]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/rds/ib.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[karo-tx-linux.git] / net / rds / ib.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42
43 #include "rds_single_path.h"
44 #include "rds.h"
45 #include "ib.h"
46 #include "ib_mr.h"
47
48 unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
49 unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
50 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
51
52 module_param(rds_ib_mr_1m_pool_size, int, 0444);
53 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
54 module_param(rds_ib_mr_8k_pool_size, int, 0444);
55 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
56 module_param(rds_ib_retry_count, int, 0444);
57 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
58
59 /*
60  * we have a clumsy combination of RCU and a rwsem protecting this list
61  * because it is used both in the get_mr fast path and while blocking in
62  * the FMR flushing path.
63  */
64 DECLARE_RWSEM(rds_ib_devices_lock);
65 struct list_head rds_ib_devices;
66
67 /* NOTE: if also grabbing ibdev lock, grab this first */
68 DEFINE_SPINLOCK(ib_nodev_conns_lock);
69 LIST_HEAD(ib_nodev_conns);
70
71 static void rds_ib_nodev_connect(void)
72 {
73         struct rds_ib_connection *ic;
74
75         spin_lock(&ib_nodev_conns_lock);
76         list_for_each_entry(ic, &ib_nodev_conns, ib_node)
77                 rds_conn_connect_if_down(ic->conn);
78         spin_unlock(&ib_nodev_conns_lock);
79 }
80
81 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
82 {
83         struct rds_ib_connection *ic;
84         unsigned long flags;
85
86         spin_lock_irqsave(&rds_ibdev->spinlock, flags);
87         list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
88                 rds_conn_drop(ic->conn);
89         spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
90 }
91
92 /*
93  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
94  * from interrupt context so we push freing off into a work struct in krdsd.
95  */
96 static void rds_ib_dev_free(struct work_struct *work)
97 {
98         struct rds_ib_ipaddr *i_ipaddr, *i_next;
99         struct rds_ib_device *rds_ibdev = container_of(work,
100                                         struct rds_ib_device, free_work);
101
102         if (rds_ibdev->mr_8k_pool)
103                 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
104         if (rds_ibdev->mr_1m_pool)
105                 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
106         if (rds_ibdev->pd)
107                 ib_dealloc_pd(rds_ibdev->pd);
108
109         list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
110                 list_del(&i_ipaddr->list);
111                 kfree(i_ipaddr);
112         }
113
114         if (rds_ibdev->vector_load)
115                 kfree(rds_ibdev->vector_load);
116
117         kfree(rds_ibdev);
118 }
119
120 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
121 {
122         BUG_ON(atomic_read(&rds_ibdev->refcount) <= 0);
123         if (atomic_dec_and_test(&rds_ibdev->refcount))
124                 queue_work(rds_wq, &rds_ibdev->free_work);
125 }
126
127 static void rds_ib_add_one(struct ib_device *device)
128 {
129         struct rds_ib_device *rds_ibdev;
130
131         /* Only handle IB (no iWARP) devices */
132         if (device->node_type != RDMA_NODE_IB_CA)
133                 return;
134
135         rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
136                                  ibdev_to_node(device));
137         if (!rds_ibdev)
138                 return;
139
140         spin_lock_init(&rds_ibdev->spinlock);
141         atomic_set(&rds_ibdev->refcount, 1);
142         INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
143
144         rds_ibdev->max_wrs = device->attrs.max_qp_wr;
145         rds_ibdev->max_sge = min(device->attrs.max_sge, RDS_IB_MAX_SGE);
146
147         rds_ibdev->has_fr = (device->attrs.device_cap_flags &
148                                   IB_DEVICE_MEM_MGT_EXTENSIONS);
149         rds_ibdev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
150                             device->map_phys_fmr && device->unmap_fmr);
151         rds_ibdev->use_fastreg = (rds_ibdev->has_fr && !rds_ibdev->has_fmr);
152
153         rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
154         rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
155                 min_t(unsigned int, (device->attrs.max_mr / 2),
156                       rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
157
158         rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
159                 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
160                       rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
161
162         rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
163         rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
164
165         rds_ibdev->vector_load = kzalloc(sizeof(int) * device->num_comp_vectors,
166                                          GFP_KERNEL);
167         if (!rds_ibdev->vector_load) {
168                 pr_err("RDS/IB: %s failed to allocate vector memory\n",
169                         __func__);
170                 goto put_dev;
171         }
172
173         rds_ibdev->dev = device;
174         rds_ibdev->pd = ib_alloc_pd(device, 0);
175         if (IS_ERR(rds_ibdev->pd)) {
176                 rds_ibdev->pd = NULL;
177                 goto put_dev;
178         }
179
180         rds_ibdev->mr_1m_pool =
181                 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
182         if (IS_ERR(rds_ibdev->mr_1m_pool)) {
183                 rds_ibdev->mr_1m_pool = NULL;
184                 goto put_dev;
185         }
186
187         rds_ibdev->mr_8k_pool =
188                 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
189         if (IS_ERR(rds_ibdev->mr_8k_pool)) {
190                 rds_ibdev->mr_8k_pool = NULL;
191                 goto put_dev;
192         }
193
194         rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
195                  device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
196                  rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
197                  rds_ibdev->max_8k_mrs);
198
199         pr_info("RDS/IB: %s: %s supported and preferred\n",
200                 device->name,
201                 rds_ibdev->use_fastreg ? "FRMR" : "FMR");
202
203         INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
204         INIT_LIST_HEAD(&rds_ibdev->conn_list);
205
206         down_write(&rds_ib_devices_lock);
207         list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
208         up_write(&rds_ib_devices_lock);
209         atomic_inc(&rds_ibdev->refcount);
210
211         ib_set_client_data(device, &rds_ib_client, rds_ibdev);
212         atomic_inc(&rds_ibdev->refcount);
213
214         rds_ib_nodev_connect();
215
216 put_dev:
217         rds_ib_dev_put(rds_ibdev);
218 }
219
220 /*
221  * New connections use this to find the device to associate with the
222  * connection.  It's not in the fast path so we're not concerned about the
223  * performance of the IB call.  (As of this writing, it uses an interrupt
224  * blocking spinlock to serialize walking a per-device list of all registered
225  * clients.)
