]> git.karo-electronics.de Git - mv-sheeva.git/blob - net/sunrpc/sched.c
SUNRPC: Convert users of rpc_wake_up_task to use rpc_wake_up_queued_task
[mv-sheeva.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43
44 /*
45  * RPC tasks sit here while waiting for conditions to improve.
46  */
47 static struct rpc_wait_queue delay_queue;
48
49 /*
50  * rpciod-related stuff
51  */
52 struct workqueue_struct *rpciod_workqueue;
53
54 /*
55  * Disable the timer for a given RPC task. Should be called with
56  * queue->lock and bh_disabled in order to avoid races within
57  * rpc_run_timer().
58  */
59 static inline void
60 __rpc_disable_timer(struct rpc_task *task)
61 {
62         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
63         task->tk_timeout_fn = NULL;
64         task->tk_timeout = 0;
65 }
66
67 /*
68  * Default timeout handler if none specified by user
69  */
70 static void
71 __rpc_default_timer(struct rpc_task *task)
72 {
73         dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
74         task->tk_status = -ETIMEDOUT;
75 }
76
77 /*
78  * Set up a timer for the current task.
79  */
80 static inline void
81 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
82 {
83         if (!task->tk_timeout)
84                 return;
85
86         dprintk("RPC: %5u setting alarm for %lu ms\n",
87                         task->tk_pid, task->tk_timeout * 1000 / HZ);
88
89         if (timer)
90                 task->tk_timeout_fn = timer;
91         else
92                 task->tk_timeout_fn = __rpc_default_timer;
93         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
94         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
95 }
96
97 /*
98  * Delete any timer for the current task. Because we use del_timer_sync(),
99  * this function should never be called while holding queue->lock.
100  */
101 static void
102 rpc_delete_timer(struct rpc_task *task)
103 {
104         if (RPC_IS_QUEUED(task))
105                 return;
106         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
107                 del_singleshot_timer_sync(&task->tk_timer);
108                 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
109         }
110 }
111
112 /*
113  * Add new request to a priority queue.
114  */
115 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
116 {
117         struct list_head *q;
118         struct rpc_task *t;
119
120         INIT_LIST_HEAD(&task->u.tk_wait.links);
121         q = &queue->tasks[task->tk_priority];
122         if (unlikely(task->tk_priority > queue->maxpriority))
123                 q = &queue->tasks[queue->maxpriority];
124         list_for_each_entry(t, q, u.tk_wait.list) {
125                 if (t->tk_owner == task->tk_owner) {
126                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
127                         return;
128                 }
129         }
130         list_add_tail(&task->u.tk_wait.list, q);
131 }
132
133 /*
134  * Add new request to wait queue.
135  *
136  * Swapper tasks always get inserted at the head of the queue.
137  * This should avoid many nasty memory deadlocks and hopefully
138  * improve overall performance.
139  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
140  */
141 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
142 {
143         BUG_ON (RPC_IS_QUEUED(task));
144
145         if (RPC_IS_PRIORITY(queue))
146                 __rpc_add_wait_queue_priority(queue, task);
147         else if (RPC_IS_SWAPPER(task))
148                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
149         else
150                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
151         task->tk_waitqueue = queue;
152         queue->qlen++;
153         rpc_set_queued(task);
154
155         dprintk("RPC: %5u added to queue %p \"%s\"\n",
156                         task->tk_pid, queue, rpc_qname(queue));
157 }
158
159 /*
160  * Remove request from a priority queue.
161  */
162 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
163 {
164         struct rpc_task *t;
165
166         if (!list_empty(&task->u.tk_wait.links)) {
167                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
168                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
169                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
170         }
171         list_del(&task->u.tk_wait.list);
172 }
173
174 /*
175  * Remove request from queue.
176  * Note: must be called with spin lock held.
