]> git.karo-electronics.de Git - mv-sheeva.git/blob - net/ipv6/route.c
[IPV6]: Fix thinko in rt6_fill_node
[mv-sheeva.git] / net / ipv6 / route.c
1 /*
2  *      Linux INET6 implementation
3  *      FIB front-end.
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>     
7  *
8  *      $Id: route.c,v 1.56 2001/10/31 21:55:55 davem Exp $
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 /*      Changes:
17  *
18  *      YOSHIFUJI Hideaki @USAGI
19  *              reworked default router selection.
20  *              - respect outgoing interface
21  *              - select from (probably) reachable routers (i.e.
22  *              routers in REACHABLE, STALE, DELAY or PROBE states).
23  *              - always select the same router if it is (probably)
24  *              reachable.  otherwise, round-robin the list.
25  */
26
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/types.h>
30 #include <linux/times.h>
31 #include <linux/socket.h>
32 #include <linux/sockios.h>
33 #include <linux/net.h>
34 #include <linux/route.h>
35 #include <linux/netdevice.h>
36 #include <linux/in6.h>
37 #include <linux/init.h>
38 #include <linux/netlink.h>
39 #include <linux/if_arp.h>
40
41 #ifdef  CONFIG_PROC_FS
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #endif
45
46 #include <net/snmp.h>
47 #include <net/ipv6.h>
48 #include <net/ip6_fib.h>
49 #include <net/ip6_route.h>
50 #include <net/ndisc.h>
51 #include <net/addrconf.h>
52 #include <net/tcp.h>
53 #include <linux/rtnetlink.h>
54 #include <net/dst.h>
55 #include <net/xfrm.h>
56 #include <net/netevent.h>
57
58 #include <asm/uaccess.h>
59
60 #ifdef CONFIG_SYSCTL
61 #include <linux/sysctl.h>
62 #endif
63
64 /* Set to 3 to get tracing. */
65 #define RT6_DEBUG 2
66
67 #if RT6_DEBUG >= 3
68 #define RDBG(x) printk x
69 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
70 #else
71 #define RDBG(x)
72 #define RT6_TRACE(x...) do { ; } while (0)
73 #endif
74
75 #define CLONE_OFFLINK_ROUTE 0
76
77 #define RT6_SELECT_F_IFACE      0x1
78 #define RT6_SELECT_F_REACHABLE  0x2
79
80 static int ip6_rt_max_size = 4096;
81 static int ip6_rt_gc_min_interval = HZ / 2;
82 static int ip6_rt_gc_timeout = 60*HZ;
83 int ip6_rt_gc_interval = 30*HZ;
84 static int ip6_rt_gc_elasticity = 9;
85 static int ip6_rt_mtu_expires = 10*60*HZ;
86 static int ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
87
88 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort);
89 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void             ip6_dst_destroy(struct dst_entry *);
92 static void             ip6_dst_ifdown(struct dst_entry *,
93                                        struct net_device *dev, int how);
94 static int               ip6_dst_gc(void);
95
96 static int              ip6_pkt_discard(struct sk_buff *skb);
97 static int              ip6_pkt_discard_out(struct sk_buff *skb);
98 static void             ip6_link_failure(struct sk_buff *skb);
99 static void             ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
100
101 #ifdef CONFIG_IPV6_ROUTE_INFO
102 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
103                                            struct in6_addr *gwaddr, int ifindex,
104                                            unsigned pref);
105 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
106                                            struct in6_addr *gwaddr, int ifindex);
107 #endif
108
109 static struct dst_ops ip6_dst_ops = {
110         .family                 =       AF_INET6,
111         .protocol               =       __constant_htons(ETH_P_IPV6),
112         .gc                     =       ip6_dst_gc,
113         .gc_thresh              =       1024,
114         .check                  =       ip6_dst_check,
115         .destroy                =       ip6_dst_destroy,
116         .ifdown                 =       ip6_dst_ifdown,
117         .negative_advice        =       ip6_negative_advice,
118         .link_failure           =       ip6_link_failure,
119         .update_pmtu            =       ip6_rt_update_pmtu,
120         .entry_size             =       sizeof(struct rt6_info),
121 };
122
123 struct rt6_info ip6_null_entry = {
124         .u = {
125                 .dst = {
126                         .__refcnt       = ATOMIC_INIT(1),
127                         .__use          = 1,
128                         .dev            = &loopback_dev,
129                         .obsolete       = -1,
130                         .error          = -ENETUNREACH,
131                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
132                         .input          = ip6_pkt_discard,
133                         .output         = ip6_pkt_discard_out,
134                         .ops            = &ip6_dst_ops,
135                         .path           = (struct dst_entry*)&ip6_null_entry,
136                 }
137         },
138         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
139         .rt6i_metric    = ~(u32) 0,
140         .rt6i_ref       = ATOMIC_INIT(1),
141 };
142
143 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
144
145 struct rt6_info ip6_prohibit_entry = {
146         .u = {
147                 .dst = {
148                         .__refcnt       = ATOMIC_INIT(1),
149                         .__use          = 1,
150                         .dev            = &loopback_dev,
151                         .obsolete       = -1,
152                         .error          = -EACCES,
153                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
154                         .input          = ip6_pkt_discard,
155                         .output         = ip6_pkt_discard_out,
156                         .ops            = &ip6_dst_ops,
157                         .path           = (struct dst_entry*)&ip6_prohibit_entry,
158                 }
159         },
160         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
161         .rt6i_metric    = ~(u32) 0,
162         .rt6i_ref       = ATOMIC_INIT(1),
163 };
164
165 struct rt6_info ip6_blk_hole_entry = {
166         .u = {
167                 .dst = {
168                         .__refcnt       = ATOMIC_INIT(1),
169                         .__use          = 1,
170                         .dev            = &loopback_dev,
171                         .obsolete       = -1,
172                         .error          = -EINVAL,
173                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
174                         .input          = ip6_pkt_discard,
175                         .output         = ip6_pkt_discard_out,
176                         .ops            = &ip6_dst_ops,
177                         .path           = (struct dst_entry*)&ip6_blk_hole_entry,
178                 }
179         },
180         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
181         .rt6i_metric    = ~(u32) 0,
182         .rt6i_ref       = ATOMIC_INIT(1),
183 };
184
185 #endif
186
187 /* allocate dst with ip6_dst_ops */
188 static __inline__ struct rt6_info *ip6_dst_alloc(void)
189 {
190         return (struct rt6_info *)dst_alloc(&ip6_dst_ops);
191 }
192
193 static void ip6_dst_destroy(struct dst_entry *dst)
194 {
195         struct rt6_info *rt = (struct rt6_info *)dst;
196         struct inet6_dev *idev = rt->rt6i_idev;
197
198         if (idev != NULL) {
199                 rt->rt6i_idev = NULL;
200                 in6_dev_put(idev);
201         }       
202 }
203
204 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
205                            int how)
206 {
207         struct rt6_info *rt = (struct rt6_info *)dst;
208         struct inet6_dev *idev = rt->rt6i_idev;
209
210         if (dev != &loopback_dev && idev != NULL && idev->dev == dev) {
211                 struct inet6_dev *loopback_idev = in6_dev_get(&loopback_dev);
212                 if (loopback_idev != NULL) {
213                         rt->rt6i_idev = loopback_idev;
214                         in6_dev_put(idev);
215                 }
216         }
217 }
218
219 static __inline__ int rt6_check_expired(const struct rt6_info *rt)
220 {
221         return (rt->rt6i_flags & RTF_EXPIRES &&
222                 time_after(jiffies, rt->rt6i_expires));
223 }
224
225 static inline int rt6_need_strict(struct in6_addr *daddr)
226 {
227         return (ipv6_addr_type(daddr) &
228                 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL));
229 }
230
231 /*
232  *      Route lookup. Any table->tb6_lock is implied.
233  */
234
235 static __inline__ struct rt6_info *rt6_device_match(struct rt6_info *rt,
236                                                     int oif,
237                                                     int strict)
238 {
239         struct rt6_info *local = NULL;
240         struct rt6_info *sprt;
241
242         if (oif) {
243                 for (sprt = rt; sprt; sprt = sprt->u.next) {
244                         struct net_device *dev = sprt->rt6i_dev;
245                         if (dev->ifindex == oif)
246                                 return sprt;
247                         if (dev->flags & IFF_LOOPBACK) {
248                                 if (sprt->rt6i_idev == NULL ||
249                                     sprt->rt6i_idev->dev->ifindex != oif) {
250                                         if (strict && oif)
251                                                 continue;
252                                         if (local && (!oif || 
253                                                       local->rt6i_idev->dev->ifindex == oif))
254                                                 continue;
255                                 }
256                                 local = sprt;
257                         }
258                 }
259
260                 if (local)
261                         return local;
262
263                 if (strict)
264                         return &ip6_null_entry;
265         }
266         return rt;
267 }
268
269 #ifdef CONFIG_IPV6_ROUTER_PREF
270 static void rt6_probe(struct rt6_info *rt)
271 {
272         struct neighbour *neigh = rt ? rt->rt6i_nexthop : NULL;
273         /*
274          * Okay, this does not seem to be appropriate
275          * for now, however, we need to check if it
276          * is really so; aka Router Reachability Probing.
277          *
278          * Router Reachability Probe MUST be rate-limited
279          * to no more than one per minute.
