]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/ipv4/tcp_ipv4.c
tcp: resets are misrouted
[karo-tx-linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
76
77 #include <linux/inet.h>
78 #include <linux/ipv6.h>
79 #include <linux/stddef.h>
80 #include <linux/proc_fs.h>
81 #include <linux/seq_file.h>
82
83 #include <linux/crypto.h>
84 #include <linux/scatterlist.h>
85
86 int sysctl_tcp_tw_reuse __read_mostly;
87 int sysctl_tcp_low_latency __read_mostly;
88 EXPORT_SYMBOL(sysctl_tcp_low_latency);
89
90
91 #ifdef CONFIG_TCP_MD5SIG
92 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
93                                                    __be32 addr);
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #else
97 static inline
98 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
99 {
100         return NULL;
101 }
102 #endif
103
104 struct inet_hashinfo tcp_hashinfo;
105 EXPORT_SYMBOL(tcp_hashinfo);
106
107 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
108 {
109         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
110                                           ip_hdr(skb)->saddr,
111                                           tcp_hdr(skb)->dest,
112                                           tcp_hdr(skb)->source);
113 }
114
115 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116 {
117         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
118         struct tcp_sock *tp = tcp_sk(sk);
119
120         /* With PAWS, it is safe from the viewpoint
121            of data integrity. Even without PAWS it is safe provided sequence
122            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123
124            Actually, the idea is close to VJ's one, only timestamp cache is
125            held not per host, but per port pair and TW bucket is used as state
126            holder.
127
128            If TW bucket has been already destroyed we fall back to VJ's scheme
129            and use initial timestamp retrieved from peer table.
130          */
131         if (tcptw->tw_ts_recent_stamp &&
132             (twp == NULL || (sysctl_tcp_tw_reuse &&
133                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
134                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
135                 if (tp->write_seq == 0)
136                         tp->write_seq = 1;
137                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
138                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
139                 sock_hold(sktw);
140                 return 1;
141         }
142
143         return 0;
144 }
145 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146
147 /* This will initiate an outgoing connection. */
148 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149 {
150         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151         struct inet_sock *inet = inet_sk(sk);
152         struct tcp_sock *tp = tcp_sk(sk);
153         __be16 orig_sport, orig_dport;
154         __be32 daddr, nexthop;
155         struct flowi4 *fl4;
156         struct rtable *rt;
157         int err;
158         struct ip_options_rcu *inet_opt;
159
160         if (addr_len < sizeof(struct sockaddr_in))
161                 return -EINVAL;
162
163         if (usin->sin_family != AF_INET)
164                 return -EAFNOSUPPORT;
165
166         nexthop = daddr = usin->sin_addr.s_addr;
167         inet_opt = rcu_dereference_protected(inet->inet_opt,
168                                              sock_owned_by_user(sk));
169         if (inet_opt && inet_opt->opt.srr) {
170                 if (!daddr)
171                         return -EINVAL;
172                 nexthop = inet_opt->opt.faddr;
173         }
174
175         orig_sport = inet->inet_sport;
176         orig_dport = usin->sin_port;
177         fl4 = &inet->cork.fl.u.ip4;
178         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
179                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
180                               IPPROTO_TCP,
181                               orig_sport, orig_dport, sk, true);
182         if (IS_ERR(rt)) {
183                 err = PTR_ERR(rt);
184                 if (err == -ENETUNREACH)
185                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
186                 return err;
187         }
188
189         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
190                 ip_rt_put(rt);
191                 return -ENETUNREACH;
192         }
193
194         if (!inet_opt || !inet_opt->opt.srr)
195                 daddr = fl4->daddr;
196
197         if (!inet->inet_saddr)
198                 inet->inet_saddr = fl4->saddr;
199         inet->inet_rcv_saddr = inet->inet_saddr;
200
201         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
202                 /* Reset inherited state */
203                 tp->rx_opt.ts_recent       = 0;
204                 tp->rx_opt.ts_recent_stamp = 0;
205                 tp->write_seq              = 0;
206         }
207
208         if (tcp_death_row.sysctl_tw_recycle &&
209             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
210                 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
211                 /*
212                  * VJ's idea. We save last timestamp seen from
213                  * the destination in peer table, when entering state
214                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
215                  * when trying new connection.
216                  */
217                 if (peer) {
218                         inet_peer_refcheck(peer);
219                         if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
220                                 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
221                                 tp->rx_opt.ts_recent = peer->tcp_ts;
222                         }
223                 }
224         }
225
226         inet->inet_dport = usin->sin_port;
227         inet->inet_daddr = daddr;
228
229         inet_csk(sk)->icsk_ext_hdr_len = 0;
230         if (inet_opt)
231                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
232
233         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
234
235         /* Socket identity is still unknown (sport may be zero).
236          * However we set state to SYN-SENT and not releasing socket
237          * lock select source port, enter ourselves into the hash tables and
238          * complete initialization after this.
239          */
240         tcp_set_state(sk, TCP_SYN_SENT);
241         err = inet_hash_connect(&tcp_death_row, sk);
242         if (err)
243                 goto failure;
244
245         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
246                                inet->inet_sport, inet->inet_dport, sk);
247         if (IS_ERR(rt)) {
248                 err = PTR_ERR(rt);
249                 rt = NULL;
250                 goto failure;
251         }
252         /* OK, now commit destination to socket.  */
253         sk->sk_gso_type = SKB_GSO_TCPV4;
254         sk_setup_caps(sk, &rt->dst);
255
256         if (!tp->write_seq)
257                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
258                                                            inet->inet_daddr,
259                                                            inet->inet_sport,
260                                                            usin->sin_port);
261
262         inet->inet_id = tp->write_seq ^ jiffies;
263
264         err = tcp_connect(sk);
265         rt = NULL;
266         if (err)
267                 goto failure;
268
269         return 0;
270
271 failure:
272         /*
273          * This unhashes the socket and releases the local port,
274          * if necessary.
275          */
276         tcp_set_state(sk, TCP_CLOSE);
277         ip_rt_put(rt);
278         sk->sk_route_caps = 0;
279         inet->inet_dport = 0;
280         return err;
281 }
282 EXPORT_SYMBOL(tcp_v4_connect);
283
284 /*
285  * This routine does path mtu discovery as defined in RFC1191.
286  */
287 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
288 {
289         struct dst_entry *dst;
290         struct inet_sock *inet = inet_sk(sk);
291
292         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
293          * send out by Linux are always <576bytes so they should go through
294          * unfragmented).
295          */
296         if (sk->sk_state == TCP_LISTEN)
297                 return;
298
299         /* We don't check in the destentry if pmtu discovery is forbidden
300          * on this route. We just assume that no packet_to_big packets
301          * are send back when pmtu discovery is not active.
302          * There is a small race when the user changes this flag in the
303          * route, but I think that's acceptable.
304          */
305         if ((dst = __sk_dst_check(sk, 0)) == NULL)
306                 return;
307
308         dst->ops->update_pmtu(dst, mtu);
309
310         /* Something is about to be wrong... Remember soft error
311          * for the case, if this connection will not able to recover.
312          */
313         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
314                 sk->sk_err_soft = EMSGSIZE;
315
316         mtu = dst_mtu(dst);
317
318         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
319             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
320                 tcp_sync_mss(sk, mtu);
321
322                 /* Resend the TCP packet because it's
323                  * clear that the old packet has been
324                  * dropped. This is the new "fast" path mtu
325                  * discovery.
326                  */
327                 tcp_simple_retransmit(sk);
328         } /* else let the usual retransmit timer handle it */
329 }
330
331 /*
332  * This routine is called by the ICMP module when it gets some
333  * sort of error condition.  If err < 0 then the socket should
334  * be closed and the error returned to the user.  If err > 0
335  * it's just the icmp type << 8 | icmp code.  After adjustment
336  * header points to the first 8 bytes of the tcp header.  We need
337  * to find the appropriate port.
338  *
339  * The locking strategy used here is very "optimistic". When
340  * someone else accesses the socket the ICMP is just dropped
341  * and for some paths there is no check at all.
342  * A more general error queue to queue errors for later handling
343  * is probably better.
344  *
345  */
346
347 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
348 {
349         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
350         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
351         struct inet_connection_sock *icsk;
352         struct tcp_sock *tp;
353         struct inet_sock *inet;
354         const int type = icmp_hdr(icmp_skb)->type;
355         const int code = icmp_hdr(icmp_skb)->code;
356         struct sock *sk;
357         struct sk_buff *skb;
358         __u32 seq;
359         __u32 remaining;
360         int err;
361         struct net *net = dev_net(icmp_skb->dev);
362
363         if (icmp_skb->len < (iph->ihl << 2) + 8) {
364                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
365                 return;
366         }
367
368         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
369                         iph->saddr, th->source, inet_iif(icmp_skb));
370         if (!sk) {
371                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372                 return;
373         }
374         if (sk->sk_state == TCP_TIME_WAIT) {
375                 inet_twsk_put(inet_twsk(sk));
376                 return;
377         }
378
379         bh_lock_sock(sk);
380         /* If too many ICMPs get dropped on busy
381          * servers this needs to be solved differently.
382          */
383         if (sock_owned_by_user(sk))
384                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
385
386         if (sk->sk_state == TCP_CLOSE)
387                 goto out;
388
389         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
390                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
391                 goto out;
392         }
393
394         icsk = inet_csk(sk);
395         tp = tcp_sk(sk);
396         seq = ntohl(th->seq);
397         if (sk->sk_state != TCP_LISTEN &&
398             !between(seq, tp->snd_una, tp->snd_nxt)) {
399                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
400                 goto out;
401         }
402
403         switch (type) {
404         case ICMP_SOURCE_QUENCH:
405                 /* Just silently ignore these. */
406                 goto out;
407         case ICMP_PARAMETERPROB:
408                 err = EPROTO;
409                 break;
410         case ICMP_DEST_UNREACH:
411                 if (code > NR_ICMP_UNREACH)
412                         goto out;
413
414                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
415                         if (!sock_owned_by_user(sk))
416                                 do_pmtu_discovery(sk, iph, info);
417                         goto out;
418                 }
419
420                 err = icmp_err_convert[code].errno;
421                 /* check if icmp_skb allows revert of backoff
422                  * (see draft-zimmermann-tcp-lcd) */
423                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
424                         break;
425                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
426                     !icsk->icsk_backoff)
427                         break;
428
429                 if (sock_owned_by_user(sk))
430                         break;
431
432                 icsk->icsk_backoff--;
433                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
434                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
435                 tcp_bound_rto(sk);
436
437                 skb = tcp_write_queue_head(sk);
438                 BUG_ON(!skb);
439
440                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
441                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
442
443                 if (remaining) {
444                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445                                                   remaining, TCP_RTO_MAX);
446                 } else {
447                         /* RTO revert clocked out retransmission.
