]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/sunrpc/auth_gss/gss_krb5_crypto.c
Merge tag 'powerpc-4.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[karo-tx-linux.git] / net / sunrpc / auth_gss / gss_krb5_crypto.c
1 /*
2  *  linux/net/sunrpc/gss_krb5_crypto.c
3  *
4  *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
5  *  All rights reserved.
6  *
7  *  Andy Adamson   <andros@umich.edu>
8  *  Bruce Fields   <bfields@umich.edu>
9  */
10
11 /*
12  * Copyright (C) 1998 by the FundsXpress, INC.
13  *
14  * All rights reserved.
15  *
16  * Export of this software from the United States of America may require
17  * a specific license from the United States Government.  It is the
18  * responsibility of any person or organization contemplating export to
19  * obtain such a license before exporting.
20  *
21  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22  * distribute this software and its documentation for any purpose and
23  * without fee is hereby granted, provided that the above copyright
24  * notice appear in all copies and that both that copyright notice and
25  * this permission notice appear in supporting documentation, and that
26  * the name of FundsXpress. not be used in advertising or publicity pertaining
27  * to distribution of the software without specific, written prior
28  * permission.  FundsXpress makes no representations about the suitability of
29  * this software for any purpose.  It is provided "as is" without express
30  * or implied warranty.
31  *
32  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35  */
36
37 #include <crypto/algapi.h>
38 #include <crypto/hash.h>
39 #include <crypto/skcipher.h>
40 #include <linux/err.h>
41 #include <linux/types.h>
42 #include <linux/mm.h>
43 #include <linux/scatterlist.h>
44 #include <linux/highmem.h>
45 #include <linux/pagemap.h>
46 #include <linux/random.h>
47 #include <linux/sunrpc/gss_krb5.h>
48 #include <linux/sunrpc/xdr.h>
49
50 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
51 # define RPCDBG_FACILITY        RPCDBG_AUTH
52 #endif
53
54 u32
55 krb5_encrypt(
56         struct crypto_skcipher *tfm,
57         void * iv,
58         void * in,
59         void * out,
60         int length)
61 {
62         u32 ret = -EINVAL;
63         struct scatterlist sg[1];
64         u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
65         SKCIPHER_REQUEST_ON_STACK(req, tfm);
66
67         if (length % crypto_skcipher_blocksize(tfm) != 0)
68                 goto out;
69
70         if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
71                 dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
72                         crypto_skcipher_ivsize(tfm));
73                 goto out;
74         }
75
76         if (iv)
77                 memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
78
79         memcpy(out, in, length);
80         sg_init_one(sg, out, length);
81
82         skcipher_request_set_tfm(req, tfm);
83         skcipher_request_set_callback(req, 0, NULL, NULL);
84         skcipher_request_set_crypt(req, sg, sg, length, local_iv);
85
86         ret = crypto_skcipher_encrypt(req);
87         skcipher_request_zero(req);
88 out:
89         dprintk("RPC:       krb5_encrypt returns %d\n", ret);
90         return ret;
91 }
92
93 u32
94 krb5_decrypt(
95      struct crypto_skcipher *tfm,
96      void * iv,
97      void * in,
98      void * out,
99      int length)
100 {
101         u32 ret = -EINVAL;
102         struct scatterlist sg[1];
103         u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
104         SKCIPHER_REQUEST_ON_STACK(req, tfm);
105
106         if (length % crypto_skcipher_blocksize(tfm) != 0)
107                 goto out;
108
109         if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
110                 dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
111                         crypto_skcipher_ivsize(tfm));
112                 goto out;
113         }
114         if (iv)
115                 memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
116
117         memcpy(out, in, length);
118         sg_init_one(sg, out, length);
119
120         skcipher_request_set_tfm(req, tfm);
121         skcipher_request_set_callback(req, 0, NULL, NULL);
122         skcipher_request_set_crypt(req, sg, sg, length, local_iv);
123