280          */
281         if (!neigh || (neigh->nud_state & NUD_VALID))
282                 return;
283         read_lock_bh(&neigh->lock);
284         if (!(neigh->nud_state & NUD_VALID) &&
285             time_after(jiffies, neigh->updated + rt->rt6i_idev->cnf.rtr_probe_interval)) {
286                 struct in6_addr mcaddr;
287                 struct in6_addr *target;
288
289                 neigh->updated = jiffies;
290                 read_unlock_bh(&neigh->lock);
291
292                 target = (struct in6_addr *)&neigh->primary_key;
293                 addrconf_addr_solict_mult(target, &mcaddr);
294                 ndisc_send_ns(rt->rt6i_dev, NULL, target, &mcaddr, NULL);
295         } else
296                 read_unlock_bh(&neigh->lock);
297 }
298 #else
299 static inline void rt6_probe(struct rt6_info *rt)
300 {
301         return;
302 }
303 #endif
304
305 /*
306  * Default Router Selection (RFC 2461 6.3.6)
307  */
308 static int inline rt6_check_dev(struct rt6_info *rt, int oif)
309 {
310         struct net_device *dev = rt->rt6i_dev;
311         if (!oif || dev->ifindex == oif)
312                 return 2;
313         if ((dev->flags & IFF_LOOPBACK) &&
314             rt->rt6i_idev && rt->rt6i_idev->dev->ifindex == oif)
315                 return 1;
316         return 0;
317 }
318
319 static int inline rt6_check_neigh(struct rt6_info *rt)
320 {
321         struct neighbour *neigh = rt->rt6i_nexthop;
322         int m = 0;
323         if (rt->rt6i_flags & RTF_NONEXTHOP ||
324             !(rt->rt6i_flags & RTF_GATEWAY))
325                 m = 1;
326         else if (neigh) {
327                 read_lock_bh(&neigh->lock);
328                 if (neigh->nud_state & NUD_VALID)
329                         m = 2;
330                 read_unlock_bh(&neigh->lock);
331         }
332         return m;
333 }
334
335 static int rt6_score_route(struct rt6_info *rt, int oif,
336                            int strict)
337 {
338         int m, n;
339                 
340         m = rt6_check_dev(rt, oif);
341         if (!m && (strict & RT6_SELECT_F_IFACE))
342                 return -1;
343 #ifdef CONFIG_IPV6_ROUTER_PREF
344         m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->rt6i_flags)) << 2;
345 #endif
346         n = rt6_check_neigh(rt);
347         if (n > 1)
348                 m |= 16;
349         else if (!n && strict & RT6_SELECT_F_REACHABLE)
350                 return -1;
351         return m;
352 }
353
354 static struct rt6_info *rt6_select(struct rt6_info **head, int oif,
355                                    int strict)
356 {
357         struct rt6_info *match = NULL, *last = NULL;
358         struct rt6_info *rt, *rt0 = *head;
359         u32 metric;
360         int mpri = -1;
361
362         RT6_TRACE("%s(head=%p(*head=%p), oif=%d)\n",
363                   __FUNCTION__, head, head ? *head : NULL, oif);
364
365         for (rt = rt0, metric = rt0->rt6i_metric;
366              rt && rt->rt6i_metric == metric && (!last || rt != rt0);
367              rt = rt->u.next) {
368                 int m;
369
370                 if (rt6_check_expired(rt))
371                         continue;
372
373                 last = rt;
374
375                 m = rt6_score_route(rt, oif, strict);
376                 if (m < 0)
377                         continue;
378
379                 if (m > mpri) {
380                         rt6_probe(match);
381                         match = rt;
382                         mpri = m;
383                 } else {
384                         rt6_probe(rt);
385                 }
386         }
387
388         if (!match &&
389             (strict & RT6_SELECT_F_REACHABLE) &&
390             last && last != rt0) {
391                 /* no entries matched; do round-robin */
392                 static DEFINE_SPINLOCK(lock);
393                 spin_lock(&lock);
394                 *head = rt0->u.next;
395                 rt0->u.next = last->u.next;
396                 last->u.next = rt0;
397                 spin_unlock(&lock);
398         }
399
400         RT6_TRACE("%s() => %p, score=%d\n",
401                   __FUNCTION__, match, mpri);
402
403         return (match ? match : &ip6_null_entry);
404 }
405
406 #ifdef CONFIG_IPV6_ROUTE_INFO
407 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
408                   struct in6_addr *gwaddr)
409 {
410         struct route_info *rinfo = (struct route_info *) opt;
411         struct in6_addr prefix_buf, *prefix;
412         unsigned int pref;
413         u32 lifetime;
414         struct rt6_info *rt;
415
416         if (len < sizeof(struct route_info)) {
417                 return -EINVAL;
418         }
419
420         /* Sanity check for prefix_len and length */
421         if (rinfo->length > 3) {
422                 return -EINVAL;
423         } else if (rinfo->prefix_len > 128) {
424                 return -EINVAL;
425         } else if (rinfo->prefix_len > 64) {
426                 if (rinfo->length < 2) {
427                         return -EINVAL;
428                 }
429         } else if (rinfo->prefix_len > 0) {
430                 if (rinfo->length < 1) {
431                         return -EINVAL;
432                 }
433         }
434
435         pref = rinfo->route_pref;
436         if (pref == ICMPV6_ROUTER_PREF_INVALID)
437                 pref = ICMPV6_ROUTER_PREF_MEDIUM;
438
439         lifetime = htonl(rinfo->lifetime);
440         if (lifetime == 0xffffffff) {
441                 /* infinity */
442         } else if (lifetime > 0x7fffffff/HZ) {
443                 /* Avoid arithmetic overflow */
444                 lifetime = 0x7fffffff/HZ - 1;
445         }
446
447         if (rinfo->length == 3)
448                 prefix = (struct in6_addr *)rinfo->prefix;
449         else {
450                 /* this function is safe */
451                 ipv6_addr_prefix(&prefix_buf,
452                                  (struct in6_addr *)rinfo->prefix,
453                                  rinfo->prefix_len);
454                 prefix = &prefix_buf;
455         }
456
457         rt = rt6_get_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex);
458
459         if (rt && !lifetime) {
460                 ip6_del_rt(rt, NULL, NULL, NULL);
461                 rt = NULL;
462         }
463
464         if (!rt && lifetime)
465                 rt = rt6_add_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex,
466                                         pref);
467         else if (rt)
468                 rt->rt6i_flags = RTF_ROUTEINFO |
469                                  (rt->rt6i_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
470
471         if (rt) {
472                 if (lifetime == 0xffffffff) {
473                         rt->rt6i_flags &= ~RTF_EXPIRES;
474                 } else {
475                         rt->rt6i_expires = jiffies + HZ * lifetime;
476                         rt->rt6i_flags |= RTF_EXPIRES;
477                 }
478                 dst_release(&rt->u.dst);
479         }
480         return 0;
481 }
482 #endif
483
484 #define BACKTRACK() \
485 if (rt == &ip6_null_entry && flags & RT6_F_STRICT) { \
486         while ((fn = fn->parent) != NULL) { \
487                 if (fn->fn_flags & RTN_TL_ROOT) { \
488                         dst_hold(&rt->u.dst); \
489                         goto out; \
490                 } \
491                 if (fn->fn_flags & RTN_RTINFO) \
492                         goto restart; \
493         } \
494 }
495
496 static struct rt6_info *ip6_pol_route_lookup(struct fib6_table *table,
497                                              struct flowi *fl, int flags)
498 {
499         struct fib6_node *fn;
500         struct rt6_info *rt;
501
502         read_lock_bh(&table->tb6_lock);
503         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
504 restart:
505         rt = fn->leaf;
506         rt = rt6_device_match(rt, fl->oif, flags & RT6_F_STRICT);
507         BACKTRACK();
508         dst_hold(&rt->u.dst);
509 out:
510         read_unlock_bh(&table->tb6_lock);
511
512         rt->u.dst.lastuse = jiffies;
513         rt->u.dst.__use++;
514
515         return rt;
516
517 }
518
519 struct rt6_info *rt6_lookup(struct in6_addr *daddr, struct in6_addr *saddr,
520                             int oif, int strict)
521 {
522         struct flowi fl = {
523                 .oif = oif,
524                 .nl_u = {
525                         .ip6_u = {
526                                 .daddr = *daddr,
527                                 /* TODO: saddr */
528                         },
529                 },
530         };
531         struct dst_entry *dst;
532         int flags = strict ? RT6_F_STRICT : 0;
533
534         dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_lookup);
535         if (dst->error == 0)
536                 return (struct rt6_info *) dst;
537
538         dst_release(dst);
539
540         return NULL;
541 }
542
543 /* ip6_ins_rt is called with FREE table->tb6_lock.
544    It takes new route entry, the addition fails by any reason the
545    route is freed. In any case, if caller does not hold it, it may
546    be destroyed.
547  */
548
549 int ip6_ins_rt(struct rt6_info *rt, struct nlmsghdr *nlh,
550                 void *_rtattr, struct netlink_skb_parms *req)
551 {
552         int err;
553         struct fib6_table *table;
554
555         table = rt->rt6i_table;
556         write_lock_bh(&table->tb6_lock);
557         err = fib6_add(&table->tb6_root, rt, nlh, _rtattr, req);
558         write_unlock_bh(&table->tb6_lock);
559
560         return err;
561 }
562
563 static struct rt6_info *rt6_alloc_cow(struct rt6_info *ort, struct in6_addr *daddr,
564                                       struct in6_addr *saddr)
565 {
566         struct rt6_info *rt;
567
568         /*
569          *      Clone the route.
570          */
571
572         rt = ip6_rt_copy(ort);
573
574         if (rt) {
575                 if (!(rt->rt6i_flags&RTF_GATEWAY)) {
576                         if (rt->rt6i_dst.plen != 128 &&
577                             ipv6_addr_equal(&rt->rt6i_dst.addr, daddr))
578                                 rt->rt6i_flags |= RTF_ANYCAST;
579                         ipv6_addr_copy(&rt->rt6i_gateway, daddr);
580                 }
581
582                 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
583                 rt->rt6i_dst.plen = 128;
584                 rt->rt6i_flags |= RTF_CACHE;
585                 rt->u.dst.flags |= DST_HOST;
586
587 #ifdef CONFIG_IPV6_SUBTREES
588                 if (rt->rt6i_src.plen && saddr) {
589                         ipv6_addr_copy(&rt->rt6i_src.addr, saddr);
590                         rt->rt6i_src.plen = 128;
591                 }
592 #endif
593
594                 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
595
596         }
597
598         return rt;
599 }
600
601 static struct rt6_info *rt6_alloc_clone(struct rt6_info *ort, struct in6_addr *daddr)
602 {
603         struct rt6_info *rt = ip6_rt_copy(ort);
604         if (rt) {
605                 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
606                 rt->rt6i_dst.plen = 128;
607                 rt->rt6i_flags |= RTF_CACHE;
608                 if (rt->rt6i_flags & RTF_REJECT)
609                         rt->u.dst.error = ort->u.dst.error;
610                 rt->u.dst.flags |= DST_HOST;
611                 rt->rt6i_nexthop = neigh_clone(ort->rt6i_nexthop);
612         }
613         return rt;
614 }
615
616 struct rt6_info *ip6_pol_route_input(struct fib6_table *table, struct flowi *fl,
617                                      int flags)
618 {
619         struct fib6_node *fn;
620         struct rt6_info *rt, *nrt;
621         int strict = 0;
622         int attempts = 3;
623         int err;
624         int reachable = RT6_SELECT_F_REACHABLE;
625
626         if (flags & RT6_F_STRICT)
627                 strict = RT6_SELECT_F_IFACE;
628
629 relookup:
630         read_lock_bh(&table->tb6_lock);
631
632 restart_2:
633         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
634
635 restart:
636         rt = rt6_select(&fn->leaf, fl->iif, strict | reachable);
637         BACKTRACK();
638         if (rt == &ip6_null_entry ||
639             rt->rt6i_flags & RTF_CACHE)
640                 goto out;
641
642         dst_hold(&rt->u.dst);
643         read_unlock_bh(&table->tb6_lock);
644
645         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
646                 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
647         else {
648 #if CLONE_OFFLINK_ROUTE
649                 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
650 #else
651                 goto out2;
652 #endif
653         }
654
655         dst_release(&rt->u.dst);
656         rt = nrt ? : &ip6_null_entry;
657
658         dst_hold(&rt->u.dst);
659         if (nrt) {
660                 err = ip6_ins_rt(nrt, NULL, NULL, NULL);
661                 if (!err)
662                         goto out2;
663         }
664
665         if (--attempts <= 0)
666                 goto out2;
667
668         /*
669          * Race condition! In the gap, when table->tb6_lock was
670          * released someone could insert this route.  Relookup.
