]> git.karo-electronics.de Git - mv-sheeva.git/blob - net/sched/cls_flow.c
Merge remote branch 'anholt/drm-intel-next' of /home/airlied/kernel/drm-next into...
[mv-sheeva.git] / net / sched / cls_flow.c
1 /*
2  * net/sched/cls_flow.c         Generic flow classifier
3  *
4  * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23 #include <linux/slab.h>
24
25 #include <net/pkt_cls.h>
26 #include <net/ip.h>
27 #include <net/route.h>
28 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
29 #include <net/netfilter/nf_conntrack.h>
30 #endif
31
32 struct flow_head {
33         struct list_head        filters;
34 };
35
36 struct flow_filter {
37         struct list_head        list;
38         struct tcf_exts         exts;
39         struct tcf_ematch_tree  ematches;
40         struct timer_list       perturb_timer;
41         u32                     perturb_period;
42         u32                     handle;
43
44         u32                     nkeys;
45         u32                     keymask;
46         u32                     mode;
47         u32                     mask;
48         u32                     xor;
49         u32                     rshift;
50         u32                     addend;
51         u32                     divisor;
52         u32                     baseclass;
53         u32                     hashrnd;
54 };
55
56 static const struct tcf_ext_map flow_ext_map = {
57         .action = TCA_FLOW_ACT,
58         .police = TCA_FLOW_POLICE,
59 };
60
61 static inline u32 addr_fold(void *addr)
62 {
63         unsigned long a = (unsigned long)addr;
64
65         return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
66 }
67
68 static u32 flow_get_src(const struct sk_buff *skb)
69 {
70         switch (skb->protocol) {
71         case htons(ETH_P_IP):
72                 return ntohl(ip_hdr(skb)->saddr);
73         case htons(ETH_P_IPV6):
74                 return ntohl(ipv6_hdr(skb)->saddr.s6_addr32[3]);
75         default:
76                 return addr_fold(skb->sk);
77         }
78 }
79
80 static u32 flow_get_dst(const struct sk_buff *skb)
81 {
82         switch (skb->protocol) {
83         case htons(ETH_P_IP):
84                 return ntohl(ip_hdr(skb)->daddr);
85         case htons(ETH_P_IPV6):
86                 return ntohl(ipv6_hdr(skb)->daddr.s6_addr32[3]);
87         default:
88                 return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
89         }
90 }
91
92 static u32 flow_get_proto(const struct sk_buff *skb)
93 {
94         switch (skb->protocol) {
95         case htons(ETH_P_IP):
96                 return ip_hdr(skb)->protocol;
97         case htons(ETH_P_IPV6):
98                 return ipv6_hdr(skb)->nexthdr;
99         default:
100                 return 0;
101         }
102 }
103
104 static int has_ports(u8 protocol)
105 {
106         switch (protocol) {
107         case IPPROTO_TCP:
108         case IPPROTO_UDP:
109         case IPPROTO_UDPLITE:
110         case IPPROTO_SCTP:
111         case IPPROTO_DCCP:
112         case IPPROTO_ESP:
113                 return 1;
114         default:
115                 return 0;
116         }
117 }
118
119 static u32 flow_get_proto_src(const struct sk_buff *skb)
120 {
121         u32 res = 0;
122
123         switch (skb->protocol) {
124         case htons(ETH_P_IP): {
125                 struct iphdr *iph = ip_hdr(skb);
126
127                 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
128                     has_ports(iph->protocol))
129                         res = ntohs(*(__be16 *)((void *)iph + iph->ihl * 4));
130                 break;
131         }
132         case htons(ETH_P_IPV6): {
133                 struct ipv6hdr *iph = ipv6_hdr(skb);
134
135                 if (has_ports(iph->nexthdr))
136                         res = ntohs(*(__be16 *)&iph[1]);
137                 break;
138         }
139         default:
140                 res = addr_fold(skb->sk);
141         }
142
143         return res;
144 }
145
146 static u32 flow_get_proto_dst(const struct sk_buff *skb)
147 {
148         u32 res = 0;
149
150         switch (skb->protocol) {
151         case htons(ETH_P_IP): {
152                 struct iphdr *iph = ip_hdr(skb);
153
154                 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
155                     has_ports(iph->protocol))
156                         res = ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 + 2));
157                 break;
158         }
159         case htons(ETH_P_IPV6): {
160                 struct ipv6hdr *iph = ipv6_hdr(skb);
161
162                 if (has_ports(iph->nexthdr))
163                         res = ntohs(*(__be16 *)((void *)&iph[1] + 2));
