]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/rfkill/core.c
rfkill: hide unused goto label
[karo-tx-linux.git] / net / rfkill / core.c
1 /*
2  * Copyright (C) 2006 - 2007 Ivo van Doorn
3  * Copyright (C) 2007 Dmitry Torokhov
4  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/workqueue.h>
24 #include <linux/capability.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/rfkill.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/slab.h>
36
37 #include "rfkill.h"
38
39 #define POLL_INTERVAL           (5 * HZ)
40
41 #define RFKILL_BLOCK_HW         BIT(0)
42 #define RFKILL_BLOCK_SW         BIT(1)
43 #define RFKILL_BLOCK_SW_PREV    BIT(2)
44 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
45                                  RFKILL_BLOCK_SW |\
46                                  RFKILL_BLOCK_SW_PREV)
47 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49 struct rfkill {
50         spinlock_t              lock;
51
52         enum rfkill_type        type;
53
54         unsigned long           state;
55
56         u32                     idx;
57
58         bool                    registered;
59         bool                    persistent;
60         bool                    polling_paused;
61         bool                    suspended;
62
63         const struct rfkill_ops *ops;
64         void                    *data;
65
66 #ifdef CONFIG_RFKILL_LEDS
67         struct led_trigger      led_trigger;
68         const char              *ledtrigname;
69 #endif
70
71         struct device           dev;
72         struct list_head        node;
73
74         struct delayed_work     poll_work;
75         struct work_struct      uevent_work;
76         struct work_struct      sync_work;
77         char                    name[];
78 };
79 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
80
81 struct rfkill_int_event {
82         struct list_head        list;
83         struct rfkill_event     ev;
84 };
85
86 struct rfkill_data {
87         struct list_head        list;
88         struct list_head        events;
89         struct mutex            mtx;
90         wait_queue_head_t       read_wait;
91         bool                    input_handler;
92 };
93
94
95 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97 MODULE_DESCRIPTION("RF switch support");
98 MODULE_LICENSE("GPL");
99
100
101 /*
102  * The locking here should be made much smarter, we currently have
103  * a bit of a stupid situation because drivers might want to register
104  * the rfkill struct under their own lock, and take this lock during
105  * rfkill method calls -- which will cause an AB-BA deadlock situation.
106  *
107  * To fix that, we need to rework this code here to be mostly lock-free
108  * and only use the mutex for list manipulations, not to protect the
109  * various other global variables. Then we can avoid holding the mutex
110  * around driver operations, and all is happy.
111  */
112 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
113 static DEFINE_MUTEX(rfkill_global_mutex);
114 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
115
116 static unsigned int rfkill_default_state = 1;
117 module_param_named(default_state, rfkill_default_state, uint, 0444);
118 MODULE_PARM_DESC(default_state,
119                  "Default initial state for all radio types, 0 = radio off");
120
121 static struct {
122         bool cur, sav;
123 } rfkill_global_states[NUM_RFKILL_TYPES];
124
125 static bool rfkill_epo_lock_active;
126
127
128 #ifdef CONFIG_RFKILL_LEDS
129 static void rfkill_led_trigger_event(struct rfkill *rfkill)
130 {
131         struct led_trigger *trigger;
132
133         if (!rfkill->registered)
134                 return;
135
136         trigger = &rfkill->led_trigger;
137
138         if (rfkill->state & RFKILL_BLOCK_ANY)
139                 led_trigger_event(trigger, LED_OFF);
140         else
141                 led_trigger_event(trigger, LED_FULL);
142 }
143
144 static void rfkill_led_trigger_activate(struct led_classdev *led)
145 {
146         struct rfkill *rfkill;
147
148         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150         rfkill_led_trigger_event(rfkill);
151 }
152
153 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
154 {
155         return rfkill->led_trigger.name;
156 }
157 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
158
159 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
160 {
161         BUG_ON(!rfkill);
162
163         rfkill->ledtrigname = name;
164 }
165 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
166
167 static int rfkill_led_trigger_register(struct rfkill *rfkill)
168 {
169         rfkill->led_trigger.name = rfkill->ledtrigname
170                                         ? : dev_name(&rfkill->dev);
171         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
172         return led_trigger_register(&rfkill->led_trigger);
173 }
174
175 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176 {
177         led_trigger_unregister(&rfkill->led_trigger);
178 }
179
180 static struct led_trigger rfkill_any_led_trigger;
181
182 static void __rfkill_any_led_trigger_event(void)
183 {
184         enum led_brightness brightness = LED_OFF;
185         struct rfkill *rfkill;
186
187         list_for_each_entry(rfkill, &rfkill_list, node) {
188                 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
189                         brightness = LED_FULL;
190                         break;
191                 }
192         }
193
194         led_trigger_event(&rfkill_any_led_trigger, brightness);
195 }
196
197 static void rfkill_any_led_trigger_event(void)
198 {
199         mutex_lock(&rfkill_global_mutex);
200         __rfkill_any_led_trigger_event();
201         mutex_unlock(&rfkill_global_mutex);
202 }
203
204 static void rfkill_any_led_trigger_activate(struct led_classdev *led_cdev)