671          */
672         dst_release(&rt->u.dst);
673         goto relookup;
674
675 out:
676         if (reachable) {
677                 reachable = 0;
678                 goto restart_2;
679         }
680         dst_hold(&rt->u.dst);
681         read_unlock_bh(&table->tb6_lock);
682 out2:
683         rt->u.dst.lastuse = jiffies;
684         rt->u.dst.__use++;
685
686         return rt;
687 }
688
689 void ip6_route_input(struct sk_buff *skb)
690 {
691         struct ipv6hdr *iph = skb->nh.ipv6h;
692         struct flowi fl = {
693                 .iif = skb->dev->ifindex,
694                 .nl_u = {
695                         .ip6_u = {
696                                 .daddr = iph->daddr,
697                                 .saddr = iph->saddr,
698                                 .flowlabel = (* (u32 *) iph)&IPV6_FLOWINFO_MASK,
699                         },
700                 },
701                 .proto = iph->nexthdr,
702         };
703         int flags = 0;
704
705         if (rt6_need_strict(&iph->daddr))
706                 flags |= RT6_F_STRICT;
707
708         skb->dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_input);
709 }
710
711 static struct rt6_info *ip6_pol_route_output(struct fib6_table *table,
712                                              struct flowi *fl, int flags)
713 {
714         struct fib6_node *fn;
715         struct rt6_info *rt, *nrt;
716         int strict = 0;
717         int attempts = 3;
718         int err;
719         int reachable = RT6_SELECT_F_REACHABLE;
720
721         if (flags & RT6_F_STRICT)
722                 strict = RT6_SELECT_F_IFACE;
723
724 relookup:
725         read_lock_bh(&table->tb6_lock);
726
727 restart_2:
728         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
729
730 restart:
731         rt = rt6_select(&fn->leaf, fl->oif, strict | reachable);
732         BACKTRACK();
733         if (rt == &ip6_null_entry ||
734             rt->rt6i_flags & RTF_CACHE)
735                 goto out;
736
737         dst_hold(&rt->u.dst);
738         read_unlock_bh(&table->tb6_lock);
739
740         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
741                 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
742         else {
743 #if CLONE_OFFLINK_ROUTE
744                 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
745 #else
746                 goto out2;
747 #endif
748         }
749
750         dst_release(&rt->u.dst);
751         rt = nrt ? : &ip6_null_entry;
752
753         dst_hold(&rt->u.dst);
754         if (nrt) {
755                 err = ip6_ins_rt(nrt, NULL, NULL, NULL);
756                 if (!err)
757                         goto out2;
758         }
759
760         if (--attempts <= 0)
761                 goto out2;
762
763         /*
764          * Race condition! In the gap, when table->tb6_lock was
765          * released someone could insert this route.  Relookup.
766          */
767         dst_release(&rt->u.dst);
768         goto relookup;
769
770 out:
771         if (reachable) {
772                 reachable = 0;
773                 goto restart_2;
774         }
775         dst_hold(&rt->u.dst);
776         read_unlock_bh(&table->tb6_lock);
777 out2:
778         rt->u.dst.lastuse = jiffies;
779         rt->u.dst.__use++;
780         return rt;
781 }
782
783 struct dst_entry * ip6_route_output(struct sock *sk, struct flowi *fl)
784 {
785         int flags = 0;
786
787         if (rt6_need_strict(&fl->fl6_dst))
788                 flags |= RT6_F_STRICT;
789
790         return fib6_rule_lookup(fl, flags, ip6_pol_route_output);
791 }
792
793
794 /*
795  *      Destination cache support functions
796  */
797
798 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
799 {
800         struct rt6_info *rt;
801
802         rt = (struct rt6_info *) dst;
803
804         if (rt && rt->rt6i_node && (rt->rt6i_node->fn_sernum == cookie))
805                 return dst;
806
807         return NULL;
808 }
809
810 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
811 {
812         struct rt6_info *rt = (struct rt6_info *) dst;
813
814         if (rt) {
815                 if (rt->rt6i_flags & RTF_CACHE)
816                         ip6_del_rt(rt, NULL, NULL, NULL);
817                 else
818                         dst_release(dst);
819         }
820         return NULL;
821 }
822
823 static void ip6_link_failure(struct sk_buff *skb)
824 {
825         struct rt6_info *rt;
826
827         icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0, skb->dev);
828
829         rt = (struct rt6_info *) skb->dst;
830         if (rt) {
831                 if (rt->rt6i_flags&RTF_CACHE) {
832                         dst_set_expires(&rt->u.dst, 0);
833                         rt->rt6i_flags |= RTF_EXPIRES;
834                 } else if (rt->rt6i_node && (rt->rt6i_flags & RTF_DEFAULT))
835                         rt->rt6i_node->fn_sernum = -1;
836         }
837 }
838
839 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
840 {
841         struct rt6_info *rt6 = (struct rt6_info*)dst;
842
843         if (mtu < dst_mtu(dst) && rt6->rt6i_dst.plen == 128) {
844                 rt6->rt6i_flags |= RTF_MODIFIED;
845                 if (mtu < IPV6_MIN_MTU) {
846                         mtu = IPV6_MIN_MTU;
847                         dst->metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
848                 }
849                 dst->metrics[RTAX_MTU-1] = mtu;
850                 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
851         }
852 }
853
854 static int ipv6_get_mtu(struct net_device *dev);
855
856 static inline unsigned int ipv6_advmss(unsigned int mtu)
857 {
858         mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
859
860         if (mtu < ip6_rt_min_advmss)
861                 mtu = ip6_rt_min_advmss;
862
863         /*
864          * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 
865          * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 
866          * IPV6_MAXPLEN is also valid and means: "any MSS, 
867          * rely only on pmtu discovery"
868          */
869         if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
870                 mtu = IPV6_MAXPLEN;
871         return mtu;
872 }
873
874 static struct dst_entry *ndisc_dst_gc_list;
875 DEFINE_SPINLOCK(ndisc_lock);
876
877 struct dst_entry *ndisc_dst_alloc(struct net_device *dev, 
878                                   struct neighbour *neigh,
879                                   struct in6_addr *addr,
880                                   int (*output)(struct sk_buff *))
881 {
882         struct rt6_info *rt;
883         struct inet6_dev *idev = in6_dev_get(dev);
884
885         if (unlikely(idev == NULL))
886                 return NULL;
887
888         rt = ip6_dst_alloc();
889         if (unlikely(rt == NULL)) {
890                 in6_dev_put(idev);
891                 goto out;
892         }
893
894         dev_hold(dev);
895         if (neigh)
896                 neigh_hold(neigh);
897         else
898                 neigh = ndisc_get_neigh(dev, addr);
899
900         rt->rt6i_dev      = dev;
901         rt->rt6i_idev     = idev;
902         rt->rt6i_nexthop  = neigh;
903         atomic_set(&rt->u.dst.__refcnt, 1);
904         rt->u.dst.metrics[RTAX_HOPLIMIT-1] = 255;
905         rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
906         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
907         rt->u.dst.output  = output;
908
909 #if 0   /* there's no chance to use these for ndisc */
910         rt->u.dst.flags   = ipv6_addr_type(addr) & IPV6_ADDR_UNICAST 
911                                 ? DST_HOST 
912                                 : 0;
913         ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
914         rt->rt6i_dst.plen = 128;
915 #endif
916
917         spin_lock_bh(&ndisc_lock);
918         rt->u.dst.next = ndisc_dst_gc_list;
919         ndisc_dst_gc_list = &rt->u.dst;
920         spin_unlock_bh(&ndisc_lock);
921
922         fib6_force_start_gc();
923
924 out:
925         return (struct dst_entry *)rt;
926 }
927
928 int ndisc_dst_gc(int *more)
929 {
930         struct dst_entry *dst, *next, **pprev;
931         int freed;
932
933         next = NULL;
934         freed = 0;
935
936         spin_lock_bh(&ndisc_lock);
937         pprev = &ndisc_dst_gc_list;
938
939         while ((dst = *pprev) != NULL) {
940                 if (!atomic_read(&dst->__refcnt)) {
941                         *pprev = dst->next;
942                         dst_free(dst);
943                         freed++;
944                 } else {
945                         pprev = &dst->next;
946                         (*more)++;
947                 }
948         }
949
950         spin_unlock_bh(&ndisc_lock);
951
952         return freed;
953 }
954
955 static int ip6_dst_gc(void)
956 {
957         static unsigned expire = 30*HZ;
958         static unsigned long last_gc;
959         unsigned long now = jiffies;
960
961         if (time_after(last_gc + ip6_rt_gc_min_interval, now) &&
962             atomic_read(&ip6_dst_ops.entries) <= ip6_rt_max_size)
963                 goto out;
964
965         expire++;
966         fib6_run_gc(expire);
967         last_gc = now;
968         if (atomic_read(&ip6_dst_ops.entries) < ip6_dst_ops.gc_thresh)
969                 expire = ip6_rt_gc_timeout>>1;
970
971 out:
972         expire -= expire>>ip6_rt_gc_elasticity;
973         return (atomic_read(&ip6_dst_ops.entries) > ip6_rt_max_size);
974 }
975
976 /* Clean host part of a prefix. Not necessary in radix tree,
977    but results in cleaner routing tables.