164                 break;
165         }
166         default:
167                 res = addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
168         }
169
170         return res;
171 }
172
173 static u32 flow_get_iif(const struct sk_buff *skb)
174 {
175         return skb->skb_iif;
176 }
177
178 static u32 flow_get_priority(const struct sk_buff *skb)
179 {
180         return skb->priority;
181 }
182
183 static u32 flow_get_mark(const struct sk_buff *skb)
184 {
185         return skb->mark;
186 }
187
188 static u32 flow_get_nfct(const struct sk_buff *skb)
189 {
190 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
191         return addr_fold(skb->nfct);
192 #else
193         return 0;
194 #endif
195 }
196
197 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
198 #define CTTUPLE(skb, member)                                            \
199 ({                                                                      \
200         enum ip_conntrack_info ctinfo;                                  \
201         struct nf_conn *ct = nf_ct_get(skb, &ctinfo);                   \
202         if (ct == NULL)                                                 \
203                 goto fallback;                                          \
204         ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;                 \
205 })
206 #else
207 #define CTTUPLE(skb, member)                                            \
208 ({                                                                      \
209         goto fallback;                                                  \
210         0;                                                              \
211 })
212 #endif
213
214 static u32 flow_get_nfct_src(const struct sk_buff *skb)
215 {
216         switch (skb->protocol) {
217         case htons(ETH_P_IP):
218                 return ntohl(CTTUPLE(skb, src.u3.ip));
219         case htons(ETH_P_IPV6):
220                 return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
221         }
222 fallback:
223         return flow_get_src(skb);
224 }
225
226 static u32 flow_get_nfct_dst(const struct sk_buff *skb)
227 {
228         switch (skb->protocol) {
229         case htons(ETH_P_IP):
230                 return ntohl(CTTUPLE(skb, dst.u3.ip));
231         case htons(ETH_P_IPV6):
232                 return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
233         }
234 fallback:
235         return flow_get_dst(skb);
236 }
237
238 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb)
239 {
240         return ntohs(CTTUPLE(skb, src.u.all));
241 fallback:
242         return flow_get_proto_src(skb);
243 }
244
245 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb)
246 {
247         return ntohs(CTTUPLE(skb, dst.u.all));
248 fallback:
249         return flow_get_proto_dst(skb);
250 }
251
252 static u32 flow_get_rtclassid(const struct sk_buff *skb)
253 {
254 #ifdef CONFIG_NET_CLS_ROUTE
255         if (skb_dst(skb))
256                 return skb_dst(skb)->tclassid;
257 #endif
258         return 0;
259 }
260
261 static u32 flow_get_skuid(const struct sk_buff *skb)
262 {
263         if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
264                 return skb->sk->sk_socket->file->f_cred->fsuid;
265         return 0;
266 }
267
268 static u32 flow_get_skgid(const struct sk_buff *skb)
269 {
270         if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
271                 return skb->sk->sk_socket->file->f_cred->fsgid;
272         return 0;
273 }
274
275 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
276 {
277         u16 uninitialized_var(tag);
278
279         if (vlan_get_tag(skb, &tag) < 0)
280                 return 0;
281         return tag & VLAN_VID_MASK;
282 }
283
284 static u32 flow_key_get(const struct sk_buff *skb, int key)
285 {
286         switch (key) {
287         case FLOW_KEY_SRC:
288                 return flow_get_src(skb);
289         case FLOW_KEY_DST:
290                 return flow_get_dst(skb);
291         case FLOW_KEY_PROTO:
292                 return flow_get_proto(skb);
293         case FLOW_KEY_PROTO_SRC:
294                 return flow_get_proto_src(skb);
295         case FLOW_KEY_PROTO_DST:
296                 return flow_get_proto_dst(skb);
297         case FLOW_KEY_IIF:
298                 return flow_get_iif(skb);
299         case FLOW_KEY_PRIORITY:
300                 return flow_get_priority(skb);
301         case FLOW_KEY_MARK:
302                 return flow_get_mark(skb);
303         case FLOW_KEY_NFCT:
304                 return flow_get_nfct(skb);
305         case FLOW_KEY_NFCT_SRC:
