retrans_out != 0);
2955 tp->retrans_stamp = 0;
2956 } else if (!before(tp->snd_una, tp->high_seq)) {
2957 switch (icsk->icsk_ca_state) {
2959 icsk->icsk_retransmits = 0;
2960 if (tcp_try_undo_recovery(sk))
2965 /* CWR is to be held something *above* high_seq
2966 * is ACKed for CWR bit to reach receiver. */
2967 if (tp->snd_una != tp->high_seq) {
2968 tcp_complete_cwr(sk);
2969 tcp_set_ca_state(sk, TCP_CA_Open);
2973 case TCP_CA_Disorder:
2974 tcp_try_undo_dsack(sk);
2975 if (!tp->undo_marker ||
2976 /* For SACK case do not Open to allow to undo
2977 * catching for all duplicate ACKs. */
2978 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2979 tp->undo_marker = 0;
2980 tcp_set_ca_state(sk, TCP_CA_Open);
2984 case TCP_CA_Recovery:
2985 if (tcp_is_reno(tp))
2986 tcp_reset_reno_sack(tp);
2987 if (tcp_try_undo_recovery(sk))
2989 tcp_complete_cwr(sk);
2994 /* F. Process state. */
2995 switch (icsk->icsk_ca_state) {
2996 case TCP_CA_Recovery:
2997 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2998 if (tcp_is_reno(tp) && is_dupack)
2999 tcp_add_reno_sack(sk);
3001 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3004 if (flag & FLAG_DATA_ACKED)
3005 icsk->icsk_retransmits = 0;
3006 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3007 tcp_reset_reno_sack(tp);
3008 if (!tcp_try_undo_loss(sk)) {
3009 tcp_moderate_cwnd(tp);
3010 tcp_xmit_retransmit_queue(sk);
3013 if (icsk->icsk_ca_state != TCP_CA_Open)
3015 /* Loss is undone; fall through to processing in Open state. */
3017 if (tcp_is_reno(tp)) {
3018 if (flag & FLAG_SND_UNA_ADVANCED)
3019 tcp_reset_reno_sack(tp);
3021 tcp_add_reno_sack(sk);
3024 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3025 tcp_try_undo_dsack(sk);
3027 if (!tcp_time_to_recover(sk)) {
3028 tcp_try_to_open(sk, flag);
3032 /* MTU probe failure: don't reduce cwnd */
3033 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3034 icsk->icsk_mtup.probe_size &&
3035 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3036 tcp_mtup_probe_failed(sk);
3037 /* Restores the reduction we did in tcp_mtup_probe() */
3039 tcp_simple_retransmit(sk);
3043 /* Otherwise enter Recovery state */
3045 if (tcp_is_reno(tp))
3046 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3048 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3050 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3052 tp->high_seq = tp->snd_nxt;
3053 tp->prior_ssthresh = 0;
3054 tp->undo_marker = tp->snd_una;
3055 tp->undo_retrans = tp->retrans_out;
3057 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3058 if (!(flag & FLAG_ECE))
3059 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3060 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3061 TCP_ECN_queue_cwr(tp);
3064 tp->bytes_acked = 0;
3065 tp->snd_cwnd_cnt = 0;
3066 tcp_set_ca_state(sk, TCP_CA_Recovery);
3070 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3071 tcp_update_scoreboard(sk, fast_rexmit);
3072 tcp_cwnd_down(sk, flag);
3073 tcp_xmit_retransmit_queue(sk);
3076 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3078 tcp_rtt_estimator(sk, seq_rtt);
3080 inet_csk(sk)->icsk_backoff = 0;
3083 /* Read draft-ietf-tcplw-high-performance before mucking
3084 * with this code. (Supersedes RFC1323)
3086 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3088 /* RTTM Rule: A TSecr value received in a segment is used to
3089 * update the averaged RTT measurement only if the segment
3090 * acknowledges some new data, i.e., only if it advances the
3091 * left edge of the send window.
3093 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3094 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3096 * Changed: reset backoff as soon as we see the first valid sample.
3097 * If we do not, we get strongly overestimated rto. With timestamps
3098 * samples are accepted even from very old segments: f.e., when rtt=1
3099 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3100 * answer arrives rto becomes 120 seconds! If at least one of segments
3101 * in window is lost... Voila. --ANK (010210)
3103 struct tcp_sock *tp = tcp_sk(sk);
3105 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3108 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3110 /* We don't have a timestamp. Can only use
3111 * packets that are not retransmitted to determine
3112 * rtt estimates. Also, we must not reset the
3113 * backoff for rto until we get a non-retransmitted
3114 * packet. This allows us to deal with a situation
3115 * where the network delay has increased suddenly.
3116 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3119 if (flag & FLAG_RETRANS_DATA_ACKED)
3122 tcp_valid_rtt_meas(sk, seq_rtt);
3125 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3128 const struct tcp_sock *tp = tcp_sk(sk);
3129 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3130 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3131 tcp_ack_saw_tstamp(sk, flag);
3132 else if (seq_rtt >= 0)
3133 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3136 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3138 const struct inet_connection_sock *icsk = inet_csk(sk);
3139 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3140 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3143 /* Restart timer after forward progress on connection.
3144 * RFC2988 recommends to restart timer to now+rto.
3146 static void tcp_rearm_rto(struct sock *sk)
3148 struct tcp_sock *tp = tcp_sk(sk);
3150 if (!tp->packets_out) {
3151 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3153 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3154 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3158 /* If we get here, the whole TSO packet has not been acked. */
3159 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3161 struct tcp_sock *tp = tcp_sk(sk);
3164 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3166 packets_acked = tcp_skb_pcount(skb);
3167 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3169 packets_acked -= tcp_skb_pcount(skb);
3171 if (packets_acked) {
3172 BUG_ON(tcp_skb_pcount(skb) == 0);
3173 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3176 return packets_acked;
3179 /* Remove acknowledged frames from the retransmission queue. If our packet
3180 * is before the ack sequence we can discard it as it's confirmed to have
3181 * arrived at the other end.
3183 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3186 struct tcp_sock *tp = tcp_sk(sk);
3187 const struct inet_connection_sock *icsk = inet_csk(sk);
3188 struct sk_buff *skb;
3189 u32 now = tcp_time_stamp;
3190 int fully_acked = 1;
3193 u32 reord = tp->packets_out;
3194 u32 prior_sacked = tp->sacked_out;
3196 s32 ca_seq_rtt = -1;
3197 ktime_t last_ackt = net_invalid_timestamp();
3199 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3200 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3202 u8 sacked = scb->sacked;
3204 /* Determine how many packets and what bytes were acked, tso and else */
3205 if (after(scb->end_seq, tp->snd_una)) {
3206 if (tcp_skb_pcount(skb) == 1 ||
3207 !after(tp->snd_una, scb->seq))
3210 acked_pcount = tcp_tso_acked(sk, skb);
3216 acked_pcount = tcp_skb_pcount(skb);
3219 if (sacked & TCPCB_RETRANS) {
3220 if (sacked & TCPCB_SACKED_RETRANS)
3221 tp->retrans_out -= acked_pcount;
3222 flag |= FLAG_RETRANS_DATA_ACKED;
3225 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3226 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3228 ca_seq_rtt = now - scb->when;
3229 last_ackt = skb->tstamp;
3231 seq_rtt = ca_seq_rtt;
3233 if (!(sacked & TCPCB_SACKED_ACKED))
3234 reord = min(pkts_acked, reord);
3237 if (sacked & TCPCB_SACKED_ACKED)
3238 tp->sacked_out -= acked_pcount;
3239 if (sacked & TCPCB_LOST)
3240 tp->lost_out -= acked_pcount;
3242 tp->packets_out -= acked_pcount;
3243 pkts_acked += acked_pcount;
3245 /* Initial outgoing SYN's get put onto the write_queue
3246 * just like anything else we transmit. It is not
3247 * true data, and if we misinform our callers that
3248 * this ACK acks real data, we will erroneously exit
3249 * connection startup slow start one packet too
3250 * quickly. This is severely frowned upon behavior.