177  */
178 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
179 {
180         if (RPC_IS_PRIORITY(queue))
181                 __rpc_remove_wait_queue_priority(task);
182         else
183                 list_del(&task->u.tk_wait.list);
184         queue->qlen--;
185         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
186                         task->tk_pid, queue, rpc_qname(queue));
187 }
188
189 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
190 {
191         queue->priority = priority;
192         queue->count = 1 << (priority * 2);
193 }
194
195 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
196 {
197         queue->owner = pid;
198         queue->nr = RPC_BATCH_COUNT;
199 }
200
201 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
202 {
203         rpc_set_waitqueue_priority(queue, queue->maxpriority);
204         rpc_set_waitqueue_owner(queue, 0);
205 }
206
207 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
208 {
209         int i;
210
211         spin_lock_init(&queue->lock);
212         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
213                 INIT_LIST_HEAD(&queue->tasks[i]);
214         queue->maxpriority = nr_queues - 1;
215         rpc_reset_waitqueue_priority(queue);
216 #ifdef RPC_DEBUG
217         queue->name = qname;
218 #endif
219 }
220
221 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
222 {
223         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
224 }
225
226 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
227 {
228         __rpc_init_priority_wait_queue(queue, qname, 1);
229 }
230 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
231
232 static int rpc_wait_bit_killable(void *word)
233 {
234         if (fatal_signal_pending(current))
235                 return -ERESTARTSYS;
236         schedule();
237         return 0;
238 }
239
240 #ifdef RPC_DEBUG
241 static void rpc_task_set_debuginfo(struct rpc_task *task)
242 {
243         static atomic_t rpc_pid;
244
245         task->tk_magic = RPC_TASK_MAGIC_ID;
246         task->tk_pid = atomic_inc_return(&rpc_pid);
247 }
248 #else
249 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
250 {
251 }
252 #endif
253
254 static void rpc_set_active(struct rpc_task *task)
255 {
256         struct rpc_clnt *clnt;
257         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
258                 return;
259         rpc_task_set_debuginfo(task);
260         /* Add to global list of all tasks */
261         clnt = task->tk_client;
262         if (clnt != NULL) {
263                 spin_lock(&clnt->cl_lock);
264                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
265                 spin_unlock(&clnt->cl_lock);
266         }
267 }
268
269 /*
270  * Mark an RPC call as having completed by clearing the 'active' bit
271  */
272 static void rpc_mark_complete_task(struct rpc_task *task)
273 {
274         smp_mb__before_clear_bit();
275         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
276         smp_mb__after_clear_bit();
277         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
278 }
279
280 /*
281  * Allow callers to wait for completion of an RPC call
282  */
283 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
284 {
285         if (action == NULL)
286                 action = rpc_wait_bit_killable;
287         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
288                         action, TASK_KILLABLE);
289 }
290 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
291
292 /*
293  * Make an RPC task runnable.
294  *
295  * Note: If the task is ASYNC, this must be called with
296  * the spinlock held to protect the wait queue operation.
297  */
298 static void rpc_make_runnable(struct rpc_task *task)
299 {
300         BUG_ON(task->tk_timeout_fn);
301         rpc_clear_queued(task);
302         if (rpc_test_and_set_running(task))
303                 return;
304         /* We might have raced */
305         if (RPC_IS_QUEUED(task)) {
306                 rpc_clear_running(task);
307                 return;
308         }
309         if (RPC_IS_ASYNC(task)) {
310                 int status;
311
312                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
313                 status = queue_work(rpciod_workqueue, &task->u.tk_work);
314                 if (status < 0) {
315                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
316                         task->tk_status = status;
317                         return;
318                 }
319         } else
320                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
321 }
322
323 /*
324  * Prepare for sleeping on a wait queue.
325  * By always appending tasks to the list we ensure FIFO behavior.
326  * NB: An RPC task will only receive interrupt-driven events as long
327  * as it's on a wait queue.
328  */
329 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
330                         rpc_action action, rpc_action timer)
331 {
332         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
333                         task->tk_pid, rpc_qname(q), jiffies);
334
335         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
336                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
337                 return;
338         }
339
340         __rpc_add_wait_queue(q, task);
341
342         BUG_ON(task->tk_callback != NULL);
343         task->tk_callback = action;
344         __rpc_add_timer(task, timer);
345 }
346
347 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
348                                 rpc_action action, rpc_action timer)
349 {
350         /* Mark the task as being activated if so needed */
351         rpc_set_active(task);
352
353         /*
354          * Protect the queue operations.
355          */
356         spin_lock_bh(&q->lock);
357         __rpc_sleep_on(q, task, action, timer);
358         spin_unlock_bh(&q->lock);
359 }
360 EXPORT_SYMBOL_GPL(rpc_sleep_on);
361
362 /**
363  * __rpc_do_wake_up_task - wake up a single rpc_task
364  * @queue: wait queue
365  * @task: task to be woken up
366  *
367  * Caller must hold queue->lock, and have cleared the task queued flag.
