]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/ipv4/tcp_ipv4.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[karo-tx-linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 static int tcp_repair_connect(struct sock *sk)
142 {
143         tcp_connect_init(sk);
144         tcp_finish_connect(sk, NULL);
145
146         return 0;
147 }
148
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153         struct inet_sock *inet = inet_sk(sk);
154         struct tcp_sock *tp = tcp_sk(sk);
155         __be16 orig_sport, orig_dport;
156         __be32 daddr, nexthop;
157         struct flowi4 *fl4;
158         struct rtable *rt;
159         int err;
160         struct ip_options_rcu *inet_opt;
161
162         if (addr_len < sizeof(struct sockaddr_in))
163                 return -EINVAL;
164
165         if (usin->sin_family != AF_INET)
166                 return -EAFNOSUPPORT;
167
168         nexthop = daddr = usin->sin_addr.s_addr;
169         inet_opt = rcu_dereference_protected(inet->inet_opt,
170                                              sock_owned_by_user(sk));
171         if (inet_opt && inet_opt->opt.srr) {
172                 if (!daddr)
173                         return -EINVAL;
174                 nexthop = inet_opt->opt.faddr;
175         }
176
177         orig_sport = inet->inet_sport;
178         orig_dport = usin->sin_port;
179         fl4 = &inet->cork.fl.u.ip4;
180         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182                               IPPROTO_TCP,
183                               orig_sport, orig_dport, sk, true);
184         if (IS_ERR(rt)) {
185                 err = PTR_ERR(rt);
186                 if (err == -ENETUNREACH)
187                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188                 return err;
189         }
190
191         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192                 ip_rt_put(rt);
193                 return -ENETUNREACH;
194         }
195
196         if (!inet_opt || !inet_opt->opt.srr)
197                 daddr = fl4->daddr;
198
199         if (!inet->inet_saddr)
200                 inet->inet_saddr = fl4->saddr;
201         inet->inet_rcv_saddr = inet->inet_saddr;
202
203         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204                 /* Reset inherited state */
205                 tp->rx_opt.ts_recent       = 0;
206                 tp->rx_opt.ts_recent_stamp = 0;
207                 if (likely(!tp->repair))
208                         tp->write_seq      = 0;
209         }
210
211         if (tcp_death_row.sysctl_tw_recycle &&
212             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
213                 tcp_fetch_timewait_stamp(sk, &rt->dst);
214
215         inet->inet_dport = usin->sin_port;
216         inet->inet_daddr = daddr;
217
218         inet_csk(sk)->icsk_ext_hdr_len = 0;
219         if (inet_opt)
220                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
221
222         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
223
224         /* Socket identity is still unknown (sport may be zero).
225          * However we set state to SYN-SENT and not releasing socket
226          * lock select source port, enter ourselves into the hash tables and
227          * complete initialization after this.
228          */
229         tcp_set_state(sk, TCP_SYN_SENT);
230         err = inet_hash_connect(&tcp_death_row, sk);
231         if (err)
232                 goto failure;
233
234         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
235                                inet->inet_sport, inet->inet_dport, sk);
236         if (IS_ERR(rt)) {
237                 err = PTR_ERR(rt);
238                 rt = NULL;
239                 goto failure;
240         }
241         /* OK, now commit destination to socket.  */
242         sk->sk_gso_type = SKB_GSO_TCPV4;
243         sk_setup_caps(sk, &rt->dst);
244
245         if (!tp->write_seq && likely(!tp->repair))
246                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
247                                                            inet->inet_daddr,
248                                                            inet->inet_sport,
249                                                            usin->sin_port);
250
251         inet->inet_id = tp->write_seq ^ jiffies;
252
253         if (likely(!tp->repair))
254                 err = tcp_connect(sk);
255         else
256                 err = tcp_repair_connect(sk);
257
258         rt = NULL;
259         if (err)
260                 goto failure;
261
262         return 0;
263
264 failure:
265         /*
266          * This unhashes the socket and releases the local port,
267          * if necessary.
268          */
269         tcp_set_state(sk, TCP_CLOSE);
270         ip_rt_put(rt);
271         sk->sk_route_caps = 0;
272         inet->inet_dport = 0;
273         return err;
274 }
275 EXPORT_SYMBOL(tcp_v4_connect);
276
277 /*
278  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
279  * It can be called through tcp_release_cb() if socket was owned by user
280  * at the time tcp_v4_err() was called to handle ICMP message.
281  */
282 static void tcp_v4_mtu_reduced(struct sock *sk)
283 {
284         struct dst_entry *dst;
285         struct inet_sock *inet = inet_sk(sk);
286         u32 mtu = tcp_sk(sk)->mtu_info;
287
288         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
289          * send out by Linux are always <576bytes so they should go through
290          * unfragmented).
291          */
292         if (sk->sk_state == TCP_LISTEN)
293                 return;
294
295         dst = inet_csk_update_pmtu(sk, mtu);
296         if (!dst)
297                 return;
298
299         /* Something is about to be wrong... Remember soft error
300          * for the case, if this connection will not able to recover.
301          */
302         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
303                 sk->sk_err_soft = EMSGSIZE;
304
305         mtu = dst_mtu(dst);
306
307         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
308             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
309                 tcp_sync_mss(sk, mtu);
310
311                 /* Resend the TCP packet because it's
312                  * clear that the old packet has been
313                  * dropped. This is the new "fast" path mtu
314                  * discovery.
315                  */
316                 tcp_simple_retransmit(sk);
317         } /* else let the usual retransmit timer handle it */
318 }
319
320 static void do_redirect(struct sk_buff *skb, struct sock *sk)
321 {
322         struct dst_entry *dst = __sk_dst_check(sk, 0);
323
324         if (dst)
325                 dst->ops->redirect(dst, sk, skb);
326 }
327
328 /*
329  * This routine is called by the ICMP module when it gets some
330  * sort of error condition.  If err < 0 then the socket should
331  * be closed and the error returned to the user.  If err > 0
332  * it's just the icmp type << 8 | icmp code.  After adjustment
333  * header points to the first 8 bytes of the tcp header.  We need
334  * to find the appropriate port.
335  *
336  * The locking strategy used here is very "optimistic". When
337  * someone else accesses the socket the ICMP is just dropped
338  * and for some paths there is no check at all.
339  * A more general error queue to queue errors for later handling
340  * is probably better.
341  *
342  */
343
344 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
345 {
346         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
347         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
348         struct inet_connection_sock *icsk;
349         struct tcp_sock *tp;
350         struct inet_sock *inet;
351         const int type = icmp_hdr(icmp_skb)->type;
352         const int code = icmp_hdr(icmp_skb)->code;
353         struct sock *sk;
354         struct sk_buff *skb;
355         __u32 seq;
356         __u32 remaining;
357         int err;
358         struct net *net = dev_net(icmp_skb->dev);
359
360         if (icmp_skb->len < (iph->ihl << 2) + 8) {
361                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
362                 return;
363         }
364
365         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
366                         iph->saddr, th->source, inet_iif(icmp_skb));
367         if (!sk) {
368                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
369                 return;
370         }
371         if (sk->sk_state == TCP_TIME_WAIT) {
372                 inet_twsk_put(inet_twsk(sk));
373                 return;
374         }
375
376         bh_lock_sock(sk);
377         /* If too many ICMPs get dropped on busy
378          * servers this needs to be solved differently.
379          * We do take care of PMTU discovery (RFC1191) special case :
380          * we can receive locally generated ICMP messages while socket is held.
381          */
382         if (sock_owned_by_user(sk) &&
383             type != ICMP_DEST_UNREACH &&
384             code != ICMP_FRAG_NEEDED)
385                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
386
387         if (sk->sk_state == TCP_CLOSE)
388                 goto out;
389
390         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
391                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
392                 goto out;
393         }
394
395         icsk = inet_csk(sk);
396         tp = tcp_sk(sk);
397         seq = ntohl(th->seq);
398         if (sk->sk_state != TCP_LISTEN &&
399             !between(seq, tp->snd_una, tp->snd_nxt)) {
400                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
401                 goto out;
402         }
403
404         switch (type) {
405         case ICMP_REDIRECT:
406                 do_redirect(icmp_skb, sk);
407                 goto out;
408         case ICMP_SOURCE_QUENCH:
409                 /* Just silently ignore these. */
410                 goto out;
411         case ICMP_PARAMETERPROB:
412                 err = EPROTO;
413                 break;
414         case ICMP_DEST_UNREACH:
415                 if (code > NR_ICMP_UNREACH)
416                         goto out;
417
418                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
419                         tp->mtu_info = info;
420                         if (!sock_owned_by_user(sk))
421                                 tcp_v4_mtu_reduced(sk);
422                         else
423                                 set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags);
424                         goto out;
425                 }
426
427                 err = icmp_err_convert[code].errno;
428                 /* check if icmp_skb allows revert of backoff
429                  * (see draft-zimmermann-tcp-lcd) */
430                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431                         break;
432                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
433                     !icsk->icsk_backoff)
434                         break;
435
436                 if (sock_owned_by_user(sk))
437                         break;
438
439                 icsk->icsk_backoff--;
440                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442                 tcp_bound_rto(sk);
443
444                 skb = tcp_write_queue_head(sk);
445                 BUG_ON(!skb);
446
447                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450                 if (remaining) {
451                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452                                                   remaining, TCP_RTO_MAX);
453                 } else {
454                         /* RTO revert clocked out retransmission.
