]> git.karo-electronics.de Git - mv-sheeva.git/blob - net/ipv6/route.c
[IPv6] route: Convert FIB6 dumping to use new netlink api
[mv-sheeva.git] / net / ipv6 / route.c
1 /*
2  *      Linux INET6 implementation
3  *      FIB front-end.
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>     
7  *
8  *      $Id: route.c,v 1.56 2001/10/31 21:55:55 davem Exp $
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 /*      Changes:
17  *
18  *      YOSHIFUJI Hideaki @USAGI
19  *              reworked default router selection.
20  *              - respect outgoing interface
21  *              - select from (probably) reachable routers (i.e.
22  *              routers in REACHABLE, STALE, DELAY or PROBE states).
23  *              - always select the same router if it is (probably)
24  *              reachable.  otherwise, round-robin the list.
25  */
26
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/types.h>
30 #include <linux/times.h>
31 #include <linux/socket.h>
32 #include <linux/sockios.h>
33 #include <linux/net.h>
34 #include <linux/route.h>
35 #include <linux/netdevice.h>
36 #include <linux/in6.h>
37 #include <linux/init.h>
38 #include <linux/if_arp.h>
39
40 #ifdef  CONFIG_PROC_FS
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #endif
44
45 #include <net/snmp.h>
46 #include <net/ipv6.h>
47 #include <net/ip6_fib.h>
48 #include <net/ip6_route.h>
49 #include <net/ndisc.h>
50 #include <net/addrconf.h>
51 #include <net/tcp.h>
52 #include <linux/rtnetlink.h>
53 #include <net/dst.h>
54 #include <net/xfrm.h>
55 #include <net/netevent.h>
56 #include <net/netlink.h>
57
58 #include <asm/uaccess.h>
59
60 #ifdef CONFIG_SYSCTL
61 #include <linux/sysctl.h>
62 #endif
63
64 /* Set to 3 to get tracing. */
65 #define RT6_DEBUG 2
66
67 #if RT6_DEBUG >= 3
68 #define RDBG(x) printk x
69 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
70 #else
71 #define RDBG(x)
72 #define RT6_TRACE(x...) do { ; } while (0)
73 #endif
74
75 #define CLONE_OFFLINK_ROUTE 0
76
77 #define RT6_SELECT_F_IFACE      0x1
78 #define RT6_SELECT_F_REACHABLE  0x2
79
80 static int ip6_rt_max_size = 4096;
81 static int ip6_rt_gc_min_interval = HZ / 2;
82 static int ip6_rt_gc_timeout = 60*HZ;
83 int ip6_rt_gc_interval = 30*HZ;
84 static int ip6_rt_gc_elasticity = 9;
85 static int ip6_rt_mtu_expires = 10*60*HZ;
86 static int ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
87
88 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort);
89 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void             ip6_dst_destroy(struct dst_entry *);
92 static void             ip6_dst_ifdown(struct dst_entry *,
93                                        struct net_device *dev, int how);
94 static int               ip6_dst_gc(void);
95
96 static int              ip6_pkt_discard(struct sk_buff *skb);
97 static int              ip6_pkt_discard_out(struct sk_buff *skb);
98 static void             ip6_link_failure(struct sk_buff *skb);
99 static void             ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
100
101 #ifdef CONFIG_IPV6_ROUTE_INFO
102 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
103                                            struct in6_addr *gwaddr, int ifindex,
104                                            unsigned pref);
105 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
106                                            struct in6_addr *gwaddr, int ifindex);
107 #endif
108
109 static struct dst_ops ip6_dst_ops = {
110         .family                 =       AF_INET6,
111         .protocol               =       __constant_htons(ETH_P_IPV6),
112         .gc                     =       ip6_dst_gc,
113         .gc_thresh              =       1024,
114         .check                  =       ip6_dst_check,
115         .destroy                =       ip6_dst_destroy,
116         .ifdown                 =       ip6_dst_ifdown,
117         .negative_advice        =       ip6_negative_advice,
118         .link_failure           =       ip6_link_failure,
119         .update_pmtu            =       ip6_rt_update_pmtu,
120         .entry_size             =       sizeof(struct rt6_info),
121 };
122
123 struct rt6_info ip6_null_entry = {
124         .u = {
125                 .dst = {
126                         .__refcnt       = ATOMIC_INIT(1),
127                         .__use          = 1,
128                         .dev            = &loopback_dev,
129                         .obsolete       = -1,
130                         .error          = -ENETUNREACH,
131                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
132                         .input          = ip6_pkt_discard,
133                         .output         = ip6_pkt_discard_out,
134                         .ops            = &ip6_dst_ops,
135                         .path           = (struct dst_entry*)&ip6_null_entry,
136                 }
137         },
138         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
139         .rt6i_metric    = ~(u32) 0,
140         .rt6i_ref       = ATOMIC_INIT(1),
141 };
142
143 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
144
145 struct rt6_info ip6_prohibit_entry = {
146         .u = {
147                 .dst = {
148                         .__refcnt       = ATOMIC_INIT(1),
149                         .__use          = 1,
150                         .dev            = &loopback_dev,
151                         .obsolete       = -1,
152                         .error          = -EACCES,
153                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
154                         .input          = ip6_pkt_discard,
155                         .output         = ip6_pkt_discard_out,
156                         .ops            = &ip6_dst_ops,
157                         .path           = (struct dst_entry*)&ip6_prohibit_entry,
158                 }
159         },
160         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
161         .rt6i_metric    = ~(u32) 0,
162         .rt6i_ref       = ATOMIC_INIT(1),
163 };
164
165 struct rt6_info ip6_blk_hole_entry = {
166         .u = {
167                 .dst = {
168                         .__refcnt       = ATOMIC_INIT(1),
169                         .__use          = 1,
170                         .dev            = &loopback_dev,
171                         .obsolete       = -1,
172                         .error          = -EINVAL,
173                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
174                         .input          = ip6_pkt_discard,
175                         .output         = ip6_pkt_discard_out,
176                         .ops            = &ip6_dst_ops,
177                         .path           = (struct dst_entry*)&ip6_blk_hole_entry,
178                 }
179         },
180         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
181         .rt6i_metric    = ~(u32) 0,
182         .rt6i_ref       = ATOMIC_INIT(1),
183 };
184
185 #endif
186
187 /* allocate dst with ip6_dst_ops */
188 static __inline__ struct rt6_info *ip6_dst_alloc(void)
189 {
190         return (struct rt6_info *)dst_alloc(&ip6_dst_ops);
191 }
192
193 static void ip6_dst_destroy(struct dst_entry *dst)
194 {
195         struct rt6_info *rt = (struct rt6_info *)dst;
196         struct inet6_dev *idev = rt->rt6i_idev;
197
198         if (idev != NULL) {
199                 rt->rt6i_idev = NULL;
200                 in6_dev_put(idev);
201         }       
202 }
203
204 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
205                            int how)
206 {
207         struct rt6_info *rt = (struct rt6_info *)dst;
208         struct inet6_dev *idev = rt->rt6i_idev;
209
210         if (dev != &loopback_dev && idev != NULL && idev->dev == dev) {
211                 struct inet6_dev *loopback_idev = in6_dev_get(&loopback_dev);
212                 if (loopback_idev != NULL) {
213                         rt->rt6i_idev = loopback_idev;
214                         in6_dev_put(idev);
215                 }
216         }
217 }
218
219 static __inline__ int rt6_check_expired(const struct rt6_info *rt)
220 {
221         return (rt->rt6i_flags & RTF_EXPIRES &&
222                 time_after(jiffies, rt->rt6i_expires));
223 }
224
225 static inline int rt6_need_strict(struct in6_addr *daddr)
226 {
227         return (ipv6_addr_type(daddr) &
228                 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL));
229 }
230
231 /*
232  *      Route lookup. Any table->tb6_lock is implied.
233  */
234
235 static __inline__ struct rt6_info *rt6_device_match(struct rt6_info *rt,
236                                                     int oif,
237                                                     int strict)
238 {
239         struct rt6_info *local = NULL;
240         struct rt6_info *sprt;
241
242         if (oif) {
243                 for (sprt = rt; sprt; sprt = sprt->u.next) {
244                         struct net_device *dev = sprt->rt6i_dev;
245                         if (dev->ifindex == oif)
246                                 return sprt;
247                         if (dev->flags & IFF_LOOPBACK) {
248                                 if (sprt->rt6i_idev == NULL ||
249                                     sprt->rt6i_idev->dev->ifindex != oif) {
250                                         if (strict && oif)
251                                                 continue;
252                                         if (local && (!oif || 
253                                                       local->rt6i_idev->dev->ifindex == oif))
254                                                 continue;
255                                 }
256                                 local = sprt;
257                         }
258                 }
259
260                 if (local)
261                         return local;
262
263                 if (strict)
264                         return &ip6_null_entry;
265         }
266         return rt;
267 }
268
269 #ifdef CONFIG_IPV6_ROUTER_PREF
270 static void rt6_probe(struct rt6_info *rt)
271 {
272         struct neighbour *neigh = rt ? rt->rt6i_nexthop : NULL;
273         /*
274          * Okay, this does not seem to be appropriate
275          * for now, however, we need to check if it
276          * is really so; aka Router Reachability Probing.
277          *
278          * Router Reachability Probe MUST be rate-limited
279          * to no more than one per minute.