124         ret = crypto_skcipher_decrypt(req);
125         skcipher_request_zero(req);
126 out:
127         dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
128         return ret;
129 }
130
131 static int
132 checksummer(struct scatterlist *sg, void *data)
133 {
134         struct ahash_request *req = data;
135
136         ahash_request_set_crypt(req, sg, NULL, sg->length);
137
138         return crypto_ahash_update(req);
139 }
140
141 static int
142 arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
143 {
144         unsigned int ms_usage;
145
146         switch (usage) {
147         case KG_USAGE_SIGN:
148                 ms_usage = 15;
149                 break;
150         case KG_USAGE_SEAL:
151                 ms_usage = 13;
152                 break;
153         default:
154                 return -EINVAL;
155         }
156         salt[0] = (ms_usage >> 0) & 0xff;
157         salt[1] = (ms_usage >> 8) & 0xff;
158         salt[2] = (ms_usage >> 16) & 0xff;
159         salt[3] = (ms_usage >> 24) & 0xff;
160
161         return 0;
162 }
163
164 static u32
165 make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
166                        struct xdr_buf *body, int body_offset, u8 *cksumkey,
167                        unsigned int usage, struct xdr_netobj *cksumout)
168 {
169         struct scatterlist              sg[1];
170         int err = -1;
171         u8 *checksumdata;
172         u8 rc4salt[4];
173         struct crypto_ahash *md5;
174         struct crypto_ahash *hmac_md5;
175         struct ahash_request *req;
176
177         if (cksumkey == NULL)
178                 return GSS_S_FAILURE;
179
180         if (cksumout->len < kctx->gk5e->cksumlength) {
181                 dprintk("%s: checksum buffer length, %u, too small for %s\n",
182                         __func__, cksumout->len, kctx->gk5e->name);
183                 return GSS_S_FAILURE;
184         }
185
186         if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
187                 dprintk("%s: invalid usage value %u\n", __func__, usage);
188                 return GSS_S_FAILURE;
189         }
190
191         checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
192         if (!checksumdata)
193                 return GSS_S_FAILURE;
194
195         md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
196         if (IS_ERR(md5))
197                 goto out_free_cksum;
198
199         hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
200                                       CRYPTO_ALG_ASYNC);
201         if (IS_ERR(hmac_md5))
202                 goto out_free_md5;
203
204         req = ahash_request_alloc(md5, GFP_NOFS);
205         if (!req)
206                 goto out_free_hmac_md5;
207
208         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
209
210         err = crypto_ahash_init(req);
211         if (err)
212                 goto out;
213         sg_init_one(sg, rc4salt, 4);
214         ahash_request_set_crypt(req, sg, NULL, 4);
215         err = crypto_ahash_update(req);
216         if (err)
217                 goto out;
218
219         sg_init_one(sg, header, hdrlen);
220         ahash_request_set_crypt(req, sg, NULL, hdrlen);
221         err = crypto_ahash_update(req);
222         if (err)
223                 goto out;
224         err = xdr_process_buf(body, body_offset, body->len - body_offset,
225                               checksummer, req);
226         if (err)
227                 goto out;
228         ahash_request_set_crypt(req, NULL, checksumdata, 0);
229         err = crypto_ahash_final(req);
230         if (err)
231                 goto out;
232
233         ahash_request_free(req);
234         req = ahash_request_alloc(hmac_md5, GFP_NOFS);
235         if (!req)
236                 goto out_free_hmac_md5;
237
238         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
239
240         err = crypto_ahash_init(req);
241         if (err)
242                 goto out;
243         err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
244         if (err)
245                 goto out;
246
247         sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
248         ahash_request_set_crypt(req, sg, checksumdata,
249                                 crypto_ahash_digestsize(md5));
250         err = crypto_ahash_digest(req);
251         if (err)
