]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
752729ecd701ae62bc5164835c35021aa9e2286a
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /* Receipt of information from last regulatory request */
85 static struct regulatory_request *last_request = &core_request_world;
86
87 /* To trigger userspace events */
88 static struct platform_device *reg_pdev;
89
90 static struct device_type reg_device_type = {
91         .uevent = reg_device_uevent,
92 };
93
94 /*
95  * Central wireless core regulatory domains, we only need two,
96  * the current one and a world regulatory domain in case we have no
97  * information to give us an alpha2.
98  * Protected by the cfg80211_mutex.
99  */
100 const struct ieee80211_regdomain *cfg80211_regdomain;
101
102 /*
103  * Protects static reg.c components:
104  *     - cfg80211_world_regdom
105  *     - last_request
106  *     - reg_num_devs_support_basehint
107  */
108 static DEFINE_MUTEX(reg_mutex);
109
110 /*
111  * Number of devices that registered to the core
112  * that support cellular base station regulatory hints
113  */
114 static int reg_num_devs_support_basehint;
115
116 static inline void assert_reg_lock(void)
117 {
118         lockdep_assert_held(&reg_mutex);
119 }
120
121 /* Used to queue up regulatory hints */
122 static LIST_HEAD(reg_requests_list);
123 static spinlock_t reg_requests_lock;
124
125 /* Used to queue up beacon hints for review */
126 static LIST_HEAD(reg_pending_beacons);
127 static spinlock_t reg_pending_beacons_lock;
128
129 /* Used to keep track of processed beacon hints */
130 static LIST_HEAD(reg_beacon_list);
131
132 struct reg_beacon {
133         struct list_head list;
134         struct ieee80211_channel chan;
135 };
136
137 static void reg_todo(struct work_struct *work);
138 static DECLARE_WORK(reg_work, reg_todo);
139
140 static void reg_timeout_work(struct work_struct *work);
141 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
142
143 /* We keep a static world regulatory domain in case of the absence of CRDA */
144 static const struct ieee80211_regdomain world_regdom = {
145         .n_reg_rules = 6,
146         .alpha2 =  "00",
147         .reg_rules = {
148                 /* IEEE 802.11b/g, channels 1..11 */
149                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
150                 /* IEEE 802.11b/g, channels 12..13. */
151                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
152                         NL80211_RRF_PASSIVE_SCAN |
153                         NL80211_RRF_NO_IBSS),
154                 /* IEEE 802.11 channel 14 - Only JP enables
155                  * this and for 802.11b only */
156                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
157                         NL80211_RRF_PASSIVE_SCAN |
158                         NL80211_RRF_NO_IBSS |
159                         NL80211_RRF_NO_OFDM),
160                 /* IEEE 802.11a, channel 36..48 */
161                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
162                         NL80211_RRF_PASSIVE_SCAN |
163                         NL80211_RRF_NO_IBSS),
164
165                 /* NB: 5260 MHz - 5700 MHz requies DFS */
166
167                 /* IEEE 802.11a, channel 149..165 */
168                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
169                         NL80211_RRF_PASSIVE_SCAN |
170                         NL80211_RRF_NO_IBSS),
171
172                 /* IEEE 802.11ad (60gHz), channels 1..3 */
173                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
174         }
175 };
176
177 static const struct ieee80211_regdomain *cfg80211_world_regdom =
178         &world_regdom;
179
180 static char *ieee80211_regdom = "00";
181 static char user_alpha2[2];
182
183 module_param(ieee80211_regdom, charp, 0444);
184 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
185
186 static void reset_regdomains(bool full_reset)
187 {
188         assert_cfg80211_lock();
189         assert_reg_lock();
190
191         /* avoid freeing static information or freeing something twice */
192         if (cfg80211_regdomain == cfg80211_world_regdom)
193                 cfg80211_regdomain = NULL;
194         if (cfg80211_world_regdom == &world_regdom)
195                 cfg80211_world_regdom = NULL;
196         if (cfg80211_regdomain == &world_regdom)
197                 cfg80211_regdomain = NULL;
198
199         kfree(cfg80211_regdomain);
200         kfree(cfg80211_world_regdom);
201
202         cfg80211_world_regdom = &world_regdom;
203         cfg80211_regdomain = NULL;
204
205         if (!full_reset)
206                 return;
207
208         if (last_request != &core_request_world)
209                 kfree(last_request);
210         last_request = &core_request_world;
211 }
212
213 /*
214  * Dynamic world regulatory domain requested by the wireless
215  * core upon initialization
216  */