280          */
281         if (!neigh || (neigh->nud_state & NUD_VALID))
282                 return;
283         read_lock_bh(&neigh->lock);
284         if (!(neigh->nud_state & NUD_VALID) &&
285             time_after(jiffies, neigh->updated + rt->rt6i_idev->cnf.rtr_probe_interval)) {
286                 struct in6_addr mcaddr;
287                 struct in6_addr *target;
288
289                 neigh->updated = jiffies;
290                 read_unlock_bh(&neigh->lock);
291
292                 target = (struct in6_addr *)&neigh->primary_key;
293                 addrconf_addr_solict_mult(target, &mcaddr);
294                 ndisc_send_ns(rt->rt6i_dev, NULL, target, &mcaddr, NULL);
295         } else
296                 read_unlock_bh(&neigh->lock);
297 }
298 #else
299 static inline void rt6_probe(struct rt6_info *rt)
300 {
301         return;
302 }
303 #endif
304
305 /*
306  * Default Router Selection (RFC 2461 6.3.6)
307  */
308 static int inline rt6_check_dev(struct rt6_info *rt, int oif)
309 {
310         struct net_device *dev = rt->rt6i_dev;
311         if (!oif || dev->ifindex == oif)
312                 return 2;
313         if ((dev->flags & IFF_LOOPBACK) &&
314             rt->rt6i_idev && rt->rt6i_idev->dev->ifindex == oif)
315                 return 1;
316         return 0;
317 }
318
319 static int inline rt6_check_neigh(struct rt6_info *rt)
320 {
321         struct neighbour *neigh = rt->rt6i_nexthop;
322         int m = 0;
323         if (rt->rt6i_flags & RTF_NONEXTHOP ||
324             !(rt->rt6i_flags & RTF_GATEWAY))
325                 m = 1;
326         else if (neigh) {
327                 read_lock_bh(&neigh->lock);
328                 if (neigh->nud_state & NUD_VALID)
329                         m = 2;
330                 read_unlock_bh(&neigh->lock);
331         }
332         return m;
333 }
334
335 static int rt6_score_route(struct rt6_info *rt, int oif,
336                            int strict)
337 {
338         int m, n;
339                 
340         m = rt6_check_dev(rt, oif);
341         if (!m && (strict & RT6_SELECT_F_IFACE))
342                 return -1;
343 #ifdef CONFIG_IPV6_ROUTER_PREF
344         m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->rt6i_flags)) << 2;
345 #endif
346         n = rt6_check_neigh(rt);
347         if (n > 1)
348                 m |= 16;
349         else if (!n && strict & RT6_SELECT_F_REACHABLE)
350                 return -1;
351         return m;
352 }
353
354 static struct rt6_info *rt6_select(struct rt6_info **head, int oif,
355                                    int strict)
356 {
357         struct rt6_info *match = NULL, *last = NULL;
358         struct rt6_info *rt, *rt0 = *head;
359         u32 metric;
360         int mpri = -1;
361
362         RT6_TRACE("%s(head=%p(*head=%p), oif=%d)\n",
363                   __FUNCTION__, head, head ? *head : NULL, oif);
364
365         for (rt = rt0, metric = rt0->rt6i_metric;
366              rt && rt->rt6i_metric == metric && (!last || rt != rt0);
367              rt = rt->u.next) {
368                 int m;
369
370                 if (rt6_check_expired(rt))
371                         continue;
372
373                 last = rt;
374
375                 m = rt6_score_route(rt, oif, strict);
376                 if (m < 0)
377                         continue;
378
379                 if (m > mpri) {
380                         rt6_probe(match);
381                         match = rt;
382                         mpri = m;
383                 } else {
384                         rt6_probe(rt);
385                 }
386         }
387
388         if (!match &&
389             (strict & RT6_SELECT_F_REACHABLE) &&
390             last && last != rt0) {
391                 /* no entries matched; do round-robin */
392                 static DEFINE_SPINLOCK(lock);
393                 spin_lock(&lock);
394                 *head = rt0->u.next;
395                 rt0->u.next = last->u.next;
396                 last->u.next = rt0;
397                 spin_unlock(&lock);
398         }
399
400         RT6_TRACE("%s() => %p, score=%d\n",
401                   __FUNCTION__, match, mpri);
402
403         return (match ? match : &ip6_null_entry);
404 }
405
406 #ifdef CONFIG_IPV6_ROUTE_INFO
407 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
408                   struct in6_addr *gwaddr)
409 {
410         struct route_info *rinfo = (struct route_info *) opt;
411         struct in6_addr prefix_buf, *prefix;
412         unsigned int pref;
413         u32 lifetime;
414         struct rt6_info *rt;
415
416         if (len < sizeof(struct route_info)) {
417                 return -EINVAL;
418         }
419
420         /* Sanity check for prefix_len and length */
421         if (rinfo->length > 3) {
422                 return -EINVAL;
423         } else if (rinfo->prefix_len > 128) {
424                 return -EINVAL;
425         } else if (rinfo->prefix_len > 64) {
426                 if (rinfo->length < 2) {
427                         return -EINVAL;
428                 }
429         } else if (rinfo->prefix_len > 0) {
430                 if (rinfo->length < 1) {
431                         return -EINVAL;
432                 }
433         }
434
435         pref = rinfo->route_pref;
436         if (pref == ICMPV6_ROUTER_PREF_INVALID)
437                 pref = ICMPV6_ROUTER_PREF_MEDIUM;
438
439         lifetime = htonl(rinfo->lifetime);
440         if (lifetime == 0xffffffff) {
441                 /* infinity */
442         } else if (lifetime > 0x7fffffff/HZ) {
443                 /* Avoid arithmetic overflow */
444                 lifetime = 0x7fffffff/HZ - 1;
445         }
446
447         if (rinfo->length == 3)
448                 prefix = (struct in6_addr *)rinfo->prefix;
449         else {
450                 /* this function is safe */
451                 ipv6_addr_prefix(&prefix_buf,
452                                  (struct in6_addr *)rinfo->prefix,
453                                  rinfo->prefix_len);
454                 prefix = &prefix_buf;
455         }
456
457         rt = rt6_get_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex);
458
459         if (rt && !lifetime) {
460                 ip6_del_rt(rt);
461                 rt = NULL;
462         }
463
464         if (!rt && lifetime)
465                 rt = rt6_add_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex,
466                                         pref);
467         else if (rt)
468                 rt->rt6i_flags = RTF_ROUTEINFO |
469                                  (rt->rt6i_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
470
471         if (rt) {
472                 if (lifetime == 0xffffffff) {
473                         rt->rt6i_flags &= ~RTF_EXPIRES;
474                 } else {
475                         rt->rt6i_expires = jiffies + HZ * lifetime;
476                         rt->rt6i_flags |= RTF_EXPIRES;
477                 }
478                 dst_release(&rt->u.dst);
479         }
480         return 0;
481 }
482 #endif
483
484 #define BACKTRACK() \
485 if (rt == &ip6_null_entry && flags & RT6_F_STRICT) { \
486         while ((fn = fn->parent) != NULL) { \
487                 if (fn->fn_flags & RTN_TL_ROOT) { \
488                         dst_hold(&rt->u.dst); \
489                         goto out; \
490                 } \
491                 if (fn->fn_flags & RTN_RTINFO) \
492                         goto restart; \
493         } \
494 }
495
496 static struct rt6_info *ip6_pol_route_lookup(struct fib6_table *table,
497                                              struct flowi *fl, int flags)
498 {
499         struct fib6_node *fn;
500         struct rt6_info *rt;
501
502         read_lock_bh(&table->tb6_lock);
503         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
504 restart:
505         rt = fn->leaf;
506         rt = rt6_device_match(rt, fl->oif, flags & RT6_F_STRICT);
507         BACKTRACK();
508         dst_hold(&rt->u.dst);
509 out:
510         read_unlock_bh(&table->tb6_lock);
511
512         rt->u.dst.lastuse = jiffies;
513         rt->u.dst.__use++;
514
515         return rt;
516
517 }
518
519 struct rt6_info *rt6_lookup(struct in6_addr *daddr, struct in6_addr *saddr,
520                             int oif, int strict)
521 {
522         struct flowi fl = {
523                 .oif = oif,
524                 .nl_u = {
525                         .ip6_u = {
526                                 .daddr = *daddr,
527                                 /* TODO: saddr */
528                         },
529                 },
530         };
531         struct dst_entry *dst;
532         int flags = strict ? RT6_F_STRICT : 0;
533
534         dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_lookup);
535         if (dst->error == 0)
536                 return (struct rt6_info *) dst;
537
538         dst_release(dst);
539
540         return NULL;
541 }
542
543 /* ip6_ins_rt is called with FREE table->tb6_lock.
544    It takes new route entry, the addition fails by any reason the
545    route is freed. In any case, if caller does not hold it, it may
546    be destroyed.
547  */
548
549 static int __ip6_ins_rt(struct rt6_info *rt, struct nl_info *info)
550 {
551         int err;
552         struct fib6_table *table;
553
554         table = rt->rt6i_table;
555         write_lock_bh(&table->tb6_lock);
556         err = fib6_add(&table->tb6_root, rt, info);
557         write_unlock_bh(&table->tb6_lock);
558
559         return err;
560 }
561
562 int ip6_ins_rt(struct rt6_info *rt)
563 {
564         return __ip6_ins_rt(rt, NULL);
565 }
566
567 static struct rt6_info *rt6_alloc_cow(struct rt6_info *ort, struct in6_addr *daddr,
568                                       struct in6_addr *saddr)
569 {
570         struct rt6_info *rt;
571
572         /*
573          *      Clone the route.
574          */
575
576         rt = ip6_rt_copy(ort);
577
578         if (rt) {
579                 if (!(rt->rt6i_flags&RTF_GATEWAY)) {
580                         if (rt->rt6i_dst.plen != 128 &&
581                             ipv6_addr_equal(&rt->rt6i_dst.addr, daddr))
582                                 rt->rt6i_flags |= RTF_ANYCAST;
583                         ipv6_addr_copy(&rt->rt6i_gateway, daddr);
584                 }
585
586                 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
587                 rt->rt6i_dst.plen = 128;
588                 rt->rt6i_flags |= RTF_CACHE;
589                 rt->u.dst.flags |= DST_HOST;
590
591 #ifdef CONFIG_IPV6_SUBTREES
592                 if (rt->rt6i_src.plen && saddr) {
593                         ipv6_addr_copy(&rt->rt6i_src.addr, saddr);
594                         rt->rt6i_src.plen = 128;
595                 }
596 #endif
597
598                 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
599
600         }
601
602         return rt;
603 }
604
605 static struct rt6_info *rt6_alloc_clone(struct rt6_info *ort, struct in6_addr *daddr)
606 {
607         struct rt6_info *rt = ip6_rt_copy(ort);
608         if (rt) {
609                 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
610                 rt->rt6i_dst.plen = 128;
611                 rt->rt6i_flags |= RTF_CACHE;
612                 if (rt->rt6i_flags & RTF_REJECT)
613                         rt->u.dst.error = ort->u.dst.error;
614                 rt->u.dst.flags |= DST_HOST;
615                 rt->rt6i_nexthop = neigh_clone(ort->rt6i_nexthop);
616         }
617         return rt;
618 }
619
620 static struct rt6_info *ip6_pol_route_input(struct fib6_table *table,
621                                             struct flowi *fl, int flags)
622 {
623         struct fib6_node *fn;
624         struct rt6_info *rt, *nrt;
625         int strict = 0;
626         int attempts = 3;
627         int err;
628         int reachable = RT6_SELECT_F_REACHABLE;
629
630         if (flags & RT6_F_STRICT)
631                 strict = RT6_SELECT_F_IFACE;
632
633 relookup:
634         read_lock_bh(&table->tb6_lock);
635
636 restart_2:
637         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
638
639 restart:
640         rt = rt6_select(&fn->leaf, fl->iif, strict | reachable);
641         BACKTRACK();
642         if (rt == &ip6_null_entry ||
643             rt->rt6i_flags & RTF_CACHE)
644                 goto out;
645
646         dst_hold(&rt->u.dst);
647         read_unlock_bh(&table->tb6_lock);
648
649         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
650                 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
651         else {
652 #if CLONE_OFFLINK_ROUTE
653                 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
654 #else
655                 goto out2;
656 #endif
657         }
658
659         dst_release(&rt->u.dst);
660         rt = nrt ? : &ip6_null_entry;
661
662         dst_hold(&rt->u.dst);
663         if (nrt) {
664                 err = ip6_ins_rt(nrt);
665                 if (!err)
666                         goto out2;
667         }
668
669         if (--attempts <= 0)
670                 goto out2;
671
672         /*
673          * Race condition! In the gap, when table->tb6_lock was
674          * released someone could insert this route.  Relookup.