978
979    Remove it only when all the things will work!
980  */
981
982 static int ipv6_get_mtu(struct net_device *dev)
983 {
984         int mtu = IPV6_MIN_MTU;
985         struct inet6_dev *idev;
986
987         idev = in6_dev_get(dev);
988         if (idev) {
989                 mtu = idev->cnf.mtu6;
990                 in6_dev_put(idev);
991         }
992         return mtu;
993 }
994
995 int ipv6_get_hoplimit(struct net_device *dev)
996 {
997         int hoplimit = ipv6_devconf.hop_limit;
998         struct inet6_dev *idev;
999
1000         idev = in6_dev_get(dev);
1001         if (idev) {
1002                 hoplimit = idev->cnf.hop_limit;
1003                 in6_dev_put(idev);
1004         }
1005         return hoplimit;
1006 }
1007
1008 /*
1009  *
1010  */
1011
1012 int ip6_route_add(struct in6_rtmsg *rtmsg, struct nlmsghdr *nlh, 
1013                   void *_rtattr, struct netlink_skb_parms *req,
1014                   u32 table_id)
1015 {
1016         int err;
1017         struct rtmsg *r;
1018         struct rtattr **rta;
1019         struct rt6_info *rt = NULL;
1020         struct net_device *dev = NULL;
1021         struct inet6_dev *idev = NULL;
1022         struct fib6_table *table;
1023         int addr_type;
1024
1025         rta = (struct rtattr **) _rtattr;
1026
1027         if (rtmsg->rtmsg_dst_len > 128 || rtmsg->rtmsg_src_len > 128)
1028                 return -EINVAL;
1029 #ifndef CONFIG_IPV6_SUBTREES
1030         if (rtmsg->rtmsg_src_len)
1031                 return -EINVAL;
1032 #endif
1033         if (rtmsg->rtmsg_ifindex) {
1034                 err = -ENODEV;
1035                 dev = dev_get_by_index(rtmsg->rtmsg_ifindex);
1036                 if (!dev)
1037                         goto out;
1038                 idev = in6_dev_get(dev);
1039                 if (!idev)
1040                         goto out;
1041         }
1042
1043         if (rtmsg->rtmsg_metric == 0)
1044                 rtmsg->rtmsg_metric = IP6_RT_PRIO_USER;
1045
1046         table = fib6_new_table(table_id);
1047         if (table == NULL) {
1048                 err = -ENOBUFS;
1049                 goto out;
1050         }
1051
1052         rt = ip6_dst_alloc();
1053
1054         if (rt == NULL) {
1055                 err = -ENOMEM;
1056                 goto out;
1057         }
1058
1059         rt->u.dst.obsolete = -1;
1060         rt->rt6i_expires = jiffies + clock_t_to_jiffies(rtmsg->rtmsg_info);
1061         if (nlh && (r = NLMSG_DATA(nlh))) {
1062                 rt->rt6i_protocol = r->rtm_protocol;
1063         } else {
1064                 rt->rt6i_protocol = RTPROT_BOOT;
1065         }
1066
1067         addr_type = ipv6_addr_type(&rtmsg->rtmsg_dst);
1068
1069         if (addr_type & IPV6_ADDR_MULTICAST)
1070                 rt->u.dst.input = ip6_mc_input;
1071         else
1072                 rt->u.dst.input = ip6_forward;
1073
1074         rt->u.dst.output = ip6_output;
1075
1076         ipv6_addr_prefix(&rt->rt6i_dst.addr, 
1077                          &rtmsg->rtmsg_dst, rtmsg->rtmsg_dst_len);
1078         rt->rt6i_dst.plen = rtmsg->rtmsg_dst_len;
1079         if (rt->rt6i_dst.plen == 128)
1080                rt->u.dst.flags = DST_HOST;
1081
1082 #ifdef CONFIG_IPV6_SUBTREES
1083         ipv6_addr_prefix(&rt->rt6i_src.addr, 
1084                          &rtmsg->rtmsg_src, rtmsg->rtmsg_src_len);
1085         rt->rt6i_src.plen = rtmsg->rtmsg_src_len;
1086 #endif
1087
1088         rt->rt6i_metric = rtmsg->rtmsg_metric;
1089
1090         /* We cannot add true routes via loopback here,
1091            they would result in kernel looping; promote them to reject routes
1092          */
1093         if ((rtmsg->rtmsg_flags&RTF_REJECT) ||
1094             (dev && (dev->flags&IFF_LOOPBACK) && !(addr_type&IPV6_ADDR_LOOPBACK))) {
1095                 /* hold loopback dev/idev if we haven't done so. */
1096                 if (dev != &loopback_dev) {
1097                         if (dev) {
1098                                 dev_put(dev);
1099                                 in6_dev_put(idev);
1100                         }
1101                         dev = &loopback_dev;
1102                         dev_hold(dev);
1103                         idev = in6_dev_get(dev);
1104                         if (!idev) {
1105                                 err = -ENODEV;
1106                                 goto out;
1107                         }
1108                 }
1109                 rt->u.dst.output = ip6_pkt_discard_out;
1110                 rt->u.dst.input = ip6_pkt_discard;
1111                 rt->u.dst.error = -ENETUNREACH;
1112                 rt->rt6i_flags = RTF_REJECT|RTF_NONEXTHOP;
1113                 goto install_route;
1114         }
1115
1116         if (rtmsg->rtmsg_flags & RTF_GATEWAY) {
1117                 struct in6_addr *gw_addr;
1118                 int gwa_type;
1119
1120                 gw_addr = &rtmsg->rtmsg_gateway;
1121                 ipv6_addr_copy(&rt->rt6i_gateway, &rtmsg->rtmsg_gateway);
1122                 gwa_type = ipv6_addr_type(gw_addr);
1123
1124                 if (gwa_type != (IPV6_ADDR_LINKLOCAL|IPV6_ADDR_UNICAST)) {
1125                         struct rt6_info *grt;
1126
1127                         /* IPv6 strictly inhibits using not link-local
1128                            addresses as nexthop address.
1129                            Otherwise, router will not able to send redirects.
1130                            It is very good, but in some (rare!) circumstances
1131                            (SIT, PtP, NBMA NOARP links) it is handy to allow
1132                            some exceptions. --ANK
1133                          */
1134                         err = -EINVAL;
1135                         if (!(gwa_type&IPV6_ADDR_UNICAST))
1136                                 goto out;
1137
1138                         grt = rt6_lookup(gw_addr, NULL, rtmsg->rtmsg_ifindex, 1);
1139
1140                         err = -EHOSTUNREACH;
1141                         if (grt == NULL)
1142                                 goto out;
1143                         if (dev) {
1144                                 if (dev != grt->rt6i_dev) {
1145                                         dst_release(&grt->u.dst);
1146                                         goto out;
1147                                 }
1148                         } else {
1149                                 dev = grt->rt6i_dev;
1150                                 idev = grt->rt6i_idev;
1151                                 dev_hold(dev);
1152                                 in6_dev_hold(grt->rt6i_idev);
1153                         }
1154                         if (!(grt->rt6i_flags&RTF_GATEWAY))
1155                                 err = 0;
1156                         dst_release(&grt->u.dst);
1157
1158                         if (err)
1159                                 goto out;
1160                 }
1161                 err = -EINVAL;
1162                 if (dev == NULL || (dev->flags&IFF_LOOPBACK))
1163                         goto out;
1164         }
1165
1166         err = -ENODEV;
1167         if (dev == NULL)
1168                 goto out;
1169
1170         if (rtmsg->rtmsg_flags & (RTF_GATEWAY|RTF_NONEXTHOP)) {
1171                 rt->rt6i_nexthop = __neigh_lookup_errno(&nd_tbl, &rt->rt6i_gateway, dev);
1172                 if (IS_ERR(rt->rt6i_nexthop)) {
1173                         err = PTR_ERR(rt->rt6i_nexthop);
1174                         rt->rt6i_nexthop = NULL;
1175                         goto out;
1176                 }
1177         }
1178
1179         rt->rt6i_flags = rtmsg->rtmsg_flags;
1180
1181 install_route:
1182         if (rta && rta[RTA_METRICS-1]) {
1183                 int attrlen = RTA_PAYLOAD(rta[RTA_METRICS-1]);
1184                 struct rtattr *attr = RTA_DATA(rta[RTA_METRICS-1]);
1185
1186                 while (RTA_OK(attr, attrlen)) {
1187                         unsigned flavor = attr->rta_type;
1188                         if (flavor) {
1189                                 if (flavor > RTAX_MAX) {
1190                                         err = -EINVAL;
1191                                         goto out;
1192                                 }
1193                                 rt->u.dst.metrics[flavor-1] =
1194                                         *(u32 *)RTA_DATA(attr);
1195                         }
1196                         attr = RTA_NEXT(attr, attrlen);
1197                 }
1198         }
1199
1200         if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1201                 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1202         if (!rt->u.dst.metrics[RTAX_MTU-1])
1203                 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(dev);
1204         if (!rt->u.dst.metrics[RTAX_ADVMSS-1])
1205                 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1206         rt->u.dst.dev = dev;
1207         rt->rt6i_idev = idev;
1208         rt->rt6i_table = table;
1209         return ip6_ins_rt(rt, nlh, _rtattr, req);
1210
1211 out:
1212         if (dev)
1213                 dev_put(dev);
1214         if (idev)
1215                 in6_dev_put(idev);
1216         if (rt)
1217                 dst_free((struct dst_entry *) rt);
1218         return err;
1219 }
1220
1221 int ip6_del_rt(struct rt6_info *rt, struct nlmsghdr *nlh, void *_rtattr, struct netlink_skb_parms *req)
1222 {
1223         int err;
1224         struct fib6_table *table;
1225
1226         table = rt->rt6i_table;
1227         write_lock_bh(&table->tb6_lock);
1228
1229         err = fib6_del(rt, nlh, _rtattr, req);
1230         dst_release(&rt->u.dst);
1231
1232         write_unlock_bh(&table->tb6_lock);
1233
1234         return err;
1235 }
1236
1237 static int ip6_route_del(struct in6_rtmsg *rtmsg, struct nlmsghdr *nlh,
1238                          void *_rtattr, struct netlink_skb_parms *req,
1239                          u32 table_id)
1240 {
1241         struct fib6_table *table;
1242         struct fib6_node *fn;
1243         struct rt6_info *rt;
1244         int err = -ESRCH;
1245
1246         table = fib6_get_table(table_id);
1247         if (table == NULL)
1248                 return err;
1249
1250         read_lock_bh(&table->tb6_lock);
1251
1252         fn = fib6_locate(&table->tb6_root,
1253                          &rtmsg->rtmsg_dst, rtmsg->rtmsg_dst_len,
1254                          &rtmsg->rtmsg_src, rtmsg->rtmsg_src_len);
1255         
1256         if (fn) {
1257                 for (rt = fn->leaf; rt; rt = rt->u.next) {
1258                         if (rtmsg->rtmsg_ifindex &&
1259                             (rt->rt6i_dev == NULL ||
1260                              rt->rt6i_dev->ifindex != rtmsg->rtmsg_ifindex))
1261                                 continue;
1262                         if (rtmsg->rtmsg_flags&RTF_GATEWAY &&
1263                             !ipv6_addr_equal(&rtmsg->rtmsg_gateway, &rt->rt6i_gateway))
1264                                 continue;
1265                         if (rtmsg->rtmsg_metric &&
1266                             rtmsg->rtmsg_metric != rt->rt6i_metric)
1267                                 continue;
1268                         dst_hold(&rt->u.dst);
1269                         read_unlock_bh(&table->tb6_lock);
1270
1271                         return ip6_del_rt(rt, nlh, _rtattr, req);
1272                 }
1273         }
1274         read_unlock_bh(&table->tb6_lock);
1275
1276         return err;
1277 }
1278
1279 /*
1280  *      Handle redirects
1281  */
1282 void rt6_redirect(struct in6_addr *dest, struct in6_addr *saddr,
1283                   struct neighbour *neigh, u8 *lladdr, int on_link)
1284 {
1285         struct rt6_info *rt, *nrt = NULL;
1286         struct fib6_node *fn;
1287         struct fib6_table *table;
1288         struct netevent_redirect netevent;
1289
1290         /* TODO: Very lazy, might need to check all tables */
1291         table = fib6_get_table(RT6_TABLE_MAIN);
1292         if (table == NULL)
1293                 return;
1294
1295         /*
1296          * Get the "current" route for this destination and
1297          * check if the redirect has come from approriate router.
1298          *
1299          * RFC 2461 specifies that redirects should only be
1300          * accepted if they come from the nexthop to the target.
1301          * Due to the way the routes are chosen, this notion
1302          * is a bit fuzzy and one might need to check all possible
1303          * routes.
1304          */
1305
1306         read_lock_bh(&table->tb6_lock);
1307         fn = fib6_lookup(&table->tb6_root, dest, NULL);
1308 restart:
1309         for (rt = fn->leaf; rt; rt = rt->u.next) {
1310                 /*
1311                  * Current route is on-link; redirect is always invalid.
1312                  *
1313                  * Seems, previous statement is not true. It could
1314                  * be node, which looks for us as on-link (f.e. proxy ndisc)
1315                  * But then router serving it might decide, that we should
1316                  * know truth 8)8) --ANK (980726).
1317                  */
1318                 if (rt6_check_expired(rt))
1319                         continue;
1320                 if (!(rt->rt6i_flags & RTF_GATEWAY))
1321                         continue;
1322                 if (neigh->dev != rt->rt6i_dev)
1323                         continue;
1324                 if (!ipv6_addr_equal(saddr, &rt->rt6i_gateway))
1325                         continue;
1326                 break;
1327         }
1328         if (rt)
1329                 dst_hold(&rt->u.dst);
1330         else if (rt6_need_strict(dest)) {
1331                 while ((fn = fn->parent) != NULL) {
1332                         if (fn->fn_flags & RTN_ROOT)
1333                                 break;
1334                         if (fn->fn_flags & RTN_RTINFO)
1335                                 goto restart;
1336                 }
1337         }
1338         read_unlock_bh(&table->tb6_lock);
1339
1340         if (!rt) {
1341                 if (net_ratelimit())
1342                         printk(KERN_DEBUG "rt6_redirect: source isn't a valid nexthop "
1343                                "for redirect target\n");
1344                 return;
1345         }
1346
1347         /*
1348          *      We have finally decided to accept it.