226  *
227  * RCU is used to handle incoming connections racing with device teardown.
228  * Rather than use a lock to serialize removal from the client_data and
229  * getting a new reference, we use an RCU grace period.  The destruction
230  * path removes the device from client_data and then waits for all RCU
231  * readers to finish.
232  *
233  * A new connection can get NULL from this if its arriving on a
234  * device that is in the process of being removed.
235  */
236 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
237 {
238         struct rds_ib_device *rds_ibdev;
239
240         rcu_read_lock();
241         rds_ibdev = ib_get_client_data(device, &rds_ib_client);
242         if (rds_ibdev)
243                 atomic_inc(&rds_ibdev->refcount);
244         rcu_read_unlock();
245         return rds_ibdev;
246 }
247
248 /*
249  * The IB stack is letting us know that a device is going away.  This can
250  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
251  * the pci function, for example.
252  *
253  * This can be called at any time and can be racing with any other RDS path.
254  */
255 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
256 {
257         struct rds_ib_device *rds_ibdev = client_data;
258
259         if (!rds_ibdev)
260                 return;
261
262         rds_ib_dev_shutdown(rds_ibdev);
263
264         /* stop connection attempts from getting a reference to this device. */
265         ib_set_client_data(device, &rds_ib_client, NULL);
266
267         down_write(&rds_ib_devices_lock);
268         list_del_rcu(&rds_ibdev->list);
269         up_write(&rds_ib_devices_lock);
270
271         /*
272          * This synchronize rcu is waiting for readers of both the ib
273          * client data and the devices list to finish before we drop
274          * both of those references.
275          */
276         synchronize_rcu();
277         rds_ib_dev_put(rds_ibdev);
278         rds_ib_dev_put(rds_ibdev);
279 }
280
281 struct ib_client rds_ib_client = {
282         .name   = "rds_ib",
283         .add    = rds_ib_add_one,
284         .remove = rds_ib_remove_one
285 };
286
287 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
288                                     void *buffer)
289 {
290         struct rds_info_rdma_connection *iinfo = buffer;
291         struct rds_ib_connection *ic;
292
293         /* We will only ever look at IB transports */
294         if (conn->c_trans != &rds_ib_transport)
295                 return 0;
296
297         iinfo->src_addr = conn->c_laddr;
298         iinfo->dst_addr = conn->c_faddr;
299
300         memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
301         memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
302         if (rds_conn_state(conn) == RDS_CONN_UP) {
303                 struct rds_ib_device *rds_ibdev;
304                 struct rdma_dev_addr *dev_addr;
305
306                 ic = conn->c_transport_data;
307                 dev_addr = &ic->i_cm_id->route.addr.dev_addr;
308
309                 rdma_addr_get_sgid(dev_addr, (union ib_gid *) &iinfo->src_gid);
310                 rdma_addr_get_dgid(dev_addr, (union ib_gid *) &iinfo->dst_gid);
311
312                 rds_ibdev = ic->rds_ibdev;
313                 iinfo->max_send_wr = ic->i_send_ring.w_nr;
314                 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
315                 iinfo->max_send_sge = rds_ibdev->max_sge;
316                 rds_ib_get_mr_info(rds_ibdev, iinfo);
317         }
318         return 1;
319 }
320
321 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
322                            struct rds_info_iterator *iter,
323                            struct rds_info_lengths *lens)
324 {
325         rds_for_each_conn_info(sock, len, iter, lens,
326                                 rds_ib_conn_info_visitor,
327                                 sizeof(struct rds_info_rdma_connection));
328 }
329
330
331 /*
332  * Early RDS/IB was built to only bind to an address if there is an IPoIB
333  * device with that address set.
