2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
146 .unlocked_ioctl = sock_ioctl,
148 .compat_ioctl = compat_sock_ioctl,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use);
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 if (copy_from_user(kaddr, uaddr, ulen))
196 return audit_sockaddr(ulen, kaddr);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
231 if (audit_sockaddr(klen, kaddr))
233 if (copy_to_user(uaddr, kaddr, len))
237 * "fromlen shall refer to the value before truncation.."
240 return __put_user(klen, ulen);
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 static struct inode *sock_alloc_inode(struct super_block *sb)
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 kmem_cache_free(sock_inode_cachep, ei);
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
269 return &ei->vfs_inode;
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kmem_cache_free(sock_inode_cachep, ei);
283 static void init_once(void *foo)
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
287 inode_init_once(&ei->vfs_inode);
290 static int init_inodecache(void)
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
299 if (sock_inode_cachep == NULL)
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324 struct dentry *dentry, struct inode *inode,
325 const char *suffix, void *value, size_t size)
328 if (dentry->d_name.len + 1 > size)
330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
332 return dentry->d_name.len + 1;
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
339 static const struct xattr_handler sockfs_xattr_handler = {
340 .name = XATTR_NAME_SOCKPROTONAME,
341 .get = sockfs_xattr_get,
344 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
345 struct dentry *dentry, struct inode *inode,
346 const char *suffix, const void *value,
347 size_t size, int flags)
349 /* Handled by LSM. */
353 static const struct xattr_handler sockfs_security_xattr_handler = {
354 .prefix = XATTR_SECURITY_PREFIX,
355 .set = sockfs_security_xattr_set,
358 static const struct xattr_handler *sockfs_xattr_handlers[] = {
359 &sockfs_xattr_handler,
360 &sockfs_security_xattr_handler,
364 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
365 int flags, const char *dev_name, void *data)
367 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
368 sockfs_xattr_handlers,
369 &sockfs_dentry_operations, SOCKFS_MAGIC);
372 static struct vfsmount *sock_mnt __read_mostly;
374 static struct file_system_type sock_fs_type = {
376 .mount = sockfs_mount,
377 .kill_sb = kill_anon_super,
381 * Obtains the first available file descriptor and sets it up for use.
383 * These functions create file structures and maps them to fd space
384 * of the current process. On success it returns file descriptor
385 * and file struct implicitly stored in sock->file.
386 * Note that another thread may close file descriptor before we return
387 * from this function. We use the fact that now we do not refer
388 * to socket after mapping. If one day we will need it, this
389 * function will increment ref. count on file by 1.
391 * In any case returned fd MAY BE not valid!
392 * This race condition is unavoidable
393 * with shared fd spaces, we cannot solve it inside kernel,
394 * but we take care of internal coherence yet.
397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
399 struct qstr name = { .name = "" };
405 name.len = strlen(name.name);
406 } else if (sock->sk) {
407 name.name = sock->sk->sk_prot_creator->name;
408 name.len = strlen(name.name);
410 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
411 if (unlikely(!path.dentry))
412 return ERR_PTR(-ENOMEM);
413 path.mnt = mntget(sock_mnt);
415 d_instantiate(path.dentry, SOCK_INODE(sock));
417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
420 /* drop dentry, keep inode */
421 ihold(d_inode(path.dentry));
427 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
428 file->private_data = sock;
431 EXPORT_SYMBOL(sock_alloc_file);
433 static int sock_map_fd(struct socket *sock, int flags)
435 struct file *newfile;
436 int fd = get_unused_fd_flags(flags);
437 if (unlikely(fd < 0))
440 newfile = sock_alloc_file(sock, flags, NULL);
441 if (likely(!IS_ERR(newfile))) {
442 fd_install(fd, newfile);
447 return PTR_ERR(newfile);
450 struct socket *sock_from_file(struct file *file, int *err)
452 if (file->f_op == &socket_file_ops)
453 return file->private_data; /* set in sock_map_fd */
458 EXPORT_SYMBOL(sock_from_file);
461 * sockfd_lookup - Go from a file number to its socket slot
463 * @err: pointer to an error code return
465 * The file handle passed in is locked and the socket it is bound
466 * too is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
470 * On a success the socket object pointer is returned.
473 struct socket *sockfd_lookup(int fd, int *err)
484 sock = sock_from_file(file, err);
489 EXPORT_SYMBOL(sockfd_lookup);
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
493 struct fd f = fdget(fd);
498 sock = sock_from_file(f.file, err);
500 *fput_needed = f.flags;
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
514 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
536 int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
538 int err = simple_setattr(dentry, iattr);
541 struct socket *sock = SOCKET_I(d_inode(dentry));
543 sock->sk->sk_uid = iattr->ia_uid;
549 static const struct inode_operations sockfs_inode_ops = {
550 .listxattr = sockfs_listxattr,
551 .setattr = sockfs_setattr,
555 * sock_alloc - allocate a socket
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
562 struct socket *sock_alloc(void)
567 inode = new_inode_pseudo(sock_mnt->mnt_sb);
571 sock = SOCKET_I(inode);
573 kmemcheck_annotate_bitfield(sock, type);
574 inode->i_ino = get_next_ino();
575 inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_op = &sockfs_inode_ops;
580 this_cpu_add(sockets_in_use, 1);
583 EXPORT_SYMBOL(sock_alloc);
586 * sock_release - close a socket
587 * @sock: socket to close
589 * The socket is released from the protocol stack if it has a release
590 * callback, and the inode is then released if the socket is bound to
591 * an inode not a file.