306                 return flow_get_nfct_src(skb);
307         case FLOW_KEY_NFCT_DST:
308                 return flow_get_nfct_dst(skb);
309         case FLOW_KEY_NFCT_PROTO_SRC:
310                 return flow_get_nfct_proto_src(skb);
311         case FLOW_KEY_NFCT_PROTO_DST:
312                 return flow_get_nfct_proto_dst(skb);
313         case FLOW_KEY_RTCLASSID:
314                 return flow_get_rtclassid(skb);
315         case FLOW_KEY_SKUID:
316                 return flow_get_skuid(skb);
317         case FLOW_KEY_SKGID:
318                 return flow_get_skgid(skb);
319         case FLOW_KEY_VLAN_TAG:
320                 return flow_get_vlan_tag(skb);
321         default:
322                 WARN_ON(1);
323                 return 0;
324         }
325 }
326
327 static int flow_classify(struct sk_buff *skb, struct tcf_proto *tp,
328                          struct tcf_result *res)
329 {
330         struct flow_head *head = tp->root;
331         struct flow_filter *f;
332         u32 keymask;
333         u32 classid;
334         unsigned int n, key;
335         int r;
336
337         list_for_each_entry(f, &head->filters, list) {
338                 u32 keys[f->nkeys];
339
340                 if (!tcf_em_tree_match(skb, &f->ematches, NULL))
341                         continue;
342
343                 keymask = f->keymask;
344
345                 for (n = 0; n < f->nkeys; n++) {
346                         key = ffs(keymask) - 1;
347                         keymask &= ~(1 << key);
348                         keys[n] = flow_key_get(skb, key);
349                 }
350
351                 if (f->mode == FLOW_MODE_HASH)
352                         classid = jhash2(keys, f->nkeys, f->hashrnd);
353                 else {
354                         classid = keys[0];
355                         classid = (classid & f->mask) ^ f->xor;
356                         classid = (classid >> f->rshift) + f->addend;
357                 }
358
359                 if (f->divisor)
360                         classid %= f->divisor;
361
362                 res->class   = 0;
363                 res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
364
365                 r = tcf_exts_exec(skb, &f->exts, res);
366                 if (r < 0)
367                         continue;
368                 return r;
369         }
370         return -1;
371 }
372
373 static void flow_perturbation(unsigned long arg)
374 {
375         struct flow_filter *f = (struct flow_filter *)arg;
376
377         get_random_bytes(&f->hashrnd, 4);
378         if (f->perturb_period)
379                 mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
380 }
381
382 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
383         [TCA_FLOW_KEYS]         = { .type = NLA_U32 },
384         [TCA_FLOW_MODE]         = { .type = NLA_U32 },
385         [TCA_FLOW_BASECLASS]    = { .type = NLA_U32 },
386         [TCA_FLOW_RSHIFT]       = { .type = NLA_U32 },
387         [TCA_FLOW_ADDEND]       = { .type = NLA_U32 },
388         [TCA_FLOW_MASK]         = { .type = NLA_U32 },
389         [TCA_FLOW_XOR]          = { .type = NLA_U32 },
390         [TCA_FLOW_DIVISOR]      = { .type = NLA_U32 },
391         [TCA_FLOW_ACT]          = { .type = NLA_NESTED },
392         [TCA_FLOW_POLICE]       = { .type = NLA_NESTED },
393         [TCA_FLOW_EMATCHES]     = { .type = NLA_NESTED },
394         [TCA_FLOW_PERTURB]      = { .type = NLA_U32 },
395 };
396
397 static int flow_change(struct tcf_proto *tp, unsigned long base,
398                        u32 handle, struct nlattr **tca,
399                        unsigned long *arg)
400 {
401         struct flow_head *head = tp->root;
402         struct flow_filter *f;
403         struct nlattr *opt = tca[TCA_OPTIONS];
404         struct nlattr *tb[TCA_FLOW_MAX + 1];
405         struct tcf_exts e;
406         struct tcf_ematch_tree t;
407         unsigned int nkeys = 0;
408         unsigned int perturb_period = 0;
409         u32 baseclass = 0;
410         u32 keymask = 0;
411         u32 mode;
412         int err;
413
414         if (opt == NULL)
415                 return -EINVAL;
416
417         err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
418         if (err < 0)
419                 return err;
420
421         if (tb[TCA_FLOW_BASECLASS]) {
422                 baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
423                 if (TC_H_MIN(baseclass) == 0)
424                         return -EINVAL;
425         }
426
427         if (tb[TCA_FLOW_KEYS]) {
428                 keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
429
430                 nkeys = hweight32(keymask);
431                 if (nkeys == 0)