205 {
206         rfkill_any_led_trigger_event();
207 }
208
209 static int rfkill_any_led_trigger_register(void)
210 {
211         rfkill_any_led_trigger.name = "rfkill-any";
212         rfkill_any_led_trigger.activate = rfkill_any_led_trigger_activate;
213         return led_trigger_register(&rfkill_any_led_trigger);
214 }
215
216 static void rfkill_any_led_trigger_unregister(void)
217 {
218         led_trigger_unregister(&rfkill_any_led_trigger);
219 }
220 #else
221 static void rfkill_led_trigger_event(struct rfkill *rfkill)
222 {
223 }
224
225 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
226 {
227         return 0;
228 }
229
230 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
231 {
232 }
233
234 static void __rfkill_any_led_trigger_event(void)
235 {
236 }
237
238 static void rfkill_any_led_trigger_event(void)
239 {
240 }
241
242 static int rfkill_any_led_trigger_register(void)
243 {
244         return 0;
245 }
246
247 static void rfkill_any_led_trigger_unregister(void)
248 {
249 }
250 #endif /* CONFIG_RFKILL_LEDS */
251
252 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
253                               enum rfkill_operation op)
254 {
255         unsigned long flags;
256
257         ev->idx = rfkill->idx;
258         ev->type = rfkill->type;
259         ev->op = op;
260
261         spin_lock_irqsave(&rfkill->lock, flags);
262         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
263         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
264                                         RFKILL_BLOCK_SW_PREV));
265         spin_unlock_irqrestore(&rfkill->lock, flags);
266 }
267
268 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
269 {
270         struct rfkill_data *data;
271         struct rfkill_int_event *ev;
272
273         list_for_each_entry(data, &rfkill_fds, list) {
274                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
275                 if (!ev)
276                         continue;
277                 rfkill_fill_event(&ev->ev, rfkill, op);
278                 mutex_lock(&data->mtx);
279                 list_add_tail(&ev->list, &data->events);
280                 mutex_unlock(&data->mtx);
281                 wake_up_interruptible(&data->read_wait);
282         }
283 }
284
285 static void rfkill_event(struct rfkill *rfkill)
286 {
287         if (!rfkill->registered)
288                 return;
289
290         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
291
292         /* also send event to /dev/rfkill */
293         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
294 }
295
296 /**
297  * rfkill_set_block - wrapper for set_block method
298  *
299  * @rfkill: the rfkill struct to use
300  * @blocked: the new software state
301  *
302  * Calls the set_block method (when applicable) and handles notifications
303  * etc. as well.
304  */
305 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
306 {
307         unsigned long flags;
308         bool prev, curr;
309         int err;
310
311         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
312                 return;
313
314         /*
315          * Some platforms (...!) generate input events which affect the
316          * _hard_ kill state -- whenever something tries to change the
317          * current software state query the hardware state too.
318          */
319         if (rfkill->ops->query)
320                 rfkill->ops->query(rfkill, rfkill->data);
321
322         spin_lock_irqsave(&rfkill->lock, flags);
323         prev = rfkill->state & RFKILL_BLOCK_SW;
324
325         if (prev)
326                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
327         else
328                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
329
330         if (blocked)
331                 rfkill->state |= RFKILL_BLOCK_SW;
332         else
333                 rfkill->state &= ~RFKILL_BLOCK_SW;
334
335         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
336         spin_unlock_irqrestore(&rfkill->lock, flags);
337
338         err = rfkill->ops->set_block(rfkill->data, blocked);
339
340         spin_lock_irqsave(&rfkill->lock, flags);
341         if (err) {
342                 /*
343                  * Failed -- reset status to _PREV, which may be different
344                  * from what we have set _PREV to earlier in this function
345                  * if rfkill_set_sw_state was invoked.
346                  */
347                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
348                         rfkill->state |= RFKILL_BLOCK_SW;
349                 else
350                         rfkill->state &= ~RFKILL_BLOCK_SW;
351         }
352         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
353         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
354         curr = rfkill->state & RFKILL_BLOCK_SW;
355         spin_unlock_irqrestore(&rfkill->lock, flags);
356
357         rfkill_led_trigger_event(rfkill);
358         __rfkill_any_led_trigger_event();
359
360         if (prev != curr)
361                 rfkill_event(rfkill);
362 }
363
364 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
365 {
366         int i;
367
368         if (type != RFKILL_TYPE_ALL) {
369                 rfkill_global_states[type].cur = blocked;
370                 return;
371         }
372
373         for (i = 0; i < NUM_RFKILL_TYPES; i++)
374                 rfkill_global_states[i].cur = blocked;
375 }
376
377 #ifdef CONFIG_RFKILL_INPUT
378 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
379
380 /**
381  * __rfkill_switch_all - Toggle state of all switches of given type
382  * @type: type of interfaces to be affected
383  * @blocked: the new state
384  *
385  * This function sets the state of all switches of given type,
386  * unless a specific switch is suspended.