594 void sock_release(struct socket *sock)
597 struct module *owner = sock->ops->owner;
599 sock->ops->release(sock);
604 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
605 pr_err("%s: fasync list not empty!\n", __func__);
607 this_cpu_sub(sockets_in_use, 1);
609 iput(SOCK_INODE(sock));
614 EXPORT_SYMBOL(sock_release);
616 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
618 u8 flags = *tx_flags;
620 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
621 flags |= SKBTX_HW_TSTAMP;
623 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
624 flags |= SKBTX_SW_TSTAMP;
626 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
627 flags |= SKBTX_SCHED_TSTAMP;
631 EXPORT_SYMBOL(__sock_tx_timestamp);
633 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
635 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
636 BUG_ON(ret == -EIOCBQUEUED);
640 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
642 int err = security_socket_sendmsg(sock, msg,
645 return err ?: sock_sendmsg_nosec(sock, msg);
647 EXPORT_SYMBOL(sock_sendmsg);
649 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
650 struct kvec *vec, size_t num, size_t size)
652 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
653 return sock_sendmsg(sock, msg);
655 EXPORT_SYMBOL(kernel_sendmsg);
658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
660 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
663 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
664 struct scm_timestamping tss;
666 struct skb_shared_hwtstamps *shhwtstamps =
669 /* Race occurred between timestamp enabling and packet
670 receiving. Fill in the current time for now. */
671 if (need_software_tstamp && skb->tstamp.tv64 == 0)
672 __net_timestamp(skb);
674 if (need_software_tstamp) {
675 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
677 skb_get_timestamp(skb, &tv);
678 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
682 skb_get_timestampns(skb, &ts);
683 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
688 memset(&tss, 0, sizeof(tss));
689 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
690 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
693 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
694 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
697 put_cmsg(msg, SOL_SOCKET,
698 SCM_TIMESTAMPING, sizeof(tss), &tss);
700 if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
701 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
702 skb->len, skb->data);
705 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
707 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
712 if (!sock_flag(sk, SOCK_WIFI_STATUS))
714 if (!skb->wifi_acked_valid)
717 ack = skb->wifi_acked;
719 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
721 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
723 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
726 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
727 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
728 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
731 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
734 sock_recv_timestamp(msg, sk, skb);
735 sock_recv_drops(msg, sk, skb);
737 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
739 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
742 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
745 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
747 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
749 return err ?: sock_recvmsg_nosec(sock, msg, flags);
751 EXPORT_SYMBOL(sock_recvmsg);
754 * kernel_recvmsg - Receive a message from a socket (kernel space)
755 * @sock: The socket to receive the message from
756 * @msg: Received message
757 * @vec: Input s/g array for message data
758 * @num: Size of input s/g array
759 * @size: Number of bytes to read
760 * @flags: Message flags (MSG_DONTWAIT, etc...)
762 * On return the msg structure contains the scatter/gather array passed in the
763 * vec argument. The array is modified so that it consists of the unfilled
764 * portion of the original array.
766 * The returned value is the total number of bytes received, or an error.
768 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
769 struct kvec *vec, size_t num, size_t size, int flags)
771 mm_segment_t oldfs = get_fs();
774 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
776 result = sock_recvmsg(sock, msg, flags);
780 EXPORT_SYMBOL(kernel_recvmsg);
782 static ssize_t sock_sendpage(struct file *file, struct page *page,
783 int offset, size_t size, loff_t *ppos, int more)
788 sock = file->private_data;
790 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
791 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
794 return kernel_sendpage(sock, page, offset, size, flags);
797 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
798 struct pipe_inode_info *pipe, size_t len,
801 struct socket *sock = file->private_data;
803 if (unlikely(!sock->ops->splice_read))
806 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
809 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
811 struct file *file = iocb->ki_filp;
812 struct socket *sock = file->private_data;
813 struct msghdr msg = {.msg_iter = *to,
817 if (file->f_flags & O_NONBLOCK)
818 msg.msg_flags = MSG_DONTWAIT;
820 if (iocb->ki_pos != 0)
823 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
826 res = sock_recvmsg(sock, &msg, msg.msg_flags);
831 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
833 struct file *file = iocb->ki_filp;
834 struct socket *sock = file->private_data;
835 struct msghdr msg = {.msg_iter = *from,
839 if (iocb->ki_pos != 0)
842 if (file->f_flags & O_NONBLOCK)
843 msg.msg_flags = MSG_DONTWAIT;
845 if (sock->type == SOCK_SEQPACKET)
846 msg.msg_flags |= MSG_EOR;
848 res = sock_sendmsg(sock, &msg);
849 *from = msg.msg_iter;
854 * Atomic setting of ioctl hooks to avoid race
855 * with module unload.
858 static DEFINE_MUTEX(br_ioctl_mutex);
859 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
861 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
863 mutex_lock(&br_ioctl_mutex);
864 br_ioctl_hook = hook;
865 mutex_unlock(&br_ioctl_mutex);
867 EXPORT_SYMBOL(brioctl_set);
869 static DEFINE_MUTEX(vlan_ioctl_mutex);
870 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
872 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
874 mutex_lock(&vlan_ioctl_mutex);
875 vlan_ioctl_hook = hook;
876 mutex_unlock(&vlan_ioctl_mutex);
878 EXPORT_SYMBOL(vlan_ioctl_set);
880 static DEFINE_MUTEX(dlci_ioctl_mutex);
881 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
883 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
885 mutex_lock(&dlci_ioctl_mutex);
886 dlci_ioctl_hook = hook;
887 mutex_unlock(&dlci_ioctl_mutex);
889 EXPORT_SYMBOL(dlci_ioctl_set);
891 static long sock_do_ioctl(struct net *net, struct socket *sock,
892 unsigned int cmd, unsigned long arg)
895 void __user *argp = (void __user *)arg;
897 err = sock->ops->ioctl(sock, cmd, arg);
900 * If this ioctl is unknown try to hand it down
903 if (err == -ENOIOCTLCMD)
904 err = dev_ioctl(net, cmd, argp);
910 * With an ioctl, arg may well be a user mode pointer, but we don't know
911 * what to do with it - that's up to the protocol still.
914 static struct ns_common *get_net_ns(struct ns_common *ns)
916 return &get_net(container_of(ns, struct net, ns))->ns;
919 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
923 void __user *argp = (void __user *)arg;
927 sock = file->private_data;
930 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
931 err = dev_ioctl(net, cmd, argp);
933 #ifdef CONFIG_WEXT_CORE
934 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
935 err = dev_ioctl(net, cmd, argp);
942 if (get_user(pid, (int __user *)argp))
944 f_setown(sock->file, pid, 1);
949 err = put_user(f_getown(sock->file),
958 request_module("bridge");
960 mutex_lock(&br_ioctl_mutex);
962 err = br_ioctl_hook(net, cmd, argp);
963 mutex_unlock(&br_ioctl_mutex);
968 if (!vlan_ioctl_hook)
969 request_module("8021q");
971 mutex_lock(&vlan_ioctl_mutex);
973 err = vlan_ioctl_hook(net, argp);
974 mutex_unlock(&vlan_ioctl_mutex);
979 if (!dlci_ioctl_hook)
980 request_module("dlci");
982 mutex_lock(&dlci_ioctl_mutex);
984 err = dlci_ioctl_hook(cmd, argp);
985 mutex_unlock(&dlci_ioctl_mutex);
989 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
992 err = open_related_ns(&net->ns, get_net_ns);
995 err = sock_do_ioctl(net, sock, cmd, arg);
1001 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1004 struct socket *sock = NULL;
1006 err = security_socket_create(family, type, protocol, 1);
1010 sock = sock_alloc();
1017 err = security_socket_post_create(sock, family, type, protocol, 1);
1029 EXPORT_SYMBOL(sock_create_lite);
1031 /* No kernel lock held - perfect */
1032 static unsigned int sock_poll(struct file *file, poll_table *wait)
1034 unsigned int busy_flag = 0;
1035 struct socket *sock;
1038 * We can't return errors to poll, so it's either yes or no.