455                          * Will retransmit now */
456                         tcp_retransmit_timer(sk);
457                 }
458
459                 break;
460         case ICMP_TIME_EXCEEDED:
461                 err = EHOSTUNREACH;
462                 break;
463         default:
464                 goto out;
465         }
466
467         switch (sk->sk_state) {
468                 struct request_sock *req, **prev;
469         case TCP_LISTEN:
470                 if (sock_owned_by_user(sk))
471                         goto out;
472
473                 req = inet_csk_search_req(sk, &prev, th->dest,
474                                           iph->daddr, iph->saddr);
475                 if (!req)
476                         goto out;
477
478                 /* ICMPs are not backlogged, hence we cannot get
479                    an established socket here.
480                  */
481                 WARN_ON(req->sk);
482
483                 if (seq != tcp_rsk(req)->snt_isn) {
484                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485                         goto out;
486                 }
487
488                 /*
489                  * Still in SYN_RECV, just remove it silently.
490                  * There is no good way to pass the error to the newly
491                  * created socket, and POSIX does not want network
492                  * errors returned from accept().
493                  */
494                 inet_csk_reqsk_queue_drop(sk, req, prev);
495                 goto out;
496
497         case TCP_SYN_SENT:
498         case TCP_SYN_RECV:  /* Cannot happen.
499                                It can f.e. if SYNs crossed.
500                              */
501                 if (!sock_owned_by_user(sk)) {
502                         sk->sk_err = err;
503
504                         sk->sk_error_report(sk);
505
506                         tcp_done(sk);
507                 } else {
508                         sk->sk_err_soft = err;
509                 }
510                 goto out;
511         }
512
513         /* If we've already connected we will keep trying
514          * until we time out, or the user gives up.
515          *
516          * rfc1122 4.2.3.9 allows to consider as hard errors
517          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518          * but it is obsoleted by pmtu discovery).
519          *
520          * Note, that in modern internet, where routing is unreliable
521          * and in each dark corner broken firewalls sit, sending random
522          * errors ordered by their masters even this two messages finally lose
523          * their original sense (even Linux sends invalid PORT_UNREACHs)
524          *
525          * Now we are in compliance with RFCs.
526          *                                                      --ANK (980905)
527          */
528
529         inet = inet_sk(sk);
530         if (!sock_owned_by_user(sk) && inet->recverr) {
531                 sk->sk_err = err;
532                 sk->sk_error_report(sk);
533         } else  { /* Only an error on timeout */
534                 sk->sk_err_soft = err;
535         }
536
537 out:
538         bh_unlock_sock(sk);
539         sock_put(sk);
540 }
541
542 static void __tcp_v4_send_check(struct sk_buff *skb,
543                                 __be32 saddr, __be32 daddr)
544 {
545         struct tcphdr *th = tcp_hdr(skb);
546
547         if (skb->ip_summed == CHECKSUM_PARTIAL) {
548                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549                 skb->csum_start = skb_transport_header(skb) - skb->head;
550                 skb->csum_offset = offsetof(struct tcphdr, check);
551         } else {
552                 th->check = tcp_v4_check(skb->len, saddr, daddr,
553                                          csum_partial(th,
554                                                       th->doff << 2,
555                                                       skb->csum));
556         }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562         const struct inet_sock *inet = inet_sk(sk);
563
564         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 int tcp_v4_gso_send_check(struct sk_buff *skb)
569 {
570         const struct iphdr *iph;
571         struct tcphdr *th;
572
573         if (!pskb_may_pull(skb, sizeof(*th)))
574                 return -EINVAL;
575
576         iph = ip_hdr(skb);
577         th = tcp_hdr(skb);
578
579         th->check = 0;
580         skb->ip_summed = CHECKSUM_PARTIAL;
581         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582         return 0;
583 }
584
585 /*
586  *      This routine will send an RST to the other tcp.
587  *
588  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589  *                    for reset.
590  *      Answer: if a packet caused RST, it is not for a socket
591  *              existing in our system, if it is matched to a socket,
592  *              it is just duplicate segment or bug in other side's TCP.
593  *              So that we build reply only basing on parameters
594  *              arrived with segment.
595  *      Exception: precedence violation. We do not implement it in any case.
596  */
597
598 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599 {
600         const struct tcphdr *th = tcp_hdr(skb);
601         struct {
602                 struct tcphdr th;
603 #ifdef CONFIG_TCP_MD5SIG
604                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605 #endif
606         } rep;
607         struct ip_reply_arg arg;
608 #ifdef CONFIG_TCP_MD5SIG
609         struct tcp_md5sig_key *key;
610         const __u8 *hash_location = NULL;
611         unsigned char newhash[16];
612         int genhash;
613         struct sock *sk1 = NULL;
614 #endif
615         struct net *net;
616
617         /* Never send a reset in response to a reset. */
618         if (th->rst)
619                 return;
620
621         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622                 return;
623
624         /* Swap the send and the receive. */
625         memset(&rep, 0, sizeof(rep));
626         rep.th.dest   = th->source;
627         rep.th.source = th->dest;
628         rep.th.doff   = sizeof(struct tcphdr) / 4;
629         rep.th.rst    = 1;
630
631         if (th->ack) {
632                 rep.th.seq = th->ack_seq;
633         } else {
634                 rep.th.ack = 1;
635                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636                                        skb->len - (th->doff << 2));
637         }
638
639         memset(&arg, 0, sizeof(arg));
640         arg.iov[0].iov_base = (unsigned char *)&rep;
641         arg.iov[0].iov_len  = sizeof(rep.th);
642
643 #ifdef CONFIG_TCP_MD5SIG
644         hash_location = tcp_parse_md5sig_option(th);
645         if (!sk && hash_location) {
646                 /*
647                  * active side is lost. Try to find listening socket through
648                  * source port, and then find md5 key through listening socket.
649                  * we are not loose security here:
650                  * Incoming packet is checked with md5 hash with finding key,
651                  * no RST generated if md5 hash doesn't match.
652                  */
653                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654                                              &tcp_hashinfo, ip_hdr(skb)->daddr,
655                                              ntohs(th->source), inet_iif(skb));
656                 /* don't send rst if it can't find key */
657                 if (!sk1)
658                         return;
659                 rcu_read_lock();
660                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661                                         &ip_hdr(skb)->saddr, AF_INET);
662                 if (!key)
663                         goto release_sk1;
664
665                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667                         goto release_sk1;
668         } else {
669                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670                                              &ip_hdr(skb)->saddr,
671                                              AF_INET) : NULL;
672         }
673
674         if (key) {
675                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676                                    (TCPOPT_NOP << 16) |
677                                    (TCPOPT_MD5SIG << 8) |
678                                    TCPOLEN_MD5SIG);
679                 /* Update length and the length the header thinks exists */
680                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681                 rep.th.doff = arg.iov[0].iov_len / 4;
682
683                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684                                      key, ip_hdr(skb)->saddr,
685                                      ip_hdr(skb)->daddr, &rep.th);
686         }
687 #endif
688         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689                                       ip_hdr(skb)->saddr, /* XXX */
690                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
691         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693         /* When socket is gone, all binding information is lost.
694          * routing might fail in this case. using iif for oif to
695          * make sure we can deliver it
696          */
697         arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699         net = dev_net(skb_dst(skb)->dev);
700         arg.tos = ip_hdr(skb)->tos;
701         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
702                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
703
704         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707 #ifdef CONFIG_TCP_MD5SIG
708 release_sk1:
709         if (sk1) {
710                 rcu_read_unlock();
711                 sock_put(sk1);
712         }
713 #endif
714 }
715
716 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717    outside socket context is ugly, certainly. What can I do?
718  */
719
720 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721                             u32 win, u32 ts, int oif,
722                             struct tcp_md5sig_key *key,
723                             int reply_flags, u8 tos)
724 {
725         const struct tcphdr *th = tcp_hdr(skb);
726         struct {
727                 struct tcphdr th;
728                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729 #ifdef CONFIG_TCP_MD5SIG
730                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731 #endif
732                         ];
733         } rep;
734         struct ip_reply_arg arg;
735         struct net *net = dev_net(skb_dst(skb)->dev);
736
737         memset(&rep.th, 0, sizeof(struct tcphdr));
738         memset(&arg, 0, sizeof(arg));
739
740         arg.iov[0].iov_base = (unsigned char *)&rep;
741         arg.iov[0].iov_len  = sizeof(rep.th);
742         if (ts) {
743                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744                                    (TCPOPT_TIMESTAMP << 8) |
745                                    TCPOLEN_TIMESTAMP);
746                 rep.opt[1] = htonl(tcp_time_stamp);
747                 rep.opt[2] = htonl(ts);
748                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749         }
750
751         /* Swap the send and the receive. */
752         rep.th.dest    = th->source;
753         rep.th.source  = th->dest;
754         rep.th.doff    = arg.iov[0].iov_len / 4;
755         rep.th.seq     = htonl(seq);
756         rep.th.ack_seq = htonl(ack);
757         rep.th.ack     = 1;
758         rep.th.window  = htons(win);
759
760 #ifdef CONFIG_TCP_MD5SIG
761         if (key) {
762                 int offset = (ts) ? 3 : 0;
763
764                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765                                           (TCPOPT_NOP << 16) |
766                                           (TCPOPT_MD5SIG << 8) |
767                                           TCPOLEN_MD5SIG);
768                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769                 rep.th.doff = arg.iov[0].iov_len/4;
770
771                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772                                     key, ip_hdr(skb)->saddr,
773                                     ip_hdr(skb)->daddr, &rep.th);
774         }
775 #endif
776         arg.flags = reply_flags;
777         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778                                       ip_hdr(skb)->saddr, /* XXX */
779                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
780         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781         if (oif)
782                 arg.bound_dev_if = oif;
783         arg.tos = tos;
784         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
785                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
786
787         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788 }
789
790 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791 {
792         struct inet_timewait_sock *tw = inet_twsk(sk);
793         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797                         tcptw->tw_ts_recent,
798                         tw->tw_bound_dev_if,
799                         tcp_twsk_md5_key(tcptw),
800                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801                         tw->tw_tos
802                         );
803
804         inet_twsk_put(tw);
805 }
806
807 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808                                   struct request_sock *req)
809 {
810         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812                         req->ts_recent,
813                         0,
814                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815                                           AF_INET),
816                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817                         ip_hdr(skb)->tos);
818 }
819
820 /*
821  *      Send a SYN-ACK after having received a SYN.