432                         return -EINVAL;
433
434                 if (fls(keymask) - 1 > FLOW_KEY_MAX)
435                         return -EOPNOTSUPP;
436         }
437
438         err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
439         if (err < 0)
440                 return err;
441
442         err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
443         if (err < 0)
444                 goto err1;
445
446         f = (struct flow_filter *)*arg;
447         if (f != NULL) {
448                 err = -EINVAL;
449                 if (f->handle != handle && handle)
450                         goto err2;
451
452                 mode = f->mode;
453                 if (tb[TCA_FLOW_MODE])
454                         mode = nla_get_u32(tb[TCA_FLOW_MODE]);
455                 if (mode != FLOW_MODE_HASH && nkeys > 1)
456                         goto err2;
457
458                 if (mode == FLOW_MODE_HASH)
459                         perturb_period = f->perturb_period;
460                 if (tb[TCA_FLOW_PERTURB]) {
461                         if (mode != FLOW_MODE_HASH)
462                                 goto err2;
463                         perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
464                 }
465         } else {
466                 err = -EINVAL;
467                 if (!handle)
468                         goto err2;
469                 if (!tb[TCA_FLOW_KEYS])
470                         goto err2;
471
472                 mode = FLOW_MODE_MAP;
473                 if (tb[TCA_FLOW_MODE])
474                         mode = nla_get_u32(tb[TCA_FLOW_MODE]);
475                 if (mode != FLOW_MODE_HASH && nkeys > 1)
476                         goto err2;
477
478                 if (tb[TCA_FLOW_PERTURB]) {
479                         if (mode != FLOW_MODE_HASH)
480                                 goto err2;
481                         perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
482                 }
483
484                 if (TC_H_MAJ(baseclass) == 0)
485                         baseclass = TC_H_MAKE(tp->q->handle, baseclass);
486                 if (TC_H_MIN(baseclass) == 0)
487                         baseclass = TC_H_MAKE(baseclass, 1);
488
489                 err = -ENOBUFS;
490                 f = kzalloc(sizeof(*f), GFP_KERNEL);
491                 if (f == NULL)
492                         goto err2;
493
494                 f->handle = handle;
495                 f->mask   = ~0U;
496
497                 get_random_bytes(&f->hashrnd, 4);
498                 f->perturb_timer.function = flow_perturbation;
499                 f->perturb_timer.data = (unsigned long)f;
500                 init_timer_deferrable(&f->perturb_timer);
501         }
502
503         tcf_exts_change(tp, &f->exts, &e);
504         tcf_em_tree_change(tp, &f->ematches, &t);
505
506         tcf_tree_lock(tp);
507
508         if (tb[TCA_FLOW_KEYS]) {
509                 f->keymask = keymask;
510                 f->nkeys   = nkeys;
511         }
512
513         f->mode = mode;
514
515         if (tb[TCA_FLOW_MASK])
516                 f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
517         if (tb[TCA_FLOW_XOR])
518                 f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
519         if (tb[TCA_FLOW_RSHIFT])
520                 f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
521         if (tb[TCA_FLOW_ADDEND])
522                 f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
523
524         if (tb[TCA_FLOW_DIVISOR])
525                 f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
526         if (baseclass)
527                 f->baseclass = baseclass;
528
529         f->perturb_period = perturb_period;
530         del_timer(&f->perturb_timer);
531         if (perturb_period)
532                 mod_timer(&f->perturb_timer, jiffies + perturb_period);
533
534         if (*arg == 0)
535                 list_add_tail(&f->list, &head->filters);
536
537         tcf_tree_unlock(tp);
538
539         *arg = (unsigned long)f;
540         return 0;
541
542 err2:
543         tcf_em_tree_destroy(tp, &t);
544 err1:
545         tcf_exts_destroy(tp, &e);
546         return err;
547 }
548
549 static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
550 {
551         del_timer_sync(&f->perturb_timer);
552         tcf_exts_destroy(tp, &f->exts);
553         tcf_em_tree_destroy(tp, &f->ematches);
554         kfree(f);
555 }
556
557 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
558 {
559         struct flow_filter *f = (struct flow_filter *)arg;
560
561         tcf_tree_lock(tp);
562         list_del(&f->list);