387  *
388  * Caller must have acquired rfkill_global_mutex.
389  */
390 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
391 {
392         struct rfkill *rfkill;
393
394         rfkill_update_global_state(type, blocked);
395         list_for_each_entry(rfkill, &rfkill_list, node) {
396                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
397                         continue;
398
399                 rfkill_set_block(rfkill, blocked);
400         }
401 }
402
403 /**
404  * rfkill_switch_all - Toggle state of all switches of given type
405  * @type: type of interfaces to be affected
406  * @blocked: the new state
407  *
408  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
409  * Please refer to __rfkill_switch_all() for details.
410  *
411  * Does nothing if the EPO lock is active.
412  */
413 void rfkill_switch_all(enum rfkill_type type, bool blocked)
414 {
415         if (atomic_read(&rfkill_input_disabled))
416                 return;
417
418         mutex_lock(&rfkill_global_mutex);
419
420         if (!rfkill_epo_lock_active)
421                 __rfkill_switch_all(type, blocked);
422
423         mutex_unlock(&rfkill_global_mutex);
424 }
425
426 /**
427  * rfkill_epo - emergency power off all transmitters
428  *
429  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
430  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
431  *
432  * The global state before the EPO is saved and can be restored later
433  * using rfkill_restore_states().
434  */
435 void rfkill_epo(void)
436 {
437         struct rfkill *rfkill;
438         int i;
439
440         if (atomic_read(&rfkill_input_disabled))
441                 return;
442
443         mutex_lock(&rfkill_global_mutex);
444
445         rfkill_epo_lock_active = true;
446         list_for_each_entry(rfkill, &rfkill_list, node)
447                 rfkill_set_block(rfkill, true);
448
449         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
450                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
451                 rfkill_global_states[i].cur = true;
452         }
453
454         mutex_unlock(&rfkill_global_mutex);
455 }
456
457 /**
458  * rfkill_restore_states - restore global states
459  *
460  * Restore (and sync switches to) the global state from the
461  * states in rfkill_default_states.  This can undo the effects of
462  * a call to rfkill_epo().
463  */
464 void rfkill_restore_states(void)
465 {
466         int i;
467
468         if (atomic_read(&rfkill_input_disabled))
469                 return;
470
471         mutex_lock(&rfkill_global_mutex);
472
473         rfkill_epo_lock_active = false;
474         for (i = 0; i < NUM_RFKILL_TYPES; i++)
475                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
476         mutex_unlock(&rfkill_global_mutex);
477 }
478
479 /**
480  * rfkill_remove_epo_lock - unlock state changes
481  *
482  * Used by rfkill-input manually unlock state changes, when
483  * the EPO switch is deactivated.
484  */
485 void rfkill_remove_epo_lock(void)
486 {
487         if (atomic_read(&rfkill_input_disabled))
488                 return;
489
490         mutex_lock(&rfkill_global_mutex);
491         rfkill_epo_lock_active = false;
492         mutex_unlock(&rfkill_global_mutex);
493 }
494
495 /**
496  * rfkill_is_epo_lock_active - returns true EPO is active
497  *
498  * Returns 0 (false) if there is NOT an active EPO contidion,
499  * and 1 (true) if there is an active EPO contition, which
500  * locks all radios in one of the BLOCKED states.
501  *
502  * Can be called in atomic context.
503  */
504 bool rfkill_is_epo_lock_active(void)
505 {
506         return rfkill_epo_lock_active;
507 }
508
509 /**
510  * rfkill_get_global_sw_state - returns global state for a type
511  * @type: the type to get the global state of
512  *
513  * Returns the current global state for a given wireless
514  * device type.