217 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
218 {
219         WARN_ON(!last_request);
220
221         assert_cfg80211_lock();
222         assert_reg_lock();
223
224         reset_regdomains(false);
225
226         cfg80211_world_regdom = rd;
227         cfg80211_regdomain = rd;
228 }
229
230 bool is_world_regdom(const char *alpha2)
231 {
232         if (!alpha2)
233                 return false;
234         return alpha2[0] == '0' && alpha2[1] == '0';
235 }
236
237 static bool is_alpha2_set(const char *alpha2)
238 {
239         if (!alpha2)
240                 return false;
241         return alpha2[0] && alpha2[1];
242 }
243
244 static bool is_unknown_alpha2(const char *alpha2)
245 {
246         if (!alpha2)
247                 return false;
248         /*
249          * Special case where regulatory domain was built by driver
250          * but a specific alpha2 cannot be determined
251          */
252         return alpha2[0] == '9' && alpha2[1] == '9';
253 }
254
255 static bool is_intersected_alpha2(const char *alpha2)
256 {
257         if (!alpha2)
258                 return false;
259         /*
260          * Special case where regulatory domain is the
261          * result of an intersection between two regulatory domain
262          * structures
263          */
264         return alpha2[0] == '9' && alpha2[1] == '8';
265 }
266
267 static bool is_an_alpha2(const char *alpha2)
268 {
269         if (!alpha2)
270                 return false;
271         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
272 }
273
274 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
275 {
276         if (!alpha2_x || !alpha2_y)
277                 return false;
278         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
279 }
280
281 static bool regdom_changes(const char *alpha2)
282 {
283         assert_cfg80211_lock();
284
285         if (!cfg80211_regdomain)
286                 return true;
287         return !alpha2_equal(cfg80211_regdomain->alpha2, alpha2);
288 }
289
290 /*
291  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
292  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
293  * has ever been issued.
294  */
295 static bool is_user_regdom_saved(void)
296 {
297         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
298                 return false;
299
300         /* This would indicate a mistake on the design */
301         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
302                  "Unexpected user alpha2: %c%c\n",
303                  user_alpha2[0], user_alpha2[1]))
304                 return false;
305
306         return true;
307 }
308
309 static const struct ieee80211_regdomain *
310 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
311 {
312         struct ieee80211_regdomain *regd;
313         int size_of_regd;
314         unsigned int i;
315
316         size_of_regd =
317                 sizeof(struct ieee80211_regdomain) +
318                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
319
320         regd = kzalloc(size_of_regd, GFP_KERNEL);
321         if (!regd)
322                 return ERR_PTR(-ENOMEM);
323
324         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
325
326         for (i = 0; i < src_regd->n_reg_rules; i++)
327                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
328                        sizeof(struct ieee80211_reg_rule));
329
330         return regd;
331 }
332
333 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
334 struct reg_regdb_search_request {
335         char alpha2[2];
336         struct list_head list;
337 };
338
339 static LIST_HEAD(reg_regdb_search_list);
340 static DEFINE_MUTEX(reg_regdb_search_mutex);
341
342 static void reg_regdb_search(struct work_struct *work)
343 {
344         struct reg_regdb_search_request *request;
345         const struct ieee80211_regdomain *curdom, *regdom = NULL;
346         int i;
347
348         mutex_lock(&cfg80211_mutex);
349
350         mutex_lock(&reg_regdb_search_mutex);
351         while (!list_empty(&reg_regdb_search_list)) {
352                 request = list_first_entry(&reg_regdb_search_list,
353                                            struct reg_regdb_search_request,
354                                            list);
355                 list_del(&request->list);
356
357                 for (i = 0; i < reg_regdb_size; i++) {
358                         curdom = reg_regdb[i];
359
360                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
361                                 regdom = reg_copy_regd(curdom);
362                                 break;
363                         }
364                 }
365
366                 kfree(request);
367         }
368         mutex_unlock(&reg_regdb_search_mutex);
369
370         if (!IS_ERR_OR_NULL(regdom))
371                 set_regdom(regdom);
372
373         mutex_unlock(&cfg80211_mutex);
374 }
375