3252 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3253 flag |= FLAG_DATA_ACKED;
3255 flag |= FLAG_SYN_ACKED;
3256 tp->retrans_stamp = 0;
3262 tcp_unlink_write_queue(skb, sk);
3263 sk_wmem_free_skb(sk, skb);
3264 tp->scoreboard_skb_hint = NULL;
3265 if (skb == tp->retransmit_skb_hint)
3266 tp->retransmit_skb_hint = NULL;
3267 if (skb == tp->lost_skb_hint)
3268 tp->lost_skb_hint = NULL;
3271 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3272 tp->snd_up = tp->snd_una;
3274 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3275 flag |= FLAG_SACK_RENEGING;
3277 if (flag & FLAG_ACKED) {
3278 const struct tcp_congestion_ops *ca_ops
3279 = inet_csk(sk)->icsk_ca_ops;
3281 if (unlikely(icsk->icsk_mtup.probe_size &&
3282 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3283 tcp_mtup_probe_success(sk);
3286 tcp_ack_update_rtt(sk, flag, seq_rtt);
3289 if (tcp_is_reno(tp)) {
3290 tcp_remove_reno_sacks(sk, pkts_acked);
3294 /* Non-retransmitted hole got filled? That's reordering */
3295 if (reord < prior_fackets)
3296 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3298 delta = tcp_is_fack(tp) ? pkts_acked :
3299 prior_sacked - tp->sacked_out;
3300 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3303 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3305 if (ca_ops->pkts_acked) {
3308 /* Is the ACK triggering packet unambiguous? */
3309 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3310 /* High resolution needed and available? */
3311 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3312 !ktime_equal(last_ackt,
3313 net_invalid_timestamp()))
3314 rtt_us = ktime_us_delta(ktime_get_real(),
3316 else if (ca_seq_rtt > 0)
3317 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3320 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3324 #if FASTRETRANS_DEBUG > 0
3325 WARN_ON((int)tp->sacked_out < 0);
3326 WARN_ON((int)tp->lost_out < 0);
3327 WARN_ON((int)tp->retrans_out < 0);
3328 if (!tp->packets_out && tcp_is_sack(tp)) {
3329 icsk = inet_csk(sk);
3331 printk(KERN_DEBUG "Leak l=%u %d\n",
3332 tp->lost_out, icsk->icsk_ca_state);
3335 if (tp->sacked_out) {
3336 printk(KERN_DEBUG "Leak s=%u %d\n",
3337 tp->sacked_out, icsk->icsk_ca_state);
3340 if (tp->retrans_out) {
3341 printk(KERN_DEBUG "Leak r=%u %d\n",
3342 tp->retrans_out, icsk->icsk_ca_state);
3343 tp->retrans_out = 0;
3350 static void tcp_ack_probe(struct sock *sk)
3352 const struct tcp_sock *tp = tcp_sk(sk);
3353 struct inet_connection_sock *icsk = inet_csk(sk);
3355 /* Was it a usable window open? */
3357 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3358 icsk->icsk_backoff = 0;
3359 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3360 /* Socket must be waked up by subsequent tcp_data_snd_check().
3361 * This function is not for random using!
3364 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3365 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3370 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3372 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3373 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3376 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3378 const struct tcp_sock *tp = tcp_sk(sk);
3379 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3380 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3383 /* Check that window update is acceptable.
3384 * The function assumes that snd_una<=ack<=snd_next.
3386 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3387 const u32 ack, const u32 ack_seq,
3390 return (after(ack, tp->snd_una) ||
3391 after(ack_seq, tp->snd_wl1) ||
3392 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3395 /* Update our send window.
3397 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3398 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3400 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3403 struct tcp_sock *tp = tcp_sk(sk);
3405 u32 nwin = ntohs(tcp_hdr(skb)->window);
3407 if (likely(!tcp_hdr(skb)->syn))
3408 nwin <<= tp->rx_opt.snd_wscale;
3410 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3411 flag |= FLAG_WIN_UPDATE;
3412 tcp_update_wl(tp, ack_seq);
3414 if (tp->snd_wnd != nwin) {
3417 /* Note, it is the only place, where
3418 * fast path is recovered for sending TCP.
3421 tcp_fast_path_check(sk);
3423 if (nwin > tp->max_window) {
3424 tp->max_window = nwin;
3425 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3435 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3436 * continue in congestion avoidance.
3438 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3440 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3441 tp->snd_cwnd_cnt = 0;
3442 tp->bytes_acked = 0;
3443 TCP_ECN_queue_cwr(tp);
3444 tcp_moderate_cwnd(tp);
3447 /* A conservative spurious RTO response algorithm: reduce cwnd using
3448 * rate halving and continue in congestion avoidance.
3450 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3452 tcp_enter_cwr(sk, 0);
3455 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3457 if (flag & FLAG_ECE)
3458 tcp_ratehalving_spur_to_response(sk);
3460 tcp_undo_cwr(sk, 1);
3463 /* F-RTO spurious RTO detection algorithm (RFC4138)
3465 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3466 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3467 * window (but not to or beyond highest sequence sent before RTO):
3468 * On First ACK, send two new segments out.
3469 * On Second ACK, RTO was likely spurious. Do spurious response (response
3470 * algorithm is not part of the F-RTO detection algorithm
3471 * given in RFC4138 but can be selected separately).
3472 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3473 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3474 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3475 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3477 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3478 * original window even after we transmit two new data segments.
3481 * on first step, wait until first cumulative ACK arrives, then move to
3482 * the second step. In second step, the next ACK decides.
3484 * F-RTO is implemented (mainly) in four functions:
3485 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3486 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3487 * called when tcp_use_frto() showed green light
3488 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3489 * - tcp_enter_frto_loss() is called if there is not enough evidence
3490 * to prove that the RTO is indeed spurious. It transfers the control
3491 * from F-RTO to the conventional RTO recovery
3493 static int tcp_process_frto(struct sock *sk, int flag)
3495 struct tcp_sock *tp = tcp_sk(sk);
3497 tcp_verify_left_out(tp);
3499 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3500 if (flag & FLAG_DATA_ACKED)
3501 inet_csk(sk)->icsk_retransmits = 0;
3503 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3504 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3505 tp->undo_marker = 0;
3507 if (!before(tp->snd_una, tp->frto_highmark)) {
3508 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3512 if (!tcp_is_sackfrto(tp)) {
3513 /* RFC4138 shortcoming in step 2; should also have case c):
3514 * ACK isn't duplicate nor advances window, e.g., opposite dir
3517 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3520 if (!(flag & FLAG_DATA_ACKED)) {
3521 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3526 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3527 /* Prevent sending of new data. */
3528 tp->snd_cwnd = min(tp->snd_cwnd,
3529 tcp_packets_in_flight(tp));
3533 if ((tp->frto_counter >= 2) &&
3534 (!(flag & FLAG_FORWARD_PROGRESS) ||
3535 ((flag & FLAG_DATA_SACKED) &&
3536 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3537 /* RFC4138 shortcoming (see comment above) */
3538 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3539 (flag & FLAG_NOT_DUP))
3542 tcp_enter_frto_loss(sk, 3, flag);
3547 if (tp->frto_counter == 1) {
3548 /* tcp_may_send_now needs to see updated state */
3549 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3550 tp->frto_counter = 2;
3552 if (!tcp_may_send_now(sk))
3553 tcp_enter_frto_loss(sk, 2, flag);
3557 switch (sysctl_tcp_frto_response) {
3559 tcp_undo_spur_to_response(sk, flag);
3562 tcp_conservative_spur_to_response(tp);
3565 tcp_ratehalving_spur_to_response(sk);
3568 tp->frto_counter = 0;
3569 tp->undo_marker = 0;
3570 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3575 /* This routine deals with incoming acks, but not outgoing ones. */
3576 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3578 struct inet_connection_sock *icsk = inet_csk(sk);
3579 struct tcp_sock *tp = tcp_sk(sk);
3580 u32 prior_snd_una = tp->snd_una;
3581 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3582 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3583 u32 prior_in_flight;
3588 /* If the ack is older than previous acks
3589 * then we can probably ignore it.
3591 if (before(ack, prior_snd_una))
3594 /* If the ack includes data we haven't sent yet, discard
3595 * this segment (RFC793 Section 3.9).
3597 if (after(ack, tp->snd_nxt))
3600 if (after(ack, prior_snd_una))
3601 flag |= FLAG_SND_UNA_ADVANCED;
3603 if (sysctl_tcp_abc) {
3604 if (icsk->icsk_ca_state < TCP_CA_CWR)
3605 tp->bytes_acked += ack - prior_snd_una;
3606 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3607 /* we assume just one segment left network */
3608 tp->bytes_acked += min(ack - prior_snd_una,
3612 prior_fackets = tp->fackets_out;
3613 prior_in_flight = tcp_packets_in_flight(tp);
3615 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3616 /* Window is constant, pure forward advance.