675          */
676         dst_release(&rt->u.dst);
677         goto relookup;
678
679 out:
680         if (reachable) {
681                 reachable = 0;
682                 goto restart_2;
683         }
684         dst_hold(&rt->u.dst);
685         read_unlock_bh(&table->tb6_lock);
686 out2:
687         rt->u.dst.lastuse = jiffies;
688         rt->u.dst.__use++;
689
690         return rt;
691 }
692
693 void ip6_route_input(struct sk_buff *skb)
694 {
695         struct ipv6hdr *iph = skb->nh.ipv6h;
696         struct flowi fl = {
697                 .iif = skb->dev->ifindex,
698                 .nl_u = {
699                         .ip6_u = {
700                                 .daddr = iph->daddr,
701                                 .saddr = iph->saddr,
702                                 .flowlabel = (* (u32 *) iph)&IPV6_FLOWINFO_MASK,
703                         },
704                 },
705                 .proto = iph->nexthdr,
706         };
707         int flags = 0;
708
709         if (rt6_need_strict(&iph->daddr))
710                 flags |= RT6_F_STRICT;
711
712         skb->dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_input);
713 }
714
715 static struct rt6_info *ip6_pol_route_output(struct fib6_table *table,
716                                              struct flowi *fl, int flags)
717 {
718         struct fib6_node *fn;
719         struct rt6_info *rt, *nrt;
720         int strict = 0;
721         int attempts = 3;
722         int err;
723         int reachable = RT6_SELECT_F_REACHABLE;
724
725         if (flags & RT6_F_STRICT)
726                 strict = RT6_SELECT_F_IFACE;
727
728 relookup:
729         read_lock_bh(&table->tb6_lock);
730
731 restart_2:
732         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
733
734 restart:
735         rt = rt6_select(&fn->leaf, fl->oif, strict | reachable);
736         BACKTRACK();
737         if (rt == &ip6_null_entry ||
738             rt->rt6i_flags & RTF_CACHE)
739                 goto out;
740
741         dst_hold(&rt->u.dst);
742         read_unlock_bh(&table->tb6_lock);
743
744         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
745                 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
746         else {
747 #if CLONE_OFFLINK_ROUTE
748                 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
749 #else
750                 goto out2;
751 #endif
752         }
753
754         dst_release(&rt->u.dst);
755         rt = nrt ? : &ip6_null_entry;
756
757         dst_hold(&rt->u.dst);
758         if (nrt) {
759                 err = ip6_ins_rt(nrt);
760                 if (!err)
761                         goto out2;
762         }
763
764         if (--attempts <= 0)
765                 goto out2;
766
767         /*
768          * Race condition! In the gap, when table->tb6_lock was
769          * released someone could insert this route.  Relookup.
770          */
771         dst_release(&rt->u.dst);
772         goto relookup;
773
774 out:
775         if (reachable) {
776                 reachable = 0;
777                 goto restart_2;
778         }
779         dst_hold(&rt->u.dst);
780         read_unlock_bh(&table->tb6_lock);
781 out2:
782         rt->u.dst.lastuse = jiffies;
783         rt->u.dst.__use++;
784         return rt;
785 }
786
787 struct dst_entry * ip6_route_output(struct sock *sk, struct flowi *fl)
788 {
789         int flags = 0;
790
791         if (rt6_need_strict(&fl->fl6_dst))
792                 flags |= RT6_F_STRICT;
793
794         return fib6_rule_lookup(fl, flags, ip6_pol_route_output);
795 }
796
797
798 /*
799  *      Destination cache support functions
800  */
801
802 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
803 {
804         struct rt6_info *rt;
805
806         rt = (struct rt6_info *) dst;
807
808         if (rt && rt->rt6i_node && (rt->rt6i_node->fn_sernum == cookie))
809                 return dst;
810
811         return NULL;
812 }
813
814 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
815 {
816         struct rt6_info *rt = (struct rt6_info *) dst;
817
818         if (rt) {
819                 if (rt->rt6i_flags & RTF_CACHE)
820                         ip6_del_rt(rt);
821                 else
822                         dst_release(dst);
823         }
824         return NULL;
825 }
826
827 static void ip6_link_failure(struct sk_buff *skb)
828 {
829         struct rt6_info *rt;
830
831         icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0, skb->dev);
832
833         rt = (struct rt6_info *) skb->dst;
834         if (rt) {
835                 if (rt->rt6i_flags&RTF_CACHE) {
836                         dst_set_expires(&rt->u.dst, 0);
837                         rt->rt6i_flags |= RTF_EXPIRES;
838                 } else if (rt->rt6i_node && (rt->rt6i_flags & RTF_DEFAULT))
839                         rt->rt6i_node->fn_sernum = -1;
840         }
841 }
842
843 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
844 {
845         struct rt6_info *rt6 = (struct rt6_info*)dst;
846
847         if (mtu < dst_mtu(dst) && rt6->rt6i_dst.plen == 128) {
848                 rt6->rt6i_flags |= RTF_MODIFIED;
849                 if (mtu < IPV6_MIN_MTU) {
850                         mtu = IPV6_MIN_MTU;
851                         dst->metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
852                 }
853                 dst->metrics[RTAX_MTU-1] = mtu;
854                 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
855         }
856 }
857
858 static int ipv6_get_mtu(struct net_device *dev);
859
860 static inline unsigned int ipv6_advmss(unsigned int mtu)
861 {
862         mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
863
864         if (mtu < ip6_rt_min_advmss)
865                 mtu = ip6_rt_min_advmss;
866
867         /*
868          * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 
869          * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 
870          * IPV6_MAXPLEN is also valid and means: "any MSS, 
871          * rely only on pmtu discovery"
872          */
873         if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
874                 mtu = IPV6_MAXPLEN;
875         return mtu;
876 }
877
878 static struct dst_entry *ndisc_dst_gc_list;
879 static DEFINE_SPINLOCK(ndisc_lock);
880
881 struct dst_entry *ndisc_dst_alloc(struct net_device *dev, 
882                                   struct neighbour *neigh,
883                                   struct in6_addr *addr,
884                                   int (*output)(struct sk_buff *))
885 {
886         struct rt6_info *rt;
887         struct inet6_dev *idev = in6_dev_get(dev);
888
889         if (unlikely(idev == NULL))
890                 return NULL;
891
892         rt = ip6_dst_alloc();
893         if (unlikely(rt == NULL)) {
894                 in6_dev_put(idev);
895                 goto out;
896         }
897
898         dev_hold(dev);
899         if (neigh)
900                 neigh_hold(neigh);
901         else
902                 neigh = ndisc_get_neigh(dev, addr);
903
904         rt->rt6i_dev      = dev;
905         rt->rt6i_idev     = idev;
906         rt->rt6i_nexthop  = neigh;
907         atomic_set(&rt->u.dst.__refcnt, 1);
908         rt->u.dst.metrics[RTAX_HOPLIMIT-1] = 255;
909         rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
910         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
911         rt->u.dst.output  = output;
912
913 #if 0   /* there's no chance to use these for ndisc */
914         rt->u.dst.flags   = ipv6_addr_type(addr) & IPV6_ADDR_UNICAST 
915                                 ? DST_HOST 
916                                 : 0;
917         ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
918         rt->rt6i_dst.plen = 128;
919 #endif
920
921         spin_lock_bh(&ndisc_lock);
922         rt->u.dst.next = ndisc_dst_gc_list;
923         ndisc_dst_gc_list = &rt->u.dst;
924         spin_unlock_bh(&ndisc_lock);
925
926         fib6_force_start_gc();
927
928 out:
929         return (struct dst_entry *)rt;
930 }
931
932 int ndisc_dst_gc(int *more)
933 {
934         struct dst_entry *dst, *next, **pprev;
935         int freed;
936
937         next = NULL;
938         freed = 0;
939
940         spin_lock_bh(&ndisc_lock);
941         pprev = &ndisc_dst_gc_list;
942
943         while ((dst = *pprev) != NULL) {
944                 if (!atomic_read(&dst->__refcnt)) {
945                         *pprev = dst->next;
946                         dst_free(dst);
947                         freed++;
948                 } else {
949                         pprev = &dst->next;
950                         (*more)++;
951                 }
952         }
953
954         spin_unlock_bh(&ndisc_lock);
955
956         return freed;
957 }
958
959 static int ip6_dst_gc(void)
960 {
961         static unsigned expire = 30*HZ;
962         static unsigned long last_gc;
963         unsigned long now = jiffies;
964
965         if (time_after(last_gc + ip6_rt_gc_min_interval, now) &&
966             atomic_read(&ip6_dst_ops.entries) <= ip6_rt_max_size)
967                 goto out;
968
969         expire++;
970         fib6_run_gc(expire);
971         last_gc = now;
972         if (atomic_read(&ip6_dst_ops.entries) < ip6_dst_ops.gc_thresh)
973                 expire = ip6_rt_gc_timeout>>1;
974
975 out:
976         expire -= expire>>ip6_rt_gc_elasticity;
977         return (atomic_read(&ip6_dst_ops.entries) > ip6_rt_max_size);
978 }
979
980 /* Clean host part of a prefix. Not necessary in radix tree,
981    but results in cleaner routing tables.