334  *
335  * If it were me, I'd advocate for something more flexible.  Sending and
336  * receiving should be device-agnostic.  Transports would try and maintain
337  * connections between peers who have messages queued.  Userspace would be
338  * allowed to influence which paths have priority.  We could call userspace
339  * asserting this policy "routing".
340  */
341 static int rds_ib_laddr_check(struct net *net, __be32 addr)
342 {
343         int ret;
344         struct rdma_cm_id *cm_id;
345         struct sockaddr_in sin;
346
347         /* Create a CMA ID and try to bind it. This catches both
348          * IB and iWARP capable NICs.
349          */
350         cm_id = rdma_create_id(&init_net, NULL, NULL, RDMA_PS_TCP, IB_QPT_RC);
351         if (IS_ERR(cm_id))
352                 return PTR_ERR(cm_id);
353
354         memset(&sin, 0, sizeof(sin));
355         sin.sin_family = AF_INET;
356         sin.sin_addr.s_addr = addr;
357
358         /* rdma_bind_addr will only succeed for IB & iWARP devices */
359         ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin);
360         /* due to this, we will claim to support iWARP devices unless we
361            check node_type. */
362         if (ret || !cm_id->device ||
363             cm_id->device->node_type != RDMA_NODE_IB_CA)
364                 ret = -EADDRNOTAVAIL;
365
366         rdsdebug("addr %pI4 ret %d node type %d\n",
367                 &addr, ret,
368                 cm_id->device ? cm_id->device->node_type : -1);
369
370         rdma_destroy_id(cm_id);
371
372         return ret;
373 }
374
375 static void rds_ib_unregister_client(void)
376 {
377         ib_unregister_client(&rds_ib_client);
378         /* wait for rds_ib_dev_free() to complete */
379         flush_workqueue(rds_wq);
380 }
381
382 void rds_ib_exit(void)
383 {
384         rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
385         rds_ib_unregister_client();
386         rds_ib_destroy_nodev_conns();
387         rds_ib_sysctl_exit();
388         rds_ib_recv_exit();
389         rds_trans_unregister(&rds_ib_transport);
390         rds_ib_mr_exit();
391 }
392
393 struct rds_transport rds_ib_transport = {
394         .laddr_check            = rds_ib_laddr_check,
395         .xmit_path_complete     = rds_ib_xmit_path_complete,
396         .xmit                   = rds_ib_xmit,
397         .xmit_rdma              = rds_ib_xmit_rdma,
398         .xmit_atomic            = rds_ib_xmit_atomic,
399         .recv_path              = rds_ib_recv_path,
400         .conn_alloc             = rds_ib_conn_alloc,
401         .conn_free              = rds_ib_conn_free,
402         .conn_path_connect      = rds_ib_conn_path_connect,
403         .conn_path_shutdown     = rds_ib_conn_path_shutdown,
404         .inc_copy_to_user       = rds_ib_inc_copy_to_user,
405         .inc_free               = rds_ib_inc_free,
406         .cm_initiate_connect    = rds_ib_cm_initiate_connect,
407         .cm_handle_connect      = rds_ib_cm_handle_connect,
408         .cm_connect_complete    = rds_ib_cm_connect_complete,
409         .stats_info_copy        = rds_ib_stats_info_copy,
410         .exit                   = rds_ib_exit,
411         .get_mr                 = rds_ib_get_mr,
412         .sync_mr                = rds_ib_sync_mr,
413         .free_mr                = rds_ib_free_mr,
414         .flush_mrs              = rds_ib_flush_mrs,
415         .t_owner                = THIS_MODULE,
416         .t_name                 = "infiniband",
417         .t_type                 = RDS_TRANS_IB
418 };
419
420 int rds_ib_init(void)
421 {
422         int ret;
423
424         INIT_LIST_HEAD(&rds_ib_devices);
425
426         ret = rds_ib_mr_init();
427         if (ret)
428                 goto out;
429
430         ret = ib_register_client(&rds_ib_client);
431         if (ret)
432                 goto out_mr_exit;
433
434         ret = rds_ib_sysctl_init();
435         if (ret)
436                 goto out_ibreg;
437
438         ret = rds_ib_recv_init();
439         if (ret)
440                 goto out_sysctl;
441
442         ret = rds_trans_register(&rds_ib_transport);
443         if (ret)
444                 goto out_recv;
445
446         rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
447
448         goto out;
449
450 out_recv:
451         rds_ib_recv_exit();
452 out_sysctl:
453         rds_ib_sysctl_exit();
454 out_ibreg:
455         rds_ib_unregister_client();
456 out_mr_exit:
457         rds_ib_mr_exit();
458 out:
459         return ret;
460 }
461
462 MODULE_LICENSE("GPL");
463