376 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
377
378 static void reg_regdb_query(const char *alpha2)
379 {
380         struct reg_regdb_search_request *request;
381
382         if (!alpha2)
383                 return;
384
385         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
386         if (!request)
387                 return;
388
389         memcpy(request->alpha2, alpha2, 2);
390
391         mutex_lock(&reg_regdb_search_mutex);
392         list_add_tail(&request->list, &reg_regdb_search_list);
393         mutex_unlock(&reg_regdb_search_mutex);
394
395         schedule_work(&reg_regdb_work);
396 }
397
398 /* Feel free to add any other sanity checks here */
399 static void reg_regdb_size_check(void)
400 {
401         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
402         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
403 }
404 #else
405 static inline void reg_regdb_size_check(void) {}
406 static inline void reg_regdb_query(const char *alpha2) {}
407 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
408
409 /*
410  * This lets us keep regulatory code which is updated on a regulatory
411  * basis in userspace. Country information is filled in by
412  * reg_device_uevent
413  */
414 static int call_crda(const char *alpha2)
415 {
416         if (!is_world_regdom((char *) alpha2))
417                 pr_info("Calling CRDA for country: %c%c\n",
418                         alpha2[0], alpha2[1]);
419         else
420                 pr_info("Calling CRDA to update world regulatory domain\n");
421
422         /* query internal regulatory database (if it exists) */
423         reg_regdb_query(alpha2);
424
425         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
426 }
427
428 /* Used by nl80211 before kmalloc'ing our regulatory domain */
429 bool reg_is_valid_request(const char *alpha2)
430 {
431         if (!last_request)
432                 return false;
433
434         return alpha2_equal(last_request->alpha2, alpha2);
435 }
436
437 /* Sanity check on a regulatory rule */
438 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
439 {
440         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
441         u32 freq_diff;
442
443         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
444                 return false;
445
446         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
447                 return false;
448
449         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
450
451         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
452             freq_range->max_bandwidth_khz > freq_diff)
453                 return false;
454
455         return true;
456 }
457
458 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
459 {
460         const struct ieee80211_reg_rule *reg_rule = NULL;
461         unsigned int i;
462
463         if (!rd->n_reg_rules)
464                 return false;
465
466         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
467                 return false;
468
469         for (i = 0; i < rd->n_reg_rules; i++) {
470                 reg_rule = &rd->reg_rules[i];
471                 if (!is_valid_reg_rule(reg_rule))
472                         return false;
473         }
474
475         return true;
476 }
477
478 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
479                             u32 center_freq_khz,
480                             u32 bw_khz)
481 {
482         u32 start_freq_khz, end_freq_khz;
483
484         start_freq_khz = center_freq_khz - (bw_khz/2);
485         end_freq_khz = center_freq_khz + (bw_khz/2);
486
487         if (start_freq_khz >= freq_range->start_freq_khz &&
488             end_freq_khz <= freq_range->end_freq_khz)
489                 return true;
490
491         return false;
492 }
493
494 /**
495  * freq_in_rule_band - tells us if a frequency is in a frequency band
496  * @freq_range: frequency rule we want to query
497  * @freq_khz: frequency we are inquiring about
498  *
499  * This lets us know if a specific frequency rule is or is not relevant to
500  * a specific frequency's band. Bands are device specific and artificial
501  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
502  * however it is safe for now to assume that a frequency rule should not be
503  * part of a frequency's band if the start freq or end freq are off by more
504  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
505  * 60 GHz band.
506  * This resolution can be lowered and should be considered as we add
507  * regulatory rule support for other "bands".
508  **/
509 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
510                               u32 freq_khz)
511 {
512 #define ONE_GHZ_IN_KHZ  1000000
513         /*
514          * From 802.11ad: directional multi-gigabit (DMG):
515          * Pertaining to operation in a frequency band containing a channel
516          * with the Channel starting frequency above 45 GHz.