448                          * Will retransmit now */
449                         tcp_retransmit_timer(sk);
450                 }
451
452                 break;
453         case ICMP_TIME_EXCEEDED:
454                 err = EHOSTUNREACH;
455                 break;
456         default:
457                 goto out;
458         }
459
460         switch (sk->sk_state) {
461                 struct request_sock *req, **prev;
462         case TCP_LISTEN:
463                 if (sock_owned_by_user(sk))
464                         goto out;
465
466                 req = inet_csk_search_req(sk, &prev, th->dest,
467                                           iph->daddr, iph->saddr);
468                 if (!req)
469                         goto out;
470
471                 /* ICMPs are not backlogged, hence we cannot get
472                    an established socket here.
473                  */
474                 WARN_ON(req->sk);
475
476                 if (seq != tcp_rsk(req)->snt_isn) {
477                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478                         goto out;
479                 }
480
481                 /*
482                  * Still in SYN_RECV, just remove it silently.
483                  * There is no good way to pass the error to the newly
484                  * created socket, and POSIX does not want network
485                  * errors returned from accept().
486                  */
487                 inet_csk_reqsk_queue_drop(sk, req, prev);
488                 goto out;
489
490         case TCP_SYN_SENT:
491         case TCP_SYN_RECV:  /* Cannot happen.
492                                It can f.e. if SYNs crossed.
493                              */
494                 if (!sock_owned_by_user(sk)) {
495                         sk->sk_err = err;
496
497                         sk->sk_error_report(sk);
498
499                         tcp_done(sk);
500                 } else {
501                         sk->sk_err_soft = err;
502                 }
503                 goto out;
504         }
505
506         /* If we've already connected we will keep trying
507          * until we time out, or the user gives up.
508          *
509          * rfc1122 4.2.3.9 allows to consider as hard errors
510          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
511          * but it is obsoleted by pmtu discovery).
512          *
513          * Note, that in modern internet, where routing is unreliable
514          * and in each dark corner broken firewalls sit, sending random
515          * errors ordered by their masters even this two messages finally lose
516          * their original sense (even Linux sends invalid PORT_UNREACHs)
517          *
518          * Now we are in compliance with RFCs.
519          *                                                      --ANK (980905)
520          */
521
522         inet = inet_sk(sk);
523         if (!sock_owned_by_user(sk) && inet->recverr) {
524                 sk->sk_err = err;
525                 sk->sk_error_report(sk);
526         } else  { /* Only an error on timeout */
527                 sk->sk_err_soft = err;
528         }
529
530 out:
531         bh_unlock_sock(sk);
532         sock_put(sk);
533 }
534
535 static void __tcp_v4_send_check(struct sk_buff *skb,
536                                 __be32 saddr, __be32 daddr)
537 {
538         struct tcphdr *th = tcp_hdr(skb);
539
540         if (skb->ip_summed == CHECKSUM_PARTIAL) {
541                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
542                 skb->csum_start = skb_transport_header(skb) - skb->head;
543                 skb->csum_offset = offsetof(struct tcphdr, check);
544         } else {
545                 th->check = tcp_v4_check(skb->len, saddr, daddr,
546                                          csum_partial(th,
547                                                       th->doff << 2,
548                                                       skb->csum));
549         }
550 }
551
552 /* This routine computes an IPv4 TCP checksum. */
553 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
554 {
555         const struct inet_sock *inet = inet_sk(sk);
556
557         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
558 }
559 EXPORT_SYMBOL(tcp_v4_send_check);
560
561 int tcp_v4_gso_send_check(struct sk_buff *skb)
562 {
563         const struct iphdr *iph;
564         struct tcphdr *th;
565
566         if (!pskb_may_pull(skb, sizeof(*th)))
567                 return -EINVAL;
568
569         iph = ip_hdr(skb);
570         th = tcp_hdr(skb);
571
572         th->check = 0;
573         skb->ip_summed = CHECKSUM_PARTIAL;
574         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
575         return 0;
576 }
577
578 /*
579  *      This routine will send an RST to the other tcp.
580  *
581  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
582  *                    for reset.
583  *      Answer: if a packet caused RST, it is not for a socket
584  *              existing in our system, if it is matched to a socket,
585  *              it is just duplicate segment or bug in other side's TCP.
586  *              So that we build reply only basing on parameters
587  *              arrived with segment.
588  *      Exception: precedence violation. We do not implement it in any case.
589  */
590
591 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
592 {
593         const struct tcphdr *th = tcp_hdr(skb);
594         struct {
595                 struct tcphdr th;
596 #ifdef CONFIG_TCP_MD5SIG
597                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
598 #endif
599         } rep;
600         struct ip_reply_arg arg;
601 #ifdef CONFIG_TCP_MD5SIG
602         struct tcp_md5sig_key *key;
603 #endif
604         struct net *net;
605
606         /* Never send a reset in response to a reset. */
607         if (th->rst)
608                 return;
609
610         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611                 return;
612
613         /* Swap the send and the receive. */
614         memset(&rep, 0, sizeof(rep));
615         rep.th.dest   = th->source;
616         rep.th.source = th->dest;
617         rep.th.doff   = sizeof(struct tcphdr) / 4;
618         rep.th.rst    = 1;
619
620         if (th->ack) {
621                 rep.th.seq = th->ack_seq;
622         } else {
623                 rep.th.ack = 1;
624                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625                                        skb->len - (th->doff << 2));
626         }
627
628         memset(&arg, 0, sizeof(arg));
629         arg.iov[0].iov_base = (unsigned char *)&rep;
630         arg.iov[0].iov_len  = sizeof(rep.th);
631
632 #ifdef CONFIG_TCP_MD5SIG
633         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->saddr) : NULL;
634         if (key) {
635                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
636                                    (TCPOPT_NOP << 16) |
637                                    (TCPOPT_MD5SIG << 8) |
638                                    TCPOLEN_MD5SIG);
639                 /* Update length and the length the header thinks exists */
640                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
641                 rep.th.doff = arg.iov[0].iov_len / 4;
642
643                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
644                                      key, ip_hdr(skb)->saddr,
645                                      ip_hdr(skb)->daddr, &rep.th);
646         }
647 #endif
648         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
649                                       ip_hdr(skb)->saddr, /* XXX */
650                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
651         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
652         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
653         /* When socket is gone, all binding information is lost.
654          * routing might fail in this case. No choice here, if we choose to force
655          * input interface, we will misroute in case of asymmetric route.
656          */
657         if (sk)
658                 arg.bound_dev_if = sk->sk_bound_dev_if;
659
660         net = dev_net(skb_dst(skb)->dev);
661         arg.tos = ip_hdr(skb)->tos;
662         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
663                       &arg, arg.iov[0].iov_len);
664
665         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
666         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
667 }
668
669 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
670    outside socket context is ugly, certainly. What can I do?
671  */
672
673 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
674                             u32 win, u32 ts, int oif,
675                             struct tcp_md5sig_key *key,
676                             int reply_flags, u8 tos)
677 {
678         const struct tcphdr *th = tcp_hdr(skb);
679         struct {
680                 struct tcphdr th;
681                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
682 #ifdef CONFIG_TCP_MD5SIG
683                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
684 #endif
685                         ];
686         } rep;
687         struct ip_reply_arg arg;
688         struct net *net = dev_net(skb_dst(skb)->dev);
689
690         memset(&rep.th, 0, sizeof(struct tcphdr));
691         memset(&arg, 0, sizeof(arg));
692
693         arg.iov[0].iov_base = (unsigned char *)&rep;
694         arg.iov[0].iov_len  = sizeof(rep.th);
695         if (ts) {
696                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
697                                    (TCPOPT_TIMESTAMP << 8) |
698                                    TCPOLEN_TIMESTAMP);
699                 rep.opt[1] = htonl(tcp_time_stamp);
700                 rep.opt[2] = htonl(ts);
701                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
702         }
703
704         /* Swap the send and the receive. */
705         rep.th.dest    = th->source;
706         rep.th.source  = th->dest;
707         rep.th.doff    = arg.iov[0].iov_len / 4;
708         rep.th.seq     = htonl(seq);
709         rep.th.ack_seq = htonl(ack);
710         rep.th.ack     = 1;
711         rep.th.window  = htons(win);
712
713 #ifdef CONFIG_TCP_MD5SIG
714         if (key) {
715                 int offset = (ts) ? 3 : 0;
716
717                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
718                                           (TCPOPT_NOP << 16) |
719                                           (TCPOPT_MD5SIG << 8) |
720                                           TCPOLEN_MD5SIG);
721                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
722                 rep.th.doff = arg.iov[0].iov_len/4;
723
724                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
725                                     key, ip_hdr(skb)->saddr,
726                                     ip_hdr(skb)->daddr, &rep.th);
727         }
728 #endif
729         arg.flags = reply_flags;
730         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
731                                       ip_hdr(skb)->saddr, /* XXX */
732                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
733         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
734         if (oif)
735                 arg.bound_dev_if = oif;
736         arg.tos = tos;
737         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
738                       &arg, arg.iov[0].iov_len);
739
740         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
741 }
742
743 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
744 {
745         struct inet_timewait_sock *tw = inet_twsk(sk);
746         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
747
748         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
749                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
750                         tcptw->tw_ts_recent,
751                         tw->tw_bound_dev_if,
752                         tcp_twsk_md5_key(tcptw),
753                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
754                         tw->tw_tos
755                         );
756
757         inet_twsk_put(tw);
758 }
759
760 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
761                                   struct request_sock *req)
762 {
763         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
764                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
765                         req->ts_recent,
766                         0,
767                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
768                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
769                         ip_hdr(skb)->tos);
770 }
771
772 /*
773  *      Send a SYN-ACK after having received a SYN.