982
983    Remove it only when all the things will work!
984  */
985
986 static int ipv6_get_mtu(struct net_device *dev)
987 {
988         int mtu = IPV6_MIN_MTU;
989         struct inet6_dev *idev;
990
991         idev = in6_dev_get(dev);
992         if (idev) {
993                 mtu = idev->cnf.mtu6;
994                 in6_dev_put(idev);
995         }
996         return mtu;
997 }
998
999 int ipv6_get_hoplimit(struct net_device *dev)
1000 {
1001         int hoplimit = ipv6_devconf.hop_limit;
1002         struct inet6_dev *idev;
1003
1004         idev = in6_dev_get(dev);
1005         if (idev) {
1006                 hoplimit = idev->cnf.hop_limit;
1007                 in6_dev_put(idev);
1008         }
1009         return hoplimit;
1010 }
1011
1012 /*
1013  *
1014  */
1015
1016 int ip6_route_add(struct fib6_config *cfg)
1017 {
1018         int err;
1019         struct rt6_info *rt = NULL;
1020         struct net_device *dev = NULL;
1021         struct inet6_dev *idev = NULL;
1022         struct fib6_table *table;
1023         int addr_type;
1024
1025         if (cfg->fc_dst_len > 128 || cfg->fc_src_len > 128)
1026                 return -EINVAL;
1027 #ifndef CONFIG_IPV6_SUBTREES
1028         if (cfg->fc_src_len)
1029                 return -EINVAL;
1030 #endif
1031         if (cfg->fc_ifindex) {
1032                 err = -ENODEV;
1033                 dev = dev_get_by_index(cfg->fc_ifindex);
1034                 if (!dev)
1035                         goto out;
1036                 idev = in6_dev_get(dev);
1037                 if (!idev)
1038                         goto out;
1039         }
1040
1041         if (cfg->fc_metric == 0)
1042                 cfg->fc_metric = IP6_RT_PRIO_USER;
1043
1044         table = fib6_new_table(cfg->fc_table);
1045         if (table == NULL) {
1046                 err = -ENOBUFS;
1047                 goto out;
1048         }
1049
1050         rt = ip6_dst_alloc();
1051
1052         if (rt == NULL) {
1053                 err = -ENOMEM;
1054                 goto out;
1055         }
1056
1057         rt->u.dst.obsolete = -1;
1058         rt->rt6i_expires = jiffies + clock_t_to_jiffies(cfg->fc_expires);
1059
1060         if (cfg->fc_protocol == RTPROT_UNSPEC)
1061                 cfg->fc_protocol = RTPROT_BOOT;
1062         rt->rt6i_protocol = cfg->fc_protocol;
1063
1064         addr_type = ipv6_addr_type(&cfg->fc_dst);
1065
1066         if (addr_type & IPV6_ADDR_MULTICAST)
1067                 rt->u.dst.input = ip6_mc_input;
1068         else
1069                 rt->u.dst.input = ip6_forward;
1070
1071         rt->u.dst.output = ip6_output;
1072
1073         ipv6_addr_prefix(&rt->rt6i_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
1074         rt->rt6i_dst.plen = cfg->fc_dst_len;
1075         if (rt->rt6i_dst.plen == 128)
1076                rt->u.dst.flags = DST_HOST;
1077
1078 #ifdef CONFIG_IPV6_SUBTREES
1079         ipv6_addr_prefix(&rt->rt6i_src.addr, &cfg->fc_src, cfg->fc_src_len);
1080         rt->rt6i_src.plen = cfg->fc_src_len;
1081 #endif
1082
1083         rt->rt6i_metric = cfg->fc_metric;
1084
1085         /* We cannot add true routes via loopback here,
1086            they would result in kernel looping; promote them to reject routes
1087          */
1088         if ((cfg->fc_flags & RTF_REJECT) ||
1089             (dev && (dev->flags&IFF_LOOPBACK) && !(addr_type&IPV6_ADDR_LOOPBACK))) {
1090                 /* hold loopback dev/idev if we haven't done so. */
1091                 if (dev != &loopback_dev) {
1092                         if (dev) {
1093                                 dev_put(dev);
1094                                 in6_dev_put(idev);
1095                         }
1096                         dev = &loopback_dev;
1097                         dev_hold(dev);
1098                         idev = in6_dev_get(dev);
1099                         if (!idev) {
1100                                 err = -ENODEV;
1101                                 goto out;
1102                         }
1103                 }
1104                 rt->u.dst.output = ip6_pkt_discard_out;
1105                 rt->u.dst.input = ip6_pkt_discard;
1106                 rt->u.dst.error = -ENETUNREACH;
1107                 rt->rt6i_flags = RTF_REJECT|RTF_NONEXTHOP;
1108                 goto install_route;
1109         }
1110
1111         if (cfg->fc_flags & RTF_GATEWAY) {
1112                 struct in6_addr *gw_addr;
1113                 int gwa_type;
1114
1115                 gw_addr = &cfg->fc_gateway;
1116                 ipv6_addr_copy(&rt->rt6i_gateway, gw_addr);
1117                 gwa_type = ipv6_addr_type(gw_addr);
1118
1119                 if (gwa_type != (IPV6_ADDR_LINKLOCAL|IPV6_ADDR_UNICAST)) {
1120                         struct rt6_info *grt;
1121
1122                         /* IPv6 strictly inhibits using not link-local
1123                            addresses as nexthop address.
1124                            Otherwise, router will not able to send redirects.
1125                            It is very good, but in some (rare!) circumstances
1126                            (SIT, PtP, NBMA NOARP links) it is handy to allow
1127                            some exceptions. --ANK
1128                          */
1129                         err = -EINVAL;
1130                         if (!(gwa_type&IPV6_ADDR_UNICAST))
1131                                 goto out;
1132
1133                         grt = rt6_lookup(gw_addr, NULL, cfg->fc_ifindex, 1);
1134
1135                         err = -EHOSTUNREACH;
1136                         if (grt == NULL)
1137                                 goto out;
1138                         if (dev) {
1139                                 if (dev != grt->rt6i_dev) {
1140                                         dst_release(&grt->u.dst);
1141                                         goto out;
1142                                 }
1143                         } else {
1144                                 dev = grt->rt6i_dev;
1145                                 idev = grt->rt6i_idev;
1146                                 dev_hold(dev);
1147                                 in6_dev_hold(grt->rt6i_idev);
1148                         }
1149                         if (!(grt->rt6i_flags&RTF_GATEWAY))
1150                                 err = 0;
1151                         dst_release(&grt->u.dst);
1152
1153                         if (err)
1154                                 goto out;
1155                 }
1156                 err = -EINVAL;
1157                 if (dev == NULL || (dev->flags&IFF_LOOPBACK))
1158                         goto out;
1159         }
1160
1161         err = -ENODEV;
1162         if (dev == NULL)
1163                 goto out;
1164
1165         if (cfg->fc_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) {
1166                 rt->rt6i_nexthop = __neigh_lookup_errno(&nd_tbl, &rt->rt6i_gateway, dev);
1167                 if (IS_ERR(rt->rt6i_nexthop)) {
1168                         err = PTR_ERR(rt->rt6i_nexthop);
1169                         rt->rt6i_nexthop = NULL;
1170                         goto out;
1171                 }
1172         }
1173
1174         rt->rt6i_flags = cfg->fc_flags;
1175
1176 install_route:
1177         if (cfg->fc_mx) {
1178                 struct nlattr *nla;
1179                 int remaining;
1180
1181                 nla_for_each_attr(nla, cfg->fc_mx, cfg->fc_mx_len, remaining) {
1182                         int type = nla->nla_type;
1183
1184                         if (type) {
1185                                 if (type > RTAX_MAX) {
1186                                         err = -EINVAL;
1187                                         goto out;
1188                                 }
1189
1190                                 rt->u.dst.metrics[type - 1] = nla_get_u32(nla);
1191                         }
1192                 }
1193         }
1194
1195         if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1196                 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1197         if (!rt->u.dst.metrics[RTAX_MTU-1])
1198                 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(dev);
1199         if (!rt->u.dst.metrics[RTAX_ADVMSS-1])
1200                 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1201         rt->u.dst.dev = dev;
1202         rt->rt6i_idev = idev;
1203         rt->rt6i_table = table;
1204         return __ip6_ins_rt(rt, &cfg->fc_nlinfo);
1205
1206 out:
1207         if (dev)
1208                 dev_put(dev);
1209         if (idev)
1210                 in6_dev_put(idev);
1211         if (rt)
1212                 dst_free((struct dst_entry *) rt);
1213         return err;
1214 }
1215
1216 static int __ip6_del_rt(struct rt6_info *rt, struct nl_info *info)
1217 {
1218         int err;
1219         struct fib6_table *table;
1220
1221         if (rt == &ip6_null_entry)
1222                 return -ENOENT;
1223
1224         table = rt->rt6i_table;
1225         write_lock_bh(&table->tb6_lock);
1226
1227         err = fib6_del(rt, info);
1228         dst_release(&rt->u.dst);
1229
1230         write_unlock_bh(&table->tb6_lock);
1231
1232         return err;
1233 }
1234
1235 int ip6_del_rt(struct rt6_info *rt)
1236 {
1237         return __ip6_del_rt(rt, NULL);
1238 }
1239
1240 static int ip6_route_del(struct fib6_config *cfg)
1241 {
1242         struct fib6_table *table;
1243         struct fib6_node *fn;
1244         struct rt6_info *rt;
1245         int err = -ESRCH;
1246
1247         table = fib6_get_table(cfg->fc_table);
1248         if (table == NULL)
1249                 return err;
1250
1251         read_lock_bh(&table->tb6_lock);
1252
1253         fn = fib6_locate(&table->tb6_root,
1254                          &cfg->fc_dst, cfg->fc_dst_len,
1255                          &cfg->fc_src, cfg->fc_src_len);
1256         
1257         if (fn) {
1258                 for (rt = fn->leaf; rt; rt = rt->u.next) {
1259                         if (cfg->fc_ifindex &&
1260                             (rt->rt6i_dev == NULL ||
1261                              rt->rt6i_dev->ifindex != cfg->fc_ifindex))
1262                                 continue;
1263                         if (cfg->fc_flags & RTF_GATEWAY &&
1264                             !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
1265                                 continue;
1266                         if (cfg->fc_metric && cfg->fc_metric != rt->rt6i_metric)
1267                                 continue;
1268                         dst_hold(&rt->u.dst);
1269                         read_unlock_bh(&table->tb6_lock);
1270
1271                         return __ip6_del_rt(rt, &cfg->fc_nlinfo);
1272                 }
1273         }
1274         read_unlock_bh(&table->tb6_lock);
1275
1276         return err;
1277 }
1278
1279 /*
1280  *      Handle redirects
1281  */
1282 void rt6_redirect(struct in6_addr *dest, struct in6_addr *saddr,
1283                   struct neighbour *neigh, u8 *lladdr, int on_link)
1284 {
1285         struct rt6_info *rt, *nrt = NULL;
1286         struct fib6_node *fn;
1287         struct fib6_table *table;
1288         struct netevent_redirect netevent;
1289
1290         /* TODO: Very lazy, might need to check all tables */
1291         table = fib6_get_table(RT6_TABLE_MAIN);
1292         if (table == NULL)
1293                 return;
1294
1295         /*
1296          * Get the "current" route for this destination and
1297          * check if the redirect has come from approriate router.