3617 * No more checks are required.
3618 * Note, we use the fact that SND.UNA>=SND.WL2.
3620 tcp_update_wl(tp, ack_seq);
3622 flag |= FLAG_WIN_UPDATE;
3624 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3626 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3628 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3631 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3633 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3635 if (TCP_SKB_CB(skb)->sacked)
3636 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3638 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3641 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3644 /* We passed data and got it acked, remove any soft error
3645 * log. Something worked...
3647 sk->sk_err_soft = 0;
3648 icsk->icsk_probes_out = 0;
3649 tp->rcv_tstamp = tcp_time_stamp;
3650 prior_packets = tp->packets_out;
3654 /* See if we can take anything off of the retransmit queue. */
3655 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3657 if (tp->frto_counter)
3658 frto_cwnd = tcp_process_frto(sk, flag);
3659 /* Guarantee sacktag reordering detection against wrap-arounds */
3660 if (before(tp->frto_highmark, tp->snd_una))
3661 tp->frto_highmark = 0;
3663 if (tcp_ack_is_dubious(sk, flag)) {
3664 /* Advance CWND, if state allows this. */
3665 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3666 tcp_may_raise_cwnd(sk, flag))
3667 tcp_cong_avoid(sk, ack, prior_in_flight);
3668 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3671 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3672 tcp_cong_avoid(sk, ack, prior_in_flight);
3675 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3676 dst_confirm(sk->sk_dst_cache);
3681 /* If this ack opens up a zero window, clear backoff. It was
3682 * being used to time the probes, and is probably far higher than
3683 * it needs to be for normal retransmission.
3685 if (tcp_send_head(sk))
3690 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3694 if (TCP_SKB_CB(skb)->sacked) {
3695 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3696 if (icsk->icsk_ca_state == TCP_CA_Open)
3697 tcp_try_keep_open(sk);
3700 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3704 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3705 * But, this can also be called on packets in the established flow when
3706 * the fast version below fails.
3708 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3712 struct tcphdr *th = tcp_hdr(skb);
3713 int length = (th->doff * 4) - sizeof(struct tcphdr);
3715 ptr = (unsigned char *)(th + 1);
3716 opt_rx->saw_tstamp = 0;
3718 while (length > 0) {
3719 int opcode = *ptr++;
3725 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3730 if (opsize < 2) /* "silly options" */
3732 if (opsize > length)
3733 return; /* don't parse partial options */
3736 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3737 u16 in_mss = get_unaligned_be16(ptr);
3739 if (opt_rx->user_mss &&
3740 opt_rx->user_mss < in_mss)
3741 in_mss = opt_rx->user_mss;
3742 opt_rx->mss_clamp = in_mss;
3747 if (opsize == TCPOLEN_WINDOW && th->syn &&
3748 !estab && sysctl_tcp_window_scaling) {
3749 __u8 snd_wscale = *(__u8 *)ptr;
3750 opt_rx->wscale_ok = 1;
3751 if (snd_wscale > 14) {
3752 if (net_ratelimit())
3753 printk(KERN_INFO "tcp_parse_options: Illegal window "
3754 "scaling value %d >14 received.\n",
3758 opt_rx->snd_wscale = snd_wscale;
3761 case TCPOPT_TIMESTAMP:
3762 if ((opsize == TCPOLEN_TIMESTAMP) &&
3763 ((estab && opt_rx->tstamp_ok) ||
3764 (!estab && sysctl_tcp_timestamps))) {
3765 opt_rx->saw_tstamp = 1;
3766 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3767 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3770 case TCPOPT_SACK_PERM:
3771 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3772 !estab && sysctl_tcp_sack) {
3773 opt_rx->sack_ok = 1;
3774 tcp_sack_reset(opt_rx);
3779 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3780 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3782 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3785 #ifdef CONFIG_TCP_MD5SIG
3788 * The MD5 Hash has already been
3789 * checked (see tcp_v{4,6}_do_rcv()).
3801 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3803 __be32 *ptr = (__be32 *)(th + 1);
3805 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3806 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3807 tp->rx_opt.saw_tstamp = 1;
3809 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3811 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3817 /* Fast parse options. This hopes to only see timestamps.
3818 * If it is wrong it falls back on tcp_parse_options().
3820 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3821 struct tcp_sock *tp)
3823 if (th->doff == sizeof(struct tcphdr) >> 2) {
3824 tp->rx_opt.saw_tstamp = 0;
3826 } else if (tp->rx_opt.tstamp_ok &&
3827 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3828 if (tcp_parse_aligned_timestamp(tp, th))
3831 tcp_parse_options(skb, &tp->rx_opt, 1);
3835 #ifdef CONFIG_TCP_MD5SIG
3837 * Parse MD5 Signature option
3839 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3841 int length = (th->doff << 2) - sizeof (*th);
3842 u8 *ptr = (u8*)(th + 1);
3844 /* If the TCP option is too short, we can short cut */
3845 if (length < TCPOLEN_MD5SIG)
3848 while (length > 0) {
3849 int opcode = *ptr++;
3860 if (opsize < 2 || opsize > length)
3862 if (opcode == TCPOPT_MD5SIG)
3872 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3874 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3875 tp->rx_opt.ts_recent_stamp = get_seconds();
3878 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3880 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3881 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3882 * extra check below makes sure this can only happen
3883 * for pure ACK frames. -DaveM
3885 * Not only, also it occurs for expired timestamps.
3888 if (tcp_paws_check(&tp->rx_opt, 0))
3889 tcp_store_ts_recent(tp);
3893 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3895 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3896 * it can pass through stack. So, the following predicate verifies that
3897 * this segment is not used for anything but congestion avoidance or
3898 * fast retransmit. Moreover, we even are able to eliminate most of such
3899 * second order effects, if we apply some small "replay" window (~RTO)
3900 * to timestamp space.
3902 * All these measures still do not guarantee that we reject wrapped ACKs
3903 * on networks with high bandwidth, when sequence space is recycled fastly,
3904 * but it guarantees that such events will be very rare and do not affect
3905 * connection seriously. This doesn't look nice, but alas, PAWS is really
3908 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3909 * states that events when retransmit arrives after original data are rare.
3910 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3911 * the biggest problem on large power networks even with minor reordering.
3912 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3913 * up to bandwidth of 18Gigabit/sec. 8) ]
3916 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3918 struct tcp_sock *tp = tcp_sk(sk);
3919 struct tcphdr *th = tcp_hdr(skb);
3920 u32 seq = TCP_SKB_CB(skb)->seq;
3921 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3923 return (/* 1. Pure ACK with correct sequence number. */
3924 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3926 /* 2. ... and duplicate ACK. */
3927 ack == tp->snd_una &&
3929 /* 3. ... and does not update window. */
3930 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3932 /* 4. ... and sits in replay window. */
3933 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3936 static inline int tcp_paws_discard(const struct sock *sk,
3937 const struct sk_buff *skb)
3939 const struct tcp_sock *tp = tcp_sk(sk);
3941 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3942 !tcp_disordered_ack(sk, skb);
3945 /* Check segment sequence number for validity.
3947 * Segment controls are considered valid, if the segment
3948 * fits to the window after truncation to the window. Acceptability
3949 * of data (and SYN, FIN, of course) is checked separately.
3950 * See tcp_data_queue(), for example.
3952 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3953 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3954 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3955 * (borrowed from freebsd)
3958 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3960 return !before(end_seq, tp->rcv_wup) &&
3961 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3964 /* When we get a reset we do this. */
3965 static void tcp_reset(struct sock *sk)
3967 /* We want the right error as BSD sees it (and indeed as we do). */
3968 switch (sk->sk_state) {
3970 sk->sk_err = ECONNREFUSED;
3972 case TCP_CLOSE_WAIT:
3978 sk->sk_err = ECONNRESET;
3981 if (!sock_flag(sk, SOCK_DEAD))
3982 sk->sk_error_report(sk);
3988 * Process the FIN bit. This now behaves as it is supposed to work
3989 * and the FIN takes effect when it is validly part of sequence
3990 * space. Not before when we get holes.