822  *      This still operates on a request_sock only, not on a big
823  *      socket.
824  */
825 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826                               struct request_sock *req,
827                               struct request_values *rvp,
828                               u16 queue_mapping,
829                               bool nocache)
830 {
831         const struct inet_request_sock *ireq = inet_rsk(req);
832         struct flowi4 fl4;
833         int err = -1;
834         struct sk_buff * skb;
835
836         /* First, grab a route. */
837         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
838                 return -1;
839
840         skb = tcp_make_synack(sk, dst, req, rvp);
841
842         if (skb) {
843                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
844
845                 skb_set_queue_mapping(skb, queue_mapping);
846                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
847                                             ireq->rmt_addr,
848                                             ireq->opt);
849                 err = net_xmit_eval(err);
850         }
851
852         return err;
853 }
854
855 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
856                               struct request_values *rvp)
857 {
858         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859         return tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
860 }
861
862 /*
863  *      IPv4 request_sock destructor.
864  */
865 static void tcp_v4_reqsk_destructor(struct request_sock *req)
866 {
867         kfree(inet_rsk(req)->opt);
868 }
869
870 /*
871  * Return true if a syncookie should be sent
872  */
873 bool tcp_syn_flood_action(struct sock *sk,
874                          const struct sk_buff *skb,
875                          const char *proto)
876 {
877         const char *msg = "Dropping request";
878         bool want_cookie = false;
879         struct listen_sock *lopt;
880
881
882
883 #ifdef CONFIG_SYN_COOKIES
884         if (sysctl_tcp_syncookies) {
885                 msg = "Sending cookies";
886                 want_cookie = true;
887                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888         } else
889 #endif
890                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893         if (!lopt->synflood_warned) {
894                 lopt->synflood_warned = 1;
895                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
896                         proto, ntohs(tcp_hdr(skb)->dest), msg);
897         }
898         return want_cookie;
899 }
900 EXPORT_SYMBOL(tcp_syn_flood_action);
901
902 /*
903  * Save and compile IPv4 options into the request_sock if needed.
904  */
905 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
906                                                   struct sk_buff *skb)
907 {
908         const struct ip_options *opt = &(IPCB(skb)->opt);
909         struct ip_options_rcu *dopt = NULL;
910
911         if (opt && opt->optlen) {
912                 int opt_size = sizeof(*dopt) + opt->optlen;
913
914                 dopt = kmalloc(opt_size, GFP_ATOMIC);
915                 if (dopt) {
916                         if (ip_options_echo(&dopt->opt, skb)) {
917                                 kfree(dopt);
918                                 dopt = NULL;
919                         }
920                 }
921         }
922         return dopt;
923 }
924
925 #ifdef CONFIG_TCP_MD5SIG
926 /*
927  * RFC2385 MD5 checksumming requires a mapping of
928  * IP address->MD5 Key.
929  * We need to maintain these in the sk structure.
930  */
931
932 /* Find the Key structure for an address.  */
933 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
934                                          const union tcp_md5_addr *addr,
935                                          int family)
936 {
937         struct tcp_sock *tp = tcp_sk(sk);
938         struct tcp_md5sig_key *key;
939         struct hlist_node *pos;
940         unsigned int size = sizeof(struct in_addr);
941         struct tcp_md5sig_info *md5sig;
942
943         /* caller either holds rcu_read_lock() or socket lock */
944         md5sig = rcu_dereference_check(tp->md5sig_info,
945                                        sock_owned_by_user(sk) ||
946                                        lockdep_is_held(&sk->sk_lock.slock));
947         if (!md5sig)
948                 return NULL;
949 #if IS_ENABLED(CONFIG_IPV6)
950         if (family == AF_INET6)
951                 size = sizeof(struct in6_addr);
952 #endif
953         hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
954                 if (key->family != family)
955                         continue;
956                 if (!memcmp(&key->addr, addr, size))
957                         return key;
958         }
959         return NULL;
960 }
961 EXPORT_SYMBOL(tcp_md5_do_lookup);
962
963 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
964                                          struct sock *addr_sk)
965 {
966         union tcp_md5_addr *addr;
967
968         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
969         return tcp_md5_do_lookup(sk, addr, AF_INET);
970 }
971 EXPORT_SYMBOL(tcp_v4_md5_lookup);
972
973 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
974                                                       struct request_sock *req)
975 {
976         union tcp_md5_addr *addr;
977
978         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
979         return tcp_md5_do_lookup(sk, addr, AF_INET);
980 }
981
982 /* This can be called on a newly created socket, from other files */
983 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
984                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
985 {
986         /* Add Key to the list */
987         struct tcp_md5sig_key *key;
988         struct tcp_sock *tp = tcp_sk(sk);
989         struct tcp_md5sig_info *md5sig;
990
991         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
992         if (key) {
993                 /* Pre-existing entry - just update that one. */
994                 memcpy(key->key, newkey, newkeylen);
995                 key->keylen = newkeylen;
996                 return 0;
997         }
998
999         md5sig = rcu_dereference_protected(tp->md5sig_info,
1000                                            sock_owned_by_user(sk));
1001         if (!md5sig) {
1002                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1003                 if (!md5sig)
1004                         return -ENOMEM;
1005
1006                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007                 INIT_HLIST_HEAD(&md5sig->head);
1008                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1009         }
1010
1011         key = sock_kmalloc(sk, sizeof(*key), gfp);
1012         if (!key)
1013                 return -ENOMEM;
1014         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015                 sock_kfree_s(sk, key, sizeof(*key));
1016                 return -ENOMEM;
1017         }
1018
1019         memcpy(key->key, newkey, newkeylen);
1020         key->keylen = newkeylen;
1021         key->family = family;
1022         memcpy(&key->addr, addr,
1023                (family == AF_INET6) ? sizeof(struct in6_addr) :
1024                                       sizeof(struct in_addr));
1025         hlist_add_head_rcu(&key->node, &md5sig->head);
1026         return 0;
1027 }
1028 EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1031 {
1032         struct tcp_sock *tp = tcp_sk(sk);
1033         struct tcp_md5sig_key *key;
1034         struct tcp_md5sig_info *md5sig;
1035
1036         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037         if (!key)
1038                 return -ENOENT;
1039         hlist_del_rcu(&key->node);
1040         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041         kfree_rcu(key, rcu);
1042         md5sig = rcu_dereference_protected(tp->md5sig_info,
1043                                            sock_owned_by_user(sk));
1044         if (hlist_empty(&md5sig->head))
1045                 tcp_free_md5sig_pool();
1046         return 0;
1047 }
1048 EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050 void tcp_clear_md5_list(struct sock *sk)
1051 {
1052         struct tcp_sock *tp = tcp_sk(sk);
1053         struct tcp_md5sig_key *key;
1054         struct hlist_node *pos, *n;
1055         struct tcp_md5sig_info *md5sig;
1056
1057         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059         if (!hlist_empty(&md5sig->head))
1060                 tcp_free_md5sig_pool();
1061         hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062                 hlist_del_rcu(&key->node);
1063                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064                 kfree_rcu(key, rcu);
1065         }
1066 }
1067
1068 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069                                  int optlen)
1070 {
1071         struct tcp_md5sig cmd;
1072         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1073
1074         if (optlen < sizeof(cmd))
1075                 return -EINVAL;
1076
1077         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078                 return -EFAULT;
1079
1080         if (sin->sin_family != AF_INET)
1081                 return -EINVAL;
1082
1083         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085                                       AF_INET);
1086
1087         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088                 return -EINVAL;
1089
1090         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092                               GFP_KERNEL);
1093 }
1094
1095 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096                                         __be32 daddr, __be32 saddr, int nbytes)
1097 {
1098         struct tcp4_pseudohdr *bp;
1099         struct scatterlist sg;
1100
1101         bp = &hp->md5_blk.ip4;
1102
1103         /*
1104          * 1. the TCP pseudo-header (in the order: source IP address,
1105          * destination IP address, zero-padded protocol number, and
1106          * segment length)
1107          */
1108         bp->saddr = saddr;
1109         bp->daddr = daddr;
1110         bp->pad = 0;
1111         bp->protocol = IPPROTO_TCP;
1112         bp->len = cpu_to_be16(nbytes);
1113
1114         sg_init_one(&sg, bp, sizeof(*bp));
1115         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1116 }
1117
1118 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120 {
1121         struct tcp_md5sig_pool *hp;
1122         struct hash_desc *desc;
1123
1124         hp = tcp_get_md5sig_pool();
1125         if (!hp)
1126                 goto clear_hash_noput;
1127         desc = &hp->md5_desc;
1128
1129         if (crypto_hash_init(desc))
1130                 goto clear_hash;
1131         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132                 goto clear_hash;
1133         if (tcp_md5_hash_header(hp, th))
1134                 goto clear_hash;
1135         if (tcp_md5_hash_key(hp, key))
1136                 goto clear_hash;
1137         if (crypto_hash_final(desc, md5_hash))
1138                 goto clear_hash;
1139
1140         tcp_put_md5sig_pool();
1141         return 0;
1142
1143 clear_hash:
1144         tcp_put_md5sig_pool();
1145 clear_hash_noput:
1146         memset(md5_hash, 0, 16);
1147         return 1;
1148 }
1149
1150 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151                         const struct sock *sk, const struct request_sock *req,
1152                         const struct sk_buff *skb)
1153 {
1154         struct tcp_md5sig_pool *hp;
1155         struct hash_desc *desc;
1156         const struct tcphdr *th = tcp_hdr(skb);
1157         __be32 saddr, daddr;
1158
1159         if (sk) {
1160                 saddr = inet_sk(sk)->inet_saddr;
1161                 daddr = inet_sk(sk)->inet_daddr;
1162         } else if (req) {
1163                 saddr = inet_rsk(req)->loc_addr;
1164                 daddr = inet_rsk(req)->rmt_addr;
1165         } else {
1166                 const struct iphdr *iph = ip_hdr(skb);
1167                 saddr = iph->saddr;
1168                 daddr = iph->daddr;
1169         }
1170
1171         hp = tcp_get_md5sig_pool();
1172         if (!hp)
1173                 goto clear_hash_noput;
1174         desc = &hp->md5_desc;
1175
1176         if (crypto_hash_init(desc))
1177                 goto clear_hash;
1178
1179         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180                 goto clear_hash;
1181         if (tcp_md5_hash_header(hp, th))
1182                 goto clear_hash;
1183         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184                 goto clear_hash;
1185         if (tcp_md5_hash_key(hp, key))
1186                 goto clear_hash;
1187         if (crypto_hash_final(desc, md5_hash))
1188                 goto clear_hash;
1189
1190         tcp_put_md5sig_pool();
1191         return 0;
1192
1193 clear_hash:
1194         tcp_put_md5sig_pool();
1195 clear_hash_noput:
1196         memset(md5_hash, 0, 16);
1197         return 1;
1198 }
1199 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202 {
1203         /*
1204          * This gets called for each TCP segment that arrives
1205          * so we want to be efficient.