368  */
369 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
370 {
371         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
372                         task->tk_pid, jiffies);
373
374 #ifdef RPC_DEBUG
375         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
376 #endif
377         /* Has the task been executed yet? If not, we cannot wake it up! */
378         if (!RPC_IS_ACTIVATED(task)) {
379                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
380                 return;
381         }
382
383         __rpc_disable_timer(task);
384         __rpc_remove_wait_queue(queue, task);
385
386         rpc_make_runnable(task);
387
388         dprintk("RPC:       __rpc_wake_up_task done\n");
389 }
390
391 /*
392  * Wake up a queued task while the queue lock is being held
393  */
394 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
395 {
396         if (!RPC_IS_QUEUED(task) || task->tk_waitqueue != queue)
397                 return;
398         if (rpc_start_wakeup(task)) {
399                         __rpc_do_wake_up_task(queue, task);
400                 rpc_finish_wakeup(task);
401         }
402 }
403
404 /*
405  * Wake up a task on a specific queue
406  */
407 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
408 {
409         rcu_read_lock_bh();
410         spin_lock(&queue->lock);
411         rpc_wake_up_task_queue_locked(queue, task);
412         spin_unlock(&queue->lock);
413         rcu_read_unlock_bh();
414 }
415 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
416
417 /*
418  * Wake up the specified task
419  */
420 static void rpc_wake_up_task(struct rpc_task *task)
421 {
422         rpc_wake_up_queued_task(task->tk_waitqueue, task);
423 }
424
425 /*
426  * Wake up the next task on a priority queue.
427  */
428 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
429 {
430         struct list_head *q;
431         struct rpc_task *task;
432
433         /*
434          * Service a batch of tasks from a single owner.
435          */
436         q = &queue->tasks[queue->priority];
437         if (!list_empty(q)) {
438                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
439                 if (queue->owner == task->tk_owner) {
440                         if (--queue->nr)
441                                 goto out;
442                         list_move_tail(&task->u.tk_wait.list, q);
443                 }
444                 /*
445                  * Check if we need to switch queues.
446                  */
447                 if (--queue->count)
448                         goto new_owner;
449         }
450
451         /*
452          * Service the next queue.
453          */
454         do {
455                 if (q == &queue->tasks[0])
456                         q = &queue->tasks[queue->maxpriority];
457                 else
458                         q = q - 1;
459                 if (!list_empty(q)) {
460                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
461                         goto new_queue;
462                 }
463         } while (q != &queue->tasks[queue->priority]);
464
465         rpc_reset_waitqueue_priority(queue);
466         return NULL;
467
468 new_queue:
469         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
470 new_owner:
471         rpc_set_waitqueue_owner(queue, task->tk_owner);
472 out:
473         rpc_wake_up_task_queue_locked(queue, task);
474         return task;
475 }
476
477 /*
478  * Wake up the next task on the wait queue.
479  */
480 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
481 {
482         struct rpc_task *task = NULL;
483
484         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
485                         queue, rpc_qname(queue));
486         rcu_read_lock_bh();
487         spin_lock(&queue->lock);
488         if (RPC_IS_PRIORITY(queue))
489                 task = __rpc_wake_up_next_priority(queue);
490         else {
491                 task_for_first(task, &queue->tasks[0])
492                         rpc_wake_up_task_queue_locked(queue, task);
493         }
494         spin_unlock(&queue->lock);
495         rcu_read_unlock_bh();
496
497         return task;
498 }
499 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
500
501 /**
502  * rpc_wake_up - wake up all rpc_tasks
503  * @queue: rpc_wait_queue on which the tasks are sleeping
504  *
505  * Grabs queue->lock
506  */
507 void rpc_wake_up(struct rpc_wait_queue *queue)
508 {
509         struct rpc_task *task, *next;
510         struct list_head *head;
511
512         rcu_read_lock_bh();
513         spin_lock(&queue->lock);
514         head = &queue->tasks[queue->maxpriority];
515         for (;;) {
516                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
517                         rpc_wake_up_task_queue_locked(queue, task);
518                 if (head == &queue->tasks[0])
519                         break;
520                 head--;
521         }
522         spin_unlock(&queue->lock);
523         rcu_read_unlock_bh();
524 }
525 EXPORT_SYMBOL_GPL(rpc_wake_up);
526
527 /**
528  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
529  * @queue: rpc_wait_queue on which the tasks are sleeping
530  * @status: status value to set
531  *
532  * Grabs queue->lock
533  */
534 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
535 {
536         struct rpc_task *task, *next;
537         struct list_head *head;
538
539         rcu_read_lock_bh();
540         spin_lock(&queue->lock);
541         head = &queue->tasks[queue->maxpriority];
542         for (;;) {
543                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
544                         task->tk_status = status;
545                         rpc_wake_up_task_queue_locked(queue, task);
546                 }
547                 if (head == &queue->tasks[0])
548                         break;
549                 head--;
550         }
551         spin_unlock(&queue->lock);
552         rcu_read_unlock_bh();
553 }
554 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
555
556 /*
557  * Run a timeout function.