3992 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3993 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3996 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3997 * close and we go into CLOSING (and later onto TIME-WAIT)
3999 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4001 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4003 struct tcp_sock *tp = tcp_sk(sk);
4005 inet_csk_schedule_ack(sk);
4007 sk->sk_shutdown |= RCV_SHUTDOWN;
4008 sock_set_flag(sk, SOCK_DONE);
4010 switch (sk->sk_state) {
4012 case TCP_ESTABLISHED:
4013 /* Move to CLOSE_WAIT */
4014 tcp_set_state(sk, TCP_CLOSE_WAIT);
4015 inet_csk(sk)->icsk_ack.pingpong = 1;
4018 case TCP_CLOSE_WAIT:
4020 /* Received a retransmission of the FIN, do
4025 /* RFC793: Remain in the LAST-ACK state. */
4029 /* This case occurs when a simultaneous close
4030 * happens, we must ack the received FIN and
4031 * enter the CLOSING state.
4034 tcp_set_state(sk, TCP_CLOSING);
4037 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4039 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4042 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4043 * cases we should never reach this piece of code.
4045 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4046 __func__, sk->sk_state);
4050 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4051 * Probably, we should reset in this case. For now drop them.
4053 __skb_queue_purge(&tp->out_of_order_queue);
4054 if (tcp_is_sack(tp))
4055 tcp_sack_reset(&tp->rx_opt);
4058 if (!sock_flag(sk, SOCK_DEAD)) {
4059 sk->sk_state_change(sk);
4061 /* Do not send POLL_HUP for half duplex close. */
4062 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4063 sk->sk_state == TCP_CLOSE)
4064 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4066 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4070 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4073 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4074 if (before(seq, sp->start_seq))
4075 sp->start_seq = seq;
4076 if (after(end_seq, sp->end_seq))
4077 sp->end_seq = end_seq;
4083 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4085 struct tcp_sock *tp = tcp_sk(sk);
4087 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4090 if (before(seq, tp->rcv_nxt))
4091 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4093 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4095 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4097 tp->rx_opt.dsack = 1;
4098 tp->duplicate_sack[0].start_seq = seq;
4099 tp->duplicate_sack[0].end_seq = end_seq;
4103 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4105 struct tcp_sock *tp = tcp_sk(sk);
4107 if (!tp->rx_opt.dsack)
4108 tcp_dsack_set(sk, seq, end_seq);
4110 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4113 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4115 struct tcp_sock *tp = tcp_sk(sk);
4117 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4118 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4119 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4120 tcp_enter_quickack_mode(sk);
4122 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4123 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4125 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4126 end_seq = tp->rcv_nxt;
4127 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4134 /* These routines update the SACK block as out-of-order packets arrive or
4135 * in-order packets close up the sequence space.
4137 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4140 struct tcp_sack_block *sp = &tp->selective_acks[0];
4141 struct tcp_sack_block *swalk = sp + 1;
4143 /* See if the recent change to the first SACK eats into
4144 * or hits the sequence space of other SACK blocks, if so coalesce.
4146 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4147 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4150 /* Zap SWALK, by moving every further SACK up by one slot.
4151 * Decrease num_sacks.
4153 tp->rx_opt.num_sacks--;
4154 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4158 this_sack++, swalk++;
4162 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4164 struct tcp_sock *tp = tcp_sk(sk);
4165 struct tcp_sack_block *sp = &tp->selective_acks[0];
4166 int cur_sacks = tp->rx_opt.num_sacks;
4172 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4173 if (tcp_sack_extend(sp, seq, end_seq)) {
4174 /* Rotate this_sack to the first one. */
4175 for (; this_sack > 0; this_sack--, sp--)
4176 swap(*sp, *(sp - 1));
4178 tcp_sack_maybe_coalesce(tp);
4183 /* Could not find an adjacent existing SACK, build a new one,
4184 * put it at the front, and shift everyone else down. We
4185 * always know there is at least one SACK present already here.
4187 * If the sack array is full, forget about the last one.
4189 if (this_sack >= TCP_NUM_SACKS) {
4191 tp->rx_opt.num_sacks--;
4194 for (; this_sack > 0; this_sack--, sp--)
4198 /* Build the new head SACK, and we're done. */
4199 sp->start_seq = seq;
4200 sp->end_seq = end_seq;
4201 tp->rx_opt.num_sacks++;
4204 /* RCV.NXT advances, some SACKs should be eaten. */
4206 static void tcp_sack_remove(struct tcp_sock *tp)
4208 struct tcp_sack_block *sp = &tp->selective_acks[0];
4209 int num_sacks = tp->rx_opt.num_sacks;
4212 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4213 if (skb_queue_empty(&tp->out_of_order_queue)) {
4214 tp->rx_opt.num_sacks = 0;
4218 for (this_sack = 0; this_sack < num_sacks;) {
4219 /* Check if the start of the sack is covered by RCV.NXT. */
4220 if (!before(tp->rcv_nxt, sp->start_seq)) {
4223 /* RCV.NXT must cover all the block! */
4224 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4226 /* Zap this SACK, by moving forward any other SACKS. */
4227 for (i=this_sack+1; i < num_sacks; i++)
4228 tp->selective_acks[i-1] = tp->selective_acks[i];
4235 tp->rx_opt.num_sacks = num_sacks;
4238 /* This one checks to see if we can put data from the
4239 * out_of_order queue into the receive_queue.
4241 static void tcp_ofo_queue(struct sock *sk)
4243 struct tcp_sock *tp = tcp_sk(sk);
4244 __u32 dsack_high = tp->rcv_nxt;
4245 struct sk_buff *skb;
4247 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4248 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4251 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4252 __u32 dsack = dsack_high;
4253 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4254 dsack_high = TCP_SKB_CB(skb)->end_seq;
4255 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4258 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4259 SOCK_DEBUG(sk, "ofo packet was already received \n");
4260 __skb_unlink(skb, &tp->out_of_order_queue);
4264 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4265 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4266 TCP_SKB_CB(skb)->end_seq);
4268 __skb_unlink(skb, &tp->out_of_order_queue);
4269 __skb_queue_tail(&sk->sk_receive_queue, skb);
4270 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4271 if (tcp_hdr(skb)->fin)
4272 tcp_fin(skb, sk, tcp_hdr(skb));
4276 static int tcp_prune_ofo_queue(struct sock *sk);
4277 static int tcp_prune_queue(struct sock *sk);
4279 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4281 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4282 !sk_rmem_schedule(sk, size)) {
4284 if (tcp_prune_queue(sk) < 0)
4287 if (!sk_rmem_schedule(sk, size)) {
4288 if (!tcp_prune_ofo_queue(sk))
4291 if (!sk_rmem_schedule(sk, size))
4298 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4300 struct tcphdr *th = tcp_hdr(skb);
4301 struct tcp_sock *tp = tcp_sk(sk);
4304 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4307 __skb_pull(skb, th->doff * 4);
4309 TCP_ECN_accept_cwr(tp, skb);
4311 tp->rx_opt.dsack = 0;
4313 /* Queue data for delivery to the user.
4314 * Packets in sequence go to the receive queue.
4315 * Out of sequence packets to the out_of_order_queue.
4317 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4318 if (tcp_receive_window(tp) == 0)
4321 /* Ok. In sequence. In window. */
4322 if (tp->ucopy.task == current &&
4323 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4324 sock_owned_by_user(sk) && !tp->urg_data) {
4325 int chunk = min_t(unsigned int, skb->len,
4328 __set_current_state(TASK_RUNNING);
4331 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4332 tp->ucopy.len -= chunk;
4333 tp->copied_seq += chunk;
4334 eaten = (chunk == skb->len && !th->fin);
4335 tcp_rcv_space_adjust(sk);
4343 tcp_try_rmem_schedule(sk, skb->truesize))
4346 skb_set_owner_r(skb, sk);
4347 __skb_queue_tail(&sk->sk_receive_queue, skb);
4349 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4351 tcp_event_data_recv(sk, skb);
4353 tcp_fin(skb, sk, th);
4355 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4358 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4359 * gap in queue is filled.