1349          */
1350
1351         neigh_update(neigh, lladdr, NUD_STALE, 
1352                      NEIGH_UPDATE_F_WEAK_OVERRIDE|
1353                      NEIGH_UPDATE_F_OVERRIDE|
1354                      (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
1355                                      NEIGH_UPDATE_F_ISROUTER))
1356                      );
1357
1358         /*
1359          * Redirect received -> path was valid.
1360          * Look, redirects are sent only in response to data packets,
1361          * so that this nexthop apparently is reachable. --ANK
1362          */
1363         dst_confirm(&rt->u.dst);
1364
1365         /* Duplicate redirect: silently ignore. */
1366         if (neigh == rt->u.dst.neighbour)
1367                 goto out;
1368
1369         nrt = ip6_rt_copy(rt);
1370         if (nrt == NULL)
1371                 goto out;
1372
1373         nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
1374         if (on_link)
1375                 nrt->rt6i_flags &= ~RTF_GATEWAY;
1376
1377         ipv6_addr_copy(&nrt->rt6i_dst.addr, dest);
1378         nrt->rt6i_dst.plen = 128;
1379         nrt->u.dst.flags |= DST_HOST;
1380
1381         ipv6_addr_copy(&nrt->rt6i_gateway, (struct in6_addr*)neigh->primary_key);
1382         nrt->rt6i_nexthop = neigh_clone(neigh);
1383         /* Reset pmtu, it may be better */
1384         nrt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(neigh->dev);
1385         nrt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&nrt->u.dst));
1386
1387         if (ip6_ins_rt(nrt, NULL, NULL, NULL))
1388                 goto out;
1389
1390         netevent.old = &rt->u.dst;
1391         netevent.new = &nrt->u.dst;
1392         call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
1393
1394         if (rt->rt6i_flags&RTF_CACHE) {
1395                 ip6_del_rt(rt, NULL, NULL, NULL);
1396                 return;
1397         }
1398
1399 out:
1400         dst_release(&rt->u.dst);
1401         return;
1402 }
1403
1404 /*
1405  *      Handle ICMP "packet too big" messages
1406  *      i.e. Path MTU discovery
1407  */
1408
1409 void rt6_pmtu_discovery(struct in6_addr *daddr, struct in6_addr *saddr,
1410                         struct net_device *dev, u32 pmtu)
1411 {
1412         struct rt6_info *rt, *nrt;
1413         int allfrag = 0;
1414
1415         rt = rt6_lookup(daddr, saddr, dev->ifindex, 0);
1416         if (rt == NULL)
1417                 return;
1418
1419         if (pmtu >= dst_mtu(&rt->u.dst))
1420                 goto out;
1421
1422         if (pmtu < IPV6_MIN_MTU) {
1423                 /*
1424                  * According to RFC2460, PMTU is set to the IPv6 Minimum Link 
1425                  * MTU (1280) and a fragment header should always be included
1426                  * after a node receiving Too Big message reporting PMTU is
1427                  * less than the IPv6 Minimum Link MTU.
1428                  */
1429                 pmtu = IPV6_MIN_MTU;
1430                 allfrag = 1;
1431         }
1432
1433         /* New mtu received -> path was valid.
1434            They are sent only in response to data packets,
1435            so that this nexthop apparently is reachable. --ANK
1436          */
1437         dst_confirm(&rt->u.dst);
1438
1439         /* Host route. If it is static, it would be better
1440            not to override it, but add new one, so that
1441            when cache entry will expire old pmtu
1442            would return automatically.
1443          */
1444         if (rt->rt6i_flags & RTF_CACHE) {
1445                 rt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1446                 if (allfrag)
1447                         rt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1448                 dst_set_expires(&rt->u.dst, ip6_rt_mtu_expires);
1449                 rt->rt6i_flags |= RTF_MODIFIED|RTF_EXPIRES;
1450                 goto out;
1451         }
1452
1453         /* Network route.
1454            Two cases are possible:
1455            1. It is connected route. Action: COW
1456            2. It is gatewayed route or NONEXTHOP route. Action: clone it.
1457          */
1458         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
1459                 nrt = rt6_alloc_cow(rt, daddr, saddr);
1460         else
1461                 nrt = rt6_alloc_clone(rt, daddr);
1462
1463         if (nrt) {
1464                 nrt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1465                 if (allfrag)
1466                         nrt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1467
1468                 /* According to RFC 1981, detecting PMTU increase shouldn't be
1469                  * happened within 5 mins, the recommended timer is 10 mins.
1470                  * Here this route expiration time is set to ip6_rt_mtu_expires
1471                  * which is 10 mins. After 10 mins the decreased pmtu is expired
1472                  * and detecting PMTU increase will be automatically happened.
1473                  */
1474                 dst_set_expires(&nrt->u.dst, ip6_rt_mtu_expires);
1475                 nrt->rt6i_flags |= RTF_DYNAMIC|RTF_EXPIRES;
1476
1477                 ip6_ins_rt(nrt, NULL, NULL, NULL);
1478         }
1479 out:
1480         dst_release(&rt->u.dst);
1481 }
1482
1483 /*
1484  *      Misc support functions
1485  */
1486
1487 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort)
1488 {
1489         struct rt6_info *rt = ip6_dst_alloc();
1490
1491         if (rt) {
1492                 rt->u.dst.input = ort->u.dst.input;
1493                 rt->u.dst.output = ort->u.dst.output;
1494
1495                 memcpy(rt->u.dst.metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
1496                 rt->u.dst.dev = ort->u.dst.dev;
1497                 if (rt->u.dst.dev)
1498                         dev_hold(rt->u.dst.dev);
1499                 rt->rt6i_idev = ort->rt6i_idev;
1500                 if (rt->rt6i_idev)
1501                         in6_dev_hold(rt->rt6i_idev);
1502                 rt->u.dst.lastuse = jiffies;
1503                 rt->rt6i_expires = 0;
1504
1505                 ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
1506                 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
1507                 rt->rt6i_metric = 0;
1508
1509                 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
1510 #ifdef CONFIG_IPV6_SUBTREES
1511                 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
1512 #endif
1513                 rt->rt6i_table = ort->rt6i_table;
1514         }
1515         return rt;
1516 }
1517
1518 #ifdef CONFIG_IPV6_ROUTE_INFO
1519 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
1520                                            struct in6_addr *gwaddr, int ifindex)
1521 {
1522         struct fib6_node *fn;
1523         struct rt6_info *rt = NULL;
1524         struct fib6_table *table;
1525
1526         table = fib6_get_table(RT6_TABLE_INFO);
1527         if (table == NULL)
1528                 return NULL;
1529
1530         write_lock_bh(&table->tb6_lock);
1531         fn = fib6_locate(&table->tb6_root, prefix ,prefixlen, NULL, 0);
1532         if (!fn)
1533                 goto out;
1534
1535         for (rt = fn->leaf; rt; rt = rt->u.next) {
1536                 if (rt->rt6i_dev->ifindex != ifindex)
1537                         continue;
1538                 if ((rt->rt6i_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
1539                         continue;
1540                 if (!ipv6_addr_equal(&rt->rt6i_gateway, gwaddr))
1541                         continue;
1542                 dst_hold(&rt->u.dst);
1543                 break;
1544         }
1545 out:
1546         write_unlock_bh(&table->tb6_lock);
1547         return rt;
1548 }
1549
1550 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
1551                                            struct in6_addr *gwaddr, int ifindex,
1552                                            unsigned pref)
1553 {
1554         struct in6_rtmsg rtmsg;
1555
1556         memset(&rtmsg, 0, sizeof(rtmsg));
1557         rtmsg.rtmsg_type = RTMSG_NEWROUTE;
1558         ipv6_addr_copy(&rtmsg.rtmsg_dst, prefix);
1559         rtmsg.rtmsg_dst_len = prefixlen;
1560         ipv6_addr_copy(&rtmsg.rtmsg_gateway, gwaddr);
1561         rtmsg.rtmsg_metric = 1024;
1562         rtmsg.rtmsg_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | RTF_UP | RTF_PREF(pref);
1563         /* We should treat it as a default route if prefix length is 0. */
1564         if (!prefixlen)
1565                 rtmsg.rtmsg_flags |= RTF_DEFAULT;
1566         rtmsg.rtmsg_ifindex = ifindex;
1567
1568         ip6_route_add(&rtmsg, NULL, NULL, NULL, RT6_TABLE_INFO);
1569
1570         return rt6_get_route_info(prefix, prefixlen, gwaddr, ifindex);
1571 }
1572 #endif
1573
1574 struct rt6_info *rt6_get_dflt_router(struct in6_addr *addr, struct net_device *dev)
1575 {       
1576         struct rt6_info *rt;
1577         struct fib6_table *table;
1578
1579         table = fib6_get_table(RT6_TABLE_DFLT);
1580         if (table == NULL)
1581                 return NULL;
1582
1583         write_lock_bh(&table->tb6_lock);
1584         for (rt = table->tb6_root.leaf; rt; rt=rt->u.next) {
1585                 if (dev == rt->rt6i_dev &&
1586                     ((rt->rt6i_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
1587                     ipv6_addr_equal(&rt->rt6i_gateway, addr))
1588                         break;
1589         }
1590         if (rt)
1591                 dst_hold(&rt->u.dst);
1592         write_unlock_bh(&table->tb6_lock);
1593         return rt;
1594 }
1595
1596 struct rt6_info *rt6_add_dflt_router(struct in6_addr *gwaddr,
1597                                      struct net_device *dev,
1598                                      unsigned int pref)
1599 {
1600         struct in6_rtmsg rtmsg;
1601
1602         memset(&rtmsg, 0, sizeof(struct in6_rtmsg));
1603         rtmsg.rtmsg_type = RTMSG_NEWROUTE;
1604         ipv6_addr_copy(&rtmsg.rtmsg_gateway, gwaddr);
1605         rtmsg.rtmsg_metric = 1024;
1606         rtmsg.rtmsg_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | RTF_UP | RTF_EXPIRES |
1607                             RTF_PREF(pref);
1608
1609         rtmsg.rtmsg_ifindex = dev->ifindex;
1610
1611         ip6_route_add(&rtmsg, NULL, NULL, NULL, RT6_TABLE_DFLT);
1612         return rt6_get_dflt_router(gwaddr, dev);
1613 }
1614
1615 void rt6_purge_dflt_routers(void)
1616 {
1617         struct rt6_info *rt;
1618         struct fib6_table *table;
1619
1620         /* NOTE: Keep consistent with rt6_get_dflt_router */
1621         table = fib6_get_table(RT6_TABLE_DFLT);
1622         if (table == NULL)
1623                 return;
1624
1625 restart:
1626         read_lock_bh(&table->tb6_lock);
1627         for (rt = table->tb6_root.leaf; rt; rt = rt->u.next) {
1628                 if (rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) {
1629                         dst_hold(&rt->u.dst);
1630                         read_unlock_bh(&table->tb6_lock);
1631                         ip6_del_rt(rt, NULL, NULL, NULL);
1632                         goto restart;
1633                 }
1634         }
1635         read_unlock_bh(&table->tb6_lock);
1636 }
1637
1638 int ipv6_route_ioctl(unsigned int cmd, void __user *arg)
1639 {
1640         struct in6_rtmsg rtmsg;
1641         int err;
1642
1643         switch(cmd) {
1644         case SIOCADDRT:         /* Add a route */
1645         case SIOCDELRT:         /* Delete a route */
1646                 if (!capable(CAP_NET_ADMIN))
1647                         return -EPERM;
1648                 err = copy_from_user(&rtmsg, arg,
1649                                      sizeof(struct in6_rtmsg));
1650                 if (err)
1651                         return -EFAULT;
1652                         
1653                 rtnl_lock();
1654                 switch (cmd) {
1655                 case SIOCADDRT:
1656                         err = ip6_route_add(&rtmsg, NULL, NULL, NULL,
1657                                             RT6_TABLE_MAIN);
1658                         break;
1659                 case SIOCDELRT:
1660                         err = ip6_route_del(&rtmsg, NULL, NULL, NULL,
1661                                             RT6_TABLE_MAIN);
1662                         break;
1663                 default:
1664                         err = -EINVAL;
1665                 }
1666                 rtnl_unlock();
1667
1668                 return err;
1669         };
1670
1671         return -EINVAL;
1672 }
1673
1674 /*
1675  *      Drop the packet on the floor
1676  */
1677
1678 static int ip6_pkt_discard(struct sk_buff *skb)
1679 {
1680         int type = ipv6_addr_type(&skb->nh.ipv6h->daddr);
1681         if (type == IPV6_ADDR_ANY || type == IPV6_ADDR_RESERVED)
1682                 IP6_INC_STATS(IPSTATS_MIB_INADDRERRORS);
1683
1684         IP6_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
1685         icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_NOROUTE, 0, skb->dev);
1686         kfree_skb(skb);
1687         return 0;
1688 }
1689
1690 static int ip6_pkt_discard_out(struct sk_buff *skb)
1691 {
1692         skb->dev = skb->dst->dev;
1693         return ip6_pkt_discard(skb);
1694 }
1695
1696 /*
1697  *      Allocate a dst for local (unicast / anycast) address.