517          */
518         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
519                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
520         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
521                 return true;
522         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
523                 return true;
524         return false;
525 #undef ONE_GHZ_IN_KHZ
526 }
527
528 /*
529  * Helper for regdom_intersect(), this does the real
530  * mathematical intersection fun
531  */
532 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
533                                const struct ieee80211_reg_rule *rule2,
534                                struct ieee80211_reg_rule *intersected_rule)
535 {
536         const struct ieee80211_freq_range *freq_range1, *freq_range2;
537         struct ieee80211_freq_range *freq_range;
538         const struct ieee80211_power_rule *power_rule1, *power_rule2;
539         struct ieee80211_power_rule *power_rule;
540         u32 freq_diff;
541
542         freq_range1 = &rule1->freq_range;
543         freq_range2 = &rule2->freq_range;
544         freq_range = &intersected_rule->freq_range;
545
546         power_rule1 = &rule1->power_rule;
547         power_rule2 = &rule2->power_rule;
548         power_rule = &intersected_rule->power_rule;
549
550         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
551                                          freq_range2->start_freq_khz);
552         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
553                                        freq_range2->end_freq_khz);
554         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
555                                             freq_range2->max_bandwidth_khz);
556
557         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
558         if (freq_range->max_bandwidth_khz > freq_diff)
559                 freq_range->max_bandwidth_khz = freq_diff;
560
561         power_rule->max_eirp = min(power_rule1->max_eirp,
562                 power_rule2->max_eirp);
563         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
564                 power_rule2->max_antenna_gain);
565
566         intersected_rule->flags = rule1->flags | rule2->flags;
567
568         if (!is_valid_reg_rule(intersected_rule))
569                 return -EINVAL;
570
571         return 0;
572 }
573
574 /**
575  * regdom_intersect - do the intersection between two regulatory domains
576  * @rd1: first regulatory domain
577  * @rd2: second regulatory domain
578  *
579  * Use this function to get the intersection between two regulatory domains.
580  * Once completed we will mark the alpha2 for the rd as intersected, "98",
581  * as no one single alpha2 can represent this regulatory domain.
582  *
583  * Returns a pointer to the regulatory domain structure which will hold the
584  * resulting intersection of rules between rd1 and rd2. We will
585  * kzalloc() this structure for you.
586  */
587 static struct ieee80211_regdomain *
588 regdom_intersect(const struct ieee80211_regdomain *rd1,
589                  const struct ieee80211_regdomain *rd2)
590 {
591         int r, size_of_regd;
592         unsigned int x, y;
593         unsigned int num_rules = 0, rule_idx = 0;
594         const struct ieee80211_reg_rule *rule1, *rule2;
595         struct ieee80211_reg_rule *intersected_rule;
596         struct ieee80211_regdomain *rd;
597         /* This is just a dummy holder to help us count */
598         struct ieee80211_reg_rule dummy_rule;
599
600         if (!rd1 || !rd2)
601                 return NULL;
602
603         /*
604          * First we get a count of the rules we'll need, then we actually
605          * build them. This is to so we can malloc() and free() a
606          * regdomain once. The reason we use reg_rules_intersect() here
607          * is it will return -EINVAL if the rule computed makes no sense.
608          * All rules that do check out OK are valid.
609          */
610
611         for (x = 0; x < rd1->n_reg_rules; x++) {
612                 rule1 = &rd1->reg_rules[x];
613                 for (y = 0; y < rd2->n_reg_rules; y++) {
614                         rule2 = &rd2->reg_rules[y];
615                         if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
616                                 num_rules++;
617                 }
618         }
619
620         if (!num_rules)
621                 return NULL;
622
623         size_of_regd = sizeof(struct ieee80211_regdomain) +
624                        num_rules * sizeof(struct ieee80211_reg_rule);
625
626         rd = kzalloc(size_of_regd, GFP_KERNEL);
627         if (!rd)
628                 return NULL;
629
630         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
631                 rule1 = &rd1->reg_rules[x];
632                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
633                         rule2 = &rd2->reg_rules[y];
634                         /*
635                          * This time around instead of using the stack lets
636                          * write to the target rule directly saving ourselves
637                          * a memcpy()
638                          */
639                         intersected_rule = &rd->reg_rules[rule_idx];
640                         r = reg_rules_intersect(rule1, rule2, intersected_rule);
641                         /*
642                          * No need to memset here the intersected rule here as
643                          * we're not using the stack anymore
644                          */
645                         if (r)
646                                 continue;
647                         rule_idx++;
648                 }
649         }
650
651         if (rule_idx != num_rules) {
652                 kfree(rd);
653                 return NULL;
654         }
655