558  */
559 static void rpc_run_timer(unsigned long ptr)
560 {
561         struct rpc_task *task = (struct rpc_task *)ptr;
562         void (*callback)(struct rpc_task *);
563
564         if (RPC_IS_QUEUED(task)) {
565                 struct rpc_wait_queue *queue = task->tk_waitqueue;
566                 callback = task->tk_timeout_fn;
567
568                 dprintk("RPC: %5u running timer\n", task->tk_pid);
569                 if (callback != NULL)
570                         callback(task);
571                 /* Note: we're already in a bh-safe context */
572                 spin_lock(&queue->lock);
573                 rpc_wake_up_task_queue_locked(queue, task);
574                 spin_unlock(&queue->lock);
575         }
576         smp_mb__before_clear_bit();
577         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
578         smp_mb__after_clear_bit();
579 }
580
581 static void __rpc_atrun(struct rpc_task *task)
582 {
583 }
584
585 /*
586  * Run a task at a later time
587  */
588 void rpc_delay(struct rpc_task *task, unsigned long delay)
589 {
590         task->tk_timeout = delay;
591         rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
592 }
593 EXPORT_SYMBOL_GPL(rpc_delay);
594
595 /*
596  * Helper to call task->tk_ops->rpc_call_prepare
597  */
598 static void rpc_prepare_task(struct rpc_task *task)
599 {
600         lock_kernel();
601         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
602         unlock_kernel();
603 }
604
605 /*
606  * Helper that calls task->tk_ops->rpc_call_done if it exists
607  */
608 void rpc_exit_task(struct rpc_task *task)
609 {
610         task->tk_action = NULL;
611         if (task->tk_ops->rpc_call_done != NULL) {
612                 lock_kernel();
613                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
614                 unlock_kernel();
615                 if (task->tk_action != NULL) {
616                         WARN_ON(RPC_ASSASSINATED(task));
617                         /* Always release the RPC slot and buffer memory */
618                         xprt_release(task);
619                 }
620         }
621 }
622 EXPORT_SYMBOL_GPL(rpc_exit_task);
623
624 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
625 {
626         if (ops->rpc_release != NULL) {
627                 lock_kernel();
628                 ops->rpc_release(calldata);
629                 unlock_kernel();
630         }
631 }
632
633 /*
634  * This is the RPC `scheduler' (or rather, the finite state machine).
635  */
636 static void __rpc_execute(struct rpc_task *task)
637 {
638         int             status = 0;
639
640         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
641                         task->tk_pid, task->tk_flags);
642
643         BUG_ON(RPC_IS_QUEUED(task));
644
645         for (;;) {
646                 /*
647                  * Garbage collection of pending timers...
648                  */
649                 rpc_delete_timer(task);
650
651                 /*
652                  * Execute any pending callback.
653                  */
654                 if (RPC_DO_CALLBACK(task)) {
655                         /* Define a callback save pointer */
656                         void (*save_callback)(struct rpc_task *);
657
658                         /*
659                          * If a callback exists, save it, reset it,
660                          * call it.
661                          * The save is needed to stop from resetting
662                          * another callback set within the callback handler
663                          * - Dave
664                          */
665                         save_callback=task->tk_callback;
666                         task->tk_callback=NULL;
667                         save_callback(task);
668                 }
669
670                 /*
671                  * Perform the next FSM step.
672                  * tk_action may be NULL when the task has been killed
673                  * by someone else.