252                 goto out;
253
254         memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
255         cksumout->len = kctx->gk5e->cksumlength;
256 out:
257         ahash_request_free(req);
258 out_free_hmac_md5:
259         crypto_free_ahash(hmac_md5);
260 out_free_md5:
261         crypto_free_ahash(md5);
262 out_free_cksum:
263         kfree(checksumdata);
264         return err ? GSS_S_FAILURE : 0;
265 }
266
267 /*
268  * checksum the plaintext data and hdrlen bytes of the token header
269  * The checksum is performed over the first 8 bytes of the
270  * gss token header and then over the data body
271  */
272 u32
273 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
274               struct xdr_buf *body, int body_offset, u8 *cksumkey,
275               unsigned int usage, struct xdr_netobj *cksumout)
276 {
277         struct crypto_ahash *tfm;
278         struct ahash_request *req;
279         struct scatterlist              sg[1];
280         int err = -1;
281         u8 *checksumdata;
282         unsigned int checksumlen;
283
284         if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
285                 return make_checksum_hmac_md5(kctx, header, hdrlen,
286                                               body, body_offset,
287                                               cksumkey, usage, cksumout);
288
289         if (cksumout->len < kctx->gk5e->cksumlength) {
290                 dprintk("%s: checksum buffer length, %u, too small for %s\n",
291                         __func__, cksumout->len, kctx->gk5e->name);
292                 return GSS_S_FAILURE;
293         }
294
295         checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
296         if (checksumdata == NULL)
297                 return GSS_S_FAILURE;
298
299         tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
300         if (IS_ERR(tfm))
301                 goto out_free_cksum;
302
303         req = ahash_request_alloc(tfm, GFP_NOFS);
304         if (!req)
305                 goto out_free_ahash;
306
307         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
308
309         checksumlen = crypto_ahash_digestsize(tfm);
310
311         if (cksumkey != NULL) {
312                 err = crypto_ahash_setkey(tfm, cksumkey,
313                                           kctx->gk5e->keylength);
314                 if (err)
315                         goto out;
316         }
317
318         err = crypto_ahash_init(req);
319         if (err)
320                 goto out;
321         sg_init_one(sg, header, hdrlen);
322         ahash_request_set_crypt(req, sg, NULL, hdrlen);
323         err = crypto_ahash_update(req);
324         if (err)
325                 goto out;
326         err = xdr_process_buf(body, body_offset, body->len - body_offset,
327                               checksummer, req);
328         if (err)
329                 goto out;
330         ahash_request_set_crypt(req, NULL, checksumdata, 0);
331         err = crypto_ahash_final(req);
332         if (err)
333                 goto out;
334
335         switch (kctx->gk5e->ctype) {
336         case CKSUMTYPE_RSA_MD5:
337                 err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
338                                           checksumdata, checksumlen);
339                 if (err)
340                         goto out;
341                 memcpy(cksumout->data,
342                        checksumdata + checksumlen - kctx->gk5e->cksumlength,
343                        kctx->gk5e->cksumlength);
344                 break;
345         case CKSUMTYPE_HMAC_SHA1_DES3:
346                 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
347                 break;
348         default:
349                 BUG();
350                 break;
351         }
352         cksumout->len = kctx->gk5e->cksumlength;
353 out:
354         ahash_request_free(req);
355 out_free_ahash:
356         crypto_free_ahash(tfm);
357 out_free_cksum:
358         kfree(checksumdata);
359         return err ? GSS_S_FAILURE : 0;
360 }
361
362 /*
363  * checksum the plaintext data and hdrlen bytes of the token header
364  * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
365  * body then over the first 16 octets of the MIC token
366  * Inclusion of the header data in the calculation of the
367  * checksum is optional.