656         rd->n_reg_rules = num_rules;
657         rd->alpha2[0] = '9';
658         rd->alpha2[1] = '8';
659
660         return rd;
661 }
662
663 /*
664  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
665  * want to just have the channel structure use these
666  */
667 static u32 map_regdom_flags(u32 rd_flags)
668 {
669         u32 channel_flags = 0;
670         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
671                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
672         if (rd_flags & NL80211_RRF_NO_IBSS)
673                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
674         if (rd_flags & NL80211_RRF_DFS)
675                 channel_flags |= IEEE80211_CHAN_RADAR;
676         if (rd_flags & NL80211_RRF_NO_OFDM)
677                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
678         return channel_flags;
679 }
680
681 static int freq_reg_info_regd(struct wiphy *wiphy,
682                               u32 center_freq,
683                               u32 desired_bw_khz,
684                               const struct ieee80211_reg_rule **reg_rule,
685                               const struct ieee80211_regdomain *regd)
686 {
687         int i;
688         bool band_rule_found = false;
689         bool bw_fits = false;
690
691         if (!desired_bw_khz)
692                 desired_bw_khz = MHZ_TO_KHZ(20);
693
694         if (!regd)
695                 return -EINVAL;
696
697         for (i = 0; i < regd->n_reg_rules; i++) {
698                 const struct ieee80211_reg_rule *rr;
699                 const struct ieee80211_freq_range *fr = NULL;
700
701                 rr = &regd->reg_rules[i];
702                 fr = &rr->freq_range;
703
704                 /*
705                  * We only need to know if one frequency rule was
706                  * was in center_freq's band, that's enough, so lets
707                  * not overwrite it once found
708                  */
709                 if (!band_rule_found)
710                         band_rule_found = freq_in_rule_band(fr, center_freq);
711
712                 bw_fits = reg_does_bw_fit(fr, center_freq, desired_bw_khz);
713
714                 if (band_rule_found && bw_fits) {
715                         *reg_rule = rr;
716                         return 0;
717                 }
718         }
719
720         if (!band_rule_found)
721                 return -ERANGE;
722
723         return -EINVAL;
724 }
725
726 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 desired_bw_khz,
727                   const struct ieee80211_reg_rule **reg_rule)
728 {
729         const struct ieee80211_regdomain *regd;
730
731         assert_reg_lock();
732         assert_cfg80211_lock();
733
734         /*
735          * Follow the driver's regulatory domain, if present, unless a country
736          * IE has been processed or a user wants to help complaince further
737          */
738         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
739             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
740             wiphy->regd)
741                 regd = wiphy->regd;
742         else
743                 regd = cfg80211_regdomain;
744
745         return freq_reg_info_regd(wiphy, center_freq, desired_bw_khz,
746                                   reg_rule, regd);
747 }
748 EXPORT_SYMBOL(freq_reg_info);
749
750 #ifdef CONFIG_CFG80211_REG_DEBUG
751 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
752 {
753         switch (initiator) {
754         case NL80211_REGDOM_SET_BY_CORE:
755                 return "Set by core";
756         case NL80211_REGDOM_SET_BY_USER:
757                 return "Set by user";
758         case NL80211_REGDOM_SET_BY_DRIVER:
759                 return "Set by driver";
760         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
761                 return "Set by country IE";
762         default:
763                 WARN_ON(1);
764                 return "Set by bug";
765         }
766 }
767
768 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
769                                     u32 desired_bw_khz,
770                                     const struct ieee80211_reg_rule *reg_rule)
771 {
772         const struct ieee80211_power_rule *power_rule;
773         const struct ieee80211_freq_range *freq_range;
774         char max_antenna_gain[32];
775
776         power_rule = &reg_rule->power_rule;
777         freq_range = &reg_rule->freq_range;
778
779         if (!power_rule->max_antenna_gain)
780                 snprintf(max_antenna_gain, 32, "N/A");
781         else
782                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
783
784         REG_DBG_PRINT("Updating information on frequency %d MHz for a %d MHz width channel with regulatory rule:\n",
785                       chan->center_freq, KHZ_TO_MHZ(desired_bw_khz));
786
787         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
788                       freq_range->start_freq_khz, freq_range->end_freq_khz,
789                       freq_range->max_bandwidth_khz, max_antenna_gain,
790                       power_rule->max_eirp);
791 }
792 #else
793 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
794                                     u32 desired_bw_khz,
795                                     const struct ieee80211_reg_rule *reg_rule)
796 {
797         return;
798 }
799 #endif
800
801 /*
802  * Note that right now we assume the desired channel bandwidth
803  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
804  * per channel, the primary and the extension channel). To support
805  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
806  * new ieee80211_channel.target_bw and re run the regulatory check
807  * on the wiphy with the target_bw specified. Then we can simply use
808  * that below for the desired_bw_khz below.