1040 sock = file->private_data;
1042 if (sk_can_busy_loop(sock->sk)) {
1043 /* this socket can poll_ll so tell the system call */
1044 busy_flag = POLL_BUSY_LOOP;
1046 /* once, only if requested by syscall */
1047 if (wait && (wait->_key & POLL_BUSY_LOOP))
1048 sk_busy_loop(sock->sk, 1);
1051 return busy_flag | sock->ops->poll(file, sock, wait);
1054 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1056 struct socket *sock = file->private_data;
1058 return sock->ops->mmap(file, sock, vma);
1061 static int sock_close(struct inode *inode, struct file *filp)
1063 sock_release(SOCKET_I(inode));
1068 * Update the socket async list
1070 * Fasync_list locking strategy.
1072 * 1. fasync_list is modified only under process context socket lock
1073 * i.e. under semaphore.
1074 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 * or under socket lock
1078 static int sock_fasync(int fd, struct file *filp, int on)
1080 struct socket *sock = filp->private_data;
1081 struct sock *sk = sock->sk;
1082 struct socket_wq *wq;
1088 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089 fasync_helper(fd, filp, on, &wq->fasync_list);
1091 if (!wq->fasync_list)
1092 sock_reset_flag(sk, SOCK_FASYNC);
1094 sock_set_flag(sk, SOCK_FASYNC);
1100 /* This function may be called only under rcu_lock */
1102 int sock_wake_async(struct socket_wq *wq, int how, int band)
1104 if (!wq || !wq->fasync_list)
1108 case SOCK_WAKE_WAITD:
1109 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1112 case SOCK_WAKE_SPACE:
1113 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1118 kill_fasync(&wq->fasync_list, SIGIO, band);
1121 kill_fasync(&wq->fasync_list, SIGURG, band);
1126 EXPORT_SYMBOL(sock_wake_async);
1128 int __sock_create(struct net *net, int family, int type, int protocol,
1129 struct socket **res, int kern)
1132 struct socket *sock;
1133 const struct net_proto_family *pf;
1136 * Check protocol is in range
1138 if (family < 0 || family >= NPROTO)
1139 return -EAFNOSUPPORT;
1140 if (type < 0 || type >= SOCK_MAX)
1145 This uglymoron is moved from INET layer to here to avoid
1146 deadlock in module load.
1148 if (family == PF_INET && type == SOCK_PACKET) {
1149 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1154 err = security_socket_create(family, type, protocol, kern);
1159 * Allocate the socket and allow the family to set things up. if
1160 * the protocol is 0, the family is instructed to select an appropriate
1163 sock = sock_alloc();
1165 net_warn_ratelimited("socket: no more sockets\n");
1166 return -ENFILE; /* Not exactly a match, but its the
1167 closest posix thing */
1172 #ifdef CONFIG_MODULES
1173 /* Attempt to load a protocol module if the find failed.
1175 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176 * requested real, full-featured networking support upon configuration.
1177 * Otherwise module support will break!
1179 if (rcu_access_pointer(net_families[family]) == NULL)
1180 request_module("net-pf-%d", family);
1184 pf = rcu_dereference(net_families[family]);
1185 err = -EAFNOSUPPORT;
1190 * We will call the ->create function, that possibly is in a loadable
1191 * module, so we have to bump that loadable module refcnt first.
1193 if (!try_module_get(pf->owner))
1196 /* Now protected by module ref count */
1199 err = pf->create(net, sock, protocol, kern);
1201 goto out_module_put;
1204 * Now to bump the refcnt of the [loadable] module that owns this
1205 * socket at sock_release time we decrement its refcnt.
1207 if (!try_module_get(sock->ops->owner))
1208 goto out_module_busy;
1211 * Now that we're done with the ->create function, the [loadable]
1212 * module can have its refcnt decremented
1214 module_put(pf->owner);
1215 err = security_socket_post_create(sock, family, type, protocol, kern);
1217 goto out_sock_release;
1223 err = -EAFNOSUPPORT;
1226 module_put(pf->owner);
1233 goto out_sock_release;
1235 EXPORT_SYMBOL(__sock_create);
1237 int sock_create(int family, int type, int protocol, struct socket **res)
1239 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1241 EXPORT_SYMBOL(sock_create);
1243 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1245 return __sock_create(net, family, type, protocol, res, 1);
1247 EXPORT_SYMBOL(sock_create_kern);
1249 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1252 struct socket *sock;
1255 /* Check the SOCK_* constants for consistency. */
1256 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1261 flags = type & ~SOCK_TYPE_MASK;
1262 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1264 type &= SOCK_TYPE_MASK;
1266 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1269 retval = sock_create(family, type, protocol, &sock);
1273 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1278 /* It may be already another descriptor 8) Not kernel problem. */
1287 * Create a pair of connected sockets.
1290 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291 int __user *, usockvec)
1293 struct socket *sock1, *sock2;
1295 struct file *newfile1, *newfile2;
1298 flags = type & ~SOCK_TYPE_MASK;
1299 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1301 type &= SOCK_TYPE_MASK;
1303 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1307 * Obtain the first socket and check if the underlying protocol
1308 * supports the socketpair call.
1311 err = sock_create(family, type, protocol, &sock1);
1315 err = sock_create(family, type, protocol, &sock2);
1319 err = sock1->ops->socketpair(sock1, sock2);
1321 goto out_release_both;
1323 fd1 = get_unused_fd_flags(flags);
1324 if (unlikely(fd1 < 0)) {
1326 goto out_release_both;
1329 fd2 = get_unused_fd_flags(flags);
1330 if (unlikely(fd2 < 0)) {
1332 goto out_put_unused_1;
1335 newfile1 = sock_alloc_file(sock1, flags, NULL);
1336 if (IS_ERR(newfile1)) {
1337 err = PTR_ERR(newfile1);
1338 goto out_put_unused_both;
1341 newfile2 = sock_alloc_file(sock2, flags, NULL);
1342 if (IS_ERR(newfile2)) {
1343 err = PTR_ERR(newfile2);
1347 err = put_user(fd1, &usockvec[0]);
1351 err = put_user(fd2, &usockvec[1]);
1355 audit_fd_pair(fd1, fd2);
1357 fd_install(fd1, newfile1);
1358 fd_install(fd2, newfile2);
1359 /* fd1 and fd2 may be already another descriptors.
1360 * Not kernel problem.
1376 sock_release(sock2);
1379 out_put_unused_both:
1384 sock_release(sock2);
1386 sock_release(sock1);
1392 * Bind a name to a socket. Nothing much to do here since it's
1393 * the protocol's responsibility to handle the local address.
1395 * We move the socket address to kernel space before we call
1396 * the protocol layer (having also checked the address is ok).