515  */
516 bool rfkill_get_global_sw_state(const enum rfkill_type type)
517 {
518         return rfkill_global_states[type].cur;
519 }
520 #endif
521
522 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
523 {
524         unsigned long flags;
525         bool ret, prev;
526
527         BUG_ON(!rfkill);
528
529         spin_lock_irqsave(&rfkill->lock, flags);
530         prev = !!(rfkill->state & RFKILL_BLOCK_HW);
531         if (blocked)
532                 rfkill->state |= RFKILL_BLOCK_HW;
533         else
534                 rfkill->state &= ~RFKILL_BLOCK_HW;
535         ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
536         spin_unlock_irqrestore(&rfkill->lock, flags);
537
538         rfkill_led_trigger_event(rfkill);
539         rfkill_any_led_trigger_event();
540
541         if (rfkill->registered && prev != blocked)
542                 schedule_work(&rfkill->uevent_work);
543
544         return ret;
545 }
546 EXPORT_SYMBOL(rfkill_set_hw_state);
547
548 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
549 {
550         u32 bit = RFKILL_BLOCK_SW;
551
552         /* if in a ops->set_block right now, use other bit */
553         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
554                 bit = RFKILL_BLOCK_SW_PREV;
555
556         if (blocked)
557                 rfkill->state |= bit;
558         else
559                 rfkill->state &= ~bit;
560 }
561
562 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
563 {
564         unsigned long flags;
565         bool prev, hwblock;
566
567         BUG_ON(!rfkill);
568
569         spin_lock_irqsave(&rfkill->lock, flags);
570         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
571         __rfkill_set_sw_state(rfkill, blocked);
572         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
573         blocked = blocked || hwblock;
574         spin_unlock_irqrestore(&rfkill->lock, flags);
575
576         if (!rfkill->registered)
577                 return blocked;
578
579         if (prev != blocked && !hwblock)
580                 schedule_work(&rfkill->uevent_work);
581
582         rfkill_led_trigger_event(rfkill);
583         rfkill_any_led_trigger_event();
584
585         return blocked;
586 }
587 EXPORT_SYMBOL(rfkill_set_sw_state);
588
589 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
590 {
591         unsigned long flags;
592
593         BUG_ON(!rfkill);
594         BUG_ON(rfkill->registered);
595
596         spin_lock_irqsave(&rfkill->lock, flags);
597         __rfkill_set_sw_state(rfkill, blocked);
598         rfkill->persistent = true;
599         spin_unlock_irqrestore(&rfkill->lock, flags);
600 }
601 EXPORT_SYMBOL(rfkill_init_sw_state);
602
603 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
604 {
605         unsigned long flags;
606         bool swprev, hwprev;
607
608         BUG_ON(!rfkill);
609
610         spin_lock_irqsave(&rfkill->lock, flags);
611
612         /*
613          * No need to care about prev/setblock ... this is for uevent only
614          * and that will get triggered by rfkill_set_block anyway.
615          */
616         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
617         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
618         __rfkill_set_sw_state(rfkill, sw);
619         if (hw)
620                 rfkill->state |= RFKILL_BLOCK_HW;
621         else
622                 rfkill->state &= ~RFKILL_BLOCK_HW;
623
624         spin_unlock_irqrestore(&rfkill->lock, flags);
625
626         if (!rfkill->registered) {
627                 rfkill->persistent = true;
628         } else {
629                 if (swprev != sw || hwprev != hw)
630                         schedule_work(&rfkill->uevent_work);
631
632                 rfkill_led_trigger_event(rfkill);
633                 rfkill_any_led_trigger_event();
634         }
635 }
636 EXPORT_SYMBOL(rfkill_set_states);
637
638 static const char * const rfkill_types[] = {
639         NULL, /* RFKILL_TYPE_ALL */
640         "wlan",
641         "bluetooth",
642         "ultrawideband",
643         "wimax",
644         "wwan",
645         "gps",
646         "fm",
647         "nfc",
648 };
649
650 enum rfkill_type rfkill_find_type(const char *name)
651 {
652         int i;
653
654         BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
655
656         if (!name)
657                 return RFKILL_TYPE_ALL;
658
659         for (i = 1; i < NUM_RFKILL_TYPES; i++)
660                 if (!strcmp(name, rfkill_types[i]))
661                         return i;
662         return RFKILL_TYPE_ALL;
663 }
664 EXPORT_SYMBOL(rfkill_find_type);
665
666 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
667                          char *buf)
668 {
669         struct rfkill *rfkill = to_rfkill(dev);
670
671         return sprintf(buf, "%s\n", rfkill->name);
672 }
673 static DEVICE_ATTR_RO(name);
674
675 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
676                          char *buf)
677 {
678         struct rfkill *rfkill = to_rfkill(dev);
679
680         return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
681 }
682 static DEVICE_ATTR_RO(type);
683
684 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
685                           char *buf)
686 {
687         struct rfkill *rfkill = to_rfkill(dev);
688
689         return sprintf(buf, "%d\n", rfkill->idx);
690 }
691 static DEVICE_ATTR_RO(index);
692
693 static ssize_t persistent_show(struct device *dev,
694                                struct device_attribute *attr, char *buf)
