]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/mac80211/tkip.c
mac80211: tkip.c consolidate tkip IV writing in helper
[karo-tx-linux.git] / net / mac80211 / tkip.c
1 /*
2  * Copyright 2002-2004, Instant802 Networks, Inc.
3  * Copyright 2005, Devicescape Software, Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 #include <linux/kernel.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/netdevice.h>
13 #include <asm/unaligned.h>
14
15 #include <net/mac80211.h>
16 #include "key.h"
17 #include "tkip.h"
18 #include "wep.h"
19
20 #define PHASE1_LOOP_COUNT 8
21
22 /*
23  * 2-byte by 2-byte subset of the full AES S-box table; second part of this
24  * table is identical to first part but byte-swapped
25  */
26 static const u16 tkip_sbox[256] =
27 {
28         0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
29         0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
30         0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
31         0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
32         0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
33         0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
34         0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
35         0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
36         0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
37         0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
38         0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
39         0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
40         0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
41         0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
42         0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
43         0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
44         0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
45         0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
46         0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
47         0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
48         0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
49         0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
50         0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
51         0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
52         0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
53         0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
54         0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
55         0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
56         0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
57         0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
58         0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
59         0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
60 };
61
62 static u16 tkipS(u16 val)
63 {
64         return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]);
65 }
66
67 static u8 *write_tkip_iv(u8 *pos, u16 iv16)
68 {
69         *pos++ = iv16 >> 8;
70         *pos++ = ((iv16 >> 8) | 0x20) & 0x7f;
71         *pos++ = iv16 & 0xFF;
72         return pos;
73 }
74
75
76 /*
77  * P1K := Phase1(TA, TK, TSC)
78  * TA = transmitter address (48 bits)
79  * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
80  * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
81  * P1K: 80 bits
82  */
83 static void tkip_mixing_phase1(struct ieee80211_key *key, const u8 *ta,
84                                struct tkip_ctx *ctx, u32 tsc_IV32)
85 {
86         int i, j;
87         const u8 *tk = &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY];
88         u16 *p1k = ctx->p1k;
89
90         p1k[0] = tsc_IV32 & 0xFFFF;
91         p1k[1] = tsc_IV32 >> 16;
92         p1k[2] = get_unaligned_le16(ta + 0);
93         p1k[3] = get_unaligned_le16(ta + 2);
94         p1k[4] = get_unaligned_le16(ta + 4);
95
96         for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
97                 j = 2 * (i & 1);
98                 p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j));
99                 p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j));
100                 p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j));
101                 p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j));
102                 p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i;
103         }
104         ctx->initialized = 1;
105 }
106
107 static void tkip_mixing_phase2(struct ieee80211_key *key, struct tkip_ctx *ctx,
108                                u16 tsc_IV16, u8 *rc4key)
109 {
110         u16 ppk[6];
111         const u16 *p1k = ctx->p1k;
112         const u8 *tk = &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY];
113         int i;
114
115         ppk[0] = p1k[0];
116         ppk[1] = p1k[1];
117         ppk[2] = p1k[2];
118         ppk[3] = p1k[3];
119         ppk[4] = p1k[4];