1698  */
1699
1700 struct rt6_info *addrconf_dst_alloc(struct inet6_dev *idev,
1701                                     const struct in6_addr *addr,
1702                                     int anycast)
1703 {
1704         struct rt6_info *rt = ip6_dst_alloc();
1705
1706         if (rt == NULL)
1707                 return ERR_PTR(-ENOMEM);
1708
1709         dev_hold(&loopback_dev);
1710         in6_dev_hold(idev);
1711
1712         rt->u.dst.flags = DST_HOST;
1713         rt->u.dst.input = ip6_input;
1714         rt->u.dst.output = ip6_output;
1715         rt->rt6i_dev = &loopback_dev;
1716         rt->rt6i_idev = idev;
1717         rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
1718         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1719         rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1720         rt->u.dst.obsolete = -1;
1721
1722         rt->rt6i_flags = RTF_UP | RTF_NONEXTHOP;
1723         if (anycast)
1724                 rt->rt6i_flags |= RTF_ANYCAST;
1725         else
1726                 rt->rt6i_flags |= RTF_LOCAL;
1727         rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
1728         if (rt->rt6i_nexthop == NULL) {
1729                 dst_free((struct dst_entry *) rt);
1730                 return ERR_PTR(-ENOMEM);
1731         }
1732
1733         ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
1734         rt->rt6i_dst.plen = 128;
1735         rt->rt6i_table = fib6_get_table(RT6_TABLE_LOCAL);
1736
1737         atomic_set(&rt->u.dst.__refcnt, 1);
1738
1739         return rt;
1740 }
1741
1742 static int fib6_ifdown(struct rt6_info *rt, void *arg)
1743 {
1744         if (((void*)rt->rt6i_dev == arg || arg == NULL) &&
1745             rt != &ip6_null_entry) {
1746                 RT6_TRACE("deleted by ifdown %p\n", rt);
1747                 return -1;
1748         }
1749         return 0;
1750 }
1751
1752 void rt6_ifdown(struct net_device *dev)
1753 {
1754         fib6_clean_all(fib6_ifdown, 0, dev);
1755 }
1756
1757 struct rt6_mtu_change_arg
1758 {
1759         struct net_device *dev;
1760         unsigned mtu;
1761 };
1762
1763 static int rt6_mtu_change_route(struct rt6_info *rt, void *p_arg)
1764 {
1765         struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
1766         struct inet6_dev *idev;
1767
1768         /* In IPv6 pmtu discovery is not optional,
1769            so that RTAX_MTU lock cannot disable it.
1770            We still use this lock to block changes
1771            caused by addrconf/ndisc.
1772         */
1773
1774         idev = __in6_dev_get(arg->dev);
1775         if (idev == NULL)
1776                 return 0;
1777
1778         /* For administrative MTU increase, there is no way to discover
1779            IPv6 PMTU increase, so PMTU increase should be updated here.
1780            Since RFC 1981 doesn't include administrative MTU increase
1781            update PMTU increase is a MUST. (i.e. jumbo frame)
1782          */
1783         /*
1784            If new MTU is less than route PMTU, this new MTU will be the
1785            lowest MTU in the path, update the route PMTU to reflect PMTU
1786            decreases; if new MTU is greater than route PMTU, and the
1787            old MTU is the lowest MTU in the path, update the route PMTU
1788            to reflect the increase. In this case if the other nodes' MTU
1789            also have the lowest MTU, TOO BIG MESSAGE will be lead to
1790            PMTU discouvery.
1791          */
1792         if (rt->rt6i_dev == arg->dev &&
1793             !dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1794             (dst_mtu(&rt->u.dst) > arg->mtu ||
1795              (dst_mtu(&rt->u.dst) < arg->mtu &&
1796               dst_mtu(&rt->u.dst) == idev->cnf.mtu6)))
1797                 rt->u.dst.metrics[RTAX_MTU-1] = arg->mtu;
1798         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(arg->mtu);
1799         return 0;
1800 }
1801
1802 void rt6_mtu_change(struct net_device *dev, unsigned mtu)
1803 {
1804         struct rt6_mtu_change_arg arg = {
1805                 .dev = dev,
1806                 .mtu = mtu,
1807         };
1808
1809         fib6_clean_all(rt6_mtu_change_route, 0, &arg);
1810 }
1811
1812 static int inet6_rtm_to_rtmsg(struct rtmsg *r, struct rtattr **rta,
1813                               struct in6_rtmsg *rtmsg)
1814 {
1815         memset(rtmsg, 0, sizeof(*rtmsg));
1816
1817         rtmsg->rtmsg_dst_len = r->rtm_dst_len;
1818         rtmsg->rtmsg_src_len = r->rtm_src_len;
1819         rtmsg->rtmsg_flags = RTF_UP;
1820         if (r->rtm_type == RTN_UNREACHABLE)
1821                 rtmsg->rtmsg_flags |= RTF_REJECT;
1822
1823         if (rta[RTA_GATEWAY-1]) {
1824                 if (rta[RTA_GATEWAY-1]->rta_len != RTA_LENGTH(16))
1825                         return -EINVAL;
1826                 memcpy(&rtmsg->rtmsg_gateway, RTA_DATA(rta[RTA_GATEWAY-1]), 16);
1827                 rtmsg->rtmsg_flags |= RTF_GATEWAY;
1828         }
1829         if (rta[RTA_DST-1]) {
1830                 if (RTA_PAYLOAD(rta[RTA_DST-1]) < ((r->rtm_dst_len+7)>>3))
1831                         return -EINVAL;
1832                 memcpy(&rtmsg->rtmsg_dst, RTA_DATA(rta[RTA_DST-1]), ((r->rtm_dst_len+7)>>3));
1833         }
1834         if (rta[RTA_SRC-1]) {
1835                 if (RTA_PAYLOAD(rta[RTA_SRC-1]) < ((r->rtm_src_len+7)>>3))
1836                         return -EINVAL;
1837                 memcpy(&rtmsg->rtmsg_src, RTA_DATA(rta[RTA_SRC-1]), ((r->rtm_src_len+7)>>3));
1838         }
1839         if (rta[RTA_OIF-1]) {
1840                 if (rta[RTA_OIF-1]->rta_len != RTA_LENGTH(sizeof(int)))
1841                         return -EINVAL;
1842                 memcpy(&rtmsg->rtmsg_ifindex, RTA_DATA(rta[RTA_OIF-1]), sizeof(int));
1843         }
1844         if (rta[RTA_PRIORITY-1]) {
1845                 if (rta[RTA_PRIORITY-1]->rta_len != RTA_LENGTH(4))
1846                         return -EINVAL;
1847                 memcpy(&rtmsg->rtmsg_metric, RTA_DATA(rta[RTA_PRIORITY-1]), 4);
1848         }
1849         return 0;
1850 }
1851
1852 int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
1853 {
1854         struct rtmsg *r = NLMSG_DATA(nlh);
1855         struct in6_rtmsg rtmsg;
1856
1857         if (inet6_rtm_to_rtmsg(r, arg, &rtmsg))
1858                 return -EINVAL;
1859         return ip6_route_del(&rtmsg, nlh, arg, &NETLINK_CB(skb), r->rtm_table);
1860 }
1861
1862 int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
1863 {
1864         struct rtmsg *r = NLMSG_DATA(nlh);
1865         struct in6_rtmsg rtmsg;
1866
1867         if (inet6_rtm_to_rtmsg(r, arg, &rtmsg))
1868                 return -EINVAL;
1869         return ip6_route_add(&rtmsg, nlh, arg, &NETLINK_CB(skb), r->rtm_table);
1870 }
1871
1872 struct rt6_rtnl_dump_arg
1873 {
1874         struct sk_buff *skb;
1875         struct netlink_callback *cb;
1876 };
1877
1878 static int rt6_fill_node(struct sk_buff *skb, struct rt6_info *rt,
1879                          struct in6_addr *dst, struct in6_addr *src,
1880                          int iif, int type, u32 pid, u32 seq,
1881                          int prefix, unsigned int flags)
1882 {
1883         struct rtmsg *rtm;
1884         struct nlmsghdr  *nlh;
1885         unsigned char    *b = skb->tail;
1886         struct rta_cacheinfo ci;
1887
1888         if (prefix) {   /* user wants prefix routes only */
1889                 if (!(rt->rt6i_flags & RTF_PREFIX_RT)) {
1890                         /* success since this is not a prefix route */
1891                         return 1;
1892                 }
1893         }
1894
1895         nlh = NLMSG_NEW(skb, pid, seq, type, sizeof(*rtm), flags);
1896         rtm = NLMSG_DATA(nlh);
1897         rtm->rtm_family = AF_INET6;
1898         rtm->rtm_dst_len = rt->rt6i_dst.plen;
1899         rtm->rtm_src_len = rt->rt6i_src.plen;
1900         rtm->rtm_tos = 0;
1901         if (rt->rt6i_table)
1902                 rtm->rtm_table = rt->rt6i_table->tb6_id;
1903         else
1904                 rtm->rtm_table = RT6_TABLE_UNSPEC;
1905         if (rt->rt6i_flags&RTF_REJECT)