4361 if (skb_queue_empty(&tp->out_of_order_queue))
4362 inet_csk(sk)->icsk_ack.pingpong = 0;
4365 if (tp->rx_opt.num_sacks)
4366 tcp_sack_remove(tp);
4368 tcp_fast_path_check(sk);
4372 else if (!sock_flag(sk, SOCK_DEAD))
4373 sk->sk_data_ready(sk, 0);
4377 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4378 /* A retransmit, 2nd most common case. Force an immediate ack. */
4379 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4380 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4383 tcp_enter_quickack_mode(sk);
4384 inet_csk_schedule_ack(sk);
4390 /* Out of window. F.e. zero window probe. */
4391 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4394 tcp_enter_quickack_mode(sk);
4396 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4397 /* Partial packet, seq < rcv_next < end_seq */
4398 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4399 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4400 TCP_SKB_CB(skb)->end_seq);
4402 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4404 /* If window is closed, drop tail of packet. But after
4405 * remembering D-SACK for its head made in previous line.
4407 if (!tcp_receive_window(tp))
4412 TCP_ECN_check_ce(tp, skb);
4414 if (tcp_try_rmem_schedule(sk, skb->truesize))
4417 /* Disable header prediction. */
4419 inet_csk_schedule_ack(sk);
4421 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4422 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4424 skb_set_owner_r(skb, sk);
4426 if (!skb_peek(&tp->out_of_order_queue)) {
4427 /* Initial out of order segment, build 1 SACK. */
4428 if (tcp_is_sack(tp)) {
4429 tp->rx_opt.num_sacks = 1;
4430 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4431 tp->selective_acks[0].end_seq =
4432 TCP_SKB_CB(skb)->end_seq;
4434 __skb_queue_head(&tp->out_of_order_queue, skb);
4436 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4437 u32 seq = TCP_SKB_CB(skb)->seq;
4438 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4440 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4441 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4443 if (!tp->rx_opt.num_sacks ||
4444 tp->selective_acks[0].end_seq != seq)
4447 /* Common case: data arrive in order after hole. */
4448 tp->selective_acks[0].end_seq = end_seq;
4452 /* Find place to insert this segment. */
4454 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4456 } while ((skb1 = skb1->prev) !=
4457 (struct sk_buff *)&tp->out_of_order_queue);
4459 /* Do skb overlap to previous one? */
4460 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4461 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4462 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4463 /* All the bits are present. Drop. */
4465 tcp_dsack_set(sk, seq, end_seq);
4468 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4469 /* Partial overlap. */
4470 tcp_dsack_set(sk, seq,
4471 TCP_SKB_CB(skb1)->end_seq);
4476 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4478 /* And clean segments covered by new one as whole. */
4479 while ((skb1 = skb->next) !=
4480 (struct sk_buff *)&tp->out_of_order_queue &&
4481 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4482 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4483 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4487 __skb_unlink(skb1, &tp->out_of_order_queue);
4488 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4489 TCP_SKB_CB(skb1)->end_seq);
4494 if (tcp_is_sack(tp))
4495 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4499 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4500 struct sk_buff_head *list)
4502 struct sk_buff *next = skb->next;
4504 __skb_unlink(skb, list);
4506 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4511 /* Collapse contiguous sequence of skbs head..tail with
4512 * sequence numbers start..end.
4513 * Segments with FIN/SYN are not collapsed (only because this
4517 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4518 struct sk_buff *head, struct sk_buff *tail,
4521 struct sk_buff *skb;
4523 /* First, check that queue is collapsible and find
4524 * the point where collapsing can be useful. */
4525 for (skb = head; skb != tail;) {
4526 /* No new bits? It is possible on ofo queue. */
4527 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4528 skb = tcp_collapse_one(sk, skb, list);
4532 /* The first skb to collapse is:
4534 * - bloated or contains data before "start" or
4535 * overlaps to the next one.
4537 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4538 (tcp_win_from_space(skb->truesize) > skb->len ||
4539 before(TCP_SKB_CB(skb)->seq, start) ||
4540 (skb->next != tail &&
4541 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4544 /* Decided to skip this, advance start seq. */
4545 start = TCP_SKB_CB(skb)->end_seq;
4548 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4551 while (before(start, end)) {
4552 struct sk_buff *nskb;
4553 unsigned int header = skb_headroom(skb);
4554 int copy = SKB_MAX_ORDER(header, 0);
4556 /* Too big header? This can happen with IPv6. */
4559 if (end - start < copy)
4561 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4565 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4566 skb_set_network_header(nskb, (skb_network_header(skb) -
4568 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4570 skb_reserve(nskb, header);
4571 memcpy(nskb->head, skb->head, header);
4572 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4573 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4574 __skb_queue_before(list, skb, nskb);
4575 skb_set_owner_r(nskb, sk);
4577 /* Copy data, releasing collapsed skbs. */
4579 int offset = start - TCP_SKB_CB(skb)->seq;
4580 int size = TCP_SKB_CB(skb)->end_seq - start;
4584 size = min(copy, size);
4585 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4587 TCP_SKB_CB(nskb)->end_seq += size;
4591 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4592 skb = tcp_collapse_one(sk, skb, list);
4594 tcp_hdr(skb)->syn ||
4602 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4603 * and tcp_collapse() them until all the queue is collapsed.
4605 static void tcp_collapse_ofo_queue(struct sock *sk)
4607 struct tcp_sock *tp = tcp_sk(sk);
4608 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4609 struct sk_buff *head;
4615 start = TCP_SKB_CB(skb)->seq;
4616 end = TCP_SKB_CB(skb)->end_seq;
4622 /* Segment is terminated when we see gap or when
4623 * we are at the end of all the queue. */
4624 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4625 after(TCP_SKB_CB(skb)->seq, end) ||
4626 before(TCP_SKB_CB(skb)->end_seq, start)) {
4627 tcp_collapse(sk, &tp->out_of_order_queue,
4628 head, skb, start, end);
4630 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4632 /* Start new segment */
4633 start = TCP_SKB_CB(skb)->seq;
4634 end = TCP_SKB_CB(skb)->end_seq;
4636 if (before(TCP_SKB_CB(skb)->seq, start))
4637 start = TCP_SKB_CB(skb)->seq;
4638 if (after(TCP_SKB_CB(skb)->end_seq, end))
4639 end = TCP_SKB_CB(skb)->end_seq;
4645 * Purge the out-of-order queue.
4646 * Return true if queue was pruned.
4648 static int tcp_prune_ofo_queue(struct sock *sk)
4650 struct tcp_sock *tp = tcp_sk(sk);
4653 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4654 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4655 __skb_queue_purge(&tp->out_of_order_queue);
4657 /* Reset SACK state. A conforming SACK implementation will
4658 * do the same at a timeout based retransmit. When a connection
4659 * is in a sad state like this, we care only about integrity
4660 * of the connection not performance.
4662 if (tp->rx_opt.sack_ok)
4663 tcp_sack_reset(&tp->rx_opt);
4670 /* Reduce allocated memory if we can, trying to get
4671 * the socket within its memory limits again.
4673 * Return less than zero if we should start dropping frames
4674 * until the socket owning process reads some of the data
4675 * to stabilize the situation.
4677 static int tcp_prune_queue(struct sock *sk)
4679 struct tcp_sock *tp = tcp_sk(sk);
4681 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4683 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4685 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4686 tcp_clamp_window(sk);
4687 else if (tcp_memory_pressure)
4688 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4690 tcp_collapse_ofo_queue(sk);
4691 tcp_collapse(sk, &sk->sk_receive_queue,
4692 sk->sk_receive_queue.next,
4693 (struct sk_buff *)&sk->sk_receive_queue,
4694 tp->copied_seq, tp->rcv_nxt);
4697 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4700 /* Collapsing did not help, destructive actions follow.
4701 * This must not ever occur. */
4703 tcp_prune_ofo_queue(sk);
4705 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4708 /* If we are really being abused, tell the caller to silently
4709 * drop receive data on the floor. It will get retransmitted
4710 * and hopefully then we'll have sufficient space.
4712 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4714 /* Massive buffer overcommit. */
4719 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4720 * As additional protections, we do not touch cwnd in retransmission phases,
4721 * and if application hit its sndbuf limit recently.