120         ppk[5] = p1k[4] + tsc_IV16;
121
122         ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0));
123         ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2));
124         ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4));
125         ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6));
126         ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8));
127         ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10));
128         ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1);
129         ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1);
130         ppk[2] += ror16(ppk[1], 1);
131         ppk[3] += ror16(ppk[2], 1);
132         ppk[4] += ror16(ppk[3], 1);
133         ppk[5] += ror16(ppk[4], 1);
134
135         rc4key = write_tkip_iv(rc4key, tsc_IV16);
136         *rc4key++ = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF;
137
138         for (i = 0; i < 6; i++)
139                 put_unaligned_le16(ppk[i], rc4key + 2 * i);
140 }
141
142 /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
143  * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
144  * the packet payload). */
145 u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key, u16 iv16)
146 {
147         pos = write_tkip_iv(pos, iv16);
148         *pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */;
149         put_unaligned_le32(key->u.tkip.tx.iv32, pos);
150         return pos + 4;
151 }
152
153 static void ieee80211_tkip_gen_rc4key(struct ieee80211_key *key, u8 *ta,
154                                u8 *rc4key)
155 {
156         /* Calculate per-packet key */
157         if (key->u.tkip.tx.iv16 == 0 || !key->u.tkip.tx.initialized)
158                 tkip_mixing_phase1(key, ta, &key->u.tkip.tx, key->u.tkip.tx.iv32);
159
160         tkip_mixing_phase2(key, &key->u.tkip.tx, key->u.tkip.tx.iv16, rc4key);
161 }
162
163 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
164                         struct sk_buff *skb, enum ieee80211_tkip_key_type type,
165                         u8 *outkey)
166 {
167         struct ieee80211_key *key = (struct ieee80211_key *)
168                         container_of(keyconf, struct ieee80211_key, conf);
169         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
170         u8 *data = (u8 *) hdr;
171         u16 fc = le16_to_cpu(hdr->frame_control);
172         int hdr_len = ieee80211_get_hdrlen(fc);
173         u8 *ta = hdr->addr2;
174         u16 iv16;
175         u32 iv32;
176
177         iv16 = data[hdr_len + 2] | (data[hdr_len] << 8);
178         iv32 = get_unaligned_le32(data + hdr_len + 4);
179
180 #ifdef CONFIG_TKIP_DEBUG
181         printk(KERN_DEBUG "TKIP encrypt: iv16 = 0x%04x, iv32 = 0x%08x\n",
182                         iv16, iv32);
183
184         if (iv32 != key->u.tkip.tx.iv32) {
185                 printk(KERN_DEBUG "skb: iv32 = 0x%08x key: iv32 = 0x%08x\n",
186                         iv32, key->u.tkip.tx.iv32);
187                 printk(KERN_DEBUG "Wrap around of iv16 in the middle of a "
188                         "fragmented packet\n");
189         }
190 #endif /* CONFIG_TKIP_DEBUG */
191
192         /* Update the p1k only when the iv16 in the packet wraps around, this
193          * might occur after the wrap around of iv16 in the key in case of
194          * fragmented packets. */
195         if (iv16 == 0 || !key->u.tkip.tx.initialized)
196                 tkip_mixing_phase1(key, ta, &key->u.tkip.tx, iv32);
197
198         if (type == IEEE80211_TKIP_P1_KEY) {
199                 memcpy(outkey, key->u.tkip.tx.p1k, sizeof(u16) * 5);
200                 return;
201         }
202
203         tkip_mixing_phase2(key, &key->u.tkip.tx, iv16, outkey);
204 }
205 EXPORT_SYMBOL(ieee80211_get_tkip_key);
206
207 /* Encrypt packet payload with TKIP using @key. @pos is a pointer to the
208  * beginning of the buffer containing payload. This payload must include
209  * headroom of eight octets for IV and Ext. IV and taildroom of four octets
210  * for ICV. @payload_len is the length of payload (_not_ including extra
211  * headroom and tailroom). @ta is the transmitter addresses. */
212 void ieee80211_tkip_encrypt_data(struct crypto_blkcipher *tfm,
213                                  struct ieee80211_key *key,
214                                  u8 *pos, size_t payload_len, u8 *ta)
215 {
216         u8 rc4key[16];
217
218         ieee80211_tkip_gen_rc4key(key, ta, rc4key);
219         pos = ieee80211_tkip_add_iv(pos, key, key->u.tkip.tx.iv16);
220         ieee80211_wep_encrypt_data(tfm, rc4key, 16, pos, payload_len);
221 }
222
223 /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
224  * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
225  * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
226  * length of payload, including IV, Ext. IV, MIC, ICV.  */
227 int ieee80211_tkip_decrypt_data(struct crypto_blkcipher *tfm,
228                                 struct ieee80211_key *key,