1206          * We have 3 drop cases:
1207          * o No MD5 hash and one expected.
1208          * o MD5 hash and we're not expecting one.
1209          * o MD5 hash and its wrong.
1210          */
1211         const __u8 *hash_location = NULL;
1212         struct tcp_md5sig_key *hash_expected;
1213         const struct iphdr *iph = ip_hdr(skb);
1214         const struct tcphdr *th = tcp_hdr(skb);
1215         int genhash;
1216         unsigned char newhash[16];
1217
1218         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219                                           AF_INET);
1220         hash_location = tcp_parse_md5sig_option(th);
1221
1222         /* We've parsed the options - do we have a hash? */
1223         if (!hash_expected && !hash_location)
1224                 return false;
1225
1226         if (hash_expected && !hash_location) {
1227                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228                 return true;
1229         }
1230
1231         if (!hash_expected && hash_location) {
1232                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233                 return true;
1234         }
1235
1236         /* Okay, so this is hash_expected and hash_location -
1237          * so we need to calculate the checksum.
1238          */
1239         genhash = tcp_v4_md5_hash_skb(newhash,
1240                                       hash_expected,
1241                                       NULL, NULL, skb);
1242
1243         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245                                      &iph->saddr, ntohs(th->source),
1246                                      &iph->daddr, ntohs(th->dest),
1247                                      genhash ? " tcp_v4_calc_md5_hash failed"
1248                                      : "");
1249                 return true;
1250         }
1251         return false;
1252 }
1253
1254 #endif
1255
1256 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257         .family         =       PF_INET,
1258         .obj_size       =       sizeof(struct tcp_request_sock),
1259         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1260         .send_ack       =       tcp_v4_reqsk_send_ack,
1261         .destructor     =       tcp_v4_reqsk_destructor,
1262         .send_reset     =       tcp_v4_send_reset,
1263         .syn_ack_timeout =      tcp_syn_ack_timeout,
1264 };
1265
1266 #ifdef CONFIG_TCP_MD5SIG
1267 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1269         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1270 };
1271 #endif
1272
1273 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274 {
1275         struct tcp_extend_values tmp_ext;
1276         struct tcp_options_received tmp_opt;
1277         const u8 *hash_location;
1278         struct request_sock *req;
1279         struct inet_request_sock *ireq;
1280         struct tcp_sock *tp = tcp_sk(sk);
1281         struct dst_entry *dst = NULL;
1282         __be32 saddr = ip_hdr(skb)->saddr;
1283         __be32 daddr = ip_hdr(skb)->daddr;
1284         __u32 isn = TCP_SKB_CB(skb)->when;
1285         bool want_cookie = false;
1286
1287         /* Never answer to SYNs send to broadcast or multicast */
1288         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289                 goto drop;
1290
1291         /* TW buckets are converted to open requests without
1292          * limitations, they conserve resources and peer is
1293          * evidently real one.
1294          */
1295         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297                 if (!want_cookie)
1298                         goto drop;
1299         }
1300
1301         /* Accept backlog is full. If we have already queued enough
1302          * of warm entries in syn queue, drop request. It is better than
1303          * clogging syn queue with openreqs with exponentially increasing
1304          * timeout.
1305          */
1306         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307                 goto drop;
1308
1309         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310         if (!req)
1311                 goto drop;
1312
1313 #ifdef CONFIG_TCP_MD5SIG
1314         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315 #endif
1316
1317         tcp_clear_options(&tmp_opt);
1318         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1320         tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
1321
1322         if (tmp_opt.cookie_plus > 0 &&
1323             tmp_opt.saw_tstamp &&
1324             !tp->rx_opt.cookie_out_never &&
1325             (sysctl_tcp_cookie_size > 0 ||
1326              (tp->cookie_values != NULL &&
1327               tp->cookie_values->cookie_desired > 0))) {
1328                 u8 *c;
1329                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333                         goto drop_and_release;
1334
1335                 /* Secret recipe starts with IP addresses */
1336                 *mess++ ^= (__force u32)daddr;
1337                 *mess++ ^= (__force u32)saddr;
1338
1339                 /* plus variable length Initiator Cookie */
1340                 c = (u8 *)mess;
1341                 while (l-- > 0)
1342                         *c++ ^= *hash_location++;
1343
1344                 want_cookie = false;    /* not our kind of cookie */
1345                 tmp_ext.cookie_out_never = 0; /* false */
1346                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347         } else if (!tp->rx_opt.cookie_in_always) {
1348                 /* redundant indications, but ensure initialization. */
1349                 tmp_ext.cookie_out_never = 1; /* true */
1350                 tmp_ext.cookie_plus = 0;
1351         } else {
1352                 goto drop_and_release;
1353         }
1354         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356         if (want_cookie && !tmp_opt.saw_tstamp)
1357                 tcp_clear_options(&tmp_opt);
1358
1359         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360         tcp_openreq_init(req, &tmp_opt, skb);
1361
1362         ireq = inet_rsk(req);
1363         ireq->loc_addr = daddr;
1364         ireq->rmt_addr = saddr;
1365         ireq->no_srccheck = inet_sk(sk)->transparent;
1366         ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368         if (security_inet_conn_request(sk, skb, req))
1369                 goto drop_and_free;
1370
1371         if (!want_cookie || tmp_opt.tstamp_ok)
1372                 TCP_ECN_create_request(req, skb);
1373
1374         if (want_cookie) {
1375                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376                 req->cookie_ts = tmp_opt.tstamp_ok;
1377         } else if (!isn) {
1378                 struct flowi4 fl4;
1379
1380                 /* VJ's idea. We save last timestamp seen
1381                  * from the destination in peer table, when entering
1382                  * state TIME-WAIT, and check against it before
1383                  * accepting new connection request.
1384                  *
1385                  * If "isn" is not zero, this request hit alive
1386                  * timewait bucket, so that all the necessary checks
1387                  * are made in the function processing timewait state.
1388                  */
1389                 if (tmp_opt.saw_tstamp &&
1390                     tcp_death_row.sysctl_tw_recycle &&
1391                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1392                     fl4.daddr == saddr) {
1393                         if (!tcp_peer_is_proven(req, dst, true)) {
1394                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1395                                 goto drop_and_release;
1396                         }
1397                 }
1398                 /* Kill the following clause, if you dislike this way. */
1399                 else if (!sysctl_tcp_syncookies &&
1400                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1401                           (sysctl_max_syn_backlog >> 2)) &&
1402                          !tcp_peer_is_proven(req, dst, false)) {
1403                         /* Without syncookies last quarter of
1404                          * backlog is filled with destinations,
1405                          * proven to be alive.
1406                          * It means that we continue to communicate
1407                          * to destinations, already remembered
1408                          * to the moment of synflood.
1409                          */
1410                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1411                                        &saddr, ntohs(tcp_hdr(skb)->source));
1412                         goto drop_and_release;
1413                 }
1414
1415                 isn = tcp_v4_init_sequence(skb);
1416         }
1417         tcp_rsk(req)->snt_isn = isn;
1418         tcp_rsk(req)->snt_synack = tcp_time_stamp;
1419
1420         if (tcp_v4_send_synack(sk, dst, req,
1421                                (struct request_values *)&tmp_ext,
1422                                skb_get_queue_mapping(skb),
1423                                want_cookie) ||
1424             want_cookie)
1425                 goto drop_and_free;
1426
1427         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1428         return 0;
1429
1430 drop_and_release:
1431         dst_release(dst);
1432 drop_and_free:
1433         reqsk_free(req);
1434 drop:
1435         return 0;
1436 }
1437 EXPORT_SYMBOL(tcp_v4_conn_request);
1438
1439
1440 /*
1441  * The three way handshake has completed - we got a valid synack -
1442  * now create the new socket.