774  *      This still operates on a request_sock only, not on a big
775  *      socket.
776  */
777 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
778                               struct request_sock *req,
779                               struct request_values *rvp)
780 {
781         const struct inet_request_sock *ireq = inet_rsk(req);
782         struct flowi4 fl4;
783         int err = -1;
784         struct sk_buff * skb;
785
786         /* First, grab a route. */
787         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
788                 return -1;
789
790         skb = tcp_make_synack(sk, dst, req, rvp);
791
792         if (skb) {
793                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
794
795                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
796                                             ireq->rmt_addr,
797                                             ireq->opt);
798                 err = net_xmit_eval(err);
799         }
800
801         dst_release(dst);
802         return err;
803 }
804
805 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
806                               struct request_values *rvp)
807 {
808         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
809         return tcp_v4_send_synack(sk, NULL, req, rvp);
810 }
811
812 /*
813  *      IPv4 request_sock destructor.
814  */
815 static void tcp_v4_reqsk_destructor(struct request_sock *req)
816 {
817         kfree(inet_rsk(req)->opt);
818 }
819
820 /*
821  * Return 1 if a syncookie should be sent
822  */
823 int tcp_syn_flood_action(struct sock *sk,
824                          const struct sk_buff *skb,
825                          const char *proto)
826 {
827         const char *msg = "Dropping request";
828         int want_cookie = 0;
829         struct listen_sock *lopt;
830
831
832
833 #ifdef CONFIG_SYN_COOKIES
834         if (sysctl_tcp_syncookies) {
835                 msg = "Sending cookies";
836                 want_cookie = 1;
837                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
838         } else
839 #endif
840                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
841
842         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
843         if (!lopt->synflood_warned) {
844                 lopt->synflood_warned = 1;
845                 pr_info("%s: Possible SYN flooding on port %d. %s. "
846                         " Check SNMP counters.\n",
847                         proto, ntohs(tcp_hdr(skb)->dest), msg);
848         }
849         return want_cookie;
850 }
851 EXPORT_SYMBOL(tcp_syn_flood_action);
852
853 /*
854  * Save and compile IPv4 options into the request_sock if needed.
855  */
856 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
857                                                   struct sk_buff *skb)
858 {
859         const struct ip_options *opt = &(IPCB(skb)->opt);
860         struct ip_options_rcu *dopt = NULL;
861
862         if (opt && opt->optlen) {
863                 int opt_size = sizeof(*dopt) + opt->optlen;
864
865                 dopt = kmalloc(opt_size, GFP_ATOMIC);
866                 if (dopt) {
867                         if (ip_options_echo(&dopt->opt, skb)) {
868                                 kfree(dopt);
869                                 dopt = NULL;
870                         }
871                 }
872         }
873         return dopt;
874 }
875
876 #ifdef CONFIG_TCP_MD5SIG
877 /*
878  * RFC2385 MD5 checksumming requires a mapping of
879  * IP address->MD5 Key.
880  * We need to maintain these in the sk structure.
881  */
882
883 /* Find the Key structure for an address.  */
884 static struct tcp_md5sig_key *
885                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
886 {
887         struct tcp_sock *tp = tcp_sk(sk);
888         int i;
889
890         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
891                 return NULL;
892         for (i = 0; i < tp->md5sig_info->entries4; i++) {
893                 if (tp->md5sig_info->keys4[i].addr == addr)
894                         return &tp->md5sig_info->keys4[i].base;
895         }
896         return NULL;
897 }
898
899 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
900                                          struct sock *addr_sk)
901 {
902         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
903 }
904 EXPORT_SYMBOL(tcp_v4_md5_lookup);
905
906 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
907                                                       struct request_sock *req)
908 {
909         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
910 }
911
912 /* This can be called on a newly created socket, from other files */
913 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
914                       u8 *newkey, u8 newkeylen)
915 {
916         /* Add Key to the list */
917         struct tcp_md5sig_key *key;
918         struct tcp_sock *tp = tcp_sk(sk);
919         struct tcp4_md5sig_key *keys;
920
921         key = tcp_v4_md5_do_lookup(sk, addr);
922         if (key) {
923                 /* Pre-existing entry - just update that one. */
924                 kfree(key->key);
925                 key->key = newkey;
926                 key->keylen = newkeylen;
927         } else {
928                 struct tcp_md5sig_info *md5sig;
929
930                 if (!tp->md5sig_info) {
931                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
932                                                   GFP_ATOMIC);
933                         if (!tp->md5sig_info) {
934                                 kfree(newkey);
935                                 return -ENOMEM;
936                         }
937                         sk_nocaps_add(sk, NETIF_F_GSO_MASK);
938                 }
939
940                 md5sig = tp->md5sig_info;
941                 if (md5sig->entries4 == 0 &&
942                     tcp_alloc_md5sig_pool(sk) == NULL) {
943                         kfree(newkey);
944                         return -ENOMEM;
945                 }
946
947                 if (md5sig->alloced4 == md5sig->entries4) {
948                         keys = kmalloc((sizeof(*keys) *
949                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
950                         if (!keys) {
951                                 kfree(newkey);
952                                 if (md5sig->entries4 == 0)
953                                         tcp_free_md5sig_pool();
954                                 return -ENOMEM;
955                         }
956
957                         if (md5sig->entries4)
958                                 memcpy(keys, md5sig->keys4,
959                                        sizeof(*keys) * md5sig->entries4);
960
961                         /* Free old key list, and reference new one */
962                         kfree(md5sig->keys4);
963                         md5sig->keys4 = keys;
964                         md5sig->alloced4++;
965                 }
966                 md5sig->entries4++;
967                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
968                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
969                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
970         }
971         return 0;
972 }
973 EXPORT_SYMBOL(tcp_v4_md5_do_add);
974
975 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
976                                u8 *newkey, u8 newkeylen)
977 {
978         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
979                                  newkey, newkeylen);
980 }
981
982 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
983 {
984         struct tcp_sock *tp = tcp_sk(sk);
985         int i;
986
987         for (i = 0; i < tp->md5sig_info->entries4; i++) {
988                 if (tp->md5sig_info->keys4[i].addr == addr) {
989                         /* Free the key */
990                         kfree(tp->md5sig_info->keys4[i].base.key);
991                         tp->md5sig_info->entries4--;
992
993                         if (tp->md5sig_info->entries4 == 0) {
994                                 kfree(tp->md5sig_info->keys4);
995                                 tp->md5sig_info->keys4 = NULL;
996                                 tp->md5sig_info->alloced4 = 0;
997                                 tcp_free_md5sig_pool();
998                         } else if (tp->md5sig_info->entries4 != i) {
999                                 /* Need to do some manipulation */
1000                                 memmove(&tp->md5sig_info->keys4[i],
1001                                         &tp->md5sig_info->keys4[i+1],
1002                                         (tp->md5sig_info->entries4 - i) *
1003                                          sizeof(struct tcp4_md5sig_key));
1004                         }
1005                         return 0;
1006                 }
1007         }
1008         return -ENOENT;
1009 }
1010 EXPORT_SYMBOL(tcp_v4_md5_do_del);
1011
1012 static void tcp_v4_clear_md5_list(struct sock *sk)
1013 {
1014         struct tcp_sock *tp = tcp_sk(sk);
1015
1016         /* Free each key, then the set of key keys,
1017          * the crypto element, and then decrement our
1018          * hold on the last resort crypto.
