2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
26 /* Simple Token Bucket Filter.
27 =======================================
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
45 s_i+....+s_k <= B + R*(t_k - t_i)
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
52 N(t+delta) = min{B/R, N(t) + delta}
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
58 N(t_* + 0) = N(t_* - 0) - S/R.
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
70 When TBF works in reshaping mode, latency is estimated as:
72 lat = max ((L-B)/R, (L-M)/P)
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
86 This means, that with depth B, the maximal rate is
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
101 struct tbf_sched_data {
103 u32 limit; /* Maximal length of backlog: bytes */
104 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
107 struct psched_ratecfg rate;
108 struct psched_ratecfg peak;
112 s64 tokens; /* Current number of B tokens */
113 s64 ptokens; /* Current number of P tokens */
114 s64 t_c; /* Time check-point */
115 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
116 struct qdisc_watchdog watchdog; /* Watchdog timer */
119 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
121 struct tbf_sched_data *q = qdisc_priv(sch);
124 if (qdisc_pkt_len(skb) > q->max_size)
125 return qdisc_reshape_fail(skb, sch);
127 ret = qdisc_enqueue(skb, q->qdisc);
128 if (ret != NET_XMIT_SUCCESS) {
129 if (net_xmit_drop_count(ret))
135 return NET_XMIT_SUCCESS;
138 static unsigned int tbf_drop(struct Qdisc *sch)
140 struct tbf_sched_data *q = qdisc_priv(sch);
141 unsigned int len = 0;
143 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
150 static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
152 struct tbf_sched_data *q = qdisc_priv(sch);
155 skb = q->qdisc->ops->peek(q->qdisc);
161 unsigned int len = qdisc_pkt_len(skb);
163 now = ktime_to_ns(ktime_get());
164 toks = min_t(s64, now - q->t_c, q->buffer);
166 if (q->peak_present) {
167 ptoks = toks + q->ptokens;
170 ptoks -= (s64) psched_l2t_ns(&q->peak, len);
173 if (toks > q->buffer)
175 toks -= (s64) psched_l2t_ns(&q->rate, len);
177 if ((toks|ptoks) >= 0) {
178 skb = qdisc_dequeue_peeked(q->qdisc);
186 qdisc_unthrottled(sch);
187 qdisc_bstats_update(sch, skb);
191 qdisc_watchdog_schedule_ns(&q->watchdog,
192 now + max_t(long, -toks, -ptoks));
194 /* Maybe we have a shorter packet in the queue,
195 which can be sent now. It sounds cool,
196 but, however, this is wrong in principle.
197 We MUST NOT reorder packets under these circumstances.
199 Really, if we split the flow into independent
200 subflows, it would be a very good solution.
201 This is the main idea of all FQ algorithms
202 (cf. CSZ, HPFQ, HFSC)
205 sch->qstats.overlimits++;
210 static void tbf_reset(struct Qdisc *sch)
212 struct tbf_sched_data *q = qdisc_priv(sch);
214 qdisc_reset(q->qdisc);
216 q->t_c = ktime_to_ns(ktime_get());
217 q->tokens = q->buffer;
219 qdisc_watchdog_cancel(&q->watchdog);
222 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
223 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
224 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
225 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
228 static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
231 struct tbf_sched_data *q = qdisc_priv(sch);
232 struct nlattr *tb[TCA_TBF_PTAB + 1];
233 struct tc_tbf_qopt *qopt;
234 struct qdisc_rate_table *rtab = NULL;
235 struct qdisc_rate_table *ptab = NULL;
236 struct Qdisc *child = NULL;
239 err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy);
244 if (tb[TCA_TBF_PARMS] == NULL)
247 qopt = nla_data(tb[TCA_TBF_PARMS]);