1399 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1401 struct socket *sock;
1402 struct sockaddr_storage address;
1403 int err, fput_needed;
1405 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1407 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1409 err = security_socket_bind(sock,
1410 (struct sockaddr *)&address,
1413 err = sock->ops->bind(sock,
1417 fput_light(sock->file, fput_needed);
1423 * Perform a listen. Basically, we allow the protocol to do anything
1424 * necessary for a listen, and if that works, we mark the socket as
1425 * ready for listening.
1428 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1430 struct socket *sock;
1431 int err, fput_needed;
1434 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1436 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437 if ((unsigned int)backlog > somaxconn)
1438 backlog = somaxconn;
1440 err = security_socket_listen(sock, backlog);
1442 err = sock->ops->listen(sock, backlog);
1444 fput_light(sock->file, fput_needed);
1450 * For accept, we attempt to create a new socket, set up the link
1451 * with the client, wake up the client, then return the new
1452 * connected fd. We collect the address of the connector in kernel
1453 * space and move it to user at the very end. This is unclean because
1454 * we open the socket then return an error.
1456 * 1003.1g adds the ability to recvmsg() to query connection pending
1457 * status to recvmsg. We need to add that support in a way thats
1458 * clean when we restucture accept also.
1461 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462 int __user *, upeer_addrlen, int, flags)
1464 struct socket *sock, *newsock;
1465 struct file *newfile;
1466 int err, len, newfd, fput_needed;
1467 struct sockaddr_storage address;
1469 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1472 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1475 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 newsock = sock_alloc();
1484 newsock->type = sock->type;
1485 newsock->ops = sock->ops;
1488 * We don't need try_module_get here, as the listening socket (sock)
1489 * has the protocol module (sock->ops->owner) held.
1491 __module_get(newsock->ops->owner);
1493 newfd = get_unused_fd_flags(flags);
1494 if (unlikely(newfd < 0)) {
1496 sock_release(newsock);
1499 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500 if (IS_ERR(newfile)) {
1501 err = PTR_ERR(newfile);
1502 put_unused_fd(newfd);
1503 sock_release(newsock);
1507 err = security_socket_accept(sock, newsock);
1511 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1515 if (upeer_sockaddr) {
1516 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1518 err = -ECONNABORTED;
1521 err = move_addr_to_user(&address,
1522 len, upeer_sockaddr, upeer_addrlen);
1527 /* File flags are not inherited via accept() unlike another OSes. */
1529 fd_install(newfd, newfile);
1533 fput_light(sock->file, fput_needed);
1538 put_unused_fd(newfd);
1542 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543 int __user *, upeer_addrlen)
1545 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1549 * Attempt to connect to a socket with the server address. The address
1550 * is in user space so we verify it is OK and move it to kernel space.
1552 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1555 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 * other SEQPACKET protocols that take time to connect() as it doesn't
1557 * include the -EINPROGRESS status for such sockets.
1560 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1563 struct socket *sock;
1564 struct sockaddr_storage address;
1565 int err, fput_needed;
1567 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1570 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1575 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1579 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580 sock->file->f_flags);
1582 fput_light(sock->file, fput_needed);
1588 * Get the local address ('name') of a socket object. Move the obtained
1589 * name to user space.
1592 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593 int __user *, usockaddr_len)
1595 struct socket *sock;
1596 struct sockaddr_storage address;
1597 int len, err, fput_needed;
1599 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1603 err = security_socket_getsockname(sock);
1607 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1610 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1613 fput_light(sock->file, fput_needed);
1619 * Get the remote address ('name') of a socket object. Move the obtained
1620 * name to user space.
1623 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624 int __user *, usockaddr_len)
1626 struct socket *sock;
1627 struct sockaddr_storage address;
1628 int len, err, fput_needed;
1630 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1632 err = security_socket_getpeername(sock);
1634 fput_light(sock->file, fput_needed);
1639 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1642 err = move_addr_to_user(&address, len, usockaddr,
1644 fput_light(sock->file, fput_needed);
1650 * Send a datagram to a given address. We move the address into kernel
1651 * space and check the user space data area is readable before invoking
1655 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656 unsigned int, flags, struct sockaddr __user *, addr,
1659 struct socket *sock;
1660 struct sockaddr_storage address;
1666 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1669 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1673 msg.msg_name = NULL;
1674 msg.msg_control = NULL;
1675 msg.msg_controllen = 0;
1676 msg.msg_namelen = 0;
1678 err = move_addr_to_kernel(addr, addr_len, &address);
1681 msg.msg_name = (struct sockaddr *)&address;
1682 msg.msg_namelen = addr_len;
1684 if (sock->file->f_flags & O_NONBLOCK)
1685 flags |= MSG_DONTWAIT;
1686 msg.msg_flags = flags;
1687 err = sock_sendmsg(sock, &msg);
1690 fput_light(sock->file, fput_needed);
1696 * Send a datagram down a socket.
1699 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700 unsigned int, flags)
1702 return sys_sendto(fd, buff, len, flags, NULL, 0);
1706 * Receive a frame from the socket and optionally record the address of the
1707 * sender. We verify the buffers are writable and if needed move the
1708 * sender address from kernel to user space.
1711 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712 unsigned int, flags, struct sockaddr __user *, addr,
1713 int __user *, addr_len)
1715 struct socket *sock;
1718 struct sockaddr_storage address;
1722 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1725 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1729 msg.msg_control = NULL;
1730 msg.msg_controllen = 0;
1731 /* Save some cycles and don't copy the address if not needed */
1732 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733 /* We assume all kernel code knows the size of sockaddr_storage */
1734 msg.msg_namelen = 0;
1735 msg.msg_iocb = NULL;
1736 if (sock->file->f_flags & O_NONBLOCK)
1737 flags |= MSG_DONTWAIT;
1738 err = sock_recvmsg(sock, &msg, flags);
1740 if (err >= 0 && addr != NULL) {
1741 err2 = move_addr_to_user(&address,
1742 msg.msg_namelen, addr, addr_len);
1747 fput_light(sock->file, fput_needed);
1753 * Receive a datagram from a socket.
1756 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757 unsigned int, flags)
1759 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1763 * Set a socket option. Because we don't know the option lengths we have
1764 * to pass the user mode parameter for the protocols to sort out.
1767 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768 char __user *, optval, int, optlen)
1770 int err, fput_needed;
1771 struct socket *sock;
1776 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1778 err = security_socket_setsockopt(sock, level, optname);
1782 if (level == SOL_SOCKET)
1784 sock_setsockopt(sock, level, optname, optval,
1788 sock->ops->setsockopt(sock, level, optname, optval,
1791 fput_light(sock->file, fput_needed);
1797 * Get a socket option. Because we don't know the option lengths we have
1798 * to pass a user mode parameter for the protocols to sort out.