1443  */
1444 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1445                                   struct request_sock *req,
1446                                   struct dst_entry *dst)
1447 {
1448         struct inet_request_sock *ireq;
1449         struct inet_sock *newinet;
1450         struct tcp_sock *newtp;
1451         struct sock *newsk;
1452 #ifdef CONFIG_TCP_MD5SIG
1453         struct tcp_md5sig_key *key;
1454 #endif
1455         struct ip_options_rcu *inet_opt;
1456
1457         if (sk_acceptq_is_full(sk))
1458                 goto exit_overflow;
1459
1460         newsk = tcp_create_openreq_child(sk, req, skb);
1461         if (!newsk)
1462                 goto exit_nonewsk;
1463
1464         newsk->sk_gso_type = SKB_GSO_TCPV4;
1465
1466         newtp                 = tcp_sk(newsk);
1467         newinet               = inet_sk(newsk);
1468         ireq                  = inet_rsk(req);
1469         newinet->inet_daddr   = ireq->rmt_addr;
1470         newinet->inet_rcv_saddr = ireq->loc_addr;
1471         newinet->inet_saddr           = ireq->loc_addr;
1472         inet_opt              = ireq->opt;
1473         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1474         ireq->opt             = NULL;
1475         newinet->mc_index     = inet_iif(skb);
1476         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1477         newinet->rcv_tos      = ip_hdr(skb)->tos;
1478         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1479         if (inet_opt)
1480                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1481         newinet->inet_id = newtp->write_seq ^ jiffies;
1482
1483         if (!dst) {
1484                 dst = inet_csk_route_child_sock(sk, newsk, req);
1485                 if (!dst)
1486                         goto put_and_exit;
1487         } else {
1488                 /* syncookie case : see end of cookie_v4_check() */
1489         }
1490         sk_setup_caps(newsk, dst);
1491
1492         tcp_mtup_init(newsk);
1493         tcp_sync_mss(newsk, dst_mtu(dst));
1494         newtp->advmss = dst_metric_advmss(dst);
1495         if (tcp_sk(sk)->rx_opt.user_mss &&
1496             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1497                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1498
1499         tcp_initialize_rcv_mss(newsk);
1500         if (tcp_rsk(req)->snt_synack)
1501                 tcp_valid_rtt_meas(newsk,
1502                     tcp_time_stamp - tcp_rsk(req)->snt_synack);
1503         newtp->total_retrans = req->retrans;
1504
1505 #ifdef CONFIG_TCP_MD5SIG
1506         /* Copy over the MD5 key from the original socket */
1507         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1508                                 AF_INET);
1509         if (key != NULL) {
1510                 /*
1511                  * We're using one, so create a matching key
1512                  * on the newsk structure. If we fail to get
1513                  * memory, then we end up not copying the key
1514                  * across. Shucks.
1515                  */
1516                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1517                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1518                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1519         }
1520 #endif
1521
1522         if (__inet_inherit_port(sk, newsk) < 0)
1523                 goto put_and_exit;
1524         __inet_hash_nolisten(newsk, NULL);
1525
1526         return newsk;
1527
1528 exit_overflow:
1529         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1530 exit_nonewsk:
1531         dst_release(dst);
1532 exit:
1533         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1534         return NULL;
1535 put_and_exit:
1536         tcp_clear_xmit_timers(newsk);
1537         tcp_cleanup_congestion_control(newsk);
1538         bh_unlock_sock(newsk);
1539         sock_put(newsk);
1540         goto exit;
1541 }
1542 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1543
1544 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1545 {
1546         struct tcphdr *th = tcp_hdr(skb);
1547         const struct iphdr *iph = ip_hdr(skb);
1548         struct sock *nsk;
1549         struct request_sock **prev;
1550         /* Find possible connection requests. */
1551         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1552                                                        iph->saddr, iph->daddr);
1553         if (req)
1554                 return tcp_check_req(sk, skb, req, prev);
1555
1556         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1557                         th->source, iph->daddr, th->dest, inet_iif(skb));
1558
1559         if (nsk) {
1560                 if (nsk->sk_state != TCP_TIME_WAIT) {
1561                         bh_lock_sock(nsk);
1562                         return nsk;
1563                 }
1564                 inet_twsk_put(inet_twsk(nsk));
1565                 return NULL;
1566         }
1567
1568 #ifdef CONFIG_SYN_COOKIES
1569         if (!th->syn)
1570                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1571 #endif
1572         return sk;
1573 }
1574
1575 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1576 {
1577         const struct iphdr *iph = ip_hdr(skb);
1578
1579         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1580                 if (!tcp_v4_check(skb->len, iph->saddr,
1581                                   iph->daddr, skb->csum)) {
1582                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1583                         return 0;
1584                 }
1585         }
1586
1587         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1588                                        skb->len, IPPROTO_TCP, 0);
1589
1590         if (skb->len <= 76) {
1591                 return __skb_checksum_complete(skb);
1592         }
1593         return 0;
1594 }
1595
1596
1597 /* The socket must have it's spinlock held when we get
1598  * here.
1599  *
1600  * We have a potential double-lock case here, so even when
1601  * doing backlog processing we use the BH locking scheme.
1602  * This is because we cannot sleep with the original spinlock
1603  * held.
1604  */
1605 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1606 {
1607         struct sock *rsk;
1608 #ifdef CONFIG_TCP_MD5SIG
1609         /*
1610          * We really want to reject the packet as early as possible
1611          * if:
1612          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1613          *  o There is an MD5 option and we're not expecting one
1614          */
1615         if (tcp_v4_inbound_md5_hash(sk, skb))
1616                 goto discard;
1617 #endif
1618
1619         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1620                 sock_rps_save_rxhash(sk, skb);
1621                 if (sk->sk_rx_dst) {
1622                         struct dst_entry *dst = sk->sk_rx_dst;
1623                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1624                             dst->ops->check(dst, 0) == NULL) {
1625                                 dst_release(dst);
1626                                 sk->sk_rx_dst = NULL;
1627                         }
1628                 }
1629                 if (unlikely(sk->sk_rx_dst == NULL)) {
1630                         sk->sk_rx_dst = dst_clone(skb_dst(skb));
1631                         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1632                 }
1633                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1634                         rsk = sk;
1635                         goto reset;
1636                 }
1637                 return 0;
1638         }
1639
1640         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1641                 goto csum_err;
1642
1643         if (sk->sk_state == TCP_LISTEN) {
1644                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1645                 if (!nsk)
1646                         goto discard;
1647
1648                 if (nsk != sk) {
1649                         sock_rps_save_rxhash(nsk, skb);
1650                         if (tcp_child_process(sk, nsk, skb)) {
1651                                 rsk = nsk;
1652                                 goto reset;
1653                         }
1654                         return 0;
1655                 }
1656         } else
1657                 sock_rps_save_rxhash(sk, skb);
1658
1659         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1660                 rsk = sk;
1661                 goto reset;
1662         }
1663         return 0;
1664
1665 reset:
1666         tcp_v4_send_reset(rsk, skb);
1667 discard:
1668         kfree_skb(skb);
1669         /* Be careful here. If this function gets more complicated and
1670          * gcc suffers from register pressure on the x86, sk (in %ebx)
1671          * might be destroyed here. This current version compiles correctly,
1672          * but you have been warned.
1673          */
1674         return 0;
1675
1676 csum_err:
1677         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1678         goto discard;
1679 }
1680 EXPORT_SYMBOL(tcp_v4_do_rcv);
1681
1682 void tcp_v4_early_demux(struct sk_buff *skb)
1683 {
1684         struct net *net = dev_net(skb->dev);
1685         const struct iphdr *iph;
1686         const struct tcphdr *th;
1687         struct sock *sk;
1688
1689         if (skb->pkt_type != PACKET_HOST)
1690                 return;
1691
1692         if (!pskb_may_pull(skb, ip_hdrlen(skb) + sizeof(struct tcphdr)))
1693                 return;
1694
1695         iph = ip_hdr(skb);
1696         th = (struct tcphdr *) ((char *)iph + ip_hdrlen(skb));
1697
1698         if (th->doff < sizeof(struct tcphdr) / 4)
1699                 return;
1700
1701         sk = __inet_lookup_established(net, &tcp_hashinfo,
1702                                        iph->saddr, th->source,
1703                                        iph->daddr, ntohs(th->dest),
1704                                        skb->skb_iif);
1705         if (sk) {
1706                 skb->sk = sk;
1707                 skb->destructor = sock_edemux;
1708                 if (sk->sk_state != TCP_TIME_WAIT) {
1709                         struct dst_entry *dst = sk->sk_rx_dst;
1710
1711                         if (dst)
1712                                 dst = dst_check(dst, 0);
1713                         if (dst &&
1714                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1715                                 skb_dst_set_noref(skb, dst);
1716                 }
1717         }
1718 }
1719
1720 /*
1721  *      From tcp_input.c
1722  */
1723
1724 int tcp_v4_rcv(struct sk_buff *skb)
1725 {
1726         const struct iphdr *iph;
1727         const struct tcphdr *th;
1728         struct sock *sk;
1729         int ret;
1730         struct net *net = dev_net(skb->dev);
1731
1732         if (skb->pkt_type != PACKET_HOST)
1733                 goto discard_it;
1734
1735         /* Count it even if it's bad */
1736         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1737
1738         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1739                 goto discard_it;
1740
1741         th = tcp_hdr(skb);
1742
1743         if (th->doff < sizeof(struct tcphdr) / 4)
1744                 goto bad_packet;
1745         if (!pskb_may_pull(skb, th->doff * 4))
1746                 goto discard_it;
1747
1748         /* An explanation is required here, I think.