4723 void tcp_cwnd_application_limited(struct sock *sk)
4725 struct tcp_sock *tp = tcp_sk(sk);
4727 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4728 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4729 /* Limited by application or receiver window. */
4730 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4731 u32 win_used = max(tp->snd_cwnd_used, init_win);
4732 if (win_used < tp->snd_cwnd) {
4733 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4734 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4736 tp->snd_cwnd_used = 0;
4738 tp->snd_cwnd_stamp = tcp_time_stamp;
4741 static int tcp_should_expand_sndbuf(struct sock *sk)
4743 struct tcp_sock *tp = tcp_sk(sk);
4745 /* If the user specified a specific send buffer setting, do
4748 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4751 /* If we are under global TCP memory pressure, do not expand. */
4752 if (tcp_memory_pressure)
4755 /* If we are under soft global TCP memory pressure, do not expand. */
4756 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4759 /* If we filled the congestion window, do not expand. */
4760 if (tp->packets_out >= tp->snd_cwnd)
4766 /* When incoming ACK allowed to free some skb from write_queue,
4767 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4768 * on the exit from tcp input handler.
4770 * PROBLEM: sndbuf expansion does not work well with largesend.
4772 static void tcp_new_space(struct sock *sk)
4774 struct tcp_sock *tp = tcp_sk(sk);
4776 if (tcp_should_expand_sndbuf(sk)) {
4777 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4778 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4779 int demanded = max_t(unsigned int, tp->snd_cwnd,
4780 tp->reordering + 1);
4781 sndmem *= 2 * demanded;
4782 if (sndmem > sk->sk_sndbuf)
4783 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4784 tp->snd_cwnd_stamp = tcp_time_stamp;
4787 sk->sk_write_space(sk);
4790 static void tcp_check_space(struct sock *sk)
4792 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4793 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4794 if (sk->sk_socket &&
4795 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4800 static inline void tcp_data_snd_check(struct sock *sk)
4802 tcp_push_pending_frames(sk);
4803 tcp_check_space(sk);
4807 * Check if sending an ack is needed.
4809 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4811 struct tcp_sock *tp = tcp_sk(sk);
4813 /* More than one full frame received... */
4814 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4815 /* ... and right edge of window advances far enough.
4816 * (tcp_recvmsg() will send ACK otherwise). Or...
4818 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4819 /* We ACK each frame or... */
4820 tcp_in_quickack_mode(sk) ||
4821 /* We have out of order data. */
4822 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4823 /* Then ack it now */
4826 /* Else, send delayed ack. */
4827 tcp_send_delayed_ack(sk);
4831 static inline void tcp_ack_snd_check(struct sock *sk)
4833 if (!inet_csk_ack_scheduled(sk)) {
4834 /* We sent a data segment already. */
4837 __tcp_ack_snd_check(sk, 1);
4841 * This routine is only called when we have urgent data
4842 * signaled. Its the 'slow' part of tcp_urg. It could be
4843 * moved inline now as tcp_urg is only called from one
4844 * place. We handle URGent data wrong. We have to - as
4845 * BSD still doesn't use the correction from RFC961.
4846 * For 1003.1g we should support a new option TCP_STDURG to permit
4847 * either form (or just set the sysctl tcp_stdurg).
4850 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4852 struct tcp_sock *tp = tcp_sk(sk);
4853 u32 ptr = ntohs(th->urg_ptr);
4855 if (ptr && !sysctl_tcp_stdurg)
4857 ptr += ntohl(th->seq);
4859 /* Ignore urgent data that we've already seen and read. */
4860 if (after(tp->copied_seq, ptr))
4863 /* Do not replay urg ptr.
4865 * NOTE: interesting situation not covered by specs.
4866 * Misbehaving sender may send urg ptr, pointing to segment,
4867 * which we already have in ofo queue. We are not able to fetch
4868 * such data and will stay in TCP_URG_NOTYET until will be eaten
4869 * by recvmsg(). Seems, we are not obliged to handle such wicked
4870 * situations. But it is worth to think about possibility of some
4871 * DoSes using some hypothetical application level deadlock.
4873 if (before(ptr, tp->rcv_nxt))
4876 /* Do we already have a newer (or duplicate) urgent pointer? */
4877 if (tp->urg_data && !after(ptr, tp->urg_seq))
4880 /* Tell the world about our new urgent pointer. */
4883 /* We may be adding urgent data when the last byte read was
4884 * urgent. To do this requires some care. We cannot just ignore
4885 * tp->copied_seq since we would read the last urgent byte again
4886 * as data, nor can we alter copied_seq until this data arrives
4887 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4889 * NOTE. Double Dutch. Rendering to plain English: author of comment
4890 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4891 * and expect that both A and B disappear from stream. This is _wrong_.
4892 * Though this happens in BSD with high probability, this is occasional.
4893 * Any application relying on this is buggy. Note also, that fix "works"
4894 * only in this artificial test. Insert some normal data between A and B and we will
4895 * decline of BSD again. Verdict: it is better to remove to trap
4898 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4899 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4900 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4902 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4903 __skb_unlink(skb, &sk->sk_receive_queue);
4908 tp->urg_data = TCP_URG_NOTYET;
4911 /* Disable header prediction. */
4915 /* This is the 'fast' part of urgent handling. */
4916 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4918 struct tcp_sock *tp = tcp_sk(sk);
4920 /* Check if we get a new urgent pointer - normally not. */
4922 tcp_check_urg(sk, th);
4924 /* Do we wait for any urgent data? - normally not... */
4925 if (tp->urg_data == TCP_URG_NOTYET) {
4926 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4929 /* Is the urgent pointer pointing into this packet? */
4930 if (ptr < skb->len) {
4932 if (skb_copy_bits(skb, ptr, &tmp, 1))
4934 tp->urg_data = TCP_URG_VALID | tmp;
4935 if (!sock_flag(sk, SOCK_DEAD))
4936 sk->sk_data_ready(sk, 0);
4941 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4943 struct tcp_sock *tp = tcp_sk(sk);
4944 int chunk = skb->len - hlen;
4948 if (skb_csum_unnecessary(skb))
4949 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4951 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4955 tp->ucopy.len -= chunk;
4956 tp->copied_seq += chunk;
4957 tcp_rcv_space_adjust(sk);
4964 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4965 struct sk_buff *skb)
4969 if (sock_owned_by_user(sk)) {
4971 result = __tcp_checksum_complete(skb);
4974 result = __tcp_checksum_complete(skb);
4979 static inline int tcp_checksum_complete_user(struct sock *sk,
4980 struct sk_buff *skb)
4982 return !skb_csum_unnecessary(skb) &&
4983 __tcp_checksum_complete_user(sk, skb);
4986 #ifdef CONFIG_NET_DMA
4987 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4990 struct tcp_sock *tp = tcp_sk(sk);
4991 int chunk = skb->len - hlen;
4993 int copied_early = 0;
4995 if (tp->ucopy.wakeup)
4998 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4999 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5001 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5003 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5005 tp->ucopy.iov, chunk,
5006 tp->ucopy.pinned_list);
5011 tp->ucopy.dma_cookie = dma_cookie;
5014 tp->ucopy.len -= chunk;
5015 tp->copied_seq += chunk;
5016 tcp_rcv_space_adjust(sk);
5018 if ((tp->ucopy.len == 0) ||
5019 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5020 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5021 tp->ucopy.wakeup = 1;
5022 sk->sk_data_ready(sk, 0);
5024 } else if (chunk > 0) {
5025 tp->ucopy.wakeup = 1;
5026 sk->sk_data_ready(sk, 0);
5029 return copied_early;
5031 #endif /* CONFIG_NET_DMA */
5033 /* Does PAWS and seqno based validation of an incoming segment, flags will
5034 * play significant role here.
5036 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5037 struct tcphdr *th, int syn_inerr)
5039 struct tcp_sock *tp = tcp_sk(sk);
5041 /* RFC1323: H1. Apply PAWS check first. */
5042 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5043 tcp_paws_discard(sk, skb)) {
5045 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5046 tcp_send_dupack(sk, skb);
5049 /* Reset is accepted even if it did not pass PAWS. */
5052 /* Step 1: check sequence number */
5053 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5054 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5055 * (RST) segments are validated by checking their SEQ-fields."
5056 * And page 69: "If an incoming segment is not acceptable,
5057 * an acknowledgment should be sent in reply (unless the RST
5058 * bit is set, if so drop the segment and return)".
5061 tcp_send_dupack(sk, skb);
5065 /* Step 2: check RST bit */
5071 /* ts_recent update must be made after we are sure that the packet
5074 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5076 /* step 3: check security and precedence [ignored] */
5078 /* step 4: Check for a SYN in window. */
5079 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5081 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5082 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5095 * TCP receive function for the ESTABLISHED state.