368  */
369 u32
370 make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
371                  struct xdr_buf *body, int body_offset, u8 *cksumkey,
372                  unsigned int usage, struct xdr_netobj *cksumout)
373 {
374         struct crypto_ahash *tfm;
375         struct ahash_request *req;
376         struct scatterlist sg[1];
377         int err = -1;
378         u8 *checksumdata;
379         unsigned int checksumlen;
380
381         if (kctx->gk5e->keyed_cksum == 0) {
382                 dprintk("%s: expected keyed hash for %s\n",
383                         __func__, kctx->gk5e->name);
384                 return GSS_S_FAILURE;
385         }
386         if (cksumkey == NULL) {
387                 dprintk("%s: no key supplied for %s\n",
388                         __func__, kctx->gk5e->name);
389                 return GSS_S_FAILURE;
390         }
391
392         checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
393         if (!checksumdata)
394                 return GSS_S_FAILURE;
395
396         tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
397         if (IS_ERR(tfm))
398                 goto out_free_cksum;
399         checksumlen = crypto_ahash_digestsize(tfm);
400
401         req = ahash_request_alloc(tfm, GFP_NOFS);
402         if (!req)
403                 goto out_free_ahash;
404
405         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
406
407         err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
408         if (err)
409                 goto out;
410
411         err = crypto_ahash_init(req);
412         if (err)
413                 goto out;
414         err = xdr_process_buf(body, body_offset, body->len - body_offset,
415                               checksummer, req);
416         if (err)
417                 goto out;
418         if (header != NULL) {
419                 sg_init_one(sg, header, hdrlen);
420                 ahash_request_set_crypt(req, sg, NULL, hdrlen);
421                 err = crypto_ahash_update(req);
422                 if (err)
423                         goto out;
424         }
425         ahash_request_set_crypt(req, NULL, checksumdata, 0);
426         err = crypto_ahash_final(req);
427         if (err)
428                 goto out;
429
430         cksumout->len = kctx->gk5e->cksumlength;
431
432         switch (kctx->gk5e->ctype) {
433         case CKSUMTYPE_HMAC_SHA1_96_AES128:
434         case CKSUMTYPE_HMAC_SHA1_96_AES256:
435                 /* note that this truncates the hash */
436                 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
437                 break;
438         default:
439                 BUG();
440                 break;
441         }
442 out:
443         ahash_request_free(req);
444 out_free_ahash:
445         crypto_free_ahash(tfm);
446 out_free_cksum:
447         kfree(checksumdata);
448         return err ? GSS_S_FAILURE : 0;
449 }
450
451 struct encryptor_desc {
452         u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
453         struct skcipher_request *req;
454         int pos;
455         struct xdr_buf *outbuf;
456         struct page **pages;
457         struct scatterlist infrags[4];
458         struct scatterlist outfrags[4];
459         int fragno;
460         int fraglen;
461 };
462
463 static int
464 encryptor(struct scatterlist *sg, void *data)
465 {
466         struct encryptor_desc *desc = data;
467         struct xdr_buf *outbuf = desc->outbuf;
468         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
469         struct page *in_page;
470         int thislen = desc->fraglen + sg->length;
471         int fraglen, ret;
472         int page_pos;
473
474         /* Worst case is 4 fragments: head, end of page 1, start
475          * of page 2, tail.  Anything more is a bug. */
476         BUG_ON(desc->fragno > 3);
477
478         page_pos = desc->pos - outbuf->head[0].iov_len;
479         if (page_pos >= 0 && page_pos < outbuf->page_len) {
480                 /* pages are not in place: */
481                 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
482                 in_page = desc->pages[i];
483         } else {
484                 in_page = sg_page(sg);
485         }
486         sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
487                     sg->offset);
488         sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
489                     sg->offset);
490         desc->fragno++;
491         desc->fraglen += sg->length;
492         desc->pos += sg->length;
493
494         fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
495         thislen -= fraglen;
496
497         if (thislen == 0)
498                 return 0;
499
500         sg_mark_end(&desc->infrags[desc->fragno - 1]);
501         sg_mark_end(&desc->outfrags[desc->fragno - 1]);
502
503         skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
504                                    thislen, desc->iv);
505
506         ret = crypto_skcipher_encrypt(desc->req);
507         if (ret)
508                 return ret;
509
510         sg_init_table(desc->infrags, 4);
511         sg_init_table(desc->outfrags, 4);
512
513         if (fraglen) {
514                 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
515                                 sg->offset + sg->length - fraglen);
516                 desc->infrags[0] = desc->outfrags[0];
517                 sg_assign_page(&desc->infrags[0], in_page);
518                 desc->fragno = 1;
519                 desc->fraglen = fraglen;
520         } else {
521                 desc->fragno = 0;
522                 desc->fraglen = 0;