1019          */
1020         if (tp->md5sig_info->entries4) {
1021                 int i;
1022                 for (i = 0; i < tp->md5sig_info->entries4; i++)
1023                         kfree(tp->md5sig_info->keys4[i].base.key);
1024                 tp->md5sig_info->entries4 = 0;
1025                 tcp_free_md5sig_pool();
1026         }
1027         if (tp->md5sig_info->keys4) {
1028                 kfree(tp->md5sig_info->keys4);
1029                 tp->md5sig_info->keys4 = NULL;
1030                 tp->md5sig_info->alloced4  = 0;
1031         }
1032 }
1033
1034 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1035                                  int optlen)
1036 {
1037         struct tcp_md5sig cmd;
1038         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1039         u8 *newkey;
1040
1041         if (optlen < sizeof(cmd))
1042                 return -EINVAL;
1043
1044         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1045                 return -EFAULT;
1046
1047         if (sin->sin_family != AF_INET)
1048                 return -EINVAL;
1049
1050         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1051                 if (!tcp_sk(sk)->md5sig_info)
1052                         return -ENOENT;
1053                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1054         }
1055
1056         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1057                 return -EINVAL;
1058
1059         if (!tcp_sk(sk)->md5sig_info) {
1060                 struct tcp_sock *tp = tcp_sk(sk);
1061                 struct tcp_md5sig_info *p;
1062
1063                 p = kzalloc(sizeof(*p), sk->sk_allocation);
1064                 if (!p)
1065                         return -EINVAL;
1066
1067                 tp->md5sig_info = p;
1068                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1069         }
1070
1071         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1072         if (!newkey)
1073                 return -ENOMEM;
1074         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1075                                  newkey, cmd.tcpm_keylen);
1076 }
1077
1078 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1079                                         __be32 daddr, __be32 saddr, int nbytes)
1080 {
1081         struct tcp4_pseudohdr *bp;
1082         struct scatterlist sg;
1083
1084         bp = &hp->md5_blk.ip4;
1085
1086         /*
1087          * 1. the TCP pseudo-header (in the order: source IP address,
1088          * destination IP address, zero-padded protocol number, and
1089          * segment length)
1090          */
1091         bp->saddr = saddr;
1092         bp->daddr = daddr;
1093         bp->pad = 0;
1094         bp->protocol = IPPROTO_TCP;
1095         bp->len = cpu_to_be16(nbytes);
1096
1097         sg_init_one(&sg, bp, sizeof(*bp));
1098         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1099 }
1100
1101 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1102                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1103 {
1104         struct tcp_md5sig_pool *hp;
1105         struct hash_desc *desc;
1106
1107         hp = tcp_get_md5sig_pool();
1108         if (!hp)
1109                 goto clear_hash_noput;
1110         desc = &hp->md5_desc;
1111
1112         if (crypto_hash_init(desc))
1113                 goto clear_hash;
1114         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1115                 goto clear_hash;
1116         if (tcp_md5_hash_header(hp, th))
1117                 goto clear_hash;
1118         if (tcp_md5_hash_key(hp, key))
1119                 goto clear_hash;
1120         if (crypto_hash_final(desc, md5_hash))
1121                 goto clear_hash;
1122
1123         tcp_put_md5sig_pool();
1124         return 0;
1125
1126 clear_hash:
1127         tcp_put_md5sig_pool();
1128 clear_hash_noput:
1129         memset(md5_hash, 0, 16);
1130         return 1;
1131 }
1132
1133 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1134                         const struct sock *sk, const struct request_sock *req,
1135                         const struct sk_buff *skb)
1136 {
1137         struct tcp_md5sig_pool *hp;
1138         struct hash_desc *desc;
1139         const struct tcphdr *th = tcp_hdr(skb);
1140         __be32 saddr, daddr;
1141
1142         if (sk) {
1143                 saddr = inet_sk(sk)->inet_saddr;
1144                 daddr = inet_sk(sk)->inet_daddr;
1145         } else if (req) {
1146                 saddr = inet_rsk(req)->loc_addr;
1147                 daddr = inet_rsk(req)->rmt_addr;
1148         } else {
1149                 const struct iphdr *iph = ip_hdr(skb);
1150                 saddr = iph->saddr;
1151                 daddr = iph->daddr;
1152         }
1153
1154         hp = tcp_get_md5sig_pool();
1155         if (!hp)
1156                 goto clear_hash_noput;
1157         desc = &hp->md5_desc;
1158
1159         if (crypto_hash_init(desc))
1160                 goto clear_hash;
1161
1162         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1163                 goto clear_hash;
1164         if (tcp_md5_hash_header(hp, th))
1165                 goto clear_hash;
1166         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1167                 goto clear_hash;
1168         if (tcp_md5_hash_key(hp, key))
1169                 goto clear_hash;
1170         if (crypto_hash_final(desc, md5_hash))
1171                 goto clear_hash;
1172
1173         tcp_put_md5sig_pool();
1174         return 0;
1175
1176 clear_hash:
1177         tcp_put_md5sig_pool();
1178 clear_hash_noput:
1179         memset(md5_hash, 0, 16);
1180         return 1;
1181 }
1182 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1183
1184 static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1185 {
1186         /*
1187          * This gets called for each TCP segment that arrives
1188          * so we want to be efficient.
1189          * We have 3 drop cases:
1190          * o No MD5 hash and one expected.
1191          * o MD5 hash and we're not expecting one.
1192          * o MD5 hash and its wrong.
1193          */
1194         const __u8 *hash_location = NULL;
1195         struct tcp_md5sig_key *hash_expected;
1196         const struct iphdr *iph = ip_hdr(skb);
1197         const struct tcphdr *th = tcp_hdr(skb);
1198         int genhash;
1199         unsigned char newhash[16];
1200
1201         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1202         hash_location = tcp_parse_md5sig_option(th);
1203
1204         /* We've parsed the options - do we have a hash? */
1205         if (!hash_expected && !hash_location)
1206                 return 0;
1207
1208         if (hash_expected && !hash_location) {
1209                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1210                 return 1;
1211         }
1212
1213         if (!hash_expected && hash_location) {
1214                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1215                 return 1;
1216         }
1217
1218         /* Okay, so this is hash_expected and hash_location -
1219          * so we need to calculate the checksum.
1220          */
1221         genhash = tcp_v4_md5_hash_skb(newhash,
1222                                       hash_expected,
1223                                       NULL, NULL, skb);
1224
1225         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1226                 if (net_ratelimit()) {
1227                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1228                                &iph->saddr, ntohs(th->source),
1229                                &iph->daddr, ntohs(th->dest),
1230                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1231                 }
1232                 return 1;
1233         }
1234         return 0;
1235 }
1236
1237 #endif
1238
1239 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1240         .family         =       PF_INET,
1241         .obj_size       =       sizeof(struct tcp_request_sock),
1242         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1243         .send_ack       =       tcp_v4_reqsk_send_ack,
1244         .destructor     =       tcp_v4_reqsk_destructor,
1245         .send_reset     =       tcp_v4_send_reset,
1246         .syn_ack_timeout =      tcp_syn_ack_timeout,
1247 };
1248
1249 #ifdef CONFIG_TCP_MD5SIG
1250 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1251         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1252         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1253 };
1254 #endif
1255
1256 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1257 {
1258         struct tcp_extend_values tmp_ext;
1259         struct tcp_options_received tmp_opt;
1260         const u8 *hash_location;
1261         struct request_sock *req;
1262         struct inet_request_sock *ireq;
1263         struct tcp_sock *tp = tcp_sk(sk);
1264         struct dst_entry *dst = NULL;
1265         __be32 saddr = ip_hdr(skb)->saddr;
1266         __be32 daddr = ip_hdr(skb)->daddr;
1267         __u32 isn = TCP_SKB_CB(skb)->when;
1268         int want_cookie = 0;
1269
1270         /* Never answer to SYNs send to broadcast or multicast */
1271         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1272                 goto drop;
1273
1274         /* TW buckets are converted to open requests without
1275          * limitations, they conserve resources and peer is
1276          * evidently real one.
1277          */
1278         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1279                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1280                 if (!want_cookie)
1281                         goto drop;
1282         }
1283
1284         /* Accept backlog is full. If we have already queued enough
1285          * of warm entries in syn queue, drop request. It is better than
1286          * clogging syn queue with openreqs with exponentially increasing
1287          * timeout.
1288          */
1289         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1290                 goto drop;
1291
1292         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1293         if (!req)
1294                 goto drop;
1295
1296 #ifdef CONFIG_TCP_MD5SIG
1297         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1298 #endif
1299
1300         tcp_clear_options(&tmp_opt);
1301         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1302         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1303         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1304
1305         if (tmp_opt.cookie_plus > 0 &&
1306             tmp_opt.saw_tstamp &&
1307             !tp->rx_opt.cookie_out_never &&
1308             (sysctl_tcp_cookie_size > 0 ||
1309              (tp->cookie_values != NULL &&
1310               tp->cookie_values->cookie_desired > 0))) {
1311                 u8 *c;
1312                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1313                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1314
1315                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1316                         goto drop_and_release;
1317
1318                 /* Secret recipe starts with IP addresses */
1319                 *mess++ ^= (__force u32)daddr;
1320                 *mess++ ^= (__force u32)saddr;
1321
1322                 /* plus variable length Initiator Cookie */
1323                 c = (u8 *)mess;
1324                 while (l-- > 0)
1325                         *c++ ^= *hash_location++;
1326
1327                 want_cookie = 0;        /* not our kind of cookie */
1328                 tmp_ext.cookie_out_never = 0; /* false */
1329                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1330         } else if (!tp->rx_opt.cookie_in_always) {
1331                 /* redundant indications, but ensure initialization. */
1332                 tmp_ext.cookie_out_never = 1; /* true */
1333                 tmp_ext.cookie_plus = 0;
1334         } else {
1335                 goto drop_and_release;
1336         }
1337         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1338
1339         if (want_cookie && !tmp_opt.saw_tstamp)
1340                 tcp_clear_options(&tmp_opt);
1341
1342         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1343         tcp_openreq_init(req, &tmp_opt, skb);
1344
1345         ireq = inet_rsk(req);
1346         ireq->loc_addr = daddr;
1347         ireq->rmt_addr = saddr;
1348         ireq->no_srccheck = inet_sk(sk)->transparent;
1349         ireq->opt = tcp_v4_save_options(sk, skb);
1350
1351         if (security_inet_conn_request(sk, skb, req))
1352                 goto drop_and_free;
1353
1354         if (!want_cookie || tmp_opt.tstamp_ok)
1355                 TCP_ECN_create_request(req, tcp_hdr(skb));
1356
1357         if (want_cookie) {
1358                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1359                 req->cookie_ts = tmp_opt.tstamp_ok;
1360         } else if (!isn) {
1361                 struct inet_peer *peer = NULL;
1362                 struct flowi4 fl4;
1363
1364                 /* VJ's idea. We save last timestamp seen
1365                  * from the destination in peer table, when entering
1366                  * state TIME-WAIT, and check against it before
1367                  * accepting new connection request.
1368                  *
1369                  * If "isn" is not zero, this request hit alive
1370                  * timewait bucket, so that all the necessary checks
1371                  * are made in the function processing timewait state.
1372                  */
1373                 if (tmp_opt.saw_tstamp &&
1374                     tcp_death_row.sysctl_tw_recycle &&
1375                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1376                     fl4.daddr == saddr &&
1377                     (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1378                         inet_peer_refcheck(peer);
1379                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1380                             (s32)(peer->tcp_ts - req->ts_recent) >
1381                                                         TCP_PAWS_WINDOW) {
1382                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1383                                 goto drop_and_release;
1384                         }
1385                 }
1386                 /* Kill the following clause, if you dislike this way. */
1387                 else if (!sysctl_tcp_syncookies &&
1388                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1389                           (sysctl_max_syn_backlog >> 2)) &&
1390                          (!peer || !peer->tcp_ts_stamp) &&
1391                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1392                         /* Without syncookies last quarter of
1393                          * backlog is filled with destinations,
1394                          * proven to be alive.
1395                          * It means that we continue to communicate
1396                          * to destinations, already remembered
1397                          * to the moment of synflood.