5097 * It is split into a fast path and a slow path. The fast path is
5099 * - A zero window was announced from us - zero window probing
5100 * is only handled properly in the slow path.
5101 * - Out of order segments arrived.
5102 * - Urgent data is expected.
5103 * - There is no buffer space left
5104 * - Unexpected TCP flags/window values/header lengths are received
5105 * (detected by checking the TCP header against pred_flags)
5106 * - Data is sent in both directions. Fast path only supports pure senders
5107 * or pure receivers (this means either the sequence number or the ack
5108 * value must stay constant)
5109 * - Unexpected TCP option.
5111 * When these conditions are not satisfied it drops into a standard
5112 * receive procedure patterned after RFC793 to handle all cases.
5113 * The first three cases are guaranteed by proper pred_flags setting,
5114 * the rest is checked inline. Fast processing is turned on in
5115 * tcp_data_queue when everything is OK.
5117 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5118 struct tcphdr *th, unsigned len)
5120 struct tcp_sock *tp = tcp_sk(sk);
5124 * Header prediction.
5125 * The code loosely follows the one in the famous
5126 * "30 instruction TCP receive" Van Jacobson mail.
5128 * Van's trick is to deposit buffers into socket queue
5129 * on a device interrupt, to call tcp_recv function
5130 * on the receive process context and checksum and copy
5131 * the buffer to user space. smart...
5133 * Our current scheme is not silly either but we take the
5134 * extra cost of the net_bh soft interrupt processing...
5135 * We do checksum and copy also but from device to kernel.
5138 tp->rx_opt.saw_tstamp = 0;
5140 /* pred_flags is 0xS?10 << 16 + snd_wnd
5141 * if header_prediction is to be made
5142 * 'S' will always be tp->tcp_header_len >> 2
5143 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5144 * turn it off (when there are holes in the receive
5145 * space for instance)
5146 * PSH flag is ignored.
5149 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5150 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5151 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5152 int tcp_header_len = tp->tcp_header_len;
5154 /* Timestamp header prediction: tcp_header_len
5155 * is automatically equal to th->doff*4 due to pred_flags
5159 /* Check timestamp */
5160 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5161 /* No? Slow path! */
5162 if (!tcp_parse_aligned_timestamp(tp, th))
5165 /* If PAWS failed, check it more carefully in slow path */
5166 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5169 /* DO NOT update ts_recent here, if checksum fails
5170 * and timestamp was corrupted part, it will result
5171 * in a hung connection since we will drop all
5172 * future packets due to the PAWS test.
5176 if (len <= tcp_header_len) {
5177 /* Bulk data transfer: sender */
5178 if (len == tcp_header_len) {
5179 /* Predicted packet is in window by definition.
5180 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5181 * Hence, check seq<=rcv_wup reduces to:
5183 if (tcp_header_len ==
5184 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5185 tp->rcv_nxt == tp->rcv_wup)
5186 tcp_store_ts_recent(tp);
5188 /* We know that such packets are checksummed
5191 tcp_ack(sk, skb, 0);
5193 tcp_data_snd_check(sk);
5195 } else { /* Header too small */
5196 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5201 int copied_early = 0;
5203 if (tp->copied_seq == tp->rcv_nxt &&
5204 len - tcp_header_len <= tp->ucopy.len) {
5205 #ifdef CONFIG_NET_DMA
5206 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5211 if (tp->ucopy.task == current &&
5212 sock_owned_by_user(sk) && !copied_early) {
5213 __set_current_state(TASK_RUNNING);
5215 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5219 /* Predicted packet is in window by definition.
5220 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5221 * Hence, check seq<=rcv_wup reduces to:
5223 if (tcp_header_len ==
5224 (sizeof(struct tcphdr) +
5225 TCPOLEN_TSTAMP_ALIGNED) &&
5226 tp->rcv_nxt == tp->rcv_wup)
5227 tcp_store_ts_recent(tp);
5229 tcp_rcv_rtt_measure_ts(sk, skb);
5231 __skb_pull(skb, tcp_header_len);
5232 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5233 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5236 tcp_cleanup_rbuf(sk, skb->len);
5239 if (tcp_checksum_complete_user(sk, skb))
5242 /* Predicted packet is in window by definition.
5243 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5244 * Hence, check seq<=rcv_wup reduces to:
5246 if (tcp_header_len ==
5247 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5248 tp->rcv_nxt == tp->rcv_wup)
5249 tcp_store_ts_recent(tp);
5251 tcp_rcv_rtt_measure_ts(sk, skb);
5253 if ((int)skb->truesize > sk->sk_forward_alloc)
5256 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5258 /* Bulk data transfer: receiver */
5259 __skb_pull(skb, tcp_header_len);
5260 __skb_queue_tail(&sk->sk_receive_queue, skb);
5261 skb_set_owner_r(skb, sk);
5262 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5265 tcp_event_data_recv(sk, skb);
5267 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5268 /* Well, only one small jumplet in fast path... */
5269 tcp_ack(sk, skb, FLAG_DATA);
5270 tcp_data_snd_check(sk);
5271 if (!inet_csk_ack_scheduled(sk))
5275 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5276 __tcp_ack_snd_check(sk, 0);
5278 #ifdef CONFIG_NET_DMA
5280 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5286 sk->sk_data_ready(sk, 0);
5292 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5296 * Standard slow path.
5299 res = tcp_validate_incoming(sk, skb, th, 1);
5304 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5307 tcp_rcv_rtt_measure_ts(sk, skb);
5309 /* Process urgent data. */
5310 tcp_urg(sk, skb, th);
5312 /* step 7: process the segment text */
5313 tcp_data_queue(sk, skb);
5315 tcp_data_snd_check(sk);
5316 tcp_ack_snd_check(sk);
5320 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5327 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5328 struct tcphdr *th, unsigned len)
5330 struct tcp_sock *tp = tcp_sk(sk);
5331 struct inet_connection_sock *icsk = inet_csk(sk);
5332 int saved_clamp = tp->rx_opt.mss_clamp;
5334 tcp_parse_options(skb, &tp->rx_opt, 0);
5338 * "If the state is SYN-SENT then
5339 * first check the ACK bit
5340 * If the ACK bit is set
5341 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5342 * a reset (unless the RST bit is set, if so drop
5343 * the segment and return)"
5345 * We do not send data with SYN, so that RFC-correct
5348 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5349 goto reset_and_undo;
5351 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5352 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5354 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5355 goto reset_and_undo;
5358 /* Now ACK is acceptable.
5360 * "If the RST bit is set
5361 * If the ACK was acceptable then signal the user "error:
5362 * connection reset", drop the segment, enter CLOSED state,
5363 * delete TCB, and return."
5372 * "fifth, if neither of the SYN or RST bits is set then
5373 * drop the segment and return."
5379 goto discard_and_undo;
5382 * "If the SYN bit is on ...
5383 * are acceptable then ...
5384 * (our SYN has been ACKed), change the connection
5385 * state to ESTABLISHED..."
5388 TCP_ECN_rcv_synack(tp, th);
5390 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5391 tcp_ack(sk, skb, FLAG_SLOWPATH);
5393 /* Ok.. it's good. Set up sequence numbers and
5394 * move to established.
5396 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5397 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5399 /* RFC1323: The window in SYN & SYN/ACK segments is
5402 tp->snd_wnd = ntohs(th->window);
5403 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5405 if (!tp->rx_opt.wscale_ok) {
5406 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5407 tp->window_clamp = min(tp->window_clamp, 65535U);
5410 if (tp->rx_opt.saw_tstamp) {
5411 tp->rx_opt.tstamp_ok = 1;
5412 tp->tcp_header_len =
5413 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5414 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5415 tcp_store_ts_recent(tp);
5417 tp->tcp_header_len = sizeof(struct tcphdr);
5420 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5421 tcp_enable_fack(tp);
5424 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5425 tcp_initialize_rcv_mss(sk);
5427 /* Remember, tcp_poll() does not lock socket!