1749          * Packet length and doff are validated by header prediction,
1750          * provided case of th->doff==0 is eliminated.
1751          * So, we defer the checks. */
1752         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1753                 goto bad_packet;
1754
1755         th = tcp_hdr(skb);
1756         iph = ip_hdr(skb);
1757         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1758         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1759                                     skb->len - th->doff * 4);
1760         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1761         TCP_SKB_CB(skb)->when    = 0;
1762         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1763         TCP_SKB_CB(skb)->sacked  = 0;
1764
1765         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1766         if (!sk)
1767                 goto no_tcp_socket;
1768
1769 process:
1770         if (sk->sk_state == TCP_TIME_WAIT)
1771                 goto do_time_wait;
1772
1773         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1774                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1775                 goto discard_and_relse;
1776         }
1777
1778         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1779                 goto discard_and_relse;
1780         nf_reset(skb);
1781
1782         if (sk_filter(sk, skb))
1783                 goto discard_and_relse;
1784
1785         skb->dev = NULL;
1786
1787         bh_lock_sock_nested(sk);
1788         ret = 0;
1789         if (!sock_owned_by_user(sk)) {
1790 #ifdef CONFIG_NET_DMA
1791                 struct tcp_sock *tp = tcp_sk(sk);
1792                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1793                         tp->ucopy.dma_chan = net_dma_find_channel();
1794                 if (tp->ucopy.dma_chan)
1795                         ret = tcp_v4_do_rcv(sk, skb);
1796                 else
1797 #endif
1798                 {
1799                         if (!tcp_prequeue(sk, skb))
1800                                 ret = tcp_v4_do_rcv(sk, skb);
1801                 }
1802         } else if (unlikely(sk_add_backlog(sk, skb,
1803                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
1804                 bh_unlock_sock(sk);
1805                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1806                 goto discard_and_relse;
1807         }
1808         bh_unlock_sock(sk);
1809
1810         sock_put(sk);
1811
1812         return ret;
1813
1814 no_tcp_socket:
1815         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1816                 goto discard_it;
1817
1818         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1819 bad_packet:
1820                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1821         } else {
1822                 tcp_v4_send_reset(NULL, skb);
1823         }
1824
1825 discard_it:
1826         /* Discard frame. */
1827         kfree_skb(skb);
1828         return 0;
1829
1830 discard_and_relse:
1831         sock_put(sk);
1832         goto discard_it;
1833
1834 do_time_wait:
1835         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1836                 inet_twsk_put(inet_twsk(sk));
1837                 goto discard_it;
1838         }
1839
1840         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1841                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1842                 inet_twsk_put(inet_twsk(sk));
1843                 goto discard_it;
1844         }
1845         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1846         case TCP_TW_SYN: {
1847                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1848                                                         &tcp_hashinfo,
1849                                                         iph->daddr, th->dest,
1850                                                         inet_iif(skb));
1851                 if (sk2) {
1852                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1853                         inet_twsk_put(inet_twsk(sk));
1854                         sk = sk2;
1855                         goto process;
1856                 }
1857                 /* Fall through to ACK */
1858         }
1859         case TCP_TW_ACK:
1860                 tcp_v4_timewait_ack(sk, skb);
1861                 break;
1862         case TCP_TW_RST:
1863                 goto no_tcp_socket;
1864         case TCP_TW_SUCCESS:;
1865         }
1866         goto discard_it;
1867 }
1868
1869 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1870         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1871         .twsk_unique    = tcp_twsk_unique,
1872         .twsk_destructor= tcp_twsk_destructor,
1873 };
1874
1875 const struct inet_connection_sock_af_ops ipv4_specific = {
1876         .queue_xmit        = ip_queue_xmit,
1877         .send_check        = tcp_v4_send_check,
1878         .rebuild_header    = inet_sk_rebuild_header,
1879         .conn_request      = tcp_v4_conn_request,
1880         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1881         .net_header_len    = sizeof(struct iphdr),
1882         .setsockopt        = ip_setsockopt,
1883         .getsockopt        = ip_getsockopt,
1884         .addr2sockaddr     = inet_csk_addr2sockaddr,
1885         .sockaddr_len      = sizeof(struct sockaddr_in),
1886         .bind_conflict     = inet_csk_bind_conflict,
1887 #ifdef CONFIG_COMPAT
1888         .compat_setsockopt = compat_ip_setsockopt,
1889         .compat_getsockopt = compat_ip_getsockopt,
1890 #endif
1891 };
1892 EXPORT_SYMBOL(ipv4_specific);
1893
1894 #ifdef CONFIG_TCP_MD5SIG
1895 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1896         .md5_lookup             = tcp_v4_md5_lookup,
1897         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1898         .md5_parse              = tcp_v4_parse_md5_keys,
1899 };
1900 #endif
1901
1902 /* NOTE: A lot of things set to zero explicitly by call to
1903  *       sk_alloc() so need not be done here.
1904  */
1905 static int tcp_v4_init_sock(struct sock *sk)
1906 {
1907         struct inet_connection_sock *icsk = inet_csk(sk);
1908
1909         tcp_init_sock(sk);
1910
1911         icsk->icsk_af_ops = &ipv4_specific;
1912
1913 #ifdef CONFIG_TCP_MD5SIG
1914         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1915 #endif
1916
1917         return 0;
1918 }
1919
1920 void tcp_v4_destroy_sock(struct sock *sk)
1921 {
1922         struct tcp_sock *tp = tcp_sk(sk);
1923
1924         tcp_clear_xmit_timers(sk);
1925
1926         tcp_cleanup_congestion_control(sk);
1927
1928         /* Cleanup up the write buffer. */
1929         tcp_write_queue_purge(sk);
1930
1931         /* Cleans up our, hopefully empty, out_of_order_queue. */
1932         __skb_queue_purge(&tp->out_of_order_queue);
1933
1934 #ifdef CONFIG_TCP_MD5SIG
1935         /* Clean up the MD5 key list, if any */
1936         if (tp->md5sig_info) {
1937                 tcp_clear_md5_list(sk);
1938                 kfree_rcu(tp->md5sig_info, rcu);
1939                 tp->md5sig_info = NULL;
1940         }
1941 #endif
1942
1943 #ifdef CONFIG_NET_DMA
1944         /* Cleans up our sk_async_wait_queue */
1945         __skb_queue_purge(&sk->sk_async_wait_queue);
1946 #endif
1947
1948         /* Clean prequeue, it must be empty really */
1949         __skb_queue_purge(&tp->ucopy.prequeue);
1950
1951         /* Clean up a referenced TCP bind bucket. */
1952         if (inet_csk(sk)->icsk_bind_hash)
1953                 inet_put_port(sk);
1954
1955         /*
1956          * If sendmsg cached page exists, toss it.
1957          */
1958         if (sk->sk_sndmsg_page) {
1959                 __free_page(sk->sk_sndmsg_page);
1960                 sk->sk_sndmsg_page = NULL;
1961         }
1962
1963         /* TCP Cookie Transactions */
1964         if (tp->cookie_values != NULL) {
1965                 kref_put(&tp->cookie_values->kref,
1966                          tcp_cookie_values_release);
1967                 tp->cookie_values = NULL;
1968         }
1969
1970         /* If socket is aborted during connect operation */
1971         tcp_free_fastopen_req(tp);
1972
1973         sk_sockets_allocated_dec(sk);
1974         sock_release_memcg(sk);
1975 }
1976 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1977
1978 #ifdef CONFIG_PROC_FS
1979 /* Proc filesystem TCP sock list dumping. */
1980
1981 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1982 {
1983         return hlist_nulls_empty(head) ? NULL :
1984                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1985 }
1986
1987 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1988 {
1989         return !is_a_nulls(tw->tw_node.next) ?
1990                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1991 }
1992
1993 /*
1994  * Get next listener socket follow cur.  If cur is NULL, get first socket
1995  * starting from bucket given in st->bucket; when st->bucket is zero the
1996  * very first socket in the hash table is returned.
1997  */
1998 static void *listening_get_next(struct seq_file *seq, void *cur)
1999 {
2000         struct inet_connection_sock *icsk;
2001         struct hlist_nulls_node *node;
2002         struct sock *sk = cur;
2003         struct inet_listen_hashbucket *ilb;
2004         struct tcp_iter_state *st = seq->private;
2005         struct net *net = seq_file_net(seq);
2006
2007         if (!sk) {
2008                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2009                 spin_lock_bh(&ilb->lock);
2010                 sk = sk_nulls_head(&ilb->head);
2011                 st->offset = 0;
2012                 goto get_sk;
2013         }
2014         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2015         ++st->num;
2016         ++st->offset;
2017
2018         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2019                 struct request_sock *req = cur;
2020
2021                 icsk = inet_csk(st->syn_wait_sk);
2022                 req = req->dl_next;
2023                 while (1) {
2024                         while (req) {
2025                                 if (req->rsk_ops->family == st->family) {
2026                                         cur = req;
2027                                         goto out;
2028                                 }
2029                                 req = req->dl_next;
2030                         }
2031                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2032                                 break;
2033 get_req:
2034                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2035                 }
2036                 sk        = sk_nulls_next(st->syn_wait_sk);
2037                 st->state = TCP_SEQ_STATE_LISTENING;
2038                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2039         } else {
2040                 icsk = inet_csk(sk);
2041                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2042                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2043                         goto start_req;
2044                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2045                 sk = sk_nulls_next(sk);
2046         }
2047 get_sk:
2048         sk_nulls_for_each_from(sk, node) {
2049                 if (!net_eq(sock_net(sk), net))
2050                         continue;
2051                 if (sk->sk_family == st->family) {
2052                         cur = sk;
2053                         goto out;
2054                 }
2055                 icsk = inet_csk(sk);
2056                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2057                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2058 start_req:
2059                         st->uid         = sock_i_uid(sk);
2060                         st->syn_wait_sk = sk;
2061                         st->state       = TCP_SEQ_STATE_OPENREQ;
2062                         st->sbucket     = 0;
2063                         goto get_req;
2064                 }
2065                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2066         }
2067         spin_unlock_bh(&ilb->lock);
2068         st->offset = 0;
2069         if (++st->bucket < INET_LHTABLE_SIZE) {
2070                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2071                 spin_lock_bh(&ilb->lock);
2072                 sk = sk_nulls_head(&ilb->head);
2073                 goto get_sk;
2074         }
2075         cur = NULL;
2076 out:
2077         return cur;
2078 }
2079
2080 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2081 {
2082         struct tcp_iter_state *st = seq->private;
2083         void *rc;
2084
2085         st->bucket = 0;
2086         st->offset = 0;
2087         rc = listening_get_next(seq, NULL);
2088
2089         while (rc && *pos) {
2090                 rc = listening_get_next(seq, rc);
2091                 --*pos;
2092         }
2093         return rc;
2094 }
2095
2096 static inline bool empty_bucket(struct tcp_iter_state *st)
2097 {
2098         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2099                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2100 }
2101
2102 /*
2103  * Get first established socket starting from bucket given in st->bucket.