1801 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802 char __user *, optval, int __user *, optlen)
1804 int err, fput_needed;
1805 struct socket *sock;
1807 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1809 err = security_socket_getsockopt(sock, level, optname);
1813 if (level == SOL_SOCKET)
1815 sock_getsockopt(sock, level, optname, optval,
1819 sock->ops->getsockopt(sock, level, optname, optval,
1822 fput_light(sock->file, fput_needed);
1828 * Shutdown a socket.
1831 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1833 int err, fput_needed;
1834 struct socket *sock;
1836 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1838 err = security_socket_shutdown(sock, how);
1840 err = sock->ops->shutdown(sock, how);
1841 fput_light(sock->file, fput_needed);
1846 /* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1849 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1851 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1853 struct used_address {
1854 struct sockaddr_storage name;
1855 unsigned int name_len;
1858 static int copy_msghdr_from_user(struct msghdr *kmsg,
1859 struct user_msghdr __user *umsg,
1860 struct sockaddr __user **save_addr,
1863 struct sockaddr __user *uaddr;
1864 struct iovec __user *uiov;
1868 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869 __get_user(uaddr, &umsg->msg_name) ||
1870 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871 __get_user(uiov, &umsg->msg_iov) ||
1872 __get_user(nr_segs, &umsg->msg_iovlen) ||
1873 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1879 kmsg->msg_namelen = 0;
1881 if (kmsg->msg_namelen < 0)
1884 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1890 if (uaddr && kmsg->msg_namelen) {
1892 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1898 kmsg->msg_name = NULL;
1899 kmsg->msg_namelen = 0;
1902 if (nr_segs > UIO_MAXIOV)
1905 kmsg->msg_iocb = NULL;
1907 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1908 UIO_FASTIOV, iov, &kmsg->msg_iter);
1911 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912 struct msghdr *msg_sys, unsigned int flags,
1913 struct used_address *used_address,
1914 unsigned int allowed_msghdr_flags)
1916 struct compat_msghdr __user *msg_compat =
1917 (struct compat_msghdr __user *)msg;
1918 struct sockaddr_storage address;
1919 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921 __aligned(sizeof(__kernel_size_t));
1922 /* 20 is size of ipv6_pktinfo */
1923 unsigned char *ctl_buf = ctl;
1927 msg_sys->msg_name = &address;
1929 if (MSG_CMSG_COMPAT & flags)
1930 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1932 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1938 if (msg_sys->msg_controllen > INT_MAX)
1940 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941 ctl_len = msg_sys->msg_controllen;
1942 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1944 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1948 ctl_buf = msg_sys->msg_control;
1949 ctl_len = msg_sys->msg_controllen;
1950 } else if (ctl_len) {
1951 if (ctl_len > sizeof(ctl)) {
1952 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953 if (ctl_buf == NULL)
1958 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960 * checking falls down on this.
1962 if (copy_from_user(ctl_buf,
1963 (void __user __force *)msg_sys->msg_control,
1966 msg_sys->msg_control = ctl_buf;
1968 msg_sys->msg_flags = flags;
1970 if (sock->file->f_flags & O_NONBLOCK)
1971 msg_sys->msg_flags |= MSG_DONTWAIT;
1973 * If this is sendmmsg() and current destination address is same as
1974 * previously succeeded address, omit asking LSM's decision.
1975 * used_address->name_len is initialized to UINT_MAX so that the first
1976 * destination address never matches.
1978 if (used_address && msg_sys->msg_name &&
1979 used_address->name_len == msg_sys->msg_namelen &&
1980 !memcmp(&used_address->name, msg_sys->msg_name,
1981 used_address->name_len)) {
1982 err = sock_sendmsg_nosec(sock, msg_sys);
1985 err = sock_sendmsg(sock, msg_sys);
1987 * If this is sendmmsg() and sending to current destination address was
1988 * successful, remember it.
1990 if (used_address && err >= 0) {
1991 used_address->name_len = msg_sys->msg_namelen;
1992 if (msg_sys->msg_name)
1993 memcpy(&used_address->name, msg_sys->msg_name,
1994 used_address->name_len);
1999 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2006 * BSD sendmsg interface
2009 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2011 int fput_needed, err;
2012 struct msghdr msg_sys;
2013 struct socket *sock;
2015 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2019 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2021 fput_light(sock->file, fput_needed);
2026 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2028 if (flags & MSG_CMSG_COMPAT)
2030 return __sys_sendmsg(fd, msg, flags);
2034 * Linux sendmmsg interface
2037 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2040 int fput_needed, err, datagrams;
2041 struct socket *sock;
2042 struct mmsghdr __user *entry;
2043 struct compat_mmsghdr __user *compat_entry;
2044 struct msghdr msg_sys;
2045 struct used_address used_address;
2046 unsigned int oflags = flags;
2048 if (vlen > UIO_MAXIOV)
2053 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2057 used_address.name_len = UINT_MAX;
2059 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2063 while (datagrams < vlen) {
2064 if (datagrams == vlen - 1)
2067 if (MSG_CMSG_COMPAT & flags) {
2068 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069 &msg_sys, flags, &used_address, MSG_EOR);
2072 err = __put_user(err, &compat_entry->msg_len);
2075 err = ___sys_sendmsg(sock,
2076 (struct user_msghdr __user *)entry,
2077 &msg_sys, flags, &used_address, MSG_EOR);
2080 err = put_user(err, &entry->msg_len);
2087 if (msg_data_left(&msg_sys))
2092 fput_light(sock->file, fput_needed);
2094 /* We only return an error if no datagrams were able to be sent */
2101 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102 unsigned int, vlen, unsigned int, flags)
2104 if (flags & MSG_CMSG_COMPAT)
2106 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2109 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110 struct msghdr *msg_sys, unsigned int flags, int nosec)
2112 struct compat_msghdr __user *msg_compat =
2113 (struct compat_msghdr __user *)msg;
2114 struct iovec iovstack[UIO_FASTIOV];
2115 struct iovec *iov = iovstack;
2116 unsigned long cmsg_ptr;
2120 /* kernel mode address */
2121 struct sockaddr_storage addr;
2123 /* user mode address pointers */
2124 struct sockaddr __user *uaddr;
2125 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2127 msg_sys->msg_name = &addr;
2129 if (MSG_CMSG_COMPAT & flags)
2130 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2132 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2136 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2139 /* We assume all kernel code knows the size of sockaddr_storage */
2140 msg_sys->msg_namelen = 0;
2142 if (sock->file->f_flags & O_NONBLOCK)
2143 flags |= MSG_DONTWAIT;
2144 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2149 if (uaddr != NULL) {
2150 err = move_addr_to_user(&addr,
2151 msg_sys->msg_namelen, uaddr,
2156 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2160 if (MSG_CMSG_COMPAT & flags)
2161 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162 &msg_compat->msg_controllen);
2164 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165 &msg->msg_controllen);
2176 * BSD recvmsg interface
2179 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2181 int fput_needed, err;
2182 struct msghdr msg_sys;
2183 struct socket *sock;
2185 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2189 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2191 fput_light(sock->file, fput_needed);
2196 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197 unsigned int, flags)
2199 if (flags & MSG_CMSG_COMPAT)
2201 return __sys_recvmsg(fd, msg, flags);
2205 * Linux recvmmsg interface
2208 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209 unsigned int flags, struct timespec *timeout)
2211 int fput_needed, err, datagrams;
2212 struct socket *sock;
2213 struct mmsghdr __user *entry;
2214 struct compat_mmsghdr __user *compat_entry;
2215 struct msghdr msg_sys;
2216 struct timespec64 end_time;
2217 struct timespec64 timeout64;
2220 poll_select_set_timeout(&end_time, timeout->tv_sec,
2226 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2230 err = sock_error(sock->sk);
2235 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2237 while (datagrams < vlen) {
2239 * No need to ask LSM for more than the first datagram.