523         }
524         return 0;
525 }
526
527 int
528 gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
529                     int offset, struct page **pages)
530 {
531         int ret;
532         struct encryptor_desc desc;
533         SKCIPHER_REQUEST_ON_STACK(req, tfm);
534
535         BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
536
537         skcipher_request_set_tfm(req, tfm);
538         skcipher_request_set_callback(req, 0, NULL, NULL);
539
540         memset(desc.iv, 0, sizeof(desc.iv));
541         desc.req = req;
542         desc.pos = offset;
543         desc.outbuf = buf;
544         desc.pages = pages;
545         desc.fragno = 0;
546         desc.fraglen = 0;
547
548         sg_init_table(desc.infrags, 4);
549         sg_init_table(desc.outfrags, 4);
550
551         ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
552         skcipher_request_zero(req);
553         return ret;
554 }
555
556 struct decryptor_desc {
557         u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
558         struct skcipher_request *req;
559         struct scatterlist frags[4];
560         int fragno;
561         int fraglen;
562 };
563
564 static int
565 decryptor(struct scatterlist *sg, void *data)
566 {
567         struct decryptor_desc *desc = data;
568         int thislen = desc->fraglen + sg->length;
569         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
570         int fraglen, ret;
571
572         /* Worst case is 4 fragments: head, end of page 1, start
573          * of page 2, tail.  Anything more is a bug. */
574         BUG_ON(desc->fragno > 3);
575         sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
576                     sg->offset);
577         desc->fragno++;
578         desc->fraglen += sg->length;
579
580         fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
581         thislen -= fraglen;
582
583         if (thislen == 0)
584                 return 0;
585
586         sg_mark_end(&desc->frags[desc->fragno - 1]);
587
588         skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
589                                    thislen, desc->iv);
590
591         ret = crypto_skcipher_decrypt(desc->req);
592         if (ret)
593                 return ret;
594
595         sg_init_table(desc->frags, 4);
596
597         if (fraglen) {
598                 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
599                                 sg->offset + sg->length - fraglen);
600                 desc->fragno = 1;
601                 desc->fraglen = fraglen;
602         } else {
603                 desc->fragno = 0;
604                 desc->fraglen = 0;
605         }
606         return 0;
607 }
608
609 int
610 gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
611                     int offset)
612 {
613         int ret;
614         struct decryptor_desc desc;
615         SKCIPHER_REQUEST_ON_STACK(req, tfm);
616
617         /* XXXJBF: */
618         BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
619
620         skcipher_request_set_tfm(req, tfm);
621         skcipher_request_set_callback(req, 0, NULL, NULL);
622
623         memset(desc.iv, 0, sizeof(desc.iv));
624         desc.req = req;
625         desc.fragno = 0;
626         desc.fraglen = 0;
627
628         sg_init_table(desc.frags, 4);
629
630         ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
631         skcipher_request_zero(req);
632         return ret;
633 }
634
635 /*
636  * This function makes the assumption that it was ultimately called
637  * from gss_wrap().
638  *
639  * The client auth_gss code moves any existing tail data into a
640  * separate page before calling gss_wrap.
641  * The server svcauth_gss code ensures that both the head and the
642  * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
643  *
644  * Even with that guarantee, this function may be called more than
645  * once in the processing of gss_wrap().  The best we can do is
646  * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
647  * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
648  * At run-time we can verify that a single invocation of this
649  * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
650  */
651
652 int
653 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
654 {
655         u8 *p;
656
657         if (shiftlen == 0)
658                 return 0;
659
660         BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
661         BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
662
663         p = buf->head[0].iov_base + base;
664
665         memmove(p + shiftlen, p, buf->head[0].iov_len - base);
666
667         buf->head[0].iov_len += shiftlen;
668         buf->len += shiftlen;
669
670         return 0;
671 }
672
673 static u32
674 gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
675                    u32 offset, u8 *iv, struct page **pages, int encrypt)
676 {
677         u32 ret;
678         struct scatterlist sg[1];
679         SKCIPHER_REQUEST_ON_STACK(req, cipher);
680         u8 *data;
681         struct page **save_pages;
682         u32 len = buf->len - offset;
683
684         if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
685                 WARN_ON(0);
686                 return -ENOMEM;
687         }
688         data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
689         if (!data)
690                 return -ENOMEM;
691
692         /*
693          * For encryption, we want to read from the cleartext
694          * page cache pages, and write the encrypted data to
695          * the supplied xdr_buf pages.