809  */
810 static void handle_channel(struct wiphy *wiphy,
811                            enum nl80211_reg_initiator initiator,
812                            struct ieee80211_channel *chan)
813 {
814         int r;
815         u32 flags, bw_flags = 0;
816         u32 desired_bw_khz = MHZ_TO_KHZ(20);
817         const struct ieee80211_reg_rule *reg_rule = NULL;
818         const struct ieee80211_power_rule *power_rule = NULL;
819         const struct ieee80211_freq_range *freq_range = NULL;
820         struct wiphy *request_wiphy = NULL;
821
822         assert_cfg80211_lock();
823
824         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
825
826         flags = chan->orig_flags;
827
828         r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
829                           desired_bw_khz, &reg_rule);
830         if (r) {
831                 /*
832                  * We will disable all channels that do not match our
833                  * received regulatory rule unless the hint is coming
834                  * from a Country IE and the Country IE had no information
835                  * about a band. The IEEE 802.11 spec allows for an AP
836                  * to send only a subset of the regulatory rules allowed,
837                  * so an AP in the US that only supports 2.4 GHz may only send
838                  * a country IE with information for the 2.4 GHz band
839                  * while 5 GHz is still supported.
840                  */
841                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
842                     r == -ERANGE)
843                         return;
844
845                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
846                 chan->flags = IEEE80211_CHAN_DISABLED;
847                 return;
848         }
849
850         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
851
852         power_rule = &reg_rule->power_rule;
853         freq_range = &reg_rule->freq_range;
854
855         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
856                 bw_flags = IEEE80211_CHAN_NO_HT40;
857
858         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
859             request_wiphy && request_wiphy == wiphy &&
860             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
861                 /*
862                  * This guarantees the driver's requested regulatory domain
863                  * will always be used as a base for further regulatory
864                  * settings
865                  */
866                 chan->flags = chan->orig_flags =
867                         map_regdom_flags(reg_rule->flags) | bw_flags;
868                 chan->max_antenna_gain = chan->orig_mag =
869                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
870                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
871                         (int) MBM_TO_DBM(power_rule->max_eirp);
872                 return;
873         }
874
875         chan->beacon_found = false;
876         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
877         chan->max_antenna_gain =
878                 min_t(int, chan->orig_mag,
879                       MBI_TO_DBI(power_rule->max_antenna_gain));
880         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
881         if (chan->orig_mpwr) {
882                 /*
883                  * Devices that have their own custom regulatory domain
884                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
885                  * passed country IE power settings.
886                  */
887                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
888                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
889                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
890                         chan->max_power = chan->max_reg_power;
891                 else
892                         chan->max_power = min(chan->orig_mpwr,
893                                               chan->max_reg_power);
894         } else
895                 chan->max_power = chan->max_reg_power;
896 }
897
898 static void handle_band(struct wiphy *wiphy,
899                         enum nl80211_reg_initiator initiator,
900                         struct ieee80211_supported_band *sband)
901 {
902         unsigned int i;
903
904         if (!sband)
905                 return;
906
907         for (i = 0; i < sband->n_channels; i++)
908                 handle_channel(wiphy, initiator, &sband->channels[i]);
909 }
910
911 static bool reg_request_cell_base(struct regulatory_request *request)
912 {
913         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
914                 return false;
915         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
916 }
917
918 bool reg_last_request_cell_base(void)
919 {
920         bool val;
921
922         mutex_lock(&reg_mutex);
923         val = reg_request_cell_base(last_request);
924         mutex_unlock(&reg_mutex);
925
926         return val;
927 }
928
929 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
930 /* Core specific check */
931 static enum reg_request_treatment
932 reg_ignore_cell_hint(struct regulatory_request *pending_request)
933 {
934         if (!reg_num_devs_support_basehint)
935                 return REG_REQ_IGNORE;
936
937         if (reg_request_cell_base(last_request) &&
938             !regdom_changes(pending_request->alpha2))
939                 return REG_REQ_ALREADY_SET;
940
941         return REG_REQ_OK;
942 }
943
944 /* Device specific check */
945 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
946 {
947         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
948 }
949 #else
950 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
951 {
952         return REG_REQ_IGNORE;
953 }
954
955 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
956 {
957         return true;
958 }
959 #endif
960
961
962 static bool ignore_reg_update(struct wiphy *wiphy,
963                               enum nl80211_reg_initiator initiator)
964 {
965         if (!last_request) {