2241 if (MSG_CMSG_COMPAT & flags) {
2242 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2243 &msg_sys, flags & ~MSG_WAITFORONE,
2247 err = __put_user(err, &compat_entry->msg_len);
2250 err = ___sys_recvmsg(sock,
2251 (struct user_msghdr __user *)entry,
2252 &msg_sys, flags & ~MSG_WAITFORONE,
2256 err = put_user(err, &entry->msg_len);
2264 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265 if (flags & MSG_WAITFORONE)
2266 flags |= MSG_DONTWAIT;
2269 ktime_get_ts64(&timeout64);
2270 *timeout = timespec64_to_timespec(
2271 timespec64_sub(end_time, timeout64));
2272 if (timeout->tv_sec < 0) {
2273 timeout->tv_sec = timeout->tv_nsec = 0;
2277 /* Timeout, return less than vlen datagrams */
2278 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2282 /* Out of band data, return right away */
2283 if (msg_sys.msg_flags & MSG_OOB)
2291 if (datagrams == 0) {
2297 * We may return less entries than requested (vlen) if the
2298 * sock is non block and there aren't enough datagrams...
2300 if (err != -EAGAIN) {
2302 * ... or if recvmsg returns an error after we
2303 * received some datagrams, where we record the
2304 * error to return on the next call or if the
2305 * app asks about it using getsockopt(SO_ERROR).
2307 sock->sk->sk_err = -err;
2310 fput_light(sock->file, fput_needed);
2315 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2316 unsigned int, vlen, unsigned int, flags,
2317 struct timespec __user *, timeout)
2320 struct timespec timeout_sys;
2322 if (flags & MSG_CMSG_COMPAT)
2326 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2328 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2331 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2333 if (datagrams > 0 &&
2334 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2335 datagrams = -EFAULT;
2340 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2341 /* Argument list sizes for sys_socketcall */
2342 #define AL(x) ((x) * sizeof(unsigned long))
2343 static const unsigned char nargs[21] = {
2344 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2345 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2346 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2353 * System call vectors.
2355 * Argument checking cleaned up. Saved 20% in size.
2356 * This function doesn't need to set the kernel lock because
2357 * it is set by the callees.
2360 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2362 unsigned long a[AUDITSC_ARGS];
2363 unsigned long a0, a1;
2367 if (call < 1 || call > SYS_SENDMMSG)
2371 if (len > sizeof(a))
2374 /* copy_from_user should be SMP safe. */
2375 if (copy_from_user(a, args, len))
2378 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2387 err = sys_socket(a0, a1, a[2]);
2390 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396 err = sys_listen(a0, a1);
2399 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2400 (int __user *)a[2], 0);
2402 case SYS_GETSOCKNAME:
2404 sys_getsockname(a0, (struct sockaddr __user *)a1,
2405 (int __user *)a[2]);
2407 case SYS_GETPEERNAME:
2409 sys_getpeername(a0, (struct sockaddr __user *)a1,
2410 (int __user *)a[2]);
2412 case SYS_SOCKETPAIR:
2413 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2419 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2420 (struct sockaddr __user *)a[4], a[5]);
2423 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2426 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2427 (struct sockaddr __user *)a[4],
2428 (int __user *)a[5]);
2431 err = sys_shutdown(a0, a1);
2433 case SYS_SETSOCKOPT:
2434 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2436 case SYS_GETSOCKOPT:
2438 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2439 (int __user *)a[4]);
2442 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2445 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2448 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2451 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2452 (struct timespec __user *)a[4]);
2455 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2456 (int __user *)a[2], a[3]);
2465 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2468 * sock_register - add a socket protocol handler
2469 * @ops: description of protocol
2471 * This function is called by a protocol handler that wants to
2472 * advertise its address family, and have it linked into the
2473 * socket interface. The value ops->family corresponds to the
2474 * socket system call protocol family.
2476 int sock_register(const struct net_proto_family *ops)
2480 if (ops->family >= NPROTO) {
2481 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2485 spin_lock(&net_family_lock);
2486 if (rcu_dereference_protected(net_families[ops->family],
2487 lockdep_is_held(&net_family_lock)))
2490 rcu_assign_pointer(net_families[ops->family], ops);
2493 spin_unlock(&net_family_lock);
2495 pr_info("NET: Registered protocol family %d\n", ops->family);
2498 EXPORT_SYMBOL(sock_register);
2501 * sock_unregister - remove a protocol handler
2502 * @family: protocol family to remove
2504 * This function is called by a protocol handler that wants to
2505 * remove its address family, and have it unlinked from the
2506 * new socket creation.
2508 * If protocol handler is a module, then it can use module reference
2509 * counts to protect against new references. If protocol handler is not
2510 * a module then it needs to provide its own protection in
2511 * the ops->create routine.
2513 void sock_unregister(int family)
2515 BUG_ON(family < 0 || family >= NPROTO);
2517 spin_lock(&net_family_lock);
2518 RCU_INIT_POINTER(net_families[family], NULL);
2519 spin_unlock(&net_family_lock);
2523 pr_info("NET: Unregistered protocol family %d\n", family);
2525 EXPORT_SYMBOL(sock_unregister);
2527 static int __init sock_init(void)
2531 * Initialize the network sysctl infrastructure.
2533 err = net_sysctl_init();
2538 * Initialize skbuff SLAB cache
2543 * Initialize the protocols module.
2548 err = register_filesystem(&sock_fs_type);
2551 sock_mnt = kern_mount(&sock_fs_type);
2552 if (IS_ERR(sock_mnt)) {
2553 err = PTR_ERR(sock_mnt);
2557 /* The real protocol initialization is performed in later initcalls.