1906                 rtm->rtm_type = RTN_UNREACHABLE;
1907         else if (rt->rt6i_dev && (rt->rt6i_dev->flags&IFF_LOOPBACK))
1908                 rtm->rtm_type = RTN_LOCAL;
1909         else
1910                 rtm->rtm_type = RTN_UNICAST;
1911         rtm->rtm_flags = 0;
1912         rtm->rtm_scope = RT_SCOPE_UNIVERSE;
1913         rtm->rtm_protocol = rt->rt6i_protocol;
1914         if (rt->rt6i_flags&RTF_DYNAMIC)
1915                 rtm->rtm_protocol = RTPROT_REDIRECT;
1916         else if (rt->rt6i_flags & RTF_ADDRCONF)
1917                 rtm->rtm_protocol = RTPROT_KERNEL;
1918         else if (rt->rt6i_flags&RTF_DEFAULT)
1919                 rtm->rtm_protocol = RTPROT_RA;
1920
1921         if (rt->rt6i_flags&RTF_CACHE)
1922                 rtm->rtm_flags |= RTM_F_CLONED;
1923
1924         if (dst) {
1925                 RTA_PUT(skb, RTA_DST, 16, dst);
1926                 rtm->rtm_dst_len = 128;
1927         } else if (rtm->rtm_dst_len)
1928                 RTA_PUT(skb, RTA_DST, 16, &rt->rt6i_dst.addr);
1929 #ifdef CONFIG_IPV6_SUBTREES
1930         if (src) {
1931                 RTA_PUT(skb, RTA_SRC, 16, src);
1932                 rtm->rtm_src_len = 128;
1933         } else if (rtm->rtm_src_len)
1934                 RTA_PUT(skb, RTA_SRC, 16, &rt->rt6i_src.addr);
1935 #endif
1936         if (iif)
1937                 RTA_PUT(skb, RTA_IIF, 4, &iif);
1938         else if (dst) {
1939                 struct in6_addr saddr_buf;
1940                 if (ipv6_get_saddr(&rt->u.dst, dst, &saddr_buf) == 0)
1941                         RTA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf);
1942         }
1943         if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
1944                 goto rtattr_failure;
1945         if (rt->u.dst.neighbour)
1946                 RTA_PUT(skb, RTA_GATEWAY, 16, &rt->u.dst.neighbour->primary_key);
1947         if (rt->u.dst.dev)
1948                 RTA_PUT(skb, RTA_OIF, sizeof(int), &rt->rt6i_dev->ifindex);
1949         RTA_PUT(skb, RTA_PRIORITY, 4, &rt->rt6i_metric);
1950         ci.rta_lastuse = jiffies_to_clock_t(jiffies - rt->u.dst.lastuse);
1951         if (rt->rt6i_expires)
1952                 ci.rta_expires = jiffies_to_clock_t(rt->rt6i_expires - jiffies);
1953         else
1954                 ci.rta_expires = 0;
1955         ci.rta_used = rt->u.dst.__use;
1956         ci.rta_clntref = atomic_read(&rt->u.dst.__refcnt);
1957         ci.rta_error = rt->u.dst.error;
1958         ci.rta_id = 0;
1959         ci.rta_ts = 0;
1960         ci.rta_tsage = 0;
1961         RTA_PUT(skb, RTA_CACHEINFO, sizeof(ci), &ci);
1962         nlh->nlmsg_len = skb->tail - b;
1963         return skb->len;
1964
1965 nlmsg_failure:
1966 rtattr_failure:
1967         skb_trim(skb, b - skb->data);
1968         return -1;
1969 }
1970
1971 static int rt6_dump_route(struct rt6_info *rt, void *p_arg)
1972 {
1973         struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
1974         int prefix;
1975
1976         if (arg->cb->nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(struct rtmsg))) {
1977                 struct rtmsg *rtm = NLMSG_DATA(arg->cb->nlh);
1978                 prefix = (rtm->rtm_flags & RTM_F_PREFIX) != 0;
1979         } else
1980                 prefix = 0;
1981
1982         return rt6_fill_node(arg->skb, rt, NULL, NULL, 0, RTM_NEWROUTE,
1983                      NETLINK_CB(arg->cb->skb).pid, arg->cb->nlh->nlmsg_seq,
1984                      prefix, NLM_F_MULTI);
1985 }
1986
1987 static int fib6_dump_node(struct fib6_walker_t *w)
1988 {
1989         int res;
1990         struct rt6_info *rt;
1991
1992         for (rt = w->leaf; rt; rt = rt->u.next) {
1993                 res = rt6_dump_route(rt, w->args);
1994                 if (res < 0) {
1995                         /* Frame is full, suspend walking */
1996                         w->leaf = rt;
1997                         return 1;
1998                 }
1999                 BUG_TRAP(res!=0);
2000         }
2001         w->leaf = NULL;
2002         return 0;
2003 }
2004
2005 static void fib6_dump_end(struct netlink_callback *cb)
2006 {
2007         struct fib6_walker_t *w = (void*)cb->args[0];
2008
2009         if (w) {
2010                 cb->args[0] = 0;
2011                 kfree(w);
2012         }
2013         cb->done = (void*)cb->args[1];
2014         cb->args[1] = 0;
2015 }
2016
2017 static int fib6_dump_done(struct netlink_callback *cb)
2018 {
2019         fib6_dump_end(cb);
2020         return cb->done ? cb->done(cb) : 0;
2021 }
2022
2023 int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
2024 {
2025         struct fib6_table *table;
2026         struct rt6_rtnl_dump_arg arg;
2027         struct fib6_walker_t *w;
2028         int i, res = 0;
2029
2030         arg.skb = skb;
2031         arg.cb = cb;
2032
2033         /*
2034          * cb->args[0] = pointer to walker structure
2035          * cb->args[1] = saved cb->done() pointer
2036          * cb->args[2] = current table being dumped
2037          */
2038
2039         w = (void*)cb->args[0];
2040         if (w == NULL) {
2041                 /* New dump:
2042                  * 
2043                  * 1. hook callback destructor.
2044                  */
2045                 cb->args[1] = (long)cb->done;
2046                 cb->done = fib6_dump_done;
2047
2048                 /*
2049                  * 2. allocate and initialize walker.
2050                  */
2051                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
2052                 if (w == NULL)
2053                         return -ENOMEM;
2054                 w->func = fib6_dump_node;
2055                 w->args = &arg;
2056                 cb->args[0] = (long)w;
2057                 cb->args[2] = FIB6_TABLE_MIN;
2058         } else {
2059                 w->args = &arg;
2060                 i = cb->args[2];
2061                 if (i > FIB6_TABLE_MAX)
2062                         goto end;
2063
2064                 table = fib6_get_table(i);
2065                 if (table != NULL) {
2066                         read_lock_bh(&table->tb6_lock);
2067                         w->root = &table->tb6_root;
2068                         res = fib6_walk_continue(w);
2069                         read_unlock_bh(&table->tb6_lock);
2070                         if (res != 0) {
2071                                 if (res < 0)
2072                                         fib6_walker_unlink(w);
2073                                 goto end;
2074                         }
2075                 }
2076
2077                 fib6_walker_unlink(w);
2078                 cb->args[2] = ++i;
2079         }
2080
2081         for (i = cb->args[2]; i <= FIB6_TABLE_MAX; i++) {
2082                 table = fib6_get_table(i);
2083                 if (table == NULL)
2084                         continue;
2085
2086                 read_lock_bh(&table->tb6_lock);
2087                 w->root = &table->tb6_root;
2088                 res = fib6_walk(w);
2089                 read_unlock_bh(&table->tb6_lock);
2090                 if (res)
2091                         break;
2092         }
2093 end:
2094         cb->args[2] = i;
2095
2096         res = res < 0 ? res : skb->len;
2097         /* res < 0 is an error. (really, impossible)
2098            res == 0 means that dump is complete, but skb still can contain data.
2099            res > 0 dump is not complete, but frame is full.
2100          */
2101         /* Destroy walker, if dump of this table is complete. */
2102         if (res <= 0)
2103                 fib6_dump_end(cb);
2104         return res;
2105 }
2106
2107 int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2108 {
2109         struct rtattr **rta = arg;
2110         int iif = 0;
2111         int err = -ENOBUFS;
2112         struct sk_buff *skb;
2113         struct flowi fl;
2114         struct rt6_info *rt;
2115
2116         skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2117         if (skb == NULL)
2118                 goto out;
2119
2120         /* Reserve room for dummy headers, this skb can pass
2121            through good chunk of routing engine.