674                  */
675                 if (!RPC_IS_QUEUED(task)) {
676                         if (task->tk_action == NULL)
677                                 break;
678                         task->tk_action(task);
679                 }
680
681                 /*
682                  * Lockless check for whether task is sleeping or not.
683                  */
684                 if (!RPC_IS_QUEUED(task))
685                         continue;
686                 rpc_clear_running(task);
687                 if (RPC_IS_ASYNC(task)) {
688                         /* Careful! we may have raced... */
689                         if (RPC_IS_QUEUED(task))
690                                 return;
691                         if (rpc_test_and_set_running(task))
692                                 return;
693                         continue;
694                 }
695
696                 /* sync task: sleep here */
697                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
698                 status = out_of_line_wait_on_bit(&task->tk_runstate,
699                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
700                                 TASK_KILLABLE);
701                 if (status == -ERESTARTSYS) {
702                         /*
703                          * When a sync task receives a signal, it exits with
704                          * -ERESTARTSYS. In order to catch any callbacks that
705                          * clean up after sleeping on some queue, we don't
706                          * break the loop here, but go around once more.
707                          */
708                         dprintk("RPC: %5u got signal\n", task->tk_pid);
709                         task->tk_flags |= RPC_TASK_KILLED;
710                         rpc_exit(task, -ERESTARTSYS);
711                         rpc_wake_up_task(task);
712                 }
713                 rpc_set_running(task);
714                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
715         }
716
717         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
718                         task->tk_status);
719         /* Release all resources associated with the task */
720         rpc_release_task(task);
721 }
722
723 /*
724  * User-visible entry point to the scheduler.
725  *
726  * This may be called recursively if e.g. an async NFS task updates
727  * the attributes and finds that dirty pages must be flushed.
728  * NOTE: Upon exit of this function the task is guaranteed to be
729  *       released. In particular note that tk_release() will have
730  *       been called, so your task memory may have been freed.
731  */
732 void rpc_execute(struct rpc_task *task)
733 {
734         rpc_set_active(task);
735         rpc_set_running(task);
736         __rpc_execute(task);
737 }
738
739 static void rpc_async_schedule(struct work_struct *work)
740 {
741         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
742 }
743
744 struct rpc_buffer {
745         size_t  len;
746         char    data[];
747 };
748
749 /**
750  * rpc_malloc - allocate an RPC buffer
751  * @task: RPC task that will use this buffer
752  * @size: requested byte size
753  *
754  * To prevent rpciod from hanging, this allocator never sleeps,
755  * returning NULL if the request cannot be serviced immediately.
756  * The caller can arrange to sleep in a way that is safe for rpciod.
757  *
758  * Most requests are 'small' (under 2KiB) and can be serviced from a
759  * mempool, ensuring that NFS reads and writes can always proceed,
760  * and that there is good locality of reference for these buffers.
761  *
762  * In order to avoid memory starvation triggering more writebacks of
763  * NFS requests, we avoid using GFP_KERNEL.
764  */
765 void *rpc_malloc(struct rpc_task *task, size_t size)
766 {
767         struct rpc_buffer *buf;
768         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
769
770         size += sizeof(struct rpc_buffer);
771         if (size <= RPC_BUFFER_MAXSIZE)
772                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
773         else
774                 buf = kmalloc(size, gfp);
775
776         if (!buf)
777                 return NULL;
778
779         buf->len = size;
780         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
781                         task->tk_pid, size, buf);
782         return &buf->data;
783 }
784 EXPORT_SYMBOL_GPL(rpc_malloc);
785
786 /**
787  * rpc_free - free buffer allocated via rpc_malloc
788  * @buffer: buffer to free
789  *
790  */
791 void rpc_free(void *buffer)
792 {
793         size_t size;
794         struct rpc_buffer *buf;
795
796         if (!buffer)
797                 return;
798
799         buf = container_of(buffer, struct rpc_buffer, data);
800         size = buf->len;
801
802         dprintk("RPC:       freeing buffer of size %zu at %p\n",
803                         size, buf);
804
805         if (size <= RPC_BUFFER_MAXSIZE)
806                 mempool_free(buf, rpc_buffer_mempool);
807         else
808                 kfree(buf);
809 }
810 EXPORT_SYMBOL_GPL(rpc_free);
811
812 /*
813  * Creation and deletion of RPC task structures