2560 #ifdef CONFIG_NETFILTER
2561 err = netfilter_init();
2566 ptp_classifier_init();
2572 unregister_filesystem(&sock_fs_type);
2577 core_initcall(sock_init); /* early initcall */
2579 #ifdef CONFIG_PROC_FS
2580 void socket_seq_show(struct seq_file *seq)
2585 for_each_possible_cpu(cpu)
2586 counter += per_cpu(sockets_in_use, cpu);
2588 /* It can be negative, by the way. 8) */
2592 seq_printf(seq, "sockets: used %d\n", counter);
2594 #endif /* CONFIG_PROC_FS */
2596 #ifdef CONFIG_COMPAT
2597 static int do_siocgstamp(struct net *net, struct socket *sock,
2598 unsigned int cmd, void __user *up)
2600 mm_segment_t old_fs = get_fs();
2605 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2608 err = compat_put_timeval(&ktv, up);
2613 static int do_siocgstampns(struct net *net, struct socket *sock,
2614 unsigned int cmd, void __user *up)
2616 mm_segment_t old_fs = get_fs();
2617 struct timespec kts;
2621 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2624 err = compat_put_timespec(&kts, up);
2629 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2631 struct ifreq __user *uifr;
2634 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2635 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2638 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2642 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2648 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2650 struct compat_ifconf ifc32;
2652 struct ifconf __user *uifc;
2653 struct compat_ifreq __user *ifr32;
2654 struct ifreq __user *ifr;
2658 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2661 memset(&ifc, 0, sizeof(ifc));
2662 if (ifc32.ifcbuf == 0) {
2666 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2668 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2669 sizeof(struct ifreq);
2670 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2672 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2673 ifr32 = compat_ptr(ifc32.ifcbuf);
2674 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2675 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2681 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2684 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2688 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2692 ifr32 = compat_ptr(ifc32.ifcbuf);
2694 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2695 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2696 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2702 if (ifc32.ifcbuf == 0) {
2703 /* Translate from 64-bit structure multiple to
2707 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2712 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2718 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2720 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2721 bool convert_in = false, convert_out = false;
2722 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2723 struct ethtool_rxnfc __user *rxnfc;
2724 struct ifreq __user *ifr;
2725 u32 rule_cnt = 0, actual_rule_cnt;
2730 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2733 compat_rxnfc = compat_ptr(data);
2735 if (get_user(ethcmd, &compat_rxnfc->cmd))
2738 /* Most ethtool structures are defined without padding.
2739 * Unfortunately struct ethtool_rxnfc is an exception.
2744 case ETHTOOL_GRXCLSRLALL:
2745 /* Buffer size is variable */
2746 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2748 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2750 buf_size += rule_cnt * sizeof(u32);
2752 case ETHTOOL_GRXRINGS:
2753 case ETHTOOL_GRXCLSRLCNT:
2754 case ETHTOOL_GRXCLSRULE:
2755 case ETHTOOL_SRXCLSRLINS:
2758 case ETHTOOL_SRXCLSRLDEL:
2759 buf_size += sizeof(struct ethtool_rxnfc);
2764 ifr = compat_alloc_user_space(buf_size);
2765 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2767 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2770 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2771 &ifr->ifr_ifru.ifru_data))
2775 /* We expect there to be holes between fs.m_ext and
2776 * fs.ring_cookie and at the end of fs, but nowhere else.
2778 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2779 sizeof(compat_rxnfc->fs.m_ext) !=
2780 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2781 sizeof(rxnfc->fs.m_ext));
2783 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2784 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2785 offsetof(struct ethtool_rxnfc, fs.location) -
2786 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2788 if (copy_in_user(rxnfc, compat_rxnfc,
2789 (void __user *)(&rxnfc->fs.m_ext + 1) -
2790 (void __user *)rxnfc) ||
2791 copy_in_user(&rxnfc->fs.ring_cookie,
2792 &compat_rxnfc->fs.ring_cookie,
2793 (void __user *)(&rxnfc->fs.location + 1) -
2794 (void __user *)&rxnfc->fs.ring_cookie) ||
2795 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2796 sizeof(rxnfc->rule_cnt)))
2800 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2805 if (copy_in_user(compat_rxnfc, rxnfc,
2806 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2807 (const void __user *)rxnfc) ||
2808 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2809 &rxnfc->fs.ring_cookie,
2810 (const void __user *)(&rxnfc->fs.location + 1) -
2811 (const void __user *)&rxnfc->fs.ring_cookie) ||
2812 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2813 sizeof(rxnfc->rule_cnt)))
2816 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2817 /* As an optimisation, we only copy the actual
2818 * number of rules that the underlying
2819 * function returned. Since Mallory might
2820 * change the rule count in user memory, we
2821 * check that it is less than the rule count
2822 * originally given (as the user buffer size),
2823 * which has been range-checked.