695 {
696         struct rfkill *rfkill = to_rfkill(dev);
697
698         return sprintf(buf, "%d\n", rfkill->persistent);
699 }
700 static DEVICE_ATTR_RO(persistent);
701
702 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
703                          char *buf)
704 {
705         struct rfkill *rfkill = to_rfkill(dev);
706
707         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
708 }
709 static DEVICE_ATTR_RO(hard);
710
711 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
712                          char *buf)
713 {
714         struct rfkill *rfkill = to_rfkill(dev);
715
716         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
717 }
718
719 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
720                           const char *buf, size_t count)
721 {
722         struct rfkill *rfkill = to_rfkill(dev);
723         unsigned long state;
724         int err;
725
726         if (!capable(CAP_NET_ADMIN))
727                 return -EPERM;
728
729         err = kstrtoul(buf, 0, &state);
730         if (err)
731                 return err;
732
733         if (state > 1 )
734                 return -EINVAL;
735
736         mutex_lock(&rfkill_global_mutex);
737         rfkill_set_block(rfkill, state);
738         mutex_unlock(&rfkill_global_mutex);
739
740         return count;
741 }
742 static DEVICE_ATTR_RW(soft);
743
744 static u8 user_state_from_blocked(unsigned long state)
745 {
746         if (state & RFKILL_BLOCK_HW)
747                 return RFKILL_USER_STATE_HARD_BLOCKED;
748         if (state & RFKILL_BLOCK_SW)
749                 return RFKILL_USER_STATE_SOFT_BLOCKED;
750
751         return RFKILL_USER_STATE_UNBLOCKED;
752 }
753
754 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
755                           char *buf)
756 {
757         struct rfkill *rfkill = to_rfkill(dev);
758
759         return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
760 }
761
762 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
763                            const char *buf, size_t count)
764 {
765         struct rfkill *rfkill = to_rfkill(dev);
766         unsigned long state;
767         int err;
768
769         if (!capable(CAP_NET_ADMIN))
770                 return -EPERM;
771
772         err = kstrtoul(buf, 0, &state);
773         if (err)
774                 return err;
775
776         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
777             state != RFKILL_USER_STATE_UNBLOCKED)
778                 return -EINVAL;
779
780         mutex_lock(&rfkill_global_mutex);
781         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
782         mutex_unlock(&rfkill_global_mutex);
783
784         return count;
785 }
786 static DEVICE_ATTR_RW(state);
787
788 static struct attribute *rfkill_dev_attrs[] = {
789         &dev_attr_name.attr,
790         &dev_attr_type.attr,
791         &dev_attr_index.attr,
792         &dev_attr_persistent.attr,
793         &dev_attr_state.attr,
794         &dev_attr_soft.attr,
795         &dev_attr_hard.attr,
796         NULL,
797 };
798 ATTRIBUTE_GROUPS(rfkill_dev);
799
800 static void rfkill_release(struct device *dev)
801 {
802         struct rfkill *rfkill = to_rfkill(dev);
803
804         kfree(rfkill);
805 }
806
807 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
808 {
809         struct rfkill *rfkill = to_rfkill(dev);
810         unsigned long flags;
811         u32 state;
812         int error;
813
814         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
815         if (error)
816                 return error;
817         error = add_uevent_var(env, "RFKILL_TYPE=%s",
818                                rfkill_types[rfkill->type]);
819         if (error)
820                 return error;
821         spin_lock_irqsave(&rfkill->lock, flags);
822         state = rfkill->state;
823         spin_unlock_irqrestore(&rfkill->lock, flags);
824         error = add_uevent_var(env, "RFKILL_STATE=%d",
825                                user_state_from_blocked(state));
826         return error;
827 }
828
829 void rfkill_pause_polling(struct rfkill *rfkill)
830 {
831         BUG_ON(!rfkill);
832
833         if (!rfkill->ops->poll)
834                 return;
835
836         rfkill->polling_paused = true;
837         cancel_delayed_work_sync(&rfkill->poll_work);
838 }
839 EXPORT_SYMBOL(rfkill_pause_polling);
840
841 void rfkill_resume_polling(struct rfkill *rfkill)
842 {
843         BUG_ON(!rfkill);
844
845         if (!rfkill->ops->poll)
846                 return;
847
848         rfkill->polling_paused = false;
849
850         if (rfkill->suspended)
851                 return;
852
853         queue_delayed_work(system_power_efficient_wq,
854                            &rfkill->poll_work, 0);
855 }
856 EXPORT_SYMBOL(rfkill_resume_polling);
857
858 #ifdef CONFIG_PM_SLEEP
859 static int rfkill_suspend(struct device *dev)
860 {
861         struct rfkill *rfkill = to_rfkill(dev);
862
863         rfkill->suspended = true;
864         cancel_delayed_work_sync(&rfkill->poll_work);
865
866         return 0;
867 }
868
869 static int rfkill_resume(struct device *dev)
870 {
871         struct rfkill *rfkill = to_rfkill(dev);
872         bool cur;
873
874         rfkill->suspended = false;
875
876         if (!rfkill->persistent) {
877                 mutex_lock(&rfkill_global_mutex);
878                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
879                 rfkill_set_block(rfkill, cur);