563         tcf_tree_unlock(tp);
564         flow_destroy_filter(tp, f);
565         return 0;
566 }
567
568 static int flow_init(struct tcf_proto *tp)
569 {
570         struct flow_head *head;
571
572         head = kzalloc(sizeof(*head), GFP_KERNEL);
573         if (head == NULL)
574                 return -ENOBUFS;
575         INIT_LIST_HEAD(&head->filters);
576         tp->root = head;
577         return 0;
578 }
579
580 static void flow_destroy(struct tcf_proto *tp)
581 {
582         struct flow_head *head = tp->root;
583         struct flow_filter *f, *next;
584
585         list_for_each_entry_safe(f, next, &head->filters, list) {
586                 list_del(&f->list);
587                 flow_destroy_filter(tp, f);
588         }
589         kfree(head);
590 }
591
592 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
593 {
594         struct flow_head *head = tp->root;
595         struct flow_filter *f;
596
597         list_for_each_entry(f, &head->filters, list)
598                 if (f->handle == handle)
599                         return (unsigned long)f;
600         return 0;
601 }
602
603 static void flow_put(struct tcf_proto *tp, unsigned long f)
604 {
605         return;
606 }
607
608 static int flow_dump(struct tcf_proto *tp, unsigned long fh,
609                      struct sk_buff *skb, struct tcmsg *t)
610 {
611         struct flow_filter *f = (struct flow_filter *)fh;
612         struct nlattr *nest;
613
614         if (f == NULL)
615                 return skb->len;
616
617         t->tcm_handle = f->handle;
618
619         nest = nla_nest_start(skb, TCA_OPTIONS);
620         if (nest == NULL)
621                 goto nla_put_failure;
622
623         NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
624         NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);
625
626         if (f->mask != ~0 || f->xor != 0) {
627                 NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
628                 NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
629         }
630         if (f->rshift)
631                 NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
632         if (f->addend)
633                 NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);
634
635         if (f->divisor)
636                 NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
637         if (f->baseclass)
638                 NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);
639
640         if (f->perturb_period)
641                 NLA_PUT_U32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ);
642
643         if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
644                 goto nla_put_failure;
645 #ifdef CONFIG_NET_EMATCH
646         if (f->ematches.hdr.nmatches &&
647             tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
648                 goto nla_put_failure;
649 #endif
650         nla_nest_end(skb, nest);
651
652         if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
653                 goto nla_put_failure;
654
655         return skb->len;
656
657 nla_put_failure:
658         nlmsg_trim(skb, nest);
659         return -1;
660 }
661
662 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
663 {
664         struct flow_head *head = tp->root;
665         struct flow_filter *f;
666
667         list_for_each_entry(f, &head->filters, list) {
668                 if (arg->count < arg->skip)
669                         goto skip;
670                 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
671                         arg->stop = 1;
672                         break;
673                 }
674 skip:
675                 arg->count++;
676         }
677 }
678
679 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
680         .kind           = "flow",
681         .classify       = flow_classify,
682         .init           = flow_init,
683         .destroy        = flow_destroy,
684         .change         = flow_change,
685         .delete         = flow_delete,
686         .get            = flow_get,
687         .put            = flow_put,
688         .dump           = flow_dump,
689         .walk           = flow_walk,
690         .owner          = THIS_MODULE,
691 };
692
693 static int __init cls_flow_init(void)
694 {
695         return register_tcf_proto_ops(&cls_flow_ops);
696 }
697
698 static void __exit cls_flow_exit(void)
699 {
700         unregister_tcf_proto_ops(&cls_flow_ops);
701 }
702
703 module_init(cls_flow_init);
704 module_exit(cls_flow_exit);
705
706 MODULE_LICENSE("GPL");
707 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
708 MODULE_DESCRIPTION("TC flow classifier");