2825 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2827 if (actual_rule_cnt < rule_cnt)
2828 rule_cnt = actual_rule_cnt;
2829 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2830 &rxnfc->rule_locs[0],
2831 rule_cnt * sizeof(u32)))
2839 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2842 compat_uptr_t uptr32;
2843 struct ifreq __user *uifr;
2845 uifr = compat_alloc_user_space(sizeof(*uifr));
2846 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2849 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2852 uptr = compat_ptr(uptr32);
2854 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2857 return dev_ioctl(net, SIOCWANDEV, uifr);
2860 static int bond_ioctl(struct net *net, unsigned int cmd,
2861 struct compat_ifreq __user *ifr32)
2864 mm_segment_t old_fs;
2868 case SIOCBONDENSLAVE:
2869 case SIOCBONDRELEASE:
2870 case SIOCBONDSETHWADDR:
2871 case SIOCBONDCHANGEACTIVE:
2872 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2877 err = dev_ioctl(net, cmd,
2878 (struct ifreq __user __force *) &kifr);
2883 return -ENOIOCTLCMD;
2887 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2888 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2889 struct compat_ifreq __user *u_ifreq32)
2891 struct ifreq __user *u_ifreq64;
2892 char tmp_buf[IFNAMSIZ];
2893 void __user *data64;
2896 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2901 data64 = compat_ptr(data32);
2903 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2905 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2908 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2911 return dev_ioctl(net, cmd, u_ifreq64);
2914 static int dev_ifsioc(struct net *net, struct socket *sock,
2915 unsigned int cmd, struct compat_ifreq __user *uifr32)
2917 struct ifreq __user *uifr;
2920 uifr = compat_alloc_user_space(sizeof(*uifr));
2921 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2924 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2935 case SIOCGIFBRDADDR:
2936 case SIOCGIFDSTADDR:
2937 case SIOCGIFNETMASK:
2942 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2950 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2951 struct compat_ifreq __user *uifr32)
2954 struct compat_ifmap __user *uifmap32;
2955 mm_segment_t old_fs;
2958 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2959 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2960 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2961 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2962 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2963 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2964 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2965 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2971 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2974 if (cmd == SIOCGIFMAP && !err) {
2975 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2976 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2977 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2978 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2979 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2980 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2981 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2990 struct sockaddr rt_dst; /* target address */
2991 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2992 struct sockaddr rt_genmask; /* target network mask (IP) */
2993 unsigned short rt_flags;
2996 unsigned char rt_tos;
2997 unsigned char rt_class;
2999 short rt_metric; /* +1 for binary compatibility! */
3000 /* char * */ u32 rt_dev; /* forcing the device at add */
3001 u32 rt_mtu; /* per route MTU/Window */
3002 u32 rt_window; /* Window clamping */
3003 unsigned short rt_irtt; /* Initial RTT */
3006 struct in6_rtmsg32 {
3007 struct in6_addr rtmsg_dst;
3008 struct in6_addr rtmsg_src;
3009 struct in6_addr rtmsg_gateway;
3019 static int routing_ioctl(struct net *net, struct socket *sock,
3020 unsigned int cmd, void __user *argp)
3024 struct in6_rtmsg r6;
3028 mm_segment_t old_fs = get_fs();
3030 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3031 struct in6_rtmsg32 __user *ur6 = argp;
3032 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3033 3 * sizeof(struct in6_addr));
3034 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3035 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3036 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3037 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3038 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3039 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3040 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3044 struct rtentry32 __user *ur4 = argp;
3045 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3046 3 * sizeof(struct sockaddr));
3047 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3048 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3049 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3050 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3051 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3052 ret |= get_user(rtdev, &(ur4->rt_dev));
3054 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3055 r4.rt_dev = (char __user __force *)devname;
3069 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3076 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3077 * for some operations; this forces use of the newer bridge-utils that
3078 * use compatible ioctls
3080 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3084 if (get_user(tmp, argp))
3086 if (tmp == BRCTL_GET_VERSION)
3087 return BRCTL_VERSION + 1;
3091 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3092 unsigned int cmd, unsigned long arg)
3094 void __user *argp = compat_ptr(arg);
3095 struct sock *sk = sock->sk;
3096 struct net *net = sock_net(sk);
3098 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3099 return compat_ifr_data_ioctl(net, cmd, argp);
3104 return old_bridge_ioctl(argp);
3106 return dev_ifname32(net, argp);
3108 return dev_ifconf(net, argp);
3110 return ethtool_ioctl(net, argp);
3112 return compat_siocwandev(net, argp);
3115 return compat_sioc_ifmap(net, cmd, argp);
3116 case SIOCBONDENSLAVE:
3117 case SIOCBONDRELEASE:
3118 case SIOCBONDSETHWADDR:
3119 case SIOCBONDCHANGEACTIVE:
3120 return bond_ioctl(net, cmd, argp);
3123 return routing_ioctl(net, sock, cmd, argp);
3125 return do_siocgstamp(net, sock, cmd, argp);
3127 return do_siocgstampns(net, sock, cmd, argp);
3128 case SIOCBONDSLAVEINFOQUERY:
3129 case SIOCBONDINFOQUERY:
3132 return compat_ifr_data_ioctl(net, cmd, argp);
3145 return sock_ioctl(file, cmd, arg);
3162 case SIOCSIFHWBROADCAST:
3164 case SIOCGIFBRDADDR:
3165 case SIOCSIFBRDADDR:
3166 case SIOCGIFDSTADDR:
3167 case SIOCSIFDSTADDR:
3168 case SIOCGIFNETMASK:
3169 case SIOCSIFNETMASK:
3180 return dev_ifsioc(net, sock, cmd, argp);
3186 return sock_do_ioctl(net, sock, cmd, arg);
3189 return -ENOIOCTLCMD;
3192 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195 struct socket *sock = file->private_data;
3196 int ret = -ENOIOCTLCMD;
3203 if (sock->ops->compat_ioctl)
3204 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3206 if (ret == -ENOIOCTLCMD &&
3207 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3208 ret = compat_wext_handle_ioctl(net, cmd, arg);
3210 if (ret == -ENOIOCTLCMD)
3211 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3217 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3219 return sock->ops->bind(sock, addr, addrlen);
3221 EXPORT_SYMBOL(kernel_bind);
3223 int kernel_listen(struct socket *sock, int backlog)
3225 return sock->ops->listen(sock, backlog);
3227 EXPORT_SYMBOL(kernel_listen);
3229 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3231 struct sock *sk = sock->sk;
3234 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3239 err = sock->ops->accept(sock, *newsock, flags);
3241 sock_release(*newsock);
3246 (*newsock)->ops = sock->ops;
3247 __module_get((*newsock)->ops->owner);
3252 EXPORT_SYMBOL(kernel_accept);
3254 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257 return sock->ops->connect(sock, addr, addrlen, flags);
3259 EXPORT_SYMBOL(kernel_connect);
3261 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3264 return sock->ops->getname(sock, addr, addrlen, 0);
3266 EXPORT_SYMBOL(kernel_getsockname);
3268 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3271 return sock->ops->getname(sock, addr, addrlen, 1);
3273 EXPORT_SYMBOL(kernel_getpeername);
3275 int kernel_getsockopt(struct socket *sock, int level, int optname,
3276 char *optval, int *optlen)
3278 mm_segment_t oldfs = get_fs();
3279 char __user *uoptval;
3280 int __user *uoptlen;
3283 uoptval = (char __user __force *) optval;
3284 uoptlen = (int __user __force *) optlen;
3287 if (level == SOL_SOCKET)
3288 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3290 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3295 EXPORT_SYMBOL(kernel_getsockopt);
3297 int kernel_setsockopt(struct socket *sock, int level, int optname,
3298 char *optval, unsigned int optlen)
3300 mm_segment_t oldfs = get_fs();
3301 char __user *uoptval;
3304 uoptval = (char __user __force *) optval;
3307 if (level == SOL_SOCKET)
3308 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3310 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3315 EXPORT_SYMBOL(kernel_setsockopt);
3317 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3318 size_t size, int flags)
3320 if (sock->ops->sendpage)
3321 return sock->ops->sendpage(sock, page, offset, size, flags);
3323 return sock_no_sendpage(sock, page, offset, size, flags);
3325 EXPORT_SYMBOL(kernel_sendpage);
3327 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3329 mm_segment_t oldfs = get_fs();
3333 err = sock->ops->ioctl(sock, cmd, arg);
3338 EXPORT_SYMBOL(kernel_sock_ioctl);
3340 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3342 return sock->ops->shutdown(sock, how);
3344 EXPORT_SYMBOL(kernel_sock_shutdown);