2104  * If st->bucket is zero, the very first socket in the hash is returned.
2105  */
2106 static void *established_get_first(struct seq_file *seq)
2107 {
2108         struct tcp_iter_state *st = seq->private;
2109         struct net *net = seq_file_net(seq);
2110         void *rc = NULL;
2111
2112         st->offset = 0;
2113         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2114                 struct sock *sk;
2115                 struct hlist_nulls_node *node;
2116                 struct inet_timewait_sock *tw;
2117                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2118
2119                 /* Lockless fast path for the common case of empty buckets */
2120                 if (empty_bucket(st))
2121                         continue;
2122
2123                 spin_lock_bh(lock);
2124                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2125                         if (sk->sk_family != st->family ||
2126                             !net_eq(sock_net(sk), net)) {
2127                                 continue;
2128                         }
2129                         rc = sk;
2130                         goto out;
2131                 }
2132                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2133                 inet_twsk_for_each(tw, node,
2134                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2135                         if (tw->tw_family != st->family ||
2136                             !net_eq(twsk_net(tw), net)) {
2137                                 continue;
2138                         }
2139                         rc = tw;
2140                         goto out;
2141                 }
2142                 spin_unlock_bh(lock);
2143                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2144         }
2145 out:
2146         return rc;
2147 }
2148
2149 static void *established_get_next(struct seq_file *seq, void *cur)
2150 {
2151         struct sock *sk = cur;
2152         struct inet_timewait_sock *tw;
2153         struct hlist_nulls_node *node;
2154         struct tcp_iter_state *st = seq->private;
2155         struct net *net = seq_file_net(seq);
2156
2157         ++st->num;
2158         ++st->offset;
2159
2160         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2161                 tw = cur;
2162                 tw = tw_next(tw);
2163 get_tw:
2164                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2165                         tw = tw_next(tw);
2166                 }
2167                 if (tw) {
2168                         cur = tw;
2169                         goto out;
2170                 }
2171                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2172                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2173
2174                 /* Look for next non empty bucket */
2175                 st->offset = 0;
2176                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2177                                 empty_bucket(st))
2178                         ;
2179                 if (st->bucket > tcp_hashinfo.ehash_mask)
2180                         return NULL;
2181
2182                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2183                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2184         } else
2185                 sk = sk_nulls_next(sk);
2186
2187         sk_nulls_for_each_from(sk, node) {
2188                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2189                         goto found;
2190         }
2191
2192         st->state = TCP_SEQ_STATE_TIME_WAIT;
2193         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2194         goto get_tw;
2195 found:
2196         cur = sk;
2197 out:
2198         return cur;
2199 }
2200
2201 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2202 {
2203         struct tcp_iter_state *st = seq->private;
2204         void *rc;
2205
2206         st->bucket = 0;
2207         rc = established_get_first(seq);
2208
2209         while (rc && pos) {
2210                 rc = established_get_next(seq, rc);
2211                 --pos;
2212         }
2213         return rc;
2214 }
2215
2216 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2217 {
2218         void *rc;
2219         struct tcp_iter_state *st = seq->private;
2220
2221         st->state = TCP_SEQ_STATE_LISTENING;
2222         rc        = listening_get_idx(seq, &pos);
2223
2224         if (!rc) {
2225                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2226                 rc        = established_get_idx(seq, pos);
2227         }
2228
2229         return rc;
2230 }
2231
2232 static void *tcp_seek_last_pos(struct seq_file *seq)
2233 {
2234         struct tcp_iter_state *st = seq->private;
2235         int offset = st->offset;
2236         int orig_num = st->num;
2237         void *rc = NULL;
2238
2239         switch (st->state) {
2240         case TCP_SEQ_STATE_OPENREQ:
2241         case TCP_SEQ_STATE_LISTENING:
2242                 if (st->bucket >= INET_LHTABLE_SIZE)
2243                         break;
2244                 st->state = TCP_SEQ_STATE_LISTENING;
2245                 rc = listening_get_next(seq, NULL);
2246                 while (offset-- && rc)
2247                         rc = listening_get_next(seq, rc);
2248                 if (rc)
2249                         break;
2250                 st->bucket = 0;
2251                 /* Fallthrough */
2252         case TCP_SEQ_STATE_ESTABLISHED:
2253         case TCP_SEQ_STATE_TIME_WAIT:
2254                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2255                 if (st->bucket > tcp_hashinfo.ehash_mask)
2256                         break;
2257                 rc = established_get_first(seq);
2258                 while (offset-- && rc)
2259                         rc = established_get_next(seq, rc);
2260         }
2261
2262         st->num = orig_num;
2263
2264         return rc;
2265 }
2266
2267 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2268 {
2269         struct tcp_iter_state *st = seq->private;
2270         void *rc;
2271
2272         if (*pos && *pos == st->last_pos) {
2273                 rc = tcp_seek_last_pos(seq);
2274                 if (rc)
2275                         goto out;
2276         }
2277
2278         st->state = TCP_SEQ_STATE_LISTENING;
2279         st->num = 0;
2280         st->bucket = 0;
2281         st->offset = 0;
2282         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2283
2284 out:
2285         st->last_pos = *pos;
2286         return rc;
2287 }
2288
2289 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2290 {
2291         struct tcp_iter_state *st = seq->private;
2292         void *rc = NULL;
2293
2294         if (v == SEQ_START_TOKEN) {
2295                 rc = tcp_get_idx(seq, 0);
2296                 goto out;
2297         }
2298
2299         switch (st->state) {
2300         case TCP_SEQ_STATE_OPENREQ:
2301         case TCP_SEQ_STATE_LISTENING:
2302                 rc = listening_get_next(seq, v);
2303                 if (!rc) {
2304                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2305                         st->bucket = 0;
2306                         st->offset = 0;
2307                         rc        = established_get_first(seq);
2308                 }
2309                 break;
2310         case TCP_SEQ_STATE_ESTABLISHED:
2311         case TCP_SEQ_STATE_TIME_WAIT:
2312                 rc = established_get_next(seq, v);
2313                 break;
2314         }
2315 out:
2316         ++*pos;
2317         st->last_pos = *pos;
2318         return rc;
2319 }
2320
2321 static void tcp_seq_stop(struct seq_file *seq, void *v)
2322 {
2323         struct tcp_iter_state *st = seq->private;
2324
2325         switch (st->state) {
2326         case TCP_SEQ_STATE_OPENREQ:
2327                 if (v) {
2328                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2329                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2330                 }
2331         case TCP_SEQ_STATE_LISTENING:
2332                 if (v != SEQ_START_TOKEN)
2333                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2334                 break;
2335         case TCP_SEQ_STATE_TIME_WAIT:
2336         case TCP_SEQ_STATE_ESTABLISHED:
2337                 if (v)
2338                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2339                 break;
2340         }
2341 }
2342
2343 int tcp_seq_open(struct inode *inode, struct file *file)
2344 {
2345         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2346         struct tcp_iter_state *s;
2347         int err;
2348
2349         err = seq_open_net(inode, file, &afinfo->seq_ops,
2350                           sizeof(struct tcp_iter_state));
2351         if (err < 0)
2352                 return err;
2353
2354         s = ((struct seq_file *)file->private_data)->private;
2355         s->family               = afinfo->family;
2356         s->last_pos             = 0;
2357         return 0;
2358 }
2359 EXPORT_SYMBOL(tcp_seq_open);
2360
2361 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2362 {
2363         int rc = 0;
2364         struct proc_dir_entry *p;
2365
2366         afinfo->seq_ops.start           = tcp_seq_start;
2367         afinfo->seq_ops.next            = tcp_seq_next;
2368         afinfo->seq_ops.stop            = tcp_seq_stop;
2369
2370         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2371                              afinfo->seq_fops, afinfo);
2372         if (!p)
2373                 rc = -ENOMEM;
2374         return rc;
2375 }
2376 EXPORT_SYMBOL(tcp_proc_register);
2377
2378 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2379 {
2380         proc_net_remove(net, afinfo->name);
2381 }
2382 EXPORT_SYMBOL(tcp_proc_unregister);
2383
2384 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2385                          struct seq_file *f, int i, int uid, int *len)
2386 {
2387         const struct inet_request_sock *ireq = inet_rsk(req);
2388         int ttd = req->expires - jiffies;
2389
2390         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2391                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2392                 i,
2393                 ireq->loc_addr,
2394                 ntohs(inet_sk(sk)->inet_sport),
2395                 ireq->rmt_addr,
2396                 ntohs(ireq->rmt_port),
2397                 TCP_SYN_RECV,