229                                 u8 *payload, size_t payload_len, u8 *ta,
230                                 u8 *ra, int only_iv, int queue,
231                                 u32 *out_iv32, u16 *out_iv16)
232 {
233         u32 iv32;
234         u32 iv16;
235         u8 rc4key[16], keyid, *pos = payload;
236         int res;
237
238         if (payload_len < 12)
239                 return -1;
240
241         iv16 = (pos[0] << 8) | pos[2];
242         keyid = pos[3];
243         iv32 = get_unaligned_le32(pos + 4);
244         pos += 8;
245 #ifdef CONFIG_TKIP_DEBUG
246         {
247                 int i;
248                 printk(KERN_DEBUG "TKIP decrypt: data(len=%zd)", payload_len);
249                 for (i = 0; i < payload_len; i++)
250                         printk(" %02x", payload[i]);
251                 printk("\n");
252                 printk(KERN_DEBUG "TKIP decrypt: iv16=%04x iv32=%08x\n",
253                        iv16, iv32);
254         }
255 #endif /* CONFIG_TKIP_DEBUG */
256
257         if (!(keyid & (1 << 5)))
258                 return TKIP_DECRYPT_NO_EXT_IV;
259
260         if ((keyid >> 6) != key->conf.keyidx)
261                 return TKIP_DECRYPT_INVALID_KEYIDX;
262
263         if (key->u.tkip.rx[queue].initialized &&
264             (iv32 < key->u.tkip.rx[queue].iv32 ||
265              (iv32 == key->u.tkip.rx[queue].iv32 &&
266               iv16 <= key->u.tkip.rx[queue].iv16))) {
267 #ifdef CONFIG_TKIP_DEBUG
268                 DECLARE_MAC_BUF(mac);
269                 printk(KERN_DEBUG "TKIP replay detected for RX frame from "
270                        "%s (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
271                        print_mac(mac, ta),
272                        iv32, iv16, key->u.tkip.rx[queue].iv32,
273                        key->u.tkip.rx[queue].iv16);
274 #endif /* CONFIG_TKIP_DEBUG */
275                 return TKIP_DECRYPT_REPLAY;
276         }
277
278         if (only_iv) {
279                 res = TKIP_DECRYPT_OK;
280                 key->u.tkip.rx[queue].initialized = 1;
281                 goto done;
282         }
283
284         if (!key->u.tkip.rx[queue].initialized ||
285             key->u.tkip.rx[queue].iv32 != iv32) {
286                 /* IV16 wrapped around - perform TKIP phase 1 */
287                 tkip_mixing_phase1(key, ta, &key->u.tkip.rx[queue], iv32);
288 #ifdef CONFIG_TKIP_DEBUG
289                 {
290                         int i;
291                         DECLARE_MAC_BUF(mac);
292                         printk(KERN_DEBUG "TKIP decrypt: Phase1 TA=%s"
293                                " TK=", print_mac(mac, ta));
294                         for (i = 0; i < 16; i++)
295                                 printk("%02x ",
296                                        key->conf.key[
297                                                 ALG_TKIP_TEMP_ENCR_KEY + i]);
298                         printk("\n");
299                         printk(KERN_DEBUG "TKIP decrypt: P1K=");
300                         for (i = 0; i < 5; i++)
301                                 printk("%04x ", key->u.tkip.rx[queue].p1k[i]);
302                         printk("\n");
303                 }
304 #endif /* CONFIG_TKIP_DEBUG */
305                 if (key->local->ops->update_tkip_key &&
306                         key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
307                         u8 bcast[ETH_ALEN] =
308                                 {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
309                         u8 *sta_addr = key->sta->addr;
310
311                         if (is_multicast_ether_addr(ra))
312                                 sta_addr = bcast;
313
314                         key->local->ops->update_tkip_key(
315                                 local_to_hw(key->local), &key->conf,
316                                 sta_addr, iv32, key->u.tkip.rx[queue].p1k);
317                 }
318         }
319
320         tkip_mixing_phase2(key, &key->u.tkip.rx[queue], iv16, rc4key);
321 #ifdef CONFIG_TKIP_DEBUG
322         {
323                 int i;
324                 printk(KERN_DEBUG "TKIP decrypt: Phase2 rc4key=");
325                 for (i = 0; i < 16; i++)
326                         printk("%02x ", rc4key[i]);
327                 printk("\n");
328         }
329 #endif /* CONFIG_TKIP_DEBUG */
330
331         res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12);
332  done:
333         if (res == TKIP_DECRYPT_OK) {
334                 /*
335                  * Record previously received IV, will be copied into the
336                  * key information after MIC verification. It is possible
337                  * that we don't catch replays of fragments but that's ok
338                  * because the Michael MIC verication will then fail.
339                  */
340                 *out_iv32 = iv32;
341                 *out_iv16 = iv16;
342         }
343
344         return res;
345 }