880                 mutex_unlock(&rfkill_global_mutex);
881         }
882
883         if (rfkill->ops->poll && !rfkill->polling_paused)
884                 queue_delayed_work(system_power_efficient_wq,
885                                    &rfkill->poll_work, 0);
886
887         return 0;
888 }
889
890 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
891 #define RFKILL_PM_OPS (&rfkill_pm_ops)
892 #else
893 #define RFKILL_PM_OPS NULL
894 #endif
895
896 static struct class rfkill_class = {
897         .name           = "rfkill",
898         .dev_release    = rfkill_release,
899         .dev_groups     = rfkill_dev_groups,
900         .dev_uevent     = rfkill_dev_uevent,
901         .pm             = RFKILL_PM_OPS,
902 };
903
904 bool rfkill_blocked(struct rfkill *rfkill)
905 {
906         unsigned long flags;
907         u32 state;
908
909         spin_lock_irqsave(&rfkill->lock, flags);
910         state = rfkill->state;
911         spin_unlock_irqrestore(&rfkill->lock, flags);
912
913         return !!(state & RFKILL_BLOCK_ANY);
914 }
915 EXPORT_SYMBOL(rfkill_blocked);
916
917
918 struct rfkill * __must_check rfkill_alloc(const char *name,
919                                           struct device *parent,
920                                           const enum rfkill_type type,
921                                           const struct rfkill_ops *ops,
922                                           void *ops_data)
923 {
924         struct rfkill *rfkill;
925         struct device *dev;
926
927         if (WARN_ON(!ops))
928                 return NULL;
929
930         if (WARN_ON(!ops->set_block))
931                 return NULL;
932
933         if (WARN_ON(!name))
934                 return NULL;
935
936         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
937                 return NULL;
938
939         rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
940         if (!rfkill)
941                 return NULL;
942
943         spin_lock_init(&rfkill->lock);
944         INIT_LIST_HEAD(&rfkill->node);
945         rfkill->type = type;
946         strcpy(rfkill->name, name);
947         rfkill->ops = ops;
948         rfkill->data = ops_data;
949
950         dev = &rfkill->dev;
951         dev->class = &rfkill_class;
952         dev->parent = parent;
953         device_initialize(dev);
954
955         return rfkill;
956 }
957 EXPORT_SYMBOL(rfkill_alloc);
958
959 static void rfkill_poll(struct work_struct *work)
960 {
961         struct rfkill *rfkill;
962
963         rfkill = container_of(work, struct rfkill, poll_work.work);
964
965         /*
966          * Poll hardware state -- driver will use one of the
967          * rfkill_set{,_hw,_sw}_state functions and use its
968          * return value to update the current status.
969          */
970         rfkill->ops->poll(rfkill, rfkill->data);
971
972         queue_delayed_work(system_power_efficient_wq,
973                 &rfkill->poll_work,
974                 round_jiffies_relative(POLL_INTERVAL));
975 }
976
977 static void rfkill_uevent_work(struct work_struct *work)
978 {
979         struct rfkill *rfkill;
980
981         rfkill = container_of(work, struct rfkill, uevent_work);
982
983         mutex_lock(&rfkill_global_mutex);
984         rfkill_event(rfkill);
985         mutex_unlock(&rfkill_global_mutex);
986 }
987
988 static void rfkill_sync_work(struct work_struct *work)
989 {
990         struct rfkill *rfkill;
991         bool cur;
992
993         rfkill = container_of(work, struct rfkill, sync_work);
994
995         mutex_lock(&rfkill_global_mutex);
996         cur = rfkill_global_states[rfkill->type].cur;
997         rfkill_set_block(rfkill, cur);
998         mutex_unlock(&rfkill_global_mutex);
999 }
1000
1001 int __must_check rfkill_register(struct rfkill *rfkill)
1002 {
1003         static unsigned long rfkill_no;
1004         struct device *dev = &rfkill->dev;
1005         int error;
1006
1007         BUG_ON(!rfkill);
1008
1009         mutex_lock(&rfkill_global_mutex);
1010
1011         if (rfkill->registered) {
1012                 error = -EALREADY;
1013                 goto unlock;
1014         }
1015
1016         rfkill->idx = rfkill_no;
1017         dev_set_name(dev, "rfkill%lu", rfkill_no);
1018         rfkill_no++;
1019
1020         list_add_tail(&rfkill->node, &rfkill_list);
1021
1022         error = device_add(dev);
1023         if (error)
1024                 goto remove;
1025
1026         error = rfkill_led_trigger_register(rfkill);
1027         if (error)
1028                 goto devdel;
1029
1030         rfkill->registered = true;
1031
1032         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1033         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1034         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1035
1036         if (rfkill->ops->poll)
1037                 queue_delayed_work(system_power_efficient_wq,
1038                         &rfkill->poll_work,
1039                         round_jiffies_relative(POLL_INTERVAL));
1040
1041         if (!rfkill->persistent || rfkill_epo_lock_active) {
1042                 schedule_work(&rfkill->sync_work);
1043         } else {
1044 #ifdef CONFIG_RFKILL_INPUT
1045                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1046
1047                 if (!atomic_read(&rfkill_input_disabled))
1048                         __rfkill_switch_all(rfkill->type, soft_blocked);
1049 #endif
1050         }
1051
1052         __rfkill_any_led_trigger_event();