248 rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]);
252 if (qopt->peakrate.rate) {
253 if (qopt->peakrate.rate > qopt->rate.rate)
254 ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]);
259 for (n = 0; n < 256; n++)
260 if (rtab->data[n] > qopt->buffer)
262 max_size = (n << qopt->rate.cell_log) - 1;
266 for (n = 0; n < 256; n++)
267 if (ptab->data[n] > qopt->mtu)
269 size = (n << qopt->peakrate.cell_log) - 1;
276 if (q->qdisc != &noop_qdisc) {
277 err = fifo_set_limit(q->qdisc, qopt->limit);
280 } else if (qopt->limit > 0) {
281 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
283 err = PTR_ERR(child);
290 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
291 qdisc_destroy(q->qdisc);
294 q->limit = qopt->limit;
295 q->mtu = PSCHED_TICKS2NS(qopt->mtu);
296 q->max_size = max_size;
297 q->buffer = PSCHED_TICKS2NS(qopt->buffer);
298 q->tokens = q->buffer;
301 psched_ratecfg_precompute(&q->rate, rtab->rate.rate);
303 psched_ratecfg_precompute(&q->peak, ptab->rate.rate);
304 q->peak_present = true;
306 q->peak_present = false;
309 sch_tree_unlock(sch);
313 qdisc_put_rtab(rtab);
315 qdisc_put_rtab(ptab);
319 static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
321 struct tbf_sched_data *q = qdisc_priv(sch);
326 q->t_c = ktime_to_ns(ktime_get());
327 qdisc_watchdog_init(&q->watchdog, sch);
328 q->qdisc = &noop_qdisc;
330 return tbf_change(sch, opt);
333 static void tbf_destroy(struct Qdisc *sch)
335 struct tbf_sched_data *q = qdisc_priv(sch);
337 qdisc_watchdog_cancel(&q->watchdog);
338 qdisc_destroy(q->qdisc);
341 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
343 struct tbf_sched_data *q = qdisc_priv(sch);
345 struct tc_tbf_qopt opt;
347 sch->qstats.backlog = q->qdisc->qstats.backlog;
348 nest = nla_nest_start(skb, TCA_OPTIONS);
350 goto nla_put_failure;
352 opt.limit = q->limit;
353 opt.rate.rate = psched_ratecfg_getrate(&q->rate);
355 opt.peakrate.rate = psched_ratecfg_getrate(&q->peak);
357 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
358 opt.mtu = PSCHED_NS2TICKS(q->mtu);
359 opt.buffer = PSCHED_NS2TICKS(q->buffer);
360 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
361 goto nla_put_failure;
363 nla_nest_end(skb, nest);
367 nla_nest_cancel(skb, nest);
371 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
372 struct sk_buff *skb, struct tcmsg *tcm)
374 struct tbf_sched_data *q = qdisc_priv(sch);
376 tcm->tcm_handle |= TC_H_MIN(1);
377 tcm->tcm_info = q->qdisc->handle;
382 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
385 struct tbf_sched_data *q = qdisc_priv(sch);
393 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
395 sch_tree_unlock(sch);
400 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
402 struct tbf_sched_data *q = qdisc_priv(sch);
406 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
411 static void tbf_put(struct Qdisc *sch, unsigned long arg)
415 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
418 if (walker->count >= walker->skip)
419 if (walker->fn(sch, 1, walker) < 0) {
427 static const struct Qdisc_class_ops tbf_class_ops = {
433 .dump = tbf_dump_class,
436 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
438 .cl_ops = &tbf_class_ops,
440 .priv_size = sizeof(struct tbf_sched_data),
441 .enqueue = tbf_enqueue,
442 .dequeue = tbf_dequeue,
443 .peek = qdisc_peek_dequeued,
447 .destroy = tbf_destroy,
448 .change = tbf_change,
450 .owner = THIS_MODULE,
453 static int __init tbf_module_init(void)
455 return register_qdisc(&tbf_qdisc_ops);
458 static void __exit tbf_module_exit(void)
460 unregister_qdisc(&tbf_qdisc_ops);
462 module_init(tbf_module_init)
463 module_exit(tbf_module_exit)
464 MODULE_LICENSE("GPL");