1298          *
1299          * RFC 2461 specifies that redirects should only be
1300          * accepted if they come from the nexthop to the target.
1301          * Due to the way the routes are chosen, this notion
1302          * is a bit fuzzy and one might need to check all possible
1303          * routes.
1304          */
1305
1306         read_lock_bh(&table->tb6_lock);
1307         fn = fib6_lookup(&table->tb6_root, dest, NULL);
1308 restart:
1309         for (rt = fn->leaf; rt; rt = rt->u.next) {
1310                 /*
1311                  * Current route is on-link; redirect is always invalid.
1312                  *
1313                  * Seems, previous statement is not true. It could
1314                  * be node, which looks for us as on-link (f.e. proxy ndisc)
1315                  * But then router serving it might decide, that we should
1316                  * know truth 8)8) --ANK (980726).
1317                  */
1318                 if (rt6_check_expired(rt))
1319                         continue;
1320                 if (!(rt->rt6i_flags & RTF_GATEWAY))
1321                         continue;
1322                 if (neigh->dev != rt->rt6i_dev)
1323                         continue;
1324                 if (!ipv6_addr_equal(saddr, &rt->rt6i_gateway))
1325                         continue;
1326                 break;
1327         }
1328         if (rt)
1329                 dst_hold(&rt->u.dst);
1330         else if (rt6_need_strict(dest)) {
1331                 while ((fn = fn->parent) != NULL) {
1332                         if (fn->fn_flags & RTN_ROOT)
1333                                 break;
1334                         if (fn->fn_flags & RTN_RTINFO)
1335                                 goto restart;
1336                 }
1337         }
1338         read_unlock_bh(&table->tb6_lock);
1339
1340         if (!rt) {
1341                 if (net_ratelimit())
1342                         printk(KERN_DEBUG "rt6_redirect: source isn't a valid nexthop "
1343                                "for redirect target\n");
1344                 return;
1345         }
1346
1347         /*
1348          *      We have finally decided to accept it.
1349          */
1350
1351         neigh_update(neigh, lladdr, NUD_STALE, 
1352                      NEIGH_UPDATE_F_WEAK_OVERRIDE|
1353                      NEIGH_UPDATE_F_OVERRIDE|
1354                      (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
1355                                      NEIGH_UPDATE_F_ISROUTER))
1356                      );
1357
1358         /*
1359          * Redirect received -> path was valid.
1360          * Look, redirects are sent only in response to data packets,
1361          * so that this nexthop apparently is reachable. --ANK
1362          */
1363         dst_confirm(&rt->u.dst);
1364
1365         /* Duplicate redirect: silently ignore. */
1366         if (neigh == rt->u.dst.neighbour)
1367                 goto out;
1368
1369         nrt = ip6_rt_copy(rt);
1370         if (nrt == NULL)
1371                 goto out;
1372
1373         nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
1374         if (on_link)
1375                 nrt->rt6i_flags &= ~RTF_GATEWAY;
1376
1377         ipv6_addr_copy(&nrt->rt6i_dst.addr, dest);
1378         nrt->rt6i_dst.plen = 128;
1379         nrt->u.dst.flags |= DST_HOST;
1380
1381         ipv6_addr_copy(&nrt->rt6i_gateway, (struct in6_addr*)neigh->primary_key);
1382         nrt->rt6i_nexthop = neigh_clone(neigh);
1383         /* Reset pmtu, it may be better */
1384         nrt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(neigh->dev);
1385         nrt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&nrt->u.dst));
1386
1387         if (ip6_ins_rt(nrt))
1388                 goto out;
1389
1390         netevent.old = &rt->u.dst;
1391         netevent.new = &nrt->u.dst;
1392         call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
1393
1394         if (rt->rt6i_flags&RTF_CACHE) {
1395                 ip6_del_rt(rt);
1396                 return;
1397         }
1398
1399 out:
1400         dst_release(&rt->u.dst);
1401         return;
1402 }
1403
1404 /*
1405  *      Handle ICMP "packet too big" messages
1406  *      i.e. Path MTU discovery
1407  */
1408
1409 void rt6_pmtu_discovery(struct in6_addr *daddr, struct in6_addr *saddr,
1410                         struct net_device *dev, u32 pmtu)
1411 {
1412         struct rt6_info *rt, *nrt;
1413         int allfrag = 0;
1414
1415         rt = rt6_lookup(daddr, saddr, dev->ifindex, 0);
1416         if (rt == NULL)
1417                 return;
1418
1419         if (pmtu >= dst_mtu(&rt->u.dst))
1420                 goto out;
1421
1422         if (pmtu < IPV6_MIN_MTU) {
1423                 /*
1424                  * According to RFC2460, PMTU is set to the IPv6 Minimum Link 
1425                  * MTU (1280) and a fragment header should always be included
1426                  * after a node receiving Too Big message reporting PMTU is
1427                  * less than the IPv6 Minimum Link MTU.
1428                  */
1429                 pmtu = IPV6_MIN_MTU;
1430                 allfrag = 1;
1431         }
1432
1433         /* New mtu received -> path was valid.
1434            They are sent only in response to data packets,
1435            so that this nexthop apparently is reachable. --ANK
1436          */
1437         dst_confirm(&rt->u.dst);
1438
1439         /* Host route. If it is static, it would be better
1440            not to override it, but add new one, so that
1441            when cache entry will expire old pmtu
1442            would return automatically.
1443          */
1444         if (rt->rt6i_flags & RTF_CACHE) {
1445                 rt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1446                 if (allfrag)
1447                         rt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1448                 dst_set_expires(&rt->u.dst, ip6_rt_mtu_expires);
1449                 rt->rt6i_flags |= RTF_MODIFIED|RTF_EXPIRES;
1450                 goto out;
1451         }
1452
1453         /* Network route.
1454            Two cases are possible:
1455            1. It is connected route. Action: COW
1456            2. It is gatewayed route or NONEXTHOP route. Action: clone it.
1457          */
1458         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
1459                 nrt = rt6_alloc_cow(rt, daddr, saddr);
1460         else
1461                 nrt = rt6_alloc_clone(rt, daddr);
1462
1463         if (nrt) {
1464                 nrt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1465                 if (allfrag)
1466                         nrt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1467
1468                 /* According to RFC 1981, detecting PMTU increase shouldn't be
1469                  * happened within 5 mins, the recommended timer is 10 mins.
1470                  * Here this route expiration time is set to ip6_rt_mtu_expires
1471                  * which is 10 mins. After 10 mins the decreased pmtu is expired
1472                  * and detecting PMTU increase will be automatically happened.
1473                  */
1474                 dst_set_expires(&nrt->u.dst, ip6_rt_mtu_expires);
1475                 nrt->rt6i_flags |= RTF_DYNAMIC|RTF_EXPIRES;
1476
1477                 ip6_ins_rt(nrt);
1478         }
1479 out:
1480         dst_release(&rt->u.dst);
1481 }
1482
1483 /*
1484  *      Misc support functions
1485  */
1486
1487 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort)
1488 {
1489         struct rt6_info *rt = ip6_dst_alloc();
1490
1491         if (rt) {
1492                 rt->u.dst.input = ort->u.dst.input;
1493                 rt->u.dst.output = ort->u.dst.output;
1494
1495                 memcpy(rt->u.dst.metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
1496                 rt->u.dst.dev = ort->u.dst.dev;
1497                 if (rt->u.dst.dev)
1498                         dev_hold(rt->u.dst.dev);
1499                 rt->rt6i_idev = ort->rt6i_idev;
1500                 if (rt->rt6i_idev)
1501                         in6_dev_hold(rt->rt6i_idev);
1502                 rt->u.dst.lastuse = jiffies;
1503                 rt->rt6i_expires = 0;
1504
1505                 ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
1506                 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
1507                 rt->rt6i_metric = 0;
1508
1509                 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
1510 #ifdef CONFIG_IPV6_SUBTREES
1511                 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
1512 #endif
1513                 rt->rt6i_table = ort->rt6i_table;
1514         }
1515         return rt;
1516 }
1517
1518 #ifdef CONFIG_IPV6_ROUTE_INFO
1519 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
1520                                            struct in6_addr *gwaddr, int ifindex)
1521 {
1522         struct fib6_node *fn;
1523         struct rt6_info *rt = NULL;
1524         struct fib6_table *table;
1525
1526         table = fib6_get_table(RT6_TABLE_INFO);
1527         if (table == NULL)
1528                 return NULL;
1529
1530         write_lock_bh(&table->tb6_lock);
1531         fn = fib6_locate(&table->tb6_root, prefix ,prefixlen, NULL, 0);
1532         if (!fn)
1533                 goto out;
1534
1535         for (rt = fn->leaf; rt; rt = rt->u.next) {
1536                 if (rt->rt6i_dev->ifindex != ifindex)
1537                         continue;