696          */
697         save_pages = buf->pages;
698         if (encrypt)
699                 buf->pages = pages;
700
701         ret = read_bytes_from_xdr_buf(buf, offset, data, len);
702         buf->pages = save_pages;
703         if (ret)
704                 goto out;
705
706         sg_init_one(sg, data, len);
707
708         skcipher_request_set_tfm(req, cipher);
709         skcipher_request_set_callback(req, 0, NULL, NULL);
710         skcipher_request_set_crypt(req, sg, sg, len, iv);
711
712         if (encrypt)
713                 ret = crypto_skcipher_encrypt(req);
714         else
715                 ret = crypto_skcipher_decrypt(req);
716
717         skcipher_request_zero(req);
718
719         if (ret)
720                 goto out;
721
722         ret = write_bytes_to_xdr_buf(buf, offset, data, len);
723
724 out:
725         kfree(data);
726         return ret;
727 }
728
729 u32
730 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
731                      struct xdr_buf *buf, struct page **pages)
732 {
733         u32 err;
734         struct xdr_netobj hmac;
735         u8 *cksumkey;
736         u8 *ecptr;
737         struct crypto_skcipher *cipher, *aux_cipher;
738         int blocksize;
739         struct page **save_pages;
740         int nblocks, nbytes;
741         struct encryptor_desc desc;
742         u32 cbcbytes;
743         unsigned int usage;
744
745         if (kctx->initiate) {
746                 cipher = kctx->initiator_enc;
747                 aux_cipher = kctx->initiator_enc_aux;
748                 cksumkey = kctx->initiator_integ;
749                 usage = KG_USAGE_INITIATOR_SEAL;
750         } else {
751                 cipher = kctx->acceptor_enc;
752                 aux_cipher = kctx->acceptor_enc_aux;
753                 cksumkey = kctx->acceptor_integ;
754                 usage = KG_USAGE_ACCEPTOR_SEAL;
755         }
756         blocksize = crypto_skcipher_blocksize(cipher);
757
758         /* hide the gss token header and insert the confounder */
759         offset += GSS_KRB5_TOK_HDR_LEN;
760         if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
761                 return GSS_S_FAILURE;
762         gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
763         offset -= GSS_KRB5_TOK_HDR_LEN;
764
765         if (buf->tail[0].iov_base != NULL) {
766                 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
767         } else {
768                 buf->tail[0].iov_base = buf->head[0].iov_base
769                                                         + buf->head[0].iov_len;
770                 buf->tail[0].iov_len = 0;
771                 ecptr = buf->tail[0].iov_base;
772         }
773
774         /* copy plaintext gss token header after filler (if any) */
775         memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
776         buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
777         buf->len += GSS_KRB5_TOK_HDR_LEN;
778
779         /* Do the HMAC */
780         hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
781         hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
782
783         /*
784          * When we are called, pages points to the real page cache
785          * data -- which we can't go and encrypt!  buf->pages points
786          * to scratch pages which we are going to send off to the
787          * client/server.  Swap in the plaintext pages to calculate
788          * the hmac.