1053         rfkill_send_events(rfkill, RFKILL_OP_ADD);
1054
1055         mutex_unlock(&rfkill_global_mutex);
1056         return 0;
1057
1058  devdel:
1059         device_del(&rfkill->dev);
1060  remove:
1061         list_del_init(&rfkill->node);
1062  unlock:
1063         mutex_unlock(&rfkill_global_mutex);
1064         return error;
1065 }
1066 EXPORT_SYMBOL(rfkill_register);
1067
1068 void rfkill_unregister(struct rfkill *rfkill)
1069 {
1070         BUG_ON(!rfkill);
1071
1072         if (rfkill->ops->poll)
1073                 cancel_delayed_work_sync(&rfkill->poll_work);
1074
1075         cancel_work_sync(&rfkill->uevent_work);
1076         cancel_work_sync(&rfkill->sync_work);
1077
1078         rfkill->registered = false;
1079
1080         device_del(&rfkill->dev);
1081
1082         mutex_lock(&rfkill_global_mutex);
1083         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1084         list_del_init(&rfkill->node);
1085         __rfkill_any_led_trigger_event();
1086         mutex_unlock(&rfkill_global_mutex);
1087
1088         rfkill_led_trigger_unregister(rfkill);
1089 }
1090 EXPORT_SYMBOL(rfkill_unregister);
1091
1092 void rfkill_destroy(struct rfkill *rfkill)
1093 {
1094         if (rfkill)
1095                 put_device(&rfkill->dev);
1096 }
1097 EXPORT_SYMBOL(rfkill_destroy);
1098
1099 static int rfkill_fop_open(struct inode *inode, struct file *file)
1100 {
1101         struct rfkill_data *data;
1102         struct rfkill *rfkill;
1103         struct rfkill_int_event *ev, *tmp;
1104
1105         data = kzalloc(sizeof(*data), GFP_KERNEL);
1106         if (!data)
1107                 return -ENOMEM;
1108
1109         INIT_LIST_HEAD(&data->events);
1110         mutex_init(&data->mtx);
1111         init_waitqueue_head(&data->read_wait);
1112
1113         mutex_lock(&rfkill_global_mutex);
1114         mutex_lock(&data->mtx);
1115         /*
1116          * start getting events from elsewhere but hold mtx to get
1117          * startup events added first
1118          */
1119
1120         list_for_each_entry(rfkill, &rfkill_list, node) {
1121                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1122                 if (!ev)
1123                         goto free;
1124                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1125                 list_add_tail(&ev->list, &data->events);
1126         }
1127         list_add(&data->list, &rfkill_fds);
1128         mutex_unlock(&data->mtx);
1129         mutex_unlock(&rfkill_global_mutex);
1130
1131         file->private_data = data;
1132
1133         return nonseekable_open(inode, file);
1134
1135  free:
1136         mutex_unlock(&data->mtx);
1137         mutex_unlock(&rfkill_global_mutex);
1138         mutex_destroy(&data->mtx);
1139         list_for_each_entry_safe(ev, tmp, &data->events, list)
1140                 kfree(ev);
1141         kfree(data);
1142         return -ENOMEM;
1143 }
1144
1145 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1146 {
1147         struct rfkill_data *data = file->private_data;
1148         unsigned int res = POLLOUT | POLLWRNORM;
1149
1150         poll_wait(file, &data->read_wait, wait);
1151
1152         mutex_lock(&data->mtx);
1153         if (!list_empty(&data->events))
1154                 res = POLLIN | POLLRDNORM;
1155         mutex_unlock(&data->mtx);
1156
1157         return res;
1158 }
1159
1160 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1161                                size_t count, loff_t *pos)
1162 {
1163         struct rfkill_data *data = file->private_data;
1164         struct rfkill_int_event *ev;
1165         unsigned long sz;
1166         int ret;
1167
1168         mutex_lock(&data->mtx);
1169
1170         while (list_empty(&data->events)) {
1171                 if (file->f_flags & O_NONBLOCK) {
1172                         ret = -EAGAIN;
1173                         goto out;
1174                 }
1175                 mutex_unlock(&data->mtx);
1176                 /* since we re-check and it just compares pointers,
1177                  * using !list_empty() without locking isn't a problem
1178                  */
1179                 ret = wait_event_interruptible(data->read_wait,
1180                                                !list_empty(&data->events));
1181                 mutex_lock(&data->mtx);
1182
1183                 if (ret)
1184                         goto out;
1185         }
1186
1187         ev = list_first_entry(&data->events, struct rfkill_int_event,
1188                                 list);
1189
1190         sz = min_t(unsigned long, sizeof(ev->ev), count);
1191         ret = sz;
1192         if (copy_to_user(buf, &ev->ev, sz))
1193                 ret = -EFAULT;
1194
1195         list_del(&ev->list);
1196         kfree(ev);
1197  out:
1198         mutex_unlock(&data->mtx);
1199         return ret;
1200 }
1201
1202 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1203                                 size_t count, loff_t *pos)
1204 {
1205         struct rfkill *rfkill;
1206         struct rfkill_event ev;
1207         int ret;
1208
1209         /* we don't need the 'hard' variable but accept it */
1210         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1211                 return -EINVAL;
1212
1213         /*
1214          * Copy as much data as we can accept into our 'ev' buffer,
1215          * but tell userspace how much we've copied so it can determine
1216          * our API version even in a write() call, if it cares.