2122          */
2123         skb->mac.raw = skb->data;
2124         skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr));
2125
2126         memset(&fl, 0, sizeof(fl));
2127         if (rta[RTA_SRC-1])
2128                 ipv6_addr_copy(&fl.fl6_src,
2129                                (struct in6_addr*)RTA_DATA(rta[RTA_SRC-1]));
2130         if (rta[RTA_DST-1])
2131                 ipv6_addr_copy(&fl.fl6_dst,
2132                                (struct in6_addr*)RTA_DATA(rta[RTA_DST-1]));
2133
2134         if (rta[RTA_IIF-1])
2135                 memcpy(&iif, RTA_DATA(rta[RTA_IIF-1]), sizeof(int));
2136
2137         if (iif) {
2138                 struct net_device *dev;
2139                 dev = __dev_get_by_index(iif);
2140                 if (!dev) {
2141                         err = -ENODEV;
2142                         goto out_free;
2143                 }
2144         }
2145
2146         fl.oif = 0;
2147         if (rta[RTA_OIF-1])
2148                 memcpy(&fl.oif, RTA_DATA(rta[RTA_OIF-1]), sizeof(int));
2149
2150         rt = (struct rt6_info*)ip6_route_output(NULL, &fl);
2151
2152         skb->dst = &rt->u.dst;
2153
2154         NETLINK_CB(skb).dst_pid = NETLINK_CB(in_skb).pid;
2155         err = rt6_fill_node(skb, rt, 
2156                             &fl.fl6_dst, &fl.fl6_src,
2157                             iif,
2158                             RTM_NEWROUTE, NETLINK_CB(in_skb).pid,
2159                             nlh->nlmsg_seq, 0, 0);
2160         if (err < 0) {
2161                 err = -EMSGSIZE;
2162                 goto out_free;
2163         }
2164
2165         err = netlink_unicast(rtnl, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT);
2166         if (err > 0)
2167                 err = 0;
2168 out:
2169         return err;
2170 out_free:
2171         kfree_skb(skb);
2172         goto out;       
2173 }
2174
2175 void inet6_rt_notify(int event, struct rt6_info *rt, struct nlmsghdr *nlh, 
2176                         struct netlink_skb_parms *req)
2177 {
2178         struct sk_buff *skb;
2179         int size = NLMSG_SPACE(sizeof(struct rtmsg)+256);
2180         u32 pid = current->pid;
2181         u32 seq = 0;
2182
2183         if (req)
2184                 pid = req->pid;
2185         if (nlh)
2186                 seq = nlh->nlmsg_seq;
2187         
2188         skb = alloc_skb(size, gfp_any());
2189         if (!skb) {
2190                 netlink_set_err(rtnl, 0, RTNLGRP_IPV6_ROUTE, ENOBUFS);
2191                 return;
2192         }
2193         if (rt6_fill_node(skb, rt, NULL, NULL, 0, event, pid, seq, 0, 0) < 0) {
2194                 kfree_skb(skb);
2195                 netlink_set_err(rtnl, 0, RTNLGRP_IPV6_ROUTE, EINVAL);
2196                 return;
2197         }
2198         NETLINK_CB(skb).dst_group = RTNLGRP_IPV6_ROUTE;
2199         netlink_broadcast(rtnl, skb, 0, RTNLGRP_IPV6_ROUTE, gfp_any());
2200 }
2201
2202 /*
2203  *      /proc
2204  */
2205
2206 #ifdef CONFIG_PROC_FS
2207
2208 #define RT6_INFO_LEN (32 + 4 + 32 + 4 + 32 + 40 + 5 + 1)
2209
2210 struct rt6_proc_arg
2211 {
2212         char *buffer;
2213         int offset;
2214         int length;
2215         int skip;
2216         int len;
2217 };
2218
2219 static int rt6_info_route(struct rt6_info *rt, void *p_arg)
2220 {
2221         struct rt6_proc_arg *arg = (struct rt6_proc_arg *) p_arg;
2222         int i;
2223
2224         if (arg->skip < arg->offset / RT6_INFO_LEN) {
2225                 arg->skip++;
2226                 return 0;
2227         }
2228
2229         if (arg->len >= arg->length)
2230                 return 0;
2231
2232         for (i=0; i<16; i++) {
2233                 sprintf(arg->buffer + arg->len, "%02x",
2234                         rt->rt6i_dst.addr.s6_addr[i]);
2235                 arg->len += 2;
2236         }
2237         arg->len += sprintf(arg->buffer + arg->len, " %02x ",
2238                             rt->rt6i_dst.plen);
2239
2240 #ifdef CONFIG_IPV6_SUBTREES
2241         for (i=0; i<16; i++) {
2242                 sprintf(arg->buffer + arg->len, "%02x",
2243                         rt->rt6i_src.addr.s6_addr[i]);
2244                 arg->len += 2;
2245         }
2246         arg->len += sprintf(arg->buffer + arg->len, " %02x ",
2247                             rt->rt6i_src.plen);
2248 #else
2249         sprintf(arg->buffer + arg->len,
2250                 "00000000000000000000000000000000 00 ");
2251         arg->len += 36;
2252 #endif
2253
2254         if (rt->rt6i_nexthop) {
2255                 for (i=0; i<16; i++) {
2256                         sprintf(arg->buffer + arg->len, "%02x",
2257                                 rt->rt6i_nexthop->primary_key[i]);
2258                         arg->len += 2;
2259                 }
2260         } else {
2261                 sprintf(arg->buffer + arg->len,
2262                         "00000000000000000000000000000000");
2263                 arg->len += 32;
2264         }
2265         arg->len += sprintf(arg->buffer + arg->len,
2266                             " %08x %08x %08x %08x %8s\n",
2267                             rt->rt6i_metric, atomic_read(&rt->u.dst.__refcnt),
2268                             rt->u.dst.__use, rt->rt6i_flags, 
2269                             rt->rt6i_dev ? rt->rt6i_dev->name : "");
2270         return 0;
2271 }
2272
2273 static int rt6_proc_info(char *buffer, char **start, off_t offset, int length)
2274 {
2275         struct rt6_proc_arg arg = {
2276                 .buffer = buffer,
2277                 .offset = offset,
2278                 .length = length,
2279         };
2280
2281         fib6_clean_all(rt6_info_route, 0, &arg);
2282
2283         *start = buffer;
2284         if (offset)
2285                 *start += offset % RT6_INFO_LEN;
2286
2287         arg.len -= offset % RT6_INFO_LEN;
2288
2289         if (arg.len > length)
2290                 arg.len = length;
2291         if (arg.len < 0)
2292                 arg.len = 0;
2293
2294         return arg.len;
2295 }
2296
2297 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
2298 {
2299         seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
2300                       rt6_stats.fib_nodes, rt6_stats.fib_route_nodes,
2301                       rt6_stats.fib_rt_alloc, rt6_stats.fib_rt_entries,
2302                       rt6_stats.fib_rt_cache,
2303                       atomic_read(&ip6_dst_ops.entries),
2304                       rt6_stats.fib_discarded_routes);
2305
2306         return 0;
2307 }
2308
2309 static int rt6_stats_seq_open(struct inode *inode, struct file *file)
2310 {
2311         return single_open(file, rt6_stats_seq_show, NULL);
2312 }
2313
2314 static struct file_operations rt6_stats_seq_fops = {
2315         .owner   = THIS_MODULE,
2316         .open    = rt6_stats_seq_open,
2317         .read    = seq_read,
2318         .llseek  = seq_lseek,
2319         .release = single_release,
2320 };
2321 #endif  /* CONFIG_PROC_FS */
2322
2323 #ifdef CONFIG_SYSCTL
2324
2325 static int flush_delay;
2326
2327 static
2328 int ipv6_sysctl_rtcache_flush(ctl_table *ctl, int write, struct file * filp,
2329                               void __user *buffer, size_t *lenp, loff_t *ppos)
2330 {
2331         if (write) {
2332                 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2333                 fib6_run_gc(flush_delay <= 0 ? ~0UL : (unsigned long)flush_delay);
2334                 return 0;
2335         } else
2336                 return -EINVAL;
2337 }
2338
2339 ctl_table ipv6_route_table[] = {
2340         {
2341                 .ctl_name       =       NET_IPV6_ROUTE_FLUSH, 
2342                 .procname       =       "flush",
2343                 .data           =       &flush_delay,
2344                 .maxlen         =       sizeof(int),
2345                 .mode           =       0200,
2346                 .proc_handler   =       &ipv6_sysctl_rtcache_flush
2347         },
2348         {
2349                 .ctl_name       =       NET_IPV6_ROUTE_GC_THRESH,
2350                 .procname       =       "gc_thresh",
2351                 .data           =       &ip6_dst_ops.gc_thresh,
2352                 .maxlen         =       sizeof(int),
2353                 .mode           =       0644,
2354                 .proc_handler   =       &proc_dointvec,
2355         },
2356         {
2357                 .ctl_name       =       NET_IPV6_ROUTE_MAX_SIZE,
2358                 .procname       =       "max_size",
2359                 .data           =       &ip6_rt_max_size,
2360                 .maxlen         =       sizeof(int),
2361                 .mode           =       0644,
2362                 .proc_handler   =       &proc_dointvec,
2363         },
2364         {
2365                 .ctl_name       =       NET_IPV6_ROUTE_GC_MIN_INTERVAL,
2366                 .procname       =       "gc_min_interval",
2367                 .data           =       &ip6_rt_gc_min_interval,
2368                 .maxlen         =       sizeof(int),
2369                 .mode           =       0644,
2370                 .proc_handler   =       &proc_dointvec_jiffies,
2371                 .strategy       =       &sysctl_jiffies,
2372         },
2373         {
2374                 .ctl_name       =       NET_IPV6_ROUTE_GC_TIMEOUT,
2375                 .procname       =       "gc_timeout",
2376                 .data           =       &ip6_rt_gc_timeout,
2377                 .maxlen         =       sizeof(int),
2378                 .mode           =       0644,
2379                 .proc_handler   =       &proc_dointvec_jiffies,
2380                 .strategy       =       &sysctl_jiffies,
2381         },
2382         {
2383                 .ctl_name       =       NET_IPV6_ROUTE_GC_INTERVAL,
2384                 .procname       =       "gc_interval",
2385                 .data           =       &ip6_rt_gc_interval,
2386                 .maxlen         =       sizeof(int),
2387                 .mode           =       0644,
2388                 .proc_handler   =       &proc_dointvec_jiffies,
2389                 .strategy       =       &sysctl_jiffies,
2390         },
2391         {
2392                 .ctl_name       =       NET_IPV6_ROUTE_GC_ELASTICITY,
2393                 .procname       =       "gc_elasticity",
2394                 .data           =       &ip6_rt_gc_elasticity,
2395                 .maxlen         =       sizeof(int),
2396                 .mode           =       0644,
2397                 .proc_handler   =       &proc_dointvec_jiffies,
2398                 .strategy       =       &sysctl_jiffies,
2399         },
2400         {
2401                 .ctl_name       =       NET_IPV6_ROUTE_MTU_EXPIRES,
2402                 .procname       =       "mtu_expires",
2403                 .data           =       &ip6_rt_mtu_expires,
2404                 .maxlen         =       sizeof(int),
2405                 .mode           =       0644,
2406                 .proc_handler   =       &proc_dointvec_jiffies,
2407                 .strategy       =       &sysctl_jiffies,
2408         },
2409         {
2410                 .ctl_name       =       NET_IPV6_ROUTE_MIN_ADVMSS,
2411                 .procname       =       "min_adv_mss",
2412                 .data           =       &ip6_rt_min_advmss,
2413                 .maxlen         =       sizeof(int),
2414                 .mode           =       0644,
2415                 .proc_handler   =       &proc_dointvec_jiffies,
2416                 .strategy       =       &sysctl_jiffies,
2417         },
2418         {
2419                 .ctl_name       =       NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS,
2420                 .procname       =       "gc_min_interval_ms",
2421                 .data           =       &ip6_rt_gc_min_interval,
2422                 .maxlen         =       sizeof(int),
2423                 .mode           =       0644,
2424                 .proc_handler   =       &proc_dointvec_ms_jiffies,
2425                 .strategy       =       &sysctl_ms_jiffies,
2426         },
2427         { .ctl_name = 0 }
2428 };
2429
2430 #endif
2431
2432 void __init ip6_route_init(void)
2433 {
2434         struct proc_dir_entry *p;
2435
2436         ip6_dst_ops.kmem_cachep = kmem_cache_create("ip6_dst_cache",
2437                                                      sizeof(struct rt6_info),
2438                                                      0, SLAB_HWCACHE_ALIGN,
2439                                                      NULL, NULL);
2440         if (!ip6_dst_ops.kmem_cachep)
2441                 panic("cannot create ip6_dst_cache");
2442
2443         fib6_init();
2444 #ifdef  CONFIG_PROC_FS
2445         p = proc_net_create("ipv6_route", 0, rt6_proc_info);
2446         if (p)
2447                 p->owner = THIS_MODULE;
2448
2449         proc_net_fops_create("rt6_stats", S_IRUGO, &rt6_stats_seq_fops);
2450 #endif
2451 #ifdef CONFIG_XFRM
2452         xfrm6_init();
2453 #endif
2454 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2455         fib6_rules_init();
2456 #endif
2457 }
2458
2459 void ip6_route_cleanup(void)
2460 {
2461 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2462         fib6_rules_cleanup();
2463 #endif
2464 #ifdef CONFIG_PROC_FS
2465         proc_net_remove("ipv6_route");
2466         proc_net_remove("rt6_stats");
2467 #endif
2468 #ifdef CONFIG_XFRM
2469         xfrm6_fini();
2470 #endif
2471         rt6_ifdown(NULL);
2472         fib6_gc_cleanup();
2473         kmem_cache_destroy(ip6_dst_ops.kmem_cachep);
2474 }