814  */
815 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
816 {
817         memset(task, 0, sizeof(*task));
818         setup_timer(&task->tk_timer, rpc_run_timer, (unsigned long)task);
819         atomic_set(&task->tk_count, 1);
820         task->tk_flags  = task_setup_data->flags;
821         task->tk_ops = task_setup_data->callback_ops;
822         task->tk_calldata = task_setup_data->callback_data;
823         INIT_LIST_HEAD(&task->tk_task);
824
825         /* Initialize retry counters */
826         task->tk_garb_retry = 2;
827         task->tk_cred_retry = 2;
828
829         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
830         task->tk_owner = current->tgid;
831
832         /* Initialize workqueue for async tasks */
833         task->tk_workqueue = task_setup_data->workqueue;
834
835         task->tk_client = task_setup_data->rpc_client;
836         if (task->tk_client != NULL) {
837                 kref_get(&task->tk_client->cl_kref);
838                 if (task->tk_client->cl_softrtry)
839                         task->tk_flags |= RPC_TASK_SOFT;
840         }
841
842         if (task->tk_ops->rpc_call_prepare != NULL)
843                 task->tk_action = rpc_prepare_task;
844
845         if (task_setup_data->rpc_message != NULL) {
846                 memcpy(&task->tk_msg, task_setup_data->rpc_message, sizeof(task->tk_msg));
847                 /* Bind the user cred */
848                 if (task->tk_msg.rpc_cred != NULL)
849                         rpcauth_holdcred(task);
850                 else
851                         rpcauth_bindcred(task);
852                 if (task->tk_action == NULL)
853                         rpc_call_start(task);
854         }
855
856         /* starting timestamp */
857         task->tk_start = jiffies;
858
859         dprintk("RPC:       new task initialized, procpid %u\n",
860                                 task_pid_nr(current));
861 }
862
863 static struct rpc_task *
864 rpc_alloc_task(void)
865 {
866         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
867 }
868
869 static void rpc_free_task_rcu(struct rcu_head *rcu)
870 {
871         struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
872         dprintk("RPC: %5u freeing task\n", task->tk_pid);
873         mempool_free(task, rpc_task_mempool);
874 }
875
876 /*
877  * Create a new task for the specified client.
878  */
879 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
880 {
881         struct rpc_task *task = setup_data->task;
882         unsigned short flags = 0;
883
884         if (task == NULL) {
885                 task = rpc_alloc_task();
886                 if (task == NULL)
887                         goto out;
888                 flags = RPC_TASK_DYNAMIC;
889         }
890
891         rpc_init_task(task, setup_data);
892
893         task->tk_flags |= flags;
894         dprintk("RPC:       allocated task %p\n", task);
895 out:
896         return task;
897 }
898
899 static void rpc_free_task(struct rpc_task *task)
900 {
901         const struct rpc_call_ops *tk_ops = task->tk_ops;
902         void *calldata = task->tk_calldata;
903
904         if (task->tk_flags & RPC_TASK_DYNAMIC)
905                 call_rcu_bh(&task->u.tk_rcu, rpc_free_task_rcu);
906         rpc_release_calldata(tk_ops, calldata);
907 }
908
909 static void rpc_async_release(struct work_struct *work)
910 {
911         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
912 }
913
914 void rpc_put_task(struct rpc_task *task)
915 {
916         if (!atomic_dec_and_test(&task->tk_count))
917                 return;
918         /* Release resources */
919         if (task->tk_rqstp)
920                 xprt_release(task);
921         if (task->tk_msg.rpc_cred)
922                 rpcauth_unbindcred(task);
923         if (task->tk_client) {
924                 rpc_release_client(task->tk_client);
925                 task->tk_client = NULL;
926         }
927         if (task->tk_workqueue != NULL) {
928                 INIT_WORK(&task->u.tk_work, rpc_async_release);
929                 queue_work(task->tk_workqueue, &task->u.tk_work);
930         } else
931                 rpc_free_task(task);
932 }
933 EXPORT_SYMBOL_GPL(rpc_put_task);
934
935 static void rpc_release_task(struct rpc_task *task)
936 {
937 #ifdef RPC_DEBUG
938         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
939 #endif
940         dprintk("RPC: %5u release task\n", task->tk_pid);
941
942         if (!list_empty(&task->tk_task)) {
943                 struct rpc_clnt *clnt = task->tk_client;
944                 /* Remove from client task list */
945                 spin_lock(&clnt->cl_lock);
946                 list_del(&task->tk_task);
947                 spin_unlock(&clnt->cl_lock);
948         }
949         BUG_ON (RPC_IS_QUEUED(task));
950
951         /* Synchronously delete any running timer */
952         rpc_delete_timer(task);
953
954 #ifdef RPC_DEBUG
955         task->tk_magic = 0;
956 #endif
957         /* Wake up anyone who is waiting for task completion */
958         rpc_mark_complete_task(task);
959
960         rpc_put_task(task);
961 }
962
963 /*
964  * Kill all tasks for the given client.