1217          */
1218         count = min(count, sizeof(ev));
1219         if (copy_from_user(&ev, buf, count))
1220                 return -EFAULT;
1221
1222         if (ev.type >= NUM_RFKILL_TYPES)
1223                 return -EINVAL;
1224
1225         mutex_lock(&rfkill_global_mutex);
1226
1227         switch (ev.op) {
1228         case RFKILL_OP_CHANGE_ALL:
1229                 rfkill_update_global_state(ev.type, ev.soft);
1230                 list_for_each_entry(rfkill, &rfkill_list, node)
1231                         if (rfkill->type == ev.type ||
1232                             ev.type == RFKILL_TYPE_ALL)
1233                                 rfkill_set_block(rfkill, ev.soft);
1234                 ret = 0;
1235                 break;
1236         case RFKILL_OP_CHANGE:
1237                 list_for_each_entry(rfkill, &rfkill_list, node)
1238                         if (rfkill->idx == ev.idx &&
1239                             (rfkill->type == ev.type ||
1240                              ev.type == RFKILL_TYPE_ALL))
1241                                 rfkill_set_block(rfkill, ev.soft);
1242                 ret = 0;
1243                 break;
1244         default:
1245                 ret = -EINVAL;
1246                 break;
1247         }
1248
1249         mutex_unlock(&rfkill_global_mutex);
1250
1251         return ret ?: count;
1252 }
1253
1254 static int rfkill_fop_release(struct inode *inode, struct file *file)
1255 {
1256         struct rfkill_data *data = file->private_data;
1257         struct rfkill_int_event *ev, *tmp;
1258
1259         mutex_lock(&rfkill_global_mutex);
1260         list_del(&data->list);
1261         mutex_unlock(&rfkill_global_mutex);
1262
1263         mutex_destroy(&data->mtx);
1264         list_for_each_entry_safe(ev, tmp, &data->events, list)
1265                 kfree(ev);
1266
1267 #ifdef CONFIG_RFKILL_INPUT
1268         if (data->input_handler)
1269                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1270                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1271 #endif
1272
1273         kfree(data);
1274
1275         return 0;
1276 }
1277
1278 #ifdef CONFIG_RFKILL_INPUT
1279 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1280                              unsigned long arg)
1281 {
1282         struct rfkill_data *data = file->private_data;
1283
1284         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1285                 return -ENOSYS;
1286
1287         if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1288                 return -ENOSYS;
1289
1290         mutex_lock(&data->mtx);
1291
1292         if (!data->input_handler) {
1293                 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1294                         printk(KERN_DEBUG "rfkill: input handler disabled\n");
1295                 data->input_handler = true;
1296         }
1297
1298         mutex_unlock(&data->mtx);
1299
1300         return 0;
1301 }
1302 #endif
1303
1304 static const struct file_operations rfkill_fops = {
1305         .owner          = THIS_MODULE,
1306         .open           = rfkill_fop_open,
1307         .read           = rfkill_fop_read,
1308         .write          = rfkill_fop_write,
1309         .poll           = rfkill_fop_poll,
1310         .release        = rfkill_fop_release,
1311 #ifdef CONFIG_RFKILL_INPUT
1312         .unlocked_ioctl = rfkill_fop_ioctl,
1313         .compat_ioctl   = rfkill_fop_ioctl,
1314 #endif
1315         .llseek         = no_llseek,
1316 };
1317
1318 static struct miscdevice rfkill_miscdev = {
1319         .name   = "rfkill",
1320         .fops   = &rfkill_fops,
1321         .minor  = MISC_DYNAMIC_MINOR,
1322 };
1323
1324 static int __init rfkill_init(void)
1325 {
1326         int error;
1327
1328         rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1329
1330         error = class_register(&rfkill_class);
1331         if (error)
1332                 goto error_class;
1333
1334         error = misc_register(&rfkill_miscdev);
1335         if (error)
1336                 goto error_misc;
1337
1338         error = rfkill_any_led_trigger_register();
1339         if (error)
1340                 goto error_led_trigger;
1341
1342 #ifdef CONFIG_RFKILL_INPUT
1343         error = rfkill_handler_init();
1344         if (error)
1345                 goto error_input;
1346 #endif
1347
1348         return 0;
1349
1350 #ifdef CONFIG_RFKILL_INPUT
1351 error_input:
1352         rfkill_any_led_trigger_unregister();
1353 #endif
1354 error_led_trigger:
1355         misc_deregister(&rfkill_miscdev);
1356 error_misc:
1357         class_unregister(&rfkill_class);
1358 error_class:
1359         return error;
1360 }
1361 subsys_initcall(rfkill_init);
1362
1363 static void __exit rfkill_exit(void)
1364 {
1365 #ifdef CONFIG_RFKILL_INPUT
1366         rfkill_handler_exit();
1367 #endif
1368         rfkill_any_led_trigger_unregister();
1369         misc_deregister(&rfkill_miscdev);
1370         class_unregister(&rfkill_class);
1371 }
1372 module_exit(rfkill_exit);