5428 * Change state from SYN-SENT only after copied_seq
5429 * is initialized. */
5430 tp->copied_seq = tp->rcv_nxt;
5432 tcp_set_state(sk, TCP_ESTABLISHED);
5434 security_inet_conn_established(sk, skb);
5436 /* Make sure socket is routed, for correct metrics. */
5437 icsk->icsk_af_ops->rebuild_header(sk);
5439 tcp_init_metrics(sk);
5441 tcp_init_congestion_control(sk);
5443 /* Prevent spurious tcp_cwnd_restart() on first data
5446 tp->lsndtime = tcp_time_stamp;
5448 tcp_init_buffer_space(sk);
5450 if (sock_flag(sk, SOCK_KEEPOPEN))
5451 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5453 if (!tp->rx_opt.snd_wscale)
5454 __tcp_fast_path_on(tp, tp->snd_wnd);
5458 if (!sock_flag(sk, SOCK_DEAD)) {
5459 sk->sk_state_change(sk);
5460 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5463 if (sk->sk_write_pending ||
5464 icsk->icsk_accept_queue.rskq_defer_accept ||
5465 icsk->icsk_ack.pingpong) {
5466 /* Save one ACK. Data will be ready after
5467 * several ticks, if write_pending is set.
5469 * It may be deleted, but with this feature tcpdumps
5470 * look so _wonderfully_ clever, that I was not able
5471 * to stand against the temptation 8) --ANK
5473 inet_csk_schedule_ack(sk);
5474 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5475 icsk->icsk_ack.ato = TCP_ATO_MIN;
5476 tcp_incr_quickack(sk);
5477 tcp_enter_quickack_mode(sk);
5478 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5479 TCP_DELACK_MAX, TCP_RTO_MAX);
5490 /* No ACK in the segment */
5494 * "If the RST bit is set
5496 * Otherwise (no ACK) drop the segment and return."
5499 goto discard_and_undo;
5503 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5504 tcp_paws_reject(&tp->rx_opt, 0))
5505 goto discard_and_undo;
5508 /* We see SYN without ACK. It is attempt of
5509 * simultaneous connect with crossed SYNs.
5510 * Particularly, it can be connect to self.
5512 tcp_set_state(sk, TCP_SYN_RECV);
5514 if (tp->rx_opt.saw_tstamp) {
5515 tp->rx_opt.tstamp_ok = 1;
5516 tcp_store_ts_recent(tp);
5517 tp->tcp_header_len =
5518 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5520 tp->tcp_header_len = sizeof(struct tcphdr);
5523 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5524 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5526 /* RFC1323: The window in SYN & SYN/ACK segments is
5529 tp->snd_wnd = ntohs(th->window);
5530 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5531 tp->max_window = tp->snd_wnd;
5533 TCP_ECN_rcv_syn(tp, th);
5536 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5537 tcp_initialize_rcv_mss(sk);
5539 tcp_send_synack(sk);
5541 /* Note, we could accept data and URG from this segment.
5542 * There are no obstacles to make this.
5544 * However, if we ignore data in ACKless segments sometimes,
5545 * we have no reasons to accept it sometimes.
5546 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5547 * is not flawless. So, discard packet for sanity.
5548 * Uncomment this return to process the data.
5555 /* "fifth, if neither of the SYN or RST bits is set then
5556 * drop the segment and return."
5560 tcp_clear_options(&tp->rx_opt);
5561 tp->rx_opt.mss_clamp = saved_clamp;
5565 tcp_clear_options(&tp->rx_opt);
5566 tp->rx_opt.mss_clamp = saved_clamp;
5571 * This function implements the receiving procedure of RFC 793 for
5572 * all states except ESTABLISHED and TIME_WAIT.
5573 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5574 * address independent.
5577 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5578 struct tcphdr *th, unsigned len)
5580 struct tcp_sock *tp = tcp_sk(sk);
5581 struct inet_connection_sock *icsk = inet_csk(sk);
5585 tp->rx_opt.saw_tstamp = 0;
5587 switch (sk->sk_state) {
5599 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5602 /* Now we have several options: In theory there is
5603 * nothing else in the frame. KA9Q has an option to
5604 * send data with the syn, BSD accepts data with the
5605 * syn up to the [to be] advertised window and
5606 * Solaris 2.1 gives you a protocol error. For now
5607 * we just ignore it, that fits the spec precisely
5608 * and avoids incompatibilities. It would be nice in
5609 * future to drop through and process the data.
5611 * Now that TTCP is starting to be used we ought to
5613 * But, this leaves one open to an easy denial of
5614 * service attack, and SYN cookies can't defend
5615 * against this problem. So, we drop the data
5616 * in the interest of security over speed unless
5617 * it's still in use.
5625 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5629 /* Do step6 onward by hand. */
5630 tcp_urg(sk, skb, th);
5632 tcp_data_snd_check(sk);
5636 res = tcp_validate_incoming(sk, skb, th, 0);
5640 /* step 5: check the ACK field */
5642 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5644 switch (sk->sk_state) {
5647 tp->copied_seq = tp->rcv_nxt;
5649 tcp_set_state(sk, TCP_ESTABLISHED);
5650 sk->sk_state_change(sk);
5652 /* Note, that this wakeup is only for marginal
5653 * crossed SYN case. Passively open sockets
5654 * are not waked up, because sk->sk_sleep ==
5655 * NULL and sk->sk_socket == NULL.
5659 SOCK_WAKE_IO, POLL_OUT);
5661 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5662 tp->snd_wnd = ntohs(th->window) <<
5663 tp->rx_opt.snd_wscale;
5664 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5666 /* tcp_ack considers this ACK as duplicate
5667 * and does not calculate rtt.
5668 * Fix it at least with timestamps.
5670 if (tp->rx_opt.saw_tstamp &&
5671 tp->rx_opt.rcv_tsecr && !tp->srtt)
5672 tcp_ack_saw_tstamp(sk, 0);
5674 if (tp->rx_opt.tstamp_ok)
5675 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5677 /* Make sure socket is routed, for
5680 icsk->icsk_af_ops->rebuild_header(sk);
5682 tcp_init_metrics(sk);
5684 tcp_init_congestion_control(sk);
5686 /* Prevent spurious tcp_cwnd_restart() on
5687 * first data packet.
5689 tp->lsndtime = tcp_time_stamp;
5692 tcp_initialize_rcv_mss(sk);
5693 tcp_init_buffer_space(sk);
5694 tcp_fast_path_on(tp);
5701 if (tp->snd_una == tp->write_seq) {
5702 tcp_set_state(sk, TCP_FIN_WAIT2);
5703 sk->sk_shutdown |= SEND_SHUTDOWN;
5704 dst_confirm(sk->sk_dst_cache);
5706 if (!sock_flag(sk, SOCK_DEAD))
5707 /* Wake up lingering close() */
5708 sk->sk_state_change(sk);
5712 if (tp->linger2 < 0 ||
5713 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5714 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5716 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5720 tmo = tcp_fin_time(sk);
5721 if (tmo > TCP_TIMEWAIT_LEN) {
5722 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5723 } else if (th->fin || sock_owned_by_user(sk)) {
5724 /* Bad case. We could lose such FIN otherwise.
5725 * It is not a big problem, but it looks confusing
5726 * and not so rare event. We still can lose it now,
5727 * if it spins in bh_lock_sock(), but it is really
5730 inet_csk_reset_keepalive_timer(sk, tmo);
5732 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5740 if (tp->snd_una == tp->write_seq) {
5741 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5747 if (tp->snd_una == tp->write_seq) {
5748 tcp_update_metrics(sk);
5757 /* step 6: check the URG bit */
5758 tcp_urg(sk, skb, th);
5760 /* step 7: process the segment text */
5761 switch (sk->sk_state) {
5762 case TCP_CLOSE_WAIT:
5765 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5769 /* RFC 793 says to queue data in these states,
5770 * RFC 1122 says we MUST send a reset.
5771 * BSD 4.4 also does reset.
5773 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5774 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5775 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5776 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5782 case TCP_ESTABLISHED:
5783 tcp_data_queue(sk, skb);
5788 /* tcp_data could move socket to TIME-WAIT */
5789 if (sk->sk_state != TCP_CLOSE) {
5790 tcp_data_snd_check(sk);
5791 tcp_ack_snd_check(sk);
5801 EXPORT_SYMBOL(sysctl_tcp_ecn);
5802 EXPORT_SYMBOL(sysctl_tcp_reordering);
5803 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5804 EXPORT_SYMBOL(tcp_parse_options);
5805 #ifdef CONFIG_TCP_MD5SIG
5806 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5808 EXPORT_SYMBOL(tcp_rcv_established);
5809 EXPORT_SYMBOL(tcp_rcv_state_process);
5810 EXPORT_SYMBOL(tcp_initialize_rcv_mss);