1398                          */
1399                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1400                                        &saddr, ntohs(tcp_hdr(skb)->source));
1401                         goto drop_and_release;
1402                 }
1403
1404                 isn = tcp_v4_init_sequence(skb);
1405         }
1406         tcp_rsk(req)->snt_isn = isn;
1407         tcp_rsk(req)->snt_synack = tcp_time_stamp;
1408
1409         if (tcp_v4_send_synack(sk, dst, req,
1410                                (struct request_values *)&tmp_ext) ||
1411             want_cookie)
1412                 goto drop_and_free;
1413
1414         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1415         return 0;
1416
1417 drop_and_release:
1418         dst_release(dst);
1419 drop_and_free:
1420         reqsk_free(req);
1421 drop:
1422         return 0;
1423 }
1424 EXPORT_SYMBOL(tcp_v4_conn_request);
1425
1426
1427 /*
1428  * The three way handshake has completed - we got a valid synack -
1429  * now create the new socket.
1430  */
1431 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1432                                   struct request_sock *req,
1433                                   struct dst_entry *dst)
1434 {
1435         struct inet_request_sock *ireq;
1436         struct inet_sock *newinet;
1437         struct tcp_sock *newtp;
1438         struct sock *newsk;
1439 #ifdef CONFIG_TCP_MD5SIG
1440         struct tcp_md5sig_key *key;
1441 #endif
1442         struct ip_options_rcu *inet_opt;
1443
1444         if (sk_acceptq_is_full(sk))
1445                 goto exit_overflow;
1446
1447         newsk = tcp_create_openreq_child(sk, req, skb);
1448         if (!newsk)
1449                 goto exit_nonewsk;
1450
1451         newsk->sk_gso_type = SKB_GSO_TCPV4;
1452
1453         newtp                 = tcp_sk(newsk);
1454         newinet               = inet_sk(newsk);
1455         ireq                  = inet_rsk(req);
1456         newinet->inet_daddr   = ireq->rmt_addr;
1457         newinet->inet_rcv_saddr = ireq->loc_addr;
1458         newinet->inet_saddr           = ireq->loc_addr;
1459         inet_opt              = ireq->opt;
1460         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1461         ireq->opt             = NULL;
1462         newinet->mc_index     = inet_iif(skb);
1463         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1464         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1465         if (inet_opt)
1466                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1467         newinet->inet_id = newtp->write_seq ^ jiffies;
1468
1469         if (!dst) {
1470                 dst = inet_csk_route_child_sock(sk, newsk, req);
1471                 if (!dst)
1472                         goto put_and_exit;
1473         } else {
1474                 /* syncookie case : see end of cookie_v4_check() */
1475         }
1476         sk_setup_caps(newsk, dst);
1477
1478         tcp_mtup_init(newsk);
1479         tcp_sync_mss(newsk, dst_mtu(dst));
1480         newtp->advmss = dst_metric_advmss(dst);
1481         if (tcp_sk(sk)->rx_opt.user_mss &&
1482             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1483                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1484
1485         tcp_initialize_rcv_mss(newsk);
1486         if (tcp_rsk(req)->snt_synack)
1487                 tcp_valid_rtt_meas(newsk,
1488                     tcp_time_stamp - tcp_rsk(req)->snt_synack);
1489         newtp->total_retrans = req->retrans;
1490
1491 #ifdef CONFIG_TCP_MD5SIG
1492         /* Copy over the MD5 key from the original socket */
1493         key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1494         if (key != NULL) {
1495                 /*
1496                  * We're using one, so create a matching key
1497                  * on the newsk structure. If we fail to get
1498                  * memory, then we end up not copying the key
1499                  * across. Shucks.
1500                  */
1501                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1502                 if (newkey != NULL)
1503                         tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1504                                           newkey, key->keylen);
1505                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1506         }
1507 #endif
1508
1509         if (__inet_inherit_port(sk, newsk) < 0)
1510                 goto put_and_exit;
1511         __inet_hash_nolisten(newsk, NULL);
1512
1513         return newsk;
1514
1515 exit_overflow:
1516         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1517 exit_nonewsk:
1518         dst_release(dst);
1519 exit:
1520         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1521         return NULL;
1522 put_and_exit:
1523         tcp_clear_xmit_timers(newsk);
1524         bh_unlock_sock(newsk);
1525         sock_put(newsk);
1526         goto exit;
1527 }
1528 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1529
1530 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1531 {
1532         struct tcphdr *th = tcp_hdr(skb);
1533         const struct iphdr *iph = ip_hdr(skb);
1534         struct sock *nsk;
1535         struct request_sock **prev;
1536         /* Find possible connection requests. */
1537         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1538                                                        iph->saddr, iph->daddr);
1539         if (req)
1540                 return tcp_check_req(sk, skb, req, prev);
1541
1542         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1543                         th->source, iph->daddr, th->dest, inet_iif(skb));
1544
1545         if (nsk) {
1546                 if (nsk->sk_state != TCP_TIME_WAIT) {
1547                         bh_lock_sock(nsk);
1548                         return nsk;
1549                 }
1550                 inet_twsk_put(inet_twsk(nsk));
1551                 return NULL;
1552         }
1553
1554 #ifdef CONFIG_SYN_COOKIES
1555         if (!th->syn)
1556                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1557 #endif
1558         return sk;
1559 }
1560
1561 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1562 {
1563         const struct iphdr *iph = ip_hdr(skb);
1564
1565         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1566                 if (!tcp_v4_check(skb->len, iph->saddr,
1567                                   iph->daddr, skb->csum)) {
1568                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1569                         return 0;
1570                 }
1571         }
1572
1573         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1574                                        skb->len, IPPROTO_TCP, 0);
1575
1576         if (skb->len <= 76) {
1577                 return __skb_checksum_complete(skb);
1578         }
1579         return 0;
1580 }
1581
1582
1583 /* The socket must have it's spinlock held when we get
1584  * here.
1585  *
1586  * We have a potential double-lock case here, so even when
1587  * doing backlog processing we use the BH locking scheme.
1588  * This is because we cannot sleep with the original spinlock
1589  * held.
1590  */
1591 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1592 {
1593         struct sock *rsk;
1594 #ifdef CONFIG_TCP_MD5SIG
1595         /*
1596          * We really want to reject the packet as early as possible
1597          * if:
1598          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1599          *  o There is an MD5 option and we're not expecting one
1600          */
1601         if (tcp_v4_inbound_md5_hash(sk, skb))
1602                 goto discard;
1603 #endif
1604
1605         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1606                 sock_rps_save_rxhash(sk, skb);
1607                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1608                         rsk = sk;
1609                         goto reset;
1610                 }
1611                 return 0;
1612         }
1613
1614         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1615                 goto csum_err;
1616
1617         if (sk->sk_state == TCP_LISTEN) {
1618                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1619                 if (!nsk)
1620                         goto discard;
1621
1622                 if (nsk != sk) {
1623                         sock_rps_save_rxhash(nsk, skb);
1624                         if (tcp_child_process(sk, nsk, skb)) {
1625                                 rsk = nsk;
1626                                 goto reset;
1627                         }
1628                         return 0;
1629                 }
1630         } else
1631                 sock_rps_save_rxhash(sk, skb);
1632
1633         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1634                 rsk = sk;
1635                 goto reset;
1636         }
1637         return 0;
1638
1639 reset:
1640         tcp_v4_send_reset(rsk, skb);
1641 discard:
1642         kfree_skb(skb);
1643         /* Be careful here. If this function gets more complicated and
1644          * gcc suffers from register pressure on the x86, sk (in %ebx)
1645          * might be destroyed here. This current version compiles correctly,
1646          * but you have been warned.
1647          */
1648         return 0;
1649
1650 csum_err:
1651         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1652         goto discard;
1653 }
1654 EXPORT_SYMBOL(tcp_v4_do_rcv);
1655
1656 /*
1657  *      From tcp_input.c
1658  */
1659
1660 int tcp_v4_rcv(struct sk_buff *skb)
1661 {
1662         const struct iphdr *iph;
1663         const struct tcphdr *th;
1664         struct sock *sk;
1665         int ret;
1666         struct net *net = dev_net(skb->dev);
1667
1668         if (skb->pkt_type != PACKET_HOST)
1669                 goto discard_it;
1670
1671         /* Count it even if it's bad */
1672         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1673
1674         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1675                 goto discard_it;
1676
1677         th = tcp_hdr(skb);
1678
1679         if (th->doff < sizeof(struct tcphdr) / 4)
1680                 goto bad_packet;
1681         if (!pskb_may_pull(skb, th->doff * 4))
1682                 goto discard_it;
1683
1684         /* An explanation is required here, I think.
1685          * Packet length and doff are validated by header prediction,
1686          * provided case of th->doff==0 is eliminated.