2398                 0, 0, /* could print option size, but that is af dependent. */
2399                 1,    /* timers active (only the expire timer) */
2400                 jiffies_to_clock_t(ttd),
2401                 req->retrans,
2402                 uid,
2403                 0,  /* non standard timer */
2404                 0, /* open_requests have no inode */
2405                 atomic_read(&sk->sk_refcnt),
2406                 req,
2407                 len);
2408 }
2409
2410 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2411 {
2412         int timer_active;
2413         unsigned long timer_expires;
2414         const struct tcp_sock *tp = tcp_sk(sk);
2415         const struct inet_connection_sock *icsk = inet_csk(sk);
2416         const struct inet_sock *inet = inet_sk(sk);
2417         __be32 dest = inet->inet_daddr;
2418         __be32 src = inet->inet_rcv_saddr;
2419         __u16 destp = ntohs(inet->inet_dport);
2420         __u16 srcp = ntohs(inet->inet_sport);
2421         int rx_queue;
2422
2423         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2424                 timer_active    = 1;
2425                 timer_expires   = icsk->icsk_timeout;
2426         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2427                 timer_active    = 4;
2428                 timer_expires   = icsk->icsk_timeout;
2429         } else if (timer_pending(&sk->sk_timer)) {
2430                 timer_active    = 2;
2431                 timer_expires   = sk->sk_timer.expires;
2432         } else {
2433                 timer_active    = 0;
2434                 timer_expires = jiffies;
2435         }
2436
2437         if (sk->sk_state == TCP_LISTEN)
2438                 rx_queue = sk->sk_ack_backlog;
2439         else
2440                 /*
2441                  * because we dont lock socket, we might find a transient negative value
2442                  */
2443                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2444
2445         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2446                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2447                 i, src, srcp, dest, destp, sk->sk_state,
2448                 tp->write_seq - tp->snd_una,
2449                 rx_queue,
2450                 timer_active,
2451                 jiffies_to_clock_t(timer_expires - jiffies),
2452                 icsk->icsk_retransmits,
2453                 sock_i_uid(sk),
2454                 icsk->icsk_probes_out,
2455                 sock_i_ino(sk),
2456                 atomic_read(&sk->sk_refcnt), sk,
2457                 jiffies_to_clock_t(icsk->icsk_rto),
2458                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2459                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2460                 tp->snd_cwnd,
2461                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2462                 len);
2463 }
2464
2465 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2466                                struct seq_file *f, int i, int *len)
2467 {
2468         __be32 dest, src;
2469         __u16 destp, srcp;
2470         int ttd = tw->tw_ttd - jiffies;
2471
2472         if (ttd < 0)
2473                 ttd = 0;
2474
2475         dest  = tw->tw_daddr;
2476         src   = tw->tw_rcv_saddr;
2477         destp = ntohs(tw->tw_dport);
2478         srcp  = ntohs(tw->tw_sport);
2479
2480         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2481                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2482                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2483                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2484                 atomic_read(&tw->tw_refcnt), tw, len);
2485 }
2486
2487 #define TMPSZ 150
2488
2489 static int tcp4_seq_show(struct seq_file *seq, void *v)
2490 {
2491         struct tcp_iter_state *st;
2492         int len;
2493
2494         if (v == SEQ_START_TOKEN) {
2495                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2496                            "  sl  local_address rem_address   st tx_queue "
2497                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2498                            "inode");
2499                 goto out;
2500         }
2501         st = seq->private;
2502
2503         switch (st->state) {
2504         case TCP_SEQ_STATE_LISTENING:
2505         case TCP_SEQ_STATE_ESTABLISHED:
2506                 get_tcp4_sock(v, seq, st->num, &len);
2507                 break;
2508         case TCP_SEQ_STATE_OPENREQ:
2509                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2510                 break;
2511         case TCP_SEQ_STATE_TIME_WAIT:
2512                 get_timewait4_sock(v, seq, st->num, &len);
2513                 break;
2514         }
2515         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2516 out:
2517         return 0;
2518 }
2519
2520 static const struct file_operations tcp_afinfo_seq_fops = {
2521         .owner   = THIS_MODULE,
2522         .open    = tcp_seq_open,
2523         .read    = seq_read,
2524         .llseek  = seq_lseek,
2525         .release = seq_release_net
2526 };
2527
2528 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2529         .name           = "tcp",
2530         .family         = AF_INET,
2531         .seq_fops       = &tcp_afinfo_seq_fops,
2532         .seq_ops        = {
2533                 .show           = tcp4_seq_show,
2534         },
2535 };
2536
2537 static int __net_init tcp4_proc_init_net(struct net *net)
2538 {
2539         return tcp_proc_register(net, &tcp4_seq_afinfo);
2540 }
2541
2542 static void __net_exit tcp4_proc_exit_net(struct net *net)
2543 {
2544         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2545 }
2546
2547 static struct pernet_operations tcp4_net_ops = {
2548         .init = tcp4_proc_init_net,
2549         .exit = tcp4_proc_exit_net,
2550 };
2551
2552 int __init tcp4_proc_init(void)
2553 {
2554         return register_pernet_subsys(&tcp4_net_ops);
2555 }
2556
2557 void tcp4_proc_exit(void)
2558 {
2559         unregister_pernet_subsys(&tcp4_net_ops);
2560 }
2561 #endif /* CONFIG_PROC_FS */
2562
2563 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2564 {
2565         const struct iphdr *iph = skb_gro_network_header(skb);
2566
2567         switch (skb->ip_summed) {
2568         case CHECKSUM_COMPLETE:
2569                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2570                                   skb->csum)) {
2571                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2572                         break;
2573                 }
2574
2575                 /* fall through */
2576         case CHECKSUM_NONE:
2577                 NAPI_GRO_CB(skb)->flush = 1;
2578                 return NULL;
2579         }
2580
2581         return tcp_gro_receive(head, skb);
2582 }
2583
2584 int tcp4_gro_complete(struct sk_buff *skb)
2585 {
2586         const struct iphdr *iph = ip_hdr(skb);
2587         struct tcphdr *th = tcp_hdr(skb);
2588
2589         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2590                                   iph->saddr, iph->daddr, 0);
2591         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2592
2593         return tcp_gro_complete(skb);
2594 }
2595
2596 struct proto tcp_prot = {
2597         .name                   = "TCP",
2598         .owner                  = THIS_MODULE,
2599         .close                  = tcp_close,
2600         .connect                = tcp_v4_connect,
2601         .disconnect             = tcp_disconnect,
2602         .accept                 = inet_csk_accept,
2603         .ioctl                  = tcp_ioctl,
2604         .init                   = tcp_v4_init_sock,
2605         .destroy                = tcp_v4_destroy_sock,
2606         .shutdown               = tcp_shutdown,
2607         .setsockopt             = tcp_setsockopt,
2608         .getsockopt             = tcp_getsockopt,
2609         .recvmsg                = tcp_recvmsg,
2610         .sendmsg                = tcp_sendmsg,
2611         .sendpage               = tcp_sendpage,
2612         .backlog_rcv            = tcp_v4_do_rcv,
2613         .release_cb             = tcp_release_cb,
2614         .mtu_reduced            = tcp_v4_mtu_reduced,
2615         .hash                   = inet_hash,
2616         .unhash                 = inet_unhash,
2617         .get_port               = inet_csk_get_port,
2618         .enter_memory_pressure  = tcp_enter_memory_pressure,
2619         .sockets_allocated      = &tcp_sockets_allocated,
2620         .orphan_count           = &tcp_orphan_count,
2621         .memory_allocated       = &tcp_memory_allocated,
2622         .memory_pressure        = &tcp_memory_pressure,
2623         .sysctl_wmem            = sysctl_tcp_wmem,
2624         .sysctl_rmem            = sysctl_tcp_rmem,
2625         .max_header             = MAX_TCP_HEADER,
2626         .obj_size               = sizeof(struct tcp_sock),
2627         .slab_flags             = SLAB_DESTROY_BY_RCU,
2628         .twsk_prot              = &tcp_timewait_sock_ops,
2629         .rsk_prot               = &tcp_request_sock_ops,
2630         .h.hashinfo             = &tcp_hashinfo,
2631         .no_autobind            = true,
2632 #ifdef CONFIG_COMPAT
2633         .compat_setsockopt      = compat_tcp_setsockopt,
2634         .compat_getsockopt      = compat_tcp_getsockopt,
2635 #endif
2636 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2637         .init_cgroup            = tcp_init_cgroup,
2638         .destroy_cgroup         = tcp_destroy_cgroup,
2639         .proto_cgroup           = tcp_proto_cgroup,
2640 #endif
2641 };
2642 EXPORT_SYMBOL(tcp_prot);
2643
2644 static int __net_init tcp_sk_init(struct net *net)
2645 {
2646         return 0;
2647 }
2648
2649 static void __net_exit tcp_sk_exit(struct net *net)
2650 {
2651 }
2652
2653 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2654 {
2655         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2656 }
2657
2658 static struct pernet_operations __net_initdata tcp_sk_ops = {
2659        .init       = tcp_sk_init,
2660        .exit       = tcp_sk_exit,
2661        .exit_batch = tcp_sk_exit_batch,
2662 };
2663
2664 void __init tcp_v4_init(void)
2665 {
2666         inet_hashinfo_init(&tcp_hashinfo);
2667         if (register_pernet_subsys(&tcp_sk_ops))
2668                 panic("Failed to create the TCP control socket.\n");
2669 }