965  * XXX: kill their descendants as well?
966  */
967 void rpc_killall_tasks(struct rpc_clnt *clnt)
968 {
969         struct rpc_task *rovr;
970
971
972         if (list_empty(&clnt->cl_tasks))
973                 return;
974         dprintk("RPC:       killing all tasks for client %p\n", clnt);
975         /*
976          * Spin lock all_tasks to prevent changes...
977          */
978         spin_lock(&clnt->cl_lock);
979         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
980                 if (! RPC_IS_ACTIVATED(rovr))
981                         continue;
982                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
983                         rovr->tk_flags |= RPC_TASK_KILLED;
984                         rpc_exit(rovr, -EIO);
985                         rpc_wake_up_task(rovr);
986                 }
987         }
988         spin_unlock(&clnt->cl_lock);
989 }
990 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
991
992 int rpciod_up(void)
993 {
994         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
995 }
996
997 void rpciod_down(void)
998 {
999         module_put(THIS_MODULE);
1000 }
1001
1002 /*
1003  * Start up the rpciod workqueue.
1004  */
1005 static int rpciod_start(void)
1006 {
1007         struct workqueue_struct *wq;
1008
1009         /*
1010          * Create the rpciod thread and wait for it to start.
1011          */
1012         dprintk("RPC:       creating workqueue rpciod\n");
1013         wq = create_workqueue("rpciod");
1014         rpciod_workqueue = wq;
1015         return rpciod_workqueue != NULL;
1016 }
1017
1018 static void rpciod_stop(void)
1019 {
1020         struct workqueue_struct *wq = NULL;
1021
1022         if (rpciod_workqueue == NULL)
1023                 return;
1024         dprintk("RPC:       destroying workqueue rpciod\n");
1025
1026         wq = rpciod_workqueue;
1027         rpciod_workqueue = NULL;
1028         destroy_workqueue(wq);
1029 }
1030
1031 void
1032 rpc_destroy_mempool(void)
1033 {
1034         rpciod_stop();
1035         if (rpc_buffer_mempool)
1036                 mempool_destroy(rpc_buffer_mempool);
1037         if (rpc_task_mempool)
1038                 mempool_destroy(rpc_task_mempool);
1039         if (rpc_task_slabp)
1040                 kmem_cache_destroy(rpc_task_slabp);
1041         if (rpc_buffer_slabp)
1042                 kmem_cache_destroy(rpc_buffer_slabp);
1043 }
1044
1045 int
1046 rpc_init_mempool(void)
1047 {
1048         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1049                                              sizeof(struct rpc_task),
1050                                              0, SLAB_HWCACHE_ALIGN,
1051                                              NULL);
1052         if (!rpc_task_slabp)
1053                 goto err_nomem;
1054         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1055                                              RPC_BUFFER_MAXSIZE,
1056                                              0, SLAB_HWCACHE_ALIGN,
1057                                              NULL);
1058         if (!rpc_buffer_slabp)
1059                 goto err_nomem;
1060         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1061                                                     rpc_task_slabp);
1062         if (!rpc_task_mempool)
1063                 goto err_nomem;
1064         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1065                                                       rpc_buffer_slabp);
1066         if (!rpc_buffer_mempool)
1067                 goto err_nomem;
1068         if (!rpciod_start())
1069                 goto err_nomem;
1070         /*
1071          * The following is not strictly a mempool initialisation,
1072          * but there is no harm in doing it here
1073          */
1074         rpc_init_wait_queue(&delay_queue, "delayq");
1075         return 0;
1076 err_nomem:
1077         rpc_destroy_mempool();
1078         return -ENOMEM;
1079 }