789          */
790         save_pages = buf->pages;
791         buf->pages = pages;
792
793         err = make_checksum_v2(kctx, NULL, 0, buf,
794                                offset + GSS_KRB5_TOK_HDR_LEN,
795                                cksumkey, usage, &hmac);
796         buf->pages = save_pages;
797         if (err)
798                 return GSS_S_FAILURE;
799
800         nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
801         nblocks = (nbytes + blocksize - 1) / blocksize;
802         cbcbytes = 0;
803         if (nblocks > 2)
804                 cbcbytes = (nblocks - 2) * blocksize;
805
806         memset(desc.iv, 0, sizeof(desc.iv));
807
808         if (cbcbytes) {
809                 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
810
811                 desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
812                 desc.fragno = 0;
813                 desc.fraglen = 0;
814                 desc.pages = pages;
815                 desc.outbuf = buf;
816                 desc.req = req;
817
818                 skcipher_request_set_tfm(req, aux_cipher);
819                 skcipher_request_set_callback(req, 0, NULL, NULL);
820
821                 sg_init_table(desc.infrags, 4);
822                 sg_init_table(desc.outfrags, 4);
823
824                 err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
825                                       cbcbytes, encryptor, &desc);
826                 skcipher_request_zero(req);
827                 if (err)
828                         goto out_err;
829         }
830
831         /* Make sure IV carries forward from any CBC results. */
832         err = gss_krb5_cts_crypt(cipher, buf,
833                                  offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
834                                  desc.iv, pages, 1);
835         if (err) {
836                 err = GSS_S_FAILURE;
837                 goto out_err;
838         }
839
840         /* Now update buf to account for HMAC */
841         buf->tail[0].iov_len += kctx->gk5e->cksumlength;
842         buf->len += kctx->gk5e->cksumlength;
843
844 out_err:
845         if (err)
846                 err = GSS_S_FAILURE;
847         return err;
848 }
849
850 u32
851 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
852                      u32 *headskip, u32 *tailskip)
853 {
854         struct xdr_buf subbuf;
855         u32 ret = 0;
856         u8 *cksum_key;
857         struct crypto_skcipher *cipher, *aux_cipher;
858         struct xdr_netobj our_hmac_obj;
859         u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
860         u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
861         int nblocks, blocksize, cbcbytes;
862         struct decryptor_desc desc;
863         unsigned int usage;
864
865         if (kctx->initiate) {
866                 cipher = kctx->acceptor_enc;
867                 aux_cipher = kctx->acceptor_enc_aux;
868                 cksum_key = kctx->acceptor_integ;
869                 usage = KG_USAGE_ACCEPTOR_SEAL;
870         } else {
871                 cipher = kctx->initiator_enc;
872                 aux_cipher = kctx->initiator_enc_aux;
873                 cksum_key = kctx->initiator_integ;
874                 usage = KG_USAGE_INITIATOR_SEAL;
875         }
876         blocksize = crypto_skcipher_blocksize(cipher);
877
878
879         /* create a segment skipping the header and leaving out the checksum */
880         xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
881                                     (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
882                                      kctx->gk5e->cksumlength));
883
884         nblocks = (subbuf.len + blocksize - 1) / blocksize;
885
886         cbcbytes = 0;
887         if (nblocks > 2)
888                 cbcbytes = (nblocks - 2) * blocksize;
889
890         memset(desc.iv, 0, sizeof(desc.iv));
891
892         if (cbcbytes) {
893                 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
894
895                 desc.fragno = 0;
896                 desc.fraglen = 0;
897                 desc.req = req;
898
899                 skcipher_request_set_tfm(req, aux_cipher);
900                 skcipher_request_set_callback(req, 0, NULL, NULL);
901
902                 sg_init_table(desc.frags, 4);
903
904                 ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
905                 skcipher_request_zero(req);
906                 if (ret)
907                         goto out_err;
908         }
909
910         /* Make sure IV carries forward from any CBC results. */
911         ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
912         if (ret)
913                 goto out_err;
914
915
916         /* Calculate our hmac over the plaintext data */
917         our_hmac_obj.len = sizeof(our_hmac);
918         our_hmac_obj.data = our_hmac;
919
920         ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
921                                cksum_key, usage, &our_hmac_obj);
922         if (ret)
923                 goto out_err;
924
925         /* Get the packet's hmac value */
926         ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
927                                       pkt_hmac, kctx->gk5e->cksumlength);
928         if (ret)
929                 goto out_err;
930
931         if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
932                 ret = GSS_S_BAD_SIG;
933                 goto out_err;
934         }
935         *headskip = kctx->gk5e->conflen;
936         *tailskip = kctx->gk5e->cksumlength;
937 out_err:
938         if (ret && ret != GSS_S_BAD_SIG)
939                 ret = GSS_S_FAILURE;
940         return ret;
941 }
942
943 /*
944  * Compute Kseq given the initial session key and the checksum.