1687          * So, we defer the checks. */
1688         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1689                 goto bad_packet;
1690
1691         th = tcp_hdr(skb);
1692         iph = ip_hdr(skb);
1693         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1694         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1695                                     skb->len - th->doff * 4);
1696         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1697         TCP_SKB_CB(skb)->when    = 0;
1698         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1699         TCP_SKB_CB(skb)->sacked  = 0;
1700
1701         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1702         if (!sk)
1703                 goto no_tcp_socket;
1704
1705 process:
1706         if (sk->sk_state == TCP_TIME_WAIT)
1707                 goto do_time_wait;
1708
1709         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1710                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1711                 goto discard_and_relse;
1712         }
1713
1714         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1715                 goto discard_and_relse;
1716         nf_reset(skb);
1717
1718         if (sk_filter(sk, skb))
1719                 goto discard_and_relse;
1720
1721         skb->dev = NULL;
1722
1723         bh_lock_sock_nested(sk);
1724         ret = 0;
1725         if (!sock_owned_by_user(sk)) {
1726 #ifdef CONFIG_NET_DMA
1727                 struct tcp_sock *tp = tcp_sk(sk);
1728                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1729                         tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1730                 if (tp->ucopy.dma_chan)
1731                         ret = tcp_v4_do_rcv(sk, skb);
1732                 else
1733 #endif
1734                 {
1735                         if (!tcp_prequeue(sk, skb))
1736                                 ret = tcp_v4_do_rcv(sk, skb);
1737                 }
1738         } else if (unlikely(sk_add_backlog(sk, skb))) {
1739                 bh_unlock_sock(sk);
1740                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1741                 goto discard_and_relse;
1742         }
1743         bh_unlock_sock(sk);
1744
1745         sock_put(sk);
1746
1747         return ret;
1748
1749 no_tcp_socket:
1750         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1751                 goto discard_it;
1752
1753         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1754 bad_packet:
1755                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1756         } else {
1757                 tcp_v4_send_reset(NULL, skb);
1758         }
1759
1760 discard_it:
1761         /* Discard frame. */
1762         kfree_skb(skb);
1763         return 0;
1764
1765 discard_and_relse:
1766         sock_put(sk);
1767         goto discard_it;
1768
1769 do_time_wait:
1770         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1771                 inet_twsk_put(inet_twsk(sk));
1772                 goto discard_it;
1773         }
1774
1775         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1776                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1777                 inet_twsk_put(inet_twsk(sk));
1778                 goto discard_it;
1779         }
1780         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1781         case TCP_TW_SYN: {
1782                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1783                                                         &tcp_hashinfo,
1784                                                         iph->daddr, th->dest,
1785                                                         inet_iif(skb));
1786                 if (sk2) {
1787                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1788                         inet_twsk_put(inet_twsk(sk));
1789                         sk = sk2;
1790                         goto process;
1791                 }
1792                 /* Fall through to ACK */
1793         }
1794         case TCP_TW_ACK:
1795                 tcp_v4_timewait_ack(sk, skb);
1796                 break;
1797         case TCP_TW_RST:
1798                 goto no_tcp_socket;
1799         case TCP_TW_SUCCESS:;
1800         }
1801         goto discard_it;
1802 }
1803
1804 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1805 {
1806         struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1807         struct inet_sock *inet = inet_sk(sk);
1808         struct inet_peer *peer;
1809
1810         if (!rt ||
1811             inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1812                 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1813                 *release_it = true;
1814         } else {
1815                 if (!rt->peer)
1816                         rt_bind_peer(rt, inet->inet_daddr, 1);
1817                 peer = rt->peer;
1818                 *release_it = false;
1819         }
1820
1821         return peer;
1822 }
1823 EXPORT_SYMBOL(tcp_v4_get_peer);
1824
1825 void *tcp_v4_tw_get_peer(struct sock *sk)
1826 {
1827         const struct inet_timewait_sock *tw = inet_twsk(sk);
1828
1829         return inet_getpeer_v4(tw->tw_daddr, 1);
1830 }
1831 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1832
1833 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1834         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1835         .twsk_unique    = tcp_twsk_unique,
1836         .twsk_destructor= tcp_twsk_destructor,
1837         .twsk_getpeer   = tcp_v4_tw_get_peer,
1838 };
1839
1840 const struct inet_connection_sock_af_ops ipv4_specific = {
1841         .queue_xmit        = ip_queue_xmit,
1842         .send_check        = tcp_v4_send_check,
1843         .rebuild_header    = inet_sk_rebuild_header,
1844         .conn_request      = tcp_v4_conn_request,
1845         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1846         .get_peer          = tcp_v4_get_peer,
1847         .net_header_len    = sizeof(struct iphdr),
1848         .setsockopt        = ip_setsockopt,
1849         .getsockopt        = ip_getsockopt,
1850         .addr2sockaddr     = inet_csk_addr2sockaddr,
1851         .sockaddr_len      = sizeof(struct sockaddr_in),
1852         .bind_conflict     = inet_csk_bind_conflict,
1853 #ifdef CONFIG_COMPAT
1854         .compat_setsockopt = compat_ip_setsockopt,
1855         .compat_getsockopt = compat_ip_getsockopt,
1856 #endif
1857 };
1858 EXPORT_SYMBOL(ipv4_specific);
1859
1860 #ifdef CONFIG_TCP_MD5SIG
1861 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1862         .md5_lookup             = tcp_v4_md5_lookup,
1863         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1864         .md5_add                = tcp_v4_md5_add_func,
1865         .md5_parse              = tcp_v4_parse_md5_keys,
1866 };
1867 #endif
1868
1869 /* NOTE: A lot of things set to zero explicitly by call to
1870  *       sk_alloc() so need not be done here.
1871  */
1872 static int tcp_v4_init_sock(struct sock *sk)
1873 {
1874         struct inet_connection_sock *icsk = inet_csk(sk);
1875         struct tcp_sock *tp = tcp_sk(sk);
1876
1877         skb_queue_head_init(&tp->out_of_order_queue);
1878         tcp_init_xmit_timers(sk);
1879         tcp_prequeue_init(tp);
1880
1881         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1882         tp->mdev = TCP_TIMEOUT_INIT;
1883
1884         /* So many TCP implementations out there (incorrectly) count the
1885          * initial SYN frame in their delayed-ACK and congestion control
1886          * algorithms that we must have the following bandaid to talk
1887          * efficiently to them.  -DaveM
1888          */
1889         tp->snd_cwnd = TCP_INIT_CWND;
1890
1891         /* See draft-stevens-tcpca-spec-01 for discussion of the
1892          * initialization of these values.
1893          */
1894         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1895         tp->snd_cwnd_clamp = ~0;
1896         tp->mss_cache = TCP_MSS_DEFAULT;
1897
1898         tp->reordering = sysctl_tcp_reordering;
1899         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1900
1901         sk->sk_state = TCP_CLOSE;
1902
1903         sk->sk_write_space = sk_stream_write_space;
1904         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1905
1906         icsk->icsk_af_ops = &ipv4_specific;
1907         icsk->icsk_sync_mss = tcp_sync_mss;
1908 #ifdef CONFIG_TCP_MD5SIG
1909         tp->af_specific = &tcp_sock_ipv4_specific;
1910 #endif
1911
1912         /* TCP Cookie Transactions */
1913         if (sysctl_tcp_cookie_size > 0) {
1914                 /* Default, cookies without s_data_payload. */
1915                 tp->cookie_values =
1916                         kzalloc(sizeof(*tp->cookie_values),
1917                                 sk->sk_allocation);
1918                 if (tp->cookie_values != NULL)
1919                         kref_init(&tp->cookie_values->kref);
1920         }
1921         /* Presumed zeroed, in order of appearance:
1922          *      cookie_in_always, cookie_out_never,
1923          *      s_data_constant, s_data_in, s_data_out
1924          */
1925         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1926         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1927
1928         local_bh_disable();
1929         percpu_counter_inc(&tcp_sockets_allocated);
1930         local_bh_enable();
1931
1932         return 0;
1933 }
1934
1935 void tcp_v4_destroy_sock(struct sock *sk)
1936 {
1937         struct tcp_sock *tp = tcp_sk(sk);
1938
1939         tcp_clear_xmit_timers(sk);
1940
1941         tcp_cleanup_congestion_control(sk);
1942
1943         /* Cleanup up the write buffer. */
1944         tcp_write_queue_purge(sk);
1945
1946         /* Cleans up our, hopefully empty, out_of_order_queue. */
1947         __skb_queue_purge(&tp->out_of_order_queue);
1948
1949 #ifdef CONFIG_TCP_MD5SIG
1950         /* Clean up the MD5 key list, if any */
1951         if (tp->md5sig_info) {
1952                 tcp_v4_clear_md5_list(sk);
1953                 kfree(tp->md5sig_info);
1954                 tp->md5sig_info = NULL;
1955         }
1956 #endif
1957
1958 #ifdef CONFIG_NET_DMA
1959         /* Cleans up our sk_async_wait_queue */
1960         __skb_queue_purge(&sk->sk_async_wait_queue);
1961 #endif
1962
1963         /* Clean prequeue, it must be empty really */
1964         __skb_queue_purge(&tp->ucopy.prequeue);
1965
1966         /* Clean up a referenced TCP bind bucket. */
1967         if (inet_csk(sk)->icsk_bind_hash)
1968                 inet_put_port(sk);
1969
1970         /*
1971          * If sendmsg cached page exists, toss it.
1972          */
1973         if (sk->sk_sndmsg_page) {
1974                 __free_page(sk->sk_sndmsg_page);
1975                 sk->sk_sndmsg_page = NULL;
1976         }
1977
1978         /* TCP Cookie Transactions */
1979         if (tp->cookie_values != NULL) {
1980                 kref_put(&tp->cookie_values->kref,
1981                          tcp_cookie_values_release);
1982                 tp->cookie_values = NULL;
1983         }
1984
1985         percpu_counter_dec(&tcp_sockets_allocated);
1986 }
1987 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1988
1989 #ifdef CONFIG_PROC_FS
1990 /* Proc filesystem TCP sock list dumping. */
1991
1992 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1993 {
1994         return hlist_nulls_empty(head) ? NULL :
1995                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1996 }
1997
1998 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1999 {
2000         return !is_a_nulls(tw->tw_node.next) ?
2001                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2002 }
2003
2004 /*
2005  * Get next listener socket follow cur.  If cur is NULL, get first socket
2006  * starting from bucket given in st->bucket; when st->bucket is zero the
2007  * very first socket in the hash table is returned.