1538                 if ((rt->rt6i_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
1539                         continue;
1540                 if (!ipv6_addr_equal(&rt->rt6i_gateway, gwaddr))
1541                         continue;
1542                 dst_hold(&rt->u.dst);
1543                 break;
1544         }
1545 out:
1546         write_unlock_bh(&table->tb6_lock);
1547         return rt;
1548 }
1549
1550 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
1551                                            struct in6_addr *gwaddr, int ifindex,
1552                                            unsigned pref)
1553 {
1554         struct fib6_config cfg = {
1555                 .fc_table       = RT6_TABLE_INFO,
1556                 .fc_metric      = 1024,
1557                 .fc_ifindex     = ifindex,
1558                 .fc_dst_len     = prefixlen,
1559                 .fc_flags       = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
1560                                   RTF_UP | RTF_PREF(pref),
1561         };
1562
1563         ipv6_addr_copy(&cfg.fc_dst, prefix);
1564         ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1565
1566         /* We should treat it as a default route if prefix length is 0. */
1567         if (!prefixlen)
1568                 cfg.fc_flags |= RTF_DEFAULT;
1569
1570         ip6_route_add(&cfg);
1571
1572         return rt6_get_route_info(prefix, prefixlen, gwaddr, ifindex);
1573 }
1574 #endif
1575
1576 struct rt6_info *rt6_get_dflt_router(struct in6_addr *addr, struct net_device *dev)
1577 {       
1578         struct rt6_info *rt;
1579         struct fib6_table *table;
1580
1581         table = fib6_get_table(RT6_TABLE_DFLT);
1582         if (table == NULL)
1583                 return NULL;
1584
1585         write_lock_bh(&table->tb6_lock);
1586         for (rt = table->tb6_root.leaf; rt; rt=rt->u.next) {
1587                 if (dev == rt->rt6i_dev &&
1588                     ((rt->rt6i_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
1589                     ipv6_addr_equal(&rt->rt6i_gateway, addr))
1590                         break;
1591         }
1592         if (rt)
1593                 dst_hold(&rt->u.dst);
1594         write_unlock_bh(&table->tb6_lock);
1595         return rt;
1596 }
1597
1598 struct rt6_info *rt6_add_dflt_router(struct in6_addr *gwaddr,
1599                                      struct net_device *dev,
1600                                      unsigned int pref)
1601 {
1602         struct fib6_config cfg = {
1603                 .fc_table       = RT6_TABLE_DFLT,
1604                 .fc_metric      = 1024,
1605                 .fc_ifindex     = dev->ifindex,
1606                 .fc_flags       = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
1607                                   RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
1608         };
1609
1610         ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1611
1612         ip6_route_add(&cfg);
1613
1614         return rt6_get_dflt_router(gwaddr, dev);
1615 }
1616
1617 void rt6_purge_dflt_routers(void)
1618 {
1619         struct rt6_info *rt;
1620         struct fib6_table *table;
1621
1622         /* NOTE: Keep consistent with rt6_get_dflt_router */
1623         table = fib6_get_table(RT6_TABLE_DFLT);
1624         if (table == NULL)
1625                 return;
1626
1627 restart:
1628         read_lock_bh(&table->tb6_lock);
1629         for (rt = table->tb6_root.leaf; rt; rt = rt->u.next) {
1630                 if (rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) {
1631                         dst_hold(&rt->u.dst);
1632                         read_unlock_bh(&table->tb6_lock);
1633                         ip6_del_rt(rt);
1634                         goto restart;
1635                 }
1636         }
1637         read_unlock_bh(&table->tb6_lock);
1638 }
1639
1640 static void rtmsg_to_fib6_config(struct in6_rtmsg *rtmsg,
1641                                  struct fib6_config *cfg)
1642 {
1643         memset(cfg, 0, sizeof(*cfg));
1644
1645         cfg->fc_table = RT6_TABLE_MAIN;
1646         cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
1647         cfg->fc_metric = rtmsg->rtmsg_metric;
1648         cfg->fc_expires = rtmsg->rtmsg_info;
1649         cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
1650         cfg->fc_src_len = rtmsg->rtmsg_src_len;
1651         cfg->fc_flags = rtmsg->rtmsg_flags;
1652
1653         ipv6_addr_copy(&cfg->fc_dst, &rtmsg->rtmsg_dst);
1654         ipv6_addr_copy(&cfg->fc_src, &rtmsg->rtmsg_src);
1655         ipv6_addr_copy(&cfg->fc_gateway, &rtmsg->rtmsg_gateway);
1656 }
1657
1658 int ipv6_route_ioctl(unsigned int cmd, void __user *arg)
1659 {
1660         struct fib6_config cfg;
1661         struct in6_rtmsg rtmsg;
1662         int err;
1663
1664         switch(cmd) {
1665         case SIOCADDRT:         /* Add a route */
1666         case SIOCDELRT:         /* Delete a route */
1667                 if (!capable(CAP_NET_ADMIN))
1668                         return -EPERM;
1669                 err = copy_from_user(&rtmsg, arg,
1670                                      sizeof(struct in6_rtmsg));
1671                 if (err)
1672                         return -EFAULT;
1673
1674                 rtmsg_to_fib6_config(&rtmsg, &cfg);
1675
1676                 rtnl_lock();
1677                 switch (cmd) {
1678                 case SIOCADDRT:
1679                         err = ip6_route_add(&cfg);
1680                         break;
1681                 case SIOCDELRT:
1682                         err = ip6_route_del(&cfg);
1683                         break;
1684                 default:
1685                         err = -EINVAL;
1686                 }
1687                 rtnl_unlock();
1688
1689                 return err;
1690         };
1691
1692         return -EINVAL;
1693 }
1694
1695 /*
1696  *      Drop the packet on the floor
1697  */
1698
1699 static int ip6_pkt_discard(struct sk_buff *skb)
1700 {
1701         int type = ipv6_addr_type(&skb->nh.ipv6h->daddr);
1702         if (type == IPV6_ADDR_ANY || type == IPV6_ADDR_RESERVED)
1703                 IP6_INC_STATS(IPSTATS_MIB_INADDRERRORS);
1704
1705         IP6_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
1706         icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_NOROUTE, 0, skb->dev);
1707         kfree_skb(skb);
1708         return 0;
1709 }
1710
1711 static int ip6_pkt_discard_out(struct sk_buff *skb)
1712 {
1713         skb->dev = skb->dst->dev;
1714         return ip6_pkt_discard(skb);
1715 }
1716
1717 /*
1718  *      Allocate a dst for local (unicast / anycast) address.
1719  */
1720
1721 struct rt6_info *addrconf_dst_alloc(struct inet6_dev *idev,
1722                                     const struct in6_addr *addr,
1723                                     int anycast)
1724 {
1725         struct rt6_info *rt = ip6_dst_alloc();
1726
1727         if (rt == NULL)
1728                 return ERR_PTR(-ENOMEM);
1729
1730         dev_hold(&loopback_dev);
1731         in6_dev_hold(idev);
1732
1733         rt->u.dst.flags = DST_HOST;
1734         rt->u.dst.input = ip6_input;
1735         rt->u.dst.output = ip6_output;
1736         rt->rt6i_dev = &loopback_dev;
1737         rt->rt6i_idev = idev;
1738         rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
1739         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1740         rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1741         rt->u.dst.obsolete = -1;
1742
1743         rt->rt6i_flags = RTF_UP | RTF_NONEXTHOP;
1744         if (anycast)
1745                 rt->rt6i_flags |= RTF_ANYCAST;
1746         else
1747                 rt->rt6i_flags |= RTF_LOCAL;
1748         rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
1749         if (rt->rt6i_nexthop == NULL) {
1750                 dst_free((struct dst_entry *) rt);
1751                 return ERR_PTR(-ENOMEM);
1752         }
1753
1754         ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
1755         rt->rt6i_dst.plen = 128;
1756         rt->rt6i_table = fib6_get_table(RT6_TABLE_LOCAL);
1757
1758         atomic_set(&rt->u.dst.__refcnt, 1);
1759
1760         return rt;
1761 }
1762
1763 static int fib6_ifdown(struct rt6_info *rt, void *arg)
1764 {
1765         if (((void*)rt->rt6i_dev == arg || arg == NULL) &&
1766             rt != &ip6_null_entry) {
1767                 RT6_TRACE("deleted by ifdown %p\n", rt);
1768                 return -1;
1769         }
1770         return 0;
1771 }
1772
1773 void rt6_ifdown(struct net_device *dev)
1774 {
1775         fib6_clean_all(fib6_ifdown, 0, dev);
1776 }
1777
1778 struct rt6_mtu_change_arg
1779 {
1780         struct net_device *dev;
1781         unsigned mtu;
1782 };
1783
1784 static int rt6_mtu_change_route(struct rt6_info *rt, void *p_arg)
1785 {
1786         struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
1787         struct inet6_dev *idev;
1788
1789         /* In IPv6 pmtu discovery is not optional,
1790            so that RTAX_MTU lock cannot disable it.
1791            We still use this lock to block changes
1792            caused by addrconf/ndisc.
1793         */
1794
1795         idev = __in6_dev_get(arg->dev);
1796         if (idev == NULL)
1797                 return 0;
1798
1799         /* For administrative MTU increase, there is no way to discover
1800            IPv6 PMTU increase, so PMTU increase should be updated here.
1801            Since RFC 1981 doesn't include administrative MTU increase
1802            update PMTU increase is a MUST. (i.e. jumbo frame)