945  * Set the key of the given cipher.
946  */
947 int
948 krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
949                        unsigned char *cksum)
950 {
951         struct crypto_shash *hmac;
952         struct shash_desc *desc;
953         u8 Kseq[GSS_KRB5_MAX_KEYLEN];
954         u32 zeroconstant = 0;
955         int err;
956
957         dprintk("%s: entered\n", __func__);
958
959         hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
960         if (IS_ERR(hmac)) {
961                 dprintk("%s: error %ld, allocating hash '%s'\n",
962                         __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
963                 return PTR_ERR(hmac);
964         }
965
966         desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
967                        GFP_NOFS);
968         if (!desc) {
969                 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
970                         __func__, kctx->gk5e->cksum_name);
971                 crypto_free_shash(hmac);
972                 return -ENOMEM;
973         }
974
975         desc->tfm = hmac;
976         desc->flags = 0;
977
978         /* Compute intermediate Kseq from session key */
979         err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
980         if (err)
981                 goto out_err;
982
983         err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
984         if (err)
985                 goto out_err;
986
987         /* Compute final Kseq from the checksum and intermediate Kseq */
988         err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
989         if (err)
990                 goto out_err;
991
992         err = crypto_shash_digest(desc, cksum, 8, Kseq);
993         if (err)
994                 goto out_err;
995
996         err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
997         if (err)
998                 goto out_err;
999
1000         err = 0;
1001
1002 out_err:
1003         kzfree(desc);
1004         crypto_free_shash(hmac);
1005         dprintk("%s: returning %d\n", __func__, err);
1006         return err;
1007 }
1008
1009 /*
1010  * Compute Kcrypt given the initial session key and the plaintext seqnum.
1011  * Set the key of cipher kctx->enc.
1012  */
1013 int
1014 krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
1015                        s32 seqnum)
1016 {
1017         struct crypto_shash *hmac;
1018         struct shash_desc *desc;
1019         u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1020         u8 zeroconstant[4] = {0};
1021         u8 seqnumarray[4];
1022         int err, i;
1023
1024         dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1025
1026         hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1027         if (IS_ERR(hmac)) {
1028                 dprintk("%s: error %ld, allocating hash '%s'\n",
1029                         __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1030                 return PTR_ERR(hmac);
1031         }
1032
1033         desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1034                        GFP_NOFS);
1035         if (!desc) {
1036                 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1037                         __func__, kctx->gk5e->cksum_name);
1038                 crypto_free_shash(hmac);
1039                 return -ENOMEM;
1040         }
1041
1042         desc->tfm = hmac;
1043         desc->flags = 0;
1044
1045         /* Compute intermediate Kcrypt from session key */
1046         for (i = 0; i < kctx->gk5e->keylength; i++)
1047                 Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1048
1049         err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1050         if (err)
1051                 goto out_err;
1052
1053         err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1054         if (err)
1055                 goto out_err;
1056
1057         /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1058         err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1059         if (err)
1060                 goto out_err;
1061
1062         seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1063         seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1064         seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1065         seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1066
1067         err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1068         if (err)
1069                 goto out_err;
1070
1071         err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
1072         if (err)
1073                 goto out_err;
1074
1075         err = 0;
1076
1077 out_err:
1078         kzfree(desc);
1079         crypto_free_shash(hmac);
1080         dprintk("%s: returning %d\n", __func__, err);
1081         return err;
1082 }
1083