2008  */
2009 static void *listening_get_next(struct seq_file *seq, void *cur)
2010 {
2011         struct inet_connection_sock *icsk;
2012         struct hlist_nulls_node *node;
2013         struct sock *sk = cur;
2014         struct inet_listen_hashbucket *ilb;
2015         struct tcp_iter_state *st = seq->private;
2016         struct net *net = seq_file_net(seq);
2017
2018         if (!sk) {
2019                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2020                 spin_lock_bh(&ilb->lock);
2021                 sk = sk_nulls_head(&ilb->head);
2022                 st->offset = 0;
2023                 goto get_sk;
2024         }
2025         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2026         ++st->num;
2027         ++st->offset;
2028
2029         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2030                 struct request_sock *req = cur;
2031
2032                 icsk = inet_csk(st->syn_wait_sk);
2033                 req = req->dl_next;
2034                 while (1) {
2035                         while (req) {
2036                                 if (req->rsk_ops->family == st->family) {
2037                                         cur = req;
2038                                         goto out;
2039                                 }
2040                                 req = req->dl_next;
2041                         }
2042                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2043                                 break;
2044 get_req:
2045                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2046                 }
2047                 sk        = sk_nulls_next(st->syn_wait_sk);
2048                 st->state = TCP_SEQ_STATE_LISTENING;
2049                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2050         } else {
2051                 icsk = inet_csk(sk);
2052                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2053                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2054                         goto start_req;
2055                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2056                 sk = sk_nulls_next(sk);
2057         }
2058 get_sk:
2059         sk_nulls_for_each_from(sk, node) {
2060                 if (!net_eq(sock_net(sk), net))
2061                         continue;
2062                 if (sk->sk_family == st->family) {
2063                         cur = sk;
2064                         goto out;
2065                 }
2066                 icsk = inet_csk(sk);
2067                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2068                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2069 start_req:
2070                         st->uid         = sock_i_uid(sk);
2071                         st->syn_wait_sk = sk;
2072                         st->state       = TCP_SEQ_STATE_OPENREQ;
2073                         st->sbucket     = 0;
2074                         goto get_req;
2075                 }
2076                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2077         }
2078         spin_unlock_bh(&ilb->lock);
2079         st->offset = 0;
2080         if (++st->bucket < INET_LHTABLE_SIZE) {
2081                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2082                 spin_lock_bh(&ilb->lock);
2083                 sk = sk_nulls_head(&ilb->head);
2084                 goto get_sk;
2085         }
2086         cur = NULL;
2087 out:
2088         return cur;
2089 }
2090
2091 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2092 {
2093         struct tcp_iter_state *st = seq->private;
2094         void *rc;
2095
2096         st->bucket = 0;
2097         st->offset = 0;
2098         rc = listening_get_next(seq, NULL);
2099
2100         while (rc && *pos) {
2101                 rc = listening_get_next(seq, rc);
2102                 --*pos;
2103         }
2104         return rc;
2105 }
2106
2107 static inline int empty_bucket(struct tcp_iter_state *st)
2108 {
2109         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2110                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2111 }
2112
2113 /*
2114  * Get first established socket starting from bucket given in st->bucket.
2115  * If st->bucket is zero, the very first socket in the hash is returned.
2116  */
2117 static void *established_get_first(struct seq_file *seq)
2118 {
2119         struct tcp_iter_state *st = seq->private;
2120         struct net *net = seq_file_net(seq);
2121         void *rc = NULL;
2122
2123         st->offset = 0;
2124         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2125                 struct sock *sk;
2126                 struct hlist_nulls_node *node;
2127                 struct inet_timewait_sock *tw;
2128                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2129
2130                 /* Lockless fast path for the common case of empty buckets */
2131                 if (empty_bucket(st))
2132                         continue;
2133
2134                 spin_lock_bh(lock);
2135                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2136                         if (sk->sk_family != st->family ||
2137                             !net_eq(sock_net(sk), net)) {
2138                                 continue;
2139                         }
2140                         rc = sk;
2141                         goto out;
2142                 }
2143                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2144                 inet_twsk_for_each(tw, node,
2145                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2146                         if (tw->tw_family != st->family ||
2147                             !net_eq(twsk_net(tw), net)) {
2148                                 continue;
2149                         }
2150                         rc = tw;
2151                         goto out;
2152                 }
2153                 spin_unlock_bh(lock);
2154                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2155         }
2156 out:
2157         return rc;
2158 }
2159
2160 static void *established_get_next(struct seq_file *seq, void *cur)
2161 {
2162         struct sock *sk = cur;
2163         struct inet_timewait_sock *tw;
2164         struct hlist_nulls_node *node;
2165         struct tcp_iter_state *st = seq->private;
2166         struct net *net = seq_file_net(seq);
2167
2168         ++st->num;
2169         ++st->offset;
2170
2171         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2172                 tw = cur;
2173                 tw = tw_next(tw);
2174 get_tw:
2175                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2176                         tw = tw_next(tw);
2177                 }
2178                 if (tw) {
2179                         cur = tw;
2180                         goto out;
2181                 }
2182                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2183                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2184
2185                 /* Look for next non empty bucket */
2186                 st->offset = 0;
2187                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2188                                 empty_bucket(st))
2189                         ;
2190                 if (st->bucket > tcp_hashinfo.ehash_mask)
2191                         return NULL;
2192
2193                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2194                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2195         } else
2196                 sk = sk_nulls_next(sk);
2197
2198         sk_nulls_for_each_from(sk, node) {
2199                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2200                         goto found;
2201         }
2202
2203         st->state = TCP_SEQ_STATE_TIME_WAIT;
2204         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2205         goto get_tw;
2206 found:
2207         cur = sk;
2208 out:
2209         return cur;
2210 }
2211
2212 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2213 {
2214         struct tcp_iter_state *st = seq->private;
2215         void *rc;
2216
2217         st->bucket = 0;
2218         rc = established_get_first(seq);
2219
2220         while (rc && pos) {
2221                 rc = established_get_next(seq, rc);
2222                 --pos;
2223         }
2224         return rc;
2225 }
2226
2227 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2228 {
2229         void *rc;
2230         struct tcp_iter_state *st = seq->private;
2231
2232         st->state = TCP_SEQ_STATE_LISTENING;
2233         rc        = listening_get_idx(seq, &pos);
2234
2235         if (!rc) {
2236                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2237                 rc        = established_get_idx(seq, pos);
2238         }
2239
2240         return rc;
2241 }
2242
2243 static void *tcp_seek_last_pos(struct seq_file *seq)
2244 {
2245         struct tcp_iter_state *st = seq->private;
2246         int offset = st->offset;
2247         int orig_num = st->num;
2248         void *rc = NULL;
2249
2250         switch (st->state) {
2251         case TCP_SEQ_STATE_OPENREQ:
2252         case TCP_SEQ_STATE_LISTENING:
2253                 if (st->bucket >= INET_LHTABLE_SIZE)
2254                         break;
2255                 st->state = TCP_SEQ_STATE_LISTENING;
2256                 rc = listening_get_next(seq, NULL);
2257                 while (offset-- && rc)
2258                         rc = listening_get_next(seq, rc);
2259                 if (rc)
2260                         break;
2261                 st->bucket = 0;
2262                 /* Fallthrough */
2263         case TCP_SEQ_STATE_ESTABLISHED:
2264         case TCP_SEQ_STATE_TIME_WAIT:
2265                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2266                 if (st->bucket > tcp_hashinfo.ehash_mask)
2267                         break;
2268                 rc = established_get_first(seq);
2269                 while (offset-- && rc)
2270                         rc = established_get_next(seq, rc);
2271         }
2272
2273         st->num = orig_num;
2274
2275         return rc;
2276 }
2277
2278 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2279 {
2280         struct tcp_iter_state *st = seq->private;
2281         void *rc;
2282
2283         if (*pos && *pos == st->last_pos) {
2284                 rc = tcp_seek_last_pos(seq);
2285                 if (rc)
2286                         goto out;
2287         }
2288
2289         st->state = TCP_SEQ_STATE_LISTENING;
2290         st->num = 0;
2291         st->bucket = 0;
2292         st->offset = 0;
2293         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2294
2295 out:
2296         st->last_pos = *pos;
2297         return rc;
2298 }
2299
2300 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2301 {
2302         struct tcp_iter_state *st = seq->private;
2303         void *rc = NULL;
2304
2305         if (v == SEQ_START_TOKEN) {
2306                 rc = tcp_get_idx(seq, 0);
2307                 goto out;
2308         }
2309
2310         switch (st->state) {
2311         case TCP_SEQ_STATE_OPENREQ:
2312         case TCP_SEQ_STATE_LISTENING:
2313                 rc = listening_get_next(seq, v);
2314                 if (!rc) {
2315                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2316                         st->bucket = 0;
2317                         st->offset = 0;
2318                         rc        = established_get_first(seq);
2319                 }
2320                 break;
2321         case TCP_SEQ_STATE_ESTABLISHED:
2322         case TCP_SEQ_STATE_TIME_WAIT:
2323                 rc = established_get_next(seq, v);
2324                 break;
2325         }
2326 out:
2327         ++*pos;
2328         st->last_pos = *pos;
2329         return rc;
2330 }
2331
2332 static void tcp_seq_stop(struct seq_file *seq, void *v)
2333 {
2334         struct tcp_iter_state *st = seq->private;
2335
2336         switch (st->state) {
2337         case TCP_SEQ_STATE_OPENREQ:
2338                 if (v) {
2339                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2340                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2341                 }
2342         case TCP_SEQ_STATE_LISTENING:
2343                 if (v != SEQ_START_TOKEN)
2344                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2345                 break;
2346         case TCP_SEQ_STATE_TIME_WAIT:
2347         case TCP_SEQ_STATE_ESTABLISHED:
2348                 if (v)
2349                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2350                 break;
2351         }
2352 }
2353
2354 int tcp_seq_open(struct inode *inode, struct file *file)
2355 {
2356         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2357         struct tcp_iter_state *s;
2358         int err;
2359
2360         err = seq_open_net(inode, file, &afinfo->seq_ops,
2361                           sizeof(struct tcp_iter_state));
2362         if (err < 0)
2363                 return err;
2364
2365         s = ((struct seq_file *)file->private_data)->private;
2366         s->family               = afinfo->family;
2367         s->last_pos             = 0;
2368         return 0;
2369 }
2370 EXPORT_SYMBOL(tcp_seq_open);
2371
2372 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2373 {
2374         int rc = 0;
2375         struct proc_dir_entry *p;
2376
2377         afinfo->seq_ops.start           = tcp_seq_start;
2378         afinfo->seq_ops.next            = tcp_seq_next;
2379         afinfo->seq_ops.stop            = tcp_seq_stop;
2380
2381         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2382                              afinfo->seq_fops, afinfo);
2383         if (!p)
2384                 rc = -ENOMEM;
2385         return rc;
2386 }
2387 EXPORT_SYMBOL(tcp_proc_register);
2388
2389 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2390 {
2391         proc_net_remove(net, afinfo->name);
2392 }
2393 EXPORT_SYMBOL(tcp_proc_unregister);
2394
2395 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2396                          struct seq_file *f, int i, int uid, int *len)
2397 {
2398         const struct inet_request_sock *ireq = inet_rsk(req);
2399         int ttd = req->expires - jiffies;
2400
2401         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2402                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2403                 i,
2404                 ireq->loc_addr,
2405                 ntohs(inet_sk(sk)->inet_sport),
2406                 ireq->rmt_addr,
2407                 ntohs(ireq->rmt_port),
2408                 TCP_SYN_RECV,
2409                 0, 0, /* could print option size, but that is af dependent. */
2410                 1,    /* timers active (only the expire timer) */
2411                 jiffies_to_clock_t(ttd),
2412                 req->retrans,
2413                 uid,
2414                 0,  /* non standard timer */
2415                 0, /* open_requests have no inode */
2416                 atomic_read(&sk->sk_refcnt),
2417                 req,
2418                 len);
2419 }
2420
2421 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2422 {
2423         int timer_active;
2424         unsigned long timer_expires;
2425         const struct tcp_sock *tp = tcp_sk(sk);
2426         const struct inet_connection_sock *icsk = inet_csk(sk);
2427         const struct inet_sock *inet = inet_sk(sk);
2428         __be32 dest = inet->inet_daddr;
2429         __be32 src = inet->inet_rcv_saddr;
2430         __u16 destp = ntohs(inet->inet_dport);
2431         __u16 srcp = ntohs(inet->inet_sport);
2432         int rx_queue;
2433
2434         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2435                 timer_active    = 1;
2436                 timer_expires   = icsk->icsk_timeout;
2437         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2438                 timer_active    = 4;
2439                 timer_expires   = icsk->icsk_timeout;
2440         } else if (timer_pending(&sk->sk_timer)) {
2441                 timer_active    = 2;
2442                 timer_expires   = sk->sk_timer.expires;
2443         } else {
2444                 timer_active    = 0;
2445                 timer_expires = jiffies;
2446         }
2447
2448         if (sk->sk_state == TCP_LISTEN)
2449                 rx_queue = sk->sk_ack_backlog;
2450         else
2451                 /*
2452                  * because we dont lock socket, we might find a transient negative value
2453                  */
2454                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2455
2456         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2457                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2458                 i, src, srcp, dest, destp, sk->sk_state,
2459                 tp->write_seq - tp->snd_una,
2460                 rx_queue,
2461                 timer_active,
2462                 jiffies_to_clock_t(timer_expires - jiffies),
2463                 icsk->icsk_retransmits,
2464                 sock_i_uid(sk),
2465                 icsk->icsk_probes_out,
2466                 sock_i_ino(sk),
2467                 atomic_read(&sk->sk_refcnt), sk,
2468                 jiffies_to_clock_t(icsk->icsk_rto),
2469                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2470                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2471                 tp->snd_cwnd,
2472                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2473                 len);
2474 }
2475
2476 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2477                                struct seq_file *f, int i, int *len)
2478 {
2479         __be32 dest, src;
2480         __u16 destp, srcp;
2481         int ttd = tw->tw_ttd - jiffies;
2482
2483         if (ttd < 0)
2484                 ttd = 0;
2485
2486         dest  = tw->tw_daddr;
2487         src   = tw->tw_rcv_saddr;
2488         destp = ntohs(tw->tw_dport);
2489         srcp  = ntohs(tw->tw_sport);
2490
2491         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2492                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2493                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2494                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2495                 atomic_read(&tw->tw_refcnt), tw, len);
2496 }
2497
2498 #define TMPSZ 150
2499
2500 static int tcp4_seq_show(struct seq_file *seq, void *v)
2501 {
2502         struct tcp_iter_state *st;
2503         int len;
2504
2505         if (v == SEQ_START_TOKEN) {
2506                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2507                            "  sl  local_address rem_address   st tx_queue "
2508                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2509                            "inode");
2510                 goto out;
2511         }
2512         st = seq->private;
2513
2514         switch (st->state) {
2515         case TCP_SEQ_STATE_LISTENING:
2516         case TCP_SEQ_STATE_ESTABLISHED:
2517                 get_tcp4_sock(v, seq, st->num, &len);
2518                 break;
2519         case TCP_SEQ_STATE_OPENREQ:
2520                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2521                 break;
2522         case TCP_SEQ_STATE_TIME_WAIT:
2523                 get_timewait4_sock(v, seq, st->num, &len);
2524                 break;
2525         }
2526         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2527 out:
2528         return 0;
2529 }
2530
2531 static const struct file_operations tcp_afinfo_seq_fops = {
2532         .owner   = THIS_MODULE,
2533         .open    = tcp_seq_open,
2534         .read    = seq_read,
2535         .llseek  = seq_lseek,
2536         .release = seq_release_net
2537 };
2538
2539 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2540         .name           = "tcp",
2541         .family         = AF_INET,
2542         .seq_fops       = &tcp_afinfo_seq_fops,
2543         .seq_ops        = {
2544                 .show           = tcp4_seq_show,
2545         },
2546 };
2547
2548 static int __net_init tcp4_proc_init_net(struct net *net)
2549 {
2550         return tcp_proc_register(net, &tcp4_seq_afinfo);
2551 }
2552
2553 static void __net_exit tcp4_proc_exit_net(struct net *net)
2554 {
2555         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2556 }
2557
2558 static struct pernet_operations tcp4_net_ops = {
2559         .init = tcp4_proc_init_net,
2560         .exit = tcp4_proc_exit_net,
2561 };
2562
2563 int __init tcp4_proc_init(void)
2564 {
2565         return register_pernet_subsys(&tcp4_net_ops);
2566 }
2567
2568 void tcp4_proc_exit(void)
2569 {
2570         unregister_pernet_subsys(&tcp4_net_ops);
2571 }
2572 #endif /* CONFIG_PROC_FS */
2573
2574 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2575 {
2576         const struct iphdr *iph = skb_gro_network_header(skb);
2577
2578         switch (skb->ip_summed) {
2579         case CHECKSUM_COMPLETE:
2580                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2581                                   skb->csum)) {
2582                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2583                         break;
2584                 }
2585
2586                 /* fall through */
2587         case CHECKSUM_NONE:
2588                 NAPI_GRO_CB(skb)->flush = 1;
2589                 return NULL;
2590         }
2591
2592         return tcp_gro_receive(head, skb);
2593 }
2594
2595 int tcp4_gro_complete(struct sk_buff *skb)
2596 {
2597         const struct iphdr *iph = ip_hdr(skb);
2598         struct tcphdr *th = tcp_hdr(skb);
2599
2600         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2601                                   iph->saddr, iph->daddr, 0);
2602         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2603
2604         return tcp_gro_complete(skb);
2605 }
2606
2607 struct proto tcp_prot = {
2608         .name                   = "TCP",
2609         .owner                  = THIS_MODULE,
2610         .close                  = tcp_close,
2611         .connect                = tcp_v4_connect,
2612         .disconnect             = tcp_disconnect,
2613         .accept                 = inet_csk_accept,
2614         .ioctl                  = tcp_ioctl,
2615         .init                   = tcp_v4_init_sock,
2616         .destroy                = tcp_v4_destroy_sock,
2617         .shutdown               = tcp_shutdown,
2618         .setsockopt             = tcp_setsockopt,
2619         .getsockopt             = tcp_getsockopt,
2620         .recvmsg                = tcp_recvmsg,
2621         .sendmsg                = tcp_sendmsg,
2622         .sendpage               = tcp_sendpage,
2623         .backlog_rcv            = tcp_v4_do_rcv,
2624         .hash                   = inet_hash,
2625         .unhash                 = inet_unhash,
2626         .get_port               = inet_csk_get_port,
2627         .enter_memory_pressure  = tcp_enter_memory_pressure,
2628         .sockets_allocated      = &tcp_sockets_allocated,
2629         .orphan_count           = &tcp_orphan_count,
2630         .memory_allocated       = &tcp_memory_allocated,
2631         .memory_pressure        = &tcp_memory_pressure,
2632         .sysctl_mem             = sysctl_tcp_mem,
2633         .sysctl_wmem            = sysctl_tcp_wmem,
2634         .sysctl_rmem            = sysctl_tcp_rmem,
2635         .max_header             = MAX_TCP_HEADER,
2636         .obj_size               = sizeof(struct tcp_sock),
2637         .slab_flags             = SLAB_DESTROY_BY_RCU,
2638         .twsk_prot              = &tcp_timewait_sock_ops,
2639         .rsk_prot               = &tcp_request_sock_ops,
2640         .h.hashinfo             = &tcp_hashinfo,
2641         .no_autobind            = true,
2642 #ifdef CONFIG_COMPAT
2643         .compat_setsockopt      = compat_tcp_setsockopt,
2644         .compat_getsockopt      = compat_tcp_getsockopt,
2645 #endif
2646 };
2647 EXPORT_SYMBOL(tcp_prot);
2648
2649
2650 static int __net_init tcp_sk_init(struct net *net)
2651 {
2652         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2653                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2654 }
2655
2656 static void __net_exit tcp_sk_exit(struct net *net)
2657 {
2658         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2659 }
2660
2661 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2662 {
2663         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2664 }
2665
2666 static struct pernet_operations __net_initdata tcp_sk_ops = {
2667        .init       = tcp_sk_init,
2668        .exit       = tcp_sk_exit,
2669        .exit_batch = tcp_sk_exit_batch,
2670 };
2671
2672 void __init tcp_v4_init(void)
2673 {
2674         inet_hashinfo_init(&tcp_hashinfo);
2675         if (register_pernet_subsys(&tcp_sk_ops))
2676                 panic("Failed to create the TCP control socket.\n");
2677 }