1803          */
1804         /*
1805            If new MTU is less than route PMTU, this new MTU will be the
1806            lowest MTU in the path, update the route PMTU to reflect PMTU
1807            decreases; if new MTU is greater than route PMTU, and the
1808            old MTU is the lowest MTU in the path, update the route PMTU
1809            to reflect the increase. In this case if the other nodes' MTU
1810            also have the lowest MTU, TOO BIG MESSAGE will be lead to
1811            PMTU discouvery.
1812          */
1813         if (rt->rt6i_dev == arg->dev &&
1814             !dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1815             (dst_mtu(&rt->u.dst) > arg->mtu ||
1816              (dst_mtu(&rt->u.dst) < arg->mtu &&
1817               dst_mtu(&rt->u.dst) == idev->cnf.mtu6)))
1818                 rt->u.dst.metrics[RTAX_MTU-1] = arg->mtu;
1819         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(arg->mtu);
1820         return 0;
1821 }
1822
1823 void rt6_mtu_change(struct net_device *dev, unsigned mtu)
1824 {
1825         struct rt6_mtu_change_arg arg = {
1826                 .dev = dev,
1827                 .mtu = mtu,
1828         };
1829
1830         fib6_clean_all(rt6_mtu_change_route, 0, &arg);
1831 }
1832
1833 static struct nla_policy rtm_ipv6_policy[RTA_MAX+1] __read_mostly = {
1834         [RTA_GATEWAY]           = { .minlen = sizeof(struct in6_addr) },
1835         [RTA_OIF]               = { .type = NLA_U32 },
1836         [RTA_PRIORITY]          = { .type = NLA_U32 },
1837         [RTA_METRICS]           = { .type = NLA_NESTED },
1838 };
1839
1840 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
1841                               struct fib6_config *cfg)
1842 {
1843         struct rtmsg *rtm;
1844         struct nlattr *tb[RTA_MAX+1];
1845         int err;
1846
1847         err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
1848         if (err < 0)
1849                 goto errout;
1850
1851         err = -EINVAL;
1852         rtm = nlmsg_data(nlh);
1853         memset(cfg, 0, sizeof(*cfg));
1854
1855         cfg->fc_table = rtm->rtm_table;
1856         cfg->fc_dst_len = rtm->rtm_dst_len;
1857         cfg->fc_src_len = rtm->rtm_src_len;
1858         cfg->fc_flags = RTF_UP;
1859         cfg->fc_protocol = rtm->rtm_protocol;
1860
1861         if (rtm->rtm_type == RTN_UNREACHABLE)
1862                 cfg->fc_flags |= RTF_REJECT;
1863
1864         cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
1865         cfg->fc_nlinfo.nlh = nlh;
1866
1867         if (tb[RTA_GATEWAY]) {
1868                 nla_memcpy(&cfg->fc_gateway, tb[RTA_GATEWAY], 16);
1869                 cfg->fc_flags |= RTF_GATEWAY;
1870         }
1871
1872         if (tb[RTA_DST]) {
1873                 int plen = (rtm->rtm_dst_len + 7) >> 3;
1874
1875                 if (nla_len(tb[RTA_DST]) < plen)
1876                         goto errout;
1877
1878                 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
1879         }
1880
1881         if (tb[RTA_SRC]) {
1882                 int plen = (rtm->rtm_src_len + 7) >> 3;
1883
1884                 if (nla_len(tb[RTA_SRC]) < plen)
1885                         goto errout;
1886
1887                 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
1888         }
1889
1890         if (tb[RTA_OIF])
1891                 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
1892
1893         if (tb[RTA_PRIORITY])
1894                 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
1895
1896         if (tb[RTA_METRICS]) {
1897                 cfg->fc_mx = nla_data(tb[RTA_METRICS]);
1898                 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
1899         }
1900
1901         if (tb[RTA_TABLE])
1902                 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
1903
1904         err = 0;
1905 errout:
1906         return err;
1907 }
1908
1909 int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
1910 {
1911         struct fib6_config cfg;
1912         int err;
1913
1914         err = rtm_to_fib6_config(skb, nlh, &cfg);
1915         if (err < 0)
1916                 return err;
1917
1918         return ip6_route_del(&cfg);
1919 }
1920
1921 int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
1922 {
1923         struct fib6_config cfg;
1924         int err;
1925
1926         err = rtm_to_fib6_config(skb, nlh, &cfg);
1927         if (err < 0)
1928                 return err;
1929
1930         return ip6_route_add(&cfg);
1931 }
1932
1933 static int rt6_fill_node(struct sk_buff *skb, struct rt6_info *rt,
1934                          struct in6_addr *dst, struct in6_addr *src,
1935                          int iif, int type, u32 pid, u32 seq,
1936                          int prefix, unsigned int flags)
1937 {
1938         struct rtmsg *rtm;
1939         struct nlmsghdr *nlh;
1940         struct rta_cacheinfo ci;
1941         u32 table;
1942
1943         if (prefix) {   /* user wants prefix routes only */
1944                 if (!(rt->rt6i_flags & RTF_PREFIX_RT)) {
1945                         /* success since this is not a prefix route */
1946                         return 1;
1947                 }
1948         }
1949
1950         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*rtm), flags);
1951         if (nlh == NULL)
1952                 return -ENOBUFS;
1953
1954         rtm = nlmsg_data(nlh);
1955         rtm->rtm_family = AF_INET6;
1956         rtm->rtm_dst_len = rt->rt6i_dst.plen;
1957         rtm->rtm_src_len = rt->rt6i_src.plen;
1958         rtm->rtm_tos = 0;
1959         if (rt->rt6i_table)
1960                 table = rt->rt6i_table->tb6_id;
1961         else
1962                 table = RT6_TABLE_UNSPEC;
1963         rtm->rtm_table = table;
1964         NLA_PUT_U32(skb, RTA_TABLE, table);
1965         if (rt->rt6i_flags&RTF_REJECT)
1966                 rtm->rtm_type = RTN_UNREACHABLE;
1967         else if (rt->rt6i_dev && (rt->rt6i_dev->flags&IFF_LOOPBACK))
1968                 rtm->rtm_type = RTN_LOCAL;
1969         else
1970                 rtm->rtm_type = RTN_UNICAST;
1971         rtm->rtm_flags = 0;
1972         rtm->rtm_scope = RT_SCOPE_UNIVERSE;
1973         rtm->rtm_protocol = rt->rt6i_protocol;
1974         if (rt->rt6i_flags&RTF_DYNAMIC)
1975                 rtm->rtm_protocol = RTPROT_REDIRECT;
1976         else if (rt->rt6i_flags & RTF_ADDRCONF)
1977                 rtm->rtm_protocol = RTPROT_KERNEL;
1978         else if (rt->rt6i_flags&RTF_DEFAULT)
1979                 rtm->rtm_protocol = RTPROT_RA;
1980
1981         if (rt->rt6i_flags&RTF_CACHE)
1982                 rtm->rtm_flags |= RTM_F_CLONED;
1983
1984         if (dst) {
1985                 NLA_PUT(skb, RTA_DST, 16, dst);
1986                 rtm->rtm_dst_len = 128;
1987         } else if (rtm->rtm_dst_len)
1988                 NLA_PUT(skb, RTA_DST, 16, &rt->rt6i_dst.addr);
1989 #ifdef CONFIG_IPV6_SUBTREES
1990         if (src) {
1991                 NLA_PUT(skb, RTA_SRC, 16, src);
1992                 rtm->rtm_src_len = 128;
1993         } else if (rtm->rtm_src_len)
1994                 NLA_PUT(skb, RTA_SRC, 16, &rt->rt6i_src.addr);
1995 #endif
1996         if (iif)
1997                 NLA_PUT_U32(skb, RTA_IIF, iif);
1998         else if (dst) {
1999                 struct in6_addr saddr_buf;
2000                 if (ipv6_get_saddr(&rt->u.dst, dst, &saddr_buf) == 0)
2001                         NLA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf);
2002         }
2003
2004         if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2005                 goto nla_put_failure;
2006
2007         if (rt->u.dst.neighbour)
2008                 NLA_PUT(skb, RTA_GATEWAY, 16, &rt->u.dst.neighbour->primary_key);
2009
2010         if (rt->u.dst.dev)
2011                 NLA_PUT_U32(skb, RTA_OIF, rt->rt6i_dev->ifindex);
2012
2013         NLA_PUT_U32(skb, RTA_PRIORITY, rt->rt6i_metric);
2014         ci.rta_lastuse = jiffies_to_clock_t(jiffies - rt->u.dst.lastuse);
2015         if (rt->rt6i_expires)
2016                 ci.rta_expires = jiffies_to_clock_t(rt->rt6i_expires - jiffies);
2017         else
2018                 ci.rta_expires = 0;
2019         ci.rta_used = rt->u.dst.__use;
2020         ci.rta_clntref = atomic_read(&rt->u.dst.__refcnt);
2021         ci.rta_error = rt->u.dst.error;
2022         ci.rta_id = 0;
2023         ci.rta_ts = 0;
2024         ci.rta_tsage = 0;
2025         NLA_PUT(skb, RTA_CACHEINFO, sizeof(ci), &ci);
2026
2027         return nlmsg_end(skb, nlh);
2028
2029 nla_put_failure:
2030         return nlmsg_cancel(skb, nlh);
2031 }
2032
2033 int rt6_dump_route(struct rt6_info *rt, void *p_arg)
2034 {
2035         struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
2036         int prefix;
2037
2038         if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
2039                 struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
2040                 prefix = (rtm->rtm_flags & RTM_F_PREFIX) != 0;
2041         } else
2042                 prefix = 0;
2043
2044         return rt6_fill_node(arg->skb, rt, NULL, NULL, 0, RTM_NEWROUTE,
2045                      NETLINK_CB(arg->cb->skb).pid, arg->cb->nlh->nlmsg_seq,
2046                      prefix, NLM_F_MULTI);
2047 }
2048
2049 int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2050 {
2051         struct rtattr **rta = arg;
2052         int iif = 0;
2053         int err = -ENOBUFS;
2054         struct sk_buff *skb;
2055         struct flowi fl;
2056         struct rt6_info *rt;
2057
2058         skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2059         if (skb == NULL)
2060                 goto out;
2061
2062         /* Reserve room for dummy headers, this skb can pass
2063            through good chunk of routing engine.
2064          */
2065         skb->mac.raw = skb->data;
2066         skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr));
2067
2068         memset(&fl, 0, sizeof(fl));
2069         if (rta[RTA_SRC-1])
2070                 ipv6_addr_copy(&fl.fl6_src,
2071                                (struct in6_addr*)RTA_DATA(rta[RTA_SRC-1]));
2072         if (rta[RTA_DST-1])
2073                 ipv6_addr_copy(&fl.fl6_dst,
2074                                (struct in6_addr*)RTA_DATA(rta[RTA_DST-1]));
2075
2076         if (rta[RTA_IIF-1])
2077                 memcpy(&iif, RTA_DATA(rta[RTA_IIF-1]), sizeof(int));
2078
2079         if (iif) {
2080                 struct net_device *dev;
2081                 dev = __dev_get_by_index(iif);
2082                 if (!dev) {
2083                         err = -ENODEV;
2084                         goto out_free;
2085                 }
2086         }
2087
2088         fl.oif = 0;
2089         if (rta[RTA_OIF-1])
2090                 memcpy(&fl.oif, RTA_DATA(rta[RTA_OIF-1]), sizeof(int));
2091
2092         rt = (struct rt6_info*)ip6_route_output(NULL, &fl);
2093
2094         skb->dst = &rt->u.dst;
2095
2096         NETLINK_CB(skb).dst_pid = NETLINK_CB(in_skb).pid;
2097         err = rt6_fill_node(skb, rt, 
2098                             &fl.fl6_dst, &fl.fl6_src,
2099                             iif,
2100                             RTM_NEWROUTE, NETLINK_CB(in_skb).pid,
2101                             nlh->nlmsg_seq, 0, 0);
2102         if (err < 0) {
2103                 err = -EMSGSIZE;
2104                 goto out_free;
2105         }
2106
2107         err = rtnl_unicast(skb, NETLINK_CB(in_skb).pid);
2108 out:
2109         return err;
2110 out_free:
2111         kfree_skb(skb);
2112         goto out;       
2113 }
2114
2115 void inet6_rt_notify(int event, struct rt6_info *rt, struct nl_info *info)
2116 {
2117         struct sk_buff *skb;
2118         u32 pid = 0, seq = 0;
2119         struct nlmsghdr *nlh = NULL;
2120         int payload = sizeof(struct rtmsg) + 256;
2121         int err = -ENOBUFS;
2122
2123         if (info) {
2124                 pid = info->pid;
2125                 nlh = info->nlh;
2126                 if (nlh)
2127                         seq = nlh->nlmsg_seq;
2128         }
2129
2130         skb = nlmsg_new(nlmsg_total_size(payload), gfp_any());
2131         if (skb == NULL)
2132                 goto errout;
2133
2134         err = rt6_fill_node(skb, rt, NULL, NULL, 0, event, pid, seq, 0, 0);
2135         if (err < 0) {
2136                 kfree_skb(skb);
2137                 goto errout;
2138         }
2139
2140         err = rtnl_notify(skb, pid, RTNLGRP_IPV6_ROUTE, nlh, gfp_any());
2141 errout:
2142         if (err < 0)
2143                 rtnl_set_sk_err(RTNLGRP_IPV6_ROUTE, err);
2144 }
2145
2146 /*
2147  *      /proc
2148  */
2149
2150 #ifdef CONFIG_PROC_FS
2151
2152 #define RT6_INFO_LEN (32 + 4 + 32 + 4 + 32 + 40 + 5 + 1)
2153
2154 struct rt6_proc_arg
2155 {
2156         char *buffer;
2157         int offset;
2158         int length;
2159         int skip;
2160         int len;
2161 };
2162
2163 static int rt6_info_route(struct rt6_info *rt, void *p_arg)
2164 {
2165         struct rt6_proc_arg *arg = (struct rt6_proc_arg *) p_arg;
2166         int i;
2167
2168         if (arg->skip < arg->offset / RT6_INFO_LEN) {
2169                 arg->skip++;
2170                 return 0;
2171         }
2172
2173         if (arg->len >= arg->length)
2174                 return 0;
2175
2176         for (i=0; i<16; i++) {
2177                 sprintf(arg->buffer + arg->len, "%02x",
2178                         rt->rt6i_dst.addr.s6_addr[i]);
2179                 arg->len += 2;
2180         }
2181         arg->len += sprintf(arg->buffer + arg->len, " %02x ",
2182                             rt->rt6i_dst.plen);
2183
2184 #ifdef CONFIG_IPV6_SUBTREES
2185         for (i=0; i<16; i++) {
2186                 sprintf(arg->buffer + arg->len, "%02x",
2187                         rt->rt6i_src.addr.s6_addr[i]);
2188                 arg->len += 2;
2189         }
2190         arg->len += sprintf(arg->buffer + arg->len, " %02x ",
2191                             rt->rt6i_src.plen);
2192 #else
2193         sprintf(arg->buffer + arg->len,
2194                 "00000000000000000000000000000000 00 ");
2195         arg->len += 36;
2196 #endif
2197
2198         if (rt->rt6i_nexthop) {
2199                 for (i=0; i<16; i++) {
2200                         sprintf(arg->buffer + arg->len, "%02x",
2201                                 rt->rt6i_nexthop->primary_key[i]);
2202                         arg->len += 2;
2203                 }
2204         } else {
2205                 sprintf(arg->buffer + arg->len,
2206                         "00000000000000000000000000000000");
2207                 arg->len += 32;
2208         }
2209         arg->len += sprintf(arg->buffer + arg->len,
2210                             " %08x %08x %08x %08x %8s\n",
2211                             rt->rt6i_metric, atomic_read(&rt->u.dst.__refcnt),
2212                             rt->u.dst.__use, rt->rt6i_flags, 
2213                             rt->rt6i_dev ? rt->rt6i_dev->name : "");
2214         return 0;
2215 }
2216
2217 static int rt6_proc_info(char *buffer, char **start, off_t offset, int length)
2218 {
2219         struct rt6_proc_arg arg = {
2220                 .buffer = buffer,
2221                 .offset = offset,
2222                 .length = length,
2223         };
2224
2225         fib6_clean_all(rt6_info_route, 0, &arg);
2226
2227         *start = buffer;
2228         if (offset)
2229                 *start += offset % RT6_INFO_LEN;
2230
2231         arg.len -= offset % RT6_INFO_LEN;
2232
2233         if (arg.len > length)
2234                 arg.len = length;
2235         if (arg.len < 0)
2236                 arg.len = 0;
2237
2238         return arg.len;
2239 }
2240
2241 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
2242 {
2243         seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
2244                       rt6_stats.fib_nodes, rt6_stats.fib_route_nodes,
2245                       rt6_stats.fib_rt_alloc, rt6_stats.fib_rt_entries,
2246                       rt6_stats.fib_rt_cache,
2247                       atomic_read(&ip6_dst_ops.entries),
2248                       rt6_stats.fib_discarded_routes);
2249
2250         return 0;
2251 }
2252
2253 static int rt6_stats_seq_open(struct inode *inode, struct file *file)
2254 {
2255         return single_open(file, rt6_stats_seq_show, NULL);
2256 }
2257
2258 static struct file_operations rt6_stats_seq_fops = {
2259         .owner   = THIS_MODULE,
2260         .open    = rt6_stats_seq_open,
2261         .read    = seq_read,
2262         .llseek  = seq_lseek,
2263         .release = single_release,
2264 };
2265 #endif  /* CONFIG_PROC_FS */
2266
2267 #ifdef CONFIG_SYSCTL
2268
2269 static int flush_delay;
2270
2271 static
2272 int ipv6_sysctl_rtcache_flush(ctl_table *ctl, int write, struct file * filp,
2273                               void __user *buffer, size_t *lenp, loff_t *ppos)
2274 {
2275         if (write) {
2276                 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2277                 fib6_run_gc(flush_delay <= 0 ? ~0UL : (unsigned long)flush_delay);
2278                 return 0;
2279         } else
2280                 return -EINVAL;
2281 }
2282
2283 ctl_table ipv6_route_table[] = {
2284         {
2285                 .ctl_name       =       NET_IPV6_ROUTE_FLUSH, 
2286                 .procname       =       "flush",
2287                 .data           =       &flush_delay,
2288                 .maxlen         =       sizeof(int),
2289                 .mode           =       0200,
2290                 .proc_handler   =       &ipv6_sysctl_rtcache_flush
2291         },
2292         {
2293                 .ctl_name       =       NET_IPV6_ROUTE_GC_THRESH,
2294                 .procname       =       "gc_thresh",
2295                 .data           =       &ip6_dst_ops.gc_thresh,
2296                 .maxlen         =       sizeof(int),
2297                 .mode           =       0644,
2298                 .proc_handler   =       &proc_dointvec,
2299         },
2300         {
2301                 .ctl_name       =       NET_IPV6_ROUTE_MAX_SIZE,
2302                 .procname       =       "max_size",
2303                 .data           =       &ip6_rt_max_size,
2304                 .maxlen         =       sizeof(int),
2305                 .mode           =       0644,
2306                 .proc_handler   =       &proc_dointvec,
2307         },
2308         {
2309                 .ctl_name       =       NET_IPV6_ROUTE_GC_MIN_INTERVAL,
2310                 .procname       =       "gc_min_interval",
2311                 .data           =       &ip6_rt_gc_min_interval,
2312                 .maxlen         =       sizeof(int),
2313                 .mode           =       0644,
2314                 .proc_handler   =       &proc_dointvec_jiffies,
2315                 .strategy       =       &sysctl_jiffies,
2316         },
2317         {
2318                 .ctl_name       =       NET_IPV6_ROUTE_GC_TIMEOUT,
2319                 .procname       =       "gc_timeout",
2320                 .data           =       &ip6_rt_gc_timeout,
2321                 .maxlen         =       sizeof(int),
2322                 .mode           =       0644,
2323                 .proc_handler   =       &proc_dointvec_jiffies,
2324                 .strategy       =       &sysctl_jiffies,
2325         },
2326         {
2327                 .ctl_name       =       NET_IPV6_ROUTE_GC_INTERVAL,
2328                 .procname       =       "gc_interval",
2329                 .data           =       &ip6_rt_gc_interval,
2330                 .maxlen         =       sizeof(int),
2331                 .mode           =       0644,
2332                 .proc_handler   =       &proc_dointvec_jiffies,
2333                 .strategy       =       &sysctl_jiffies,
2334         },
2335         {
2336                 .ctl_name       =       NET_IPV6_ROUTE_GC_ELASTICITY,
2337                 .procname       =       "gc_elasticity",
2338                 .data           =       &ip6_rt_gc_elasticity,
2339                 .maxlen         =       sizeof(int),
2340                 .mode           =       0644,
2341                 .proc_handler   =       &proc_dointvec_jiffies,
2342                 .strategy       =       &sysctl_jiffies,
2343         },
2344         {
2345                 .ctl_name       =       NET_IPV6_ROUTE_MTU_EXPIRES,
2346                 .procname       =       "mtu_expires",
2347                 .data           =       &ip6_rt_mtu_expires,
2348                 .maxlen         =       sizeof(int),
2349                 .mode           =       0644,
2350                 .proc_handler   =       &proc_dointvec_jiffies,
2351                 .strategy       =       &sysctl_jiffies,
2352         },
2353         {
2354                 .ctl_name       =       NET_IPV6_ROUTE_MIN_ADVMSS,
2355                 .procname       =       "min_adv_mss",
2356                 .data           =       &ip6_rt_min_advmss,
2357                 .maxlen         =       sizeof(int),
2358                 .mode           =       0644,
2359                 .proc_handler   =       &proc_dointvec_jiffies,
2360                 .strategy       =       &sysctl_jiffies,
2361         },
2362         {
2363                 .ctl_name       =       NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS,
2364                 .procname       =       "gc_min_interval_ms",
2365                 .data           =       &ip6_rt_gc_min_interval,
2366                 .maxlen         =       sizeof(int),
2367                 .mode           =       0644,
2368                 .proc_handler   =       &proc_dointvec_ms_jiffies,
2369                 .strategy       =       &sysctl_ms_jiffies,
2370         },
2371         { .ctl_name = 0 }
2372 };
2373
2374 #endif
2375
2376 void __init ip6_route_init(void)
2377 {
2378         struct proc_dir_entry *p;
2379
2380         ip6_dst_ops.kmem_cachep = kmem_cache_create("ip6_dst_cache",
2381                                                      sizeof(struct rt6_info),
2382                                                      0, SLAB_HWCACHE_ALIGN,
2383                                                      NULL, NULL);
2384         if (!ip6_dst_ops.kmem_cachep)
2385                 panic("cannot create ip6_dst_cache");
2386
2387         fib6_init();
2388 #ifdef  CONFIG_PROC_FS
2389         p = proc_net_create("ipv6_route", 0, rt6_proc_info);
2390         if (p)
2391                 p->owner = THIS_MODULE;
2392
2393         proc_net_fops_create("rt6_stats", S_IRUGO, &rt6_stats_seq_fops);
2394 #endif
2395 #ifdef CONFIG_XFRM
2396         xfrm6_init();
2397 #endif
2398 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2399         fib6_rules_init();
2400 #endif
2401 }
2402
2403 void ip6_route_cleanup(void)
2404 {
2405 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2406         fib6_rules_cleanup();
2407 #endif
2408 #ifdef CONFIG_PROC_FS
2409         proc_net_remove("ipv6_route");
2410         proc_net_remove("rt6_stats");
2411 #endif
2412 #ifdef CONFIG_XFRM
2413         xfrm6_fini();
2414 #endif
2415         rt6_ifdown(NULL);
2416         fib6_gc_cleanup();
2417         kmem_cache_destroy(ip6_dst_ops.kmem_cachep);
2418 }