966                 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
967                               reg_initiator_name(initiator));
968                 return true;
969         }
970
971         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
972             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
973                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
974                               reg_initiator_name(initiator));
975                 return true;
976         }
977
978         /*
979          * wiphy->regd will be set once the device has its own
980          * desired regulatory domain set
981          */
982         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
983             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
984             !is_world_regdom(last_request->alpha2)) {
985                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
986                               reg_initiator_name(initiator));
987                 return true;
988         }
989
990         if (reg_request_cell_base(last_request))
991                 return reg_dev_ignore_cell_hint(wiphy);
992
993         return false;
994 }
995
996 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
997                               struct reg_beacon *reg_beacon)
998 {
999         struct ieee80211_supported_band *sband;
1000         struct ieee80211_channel *chan;
1001         bool channel_changed = false;
1002         struct ieee80211_channel chan_before;
1003
1004         sband = wiphy->bands[reg_beacon->chan.band];
1005         chan = &sband->channels[chan_idx];
1006
1007         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1008                 return;
1009
1010         if (chan->beacon_found)
1011                 return;
1012
1013         chan->beacon_found = true;
1014
1015         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1016                 return;
1017
1018         chan_before.center_freq = chan->center_freq;
1019         chan_before.flags = chan->flags;
1020
1021         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1022                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1023                 channel_changed = true;
1024         }
1025
1026         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1027                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1028                 channel_changed = true;
1029         }
1030
1031         if (channel_changed)
1032                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1033 }
1034
1035 /*
1036  * Called when a scan on a wiphy finds a beacon on
1037  * new channel
1038  */
1039 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1040                                     struct reg_beacon *reg_beacon)
1041 {
1042         unsigned int i;
1043         struct ieee80211_supported_band *sband;
1044
1045         if (!wiphy->bands[reg_beacon->chan.band])
1046                 return;
1047
1048         sband = wiphy->bands[reg_beacon->chan.band];
1049
1050         for (i = 0; i < sband->n_channels; i++)
1051                 handle_reg_beacon(wiphy, i, reg_beacon);
1052 }
1053
1054 /*
1055  * Called upon reg changes or a new wiphy is added
1056  */
1057 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1058 {
1059         unsigned int i;
1060         struct ieee80211_supported_band *sband;
1061         struct reg_beacon *reg_beacon;
1062
1063         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1064                 if (!wiphy->bands[reg_beacon->chan.band])
1065                         continue;
1066                 sband = wiphy->bands[reg_beacon->chan.band];
1067                 for (i = 0; i < sband->n_channels; i++)
1068                         handle_reg_beacon(wiphy, i, reg_beacon);
1069         }
1070 }
1071
1072 static bool reg_is_world_roaming(struct wiphy *wiphy)
1073 {
1074         assert_cfg80211_lock();
1075
1076         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1077             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1078                 return true;
1079         if (last_request &&
1080             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1081             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1082                 return true;
1083         return false;
1084 }
1085
1086 /* Reap the advantages of previously found beacons */
1087 static void reg_process_beacons(struct wiphy *wiphy)
1088 {
1089         /*
1090          * Means we are just firing up cfg80211, so no beacons would
1091          * have been processed yet.
1092          */
1093         if (!last_request)
1094                 return;
1095         if (!reg_is_world_roaming(wiphy))
1096                 return;
1097         wiphy_update_beacon_reg(wiphy);
1098 }
1099
1100 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1101 {
1102         if (!chan)
1103                 return false;
1104         if (chan->flags & IEEE80211_CHAN_DISABLED)
1105                 return false;
1106         /* This would happen when regulatory rules disallow HT40 completely */
1107         return !(chan->flags & IEEE80211_CHAN_NO_HT40);
1108 }
1109
1110 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1111                                          struct ieee80211_channel *channel)
1112 {
1113         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1114         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1115         unsigned int i;
1116
1117         if (!is_ht40_allowed(channel)) {
1118                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1119                 return;
1120         }
1121
1122         /*
1123          * We need to ensure the extension channels exist to
1124          * be able to use HT40- or HT40+, this finds them (or not)
1125          */
1126         for (i = 0; i < sband->n_channels; i++) {
1127                 struct ieee80211_channel *c = &sband->channels[i];
1128
1129                 if (c->center_freq == (channel->center_freq - 20))
1130                         channel_before = c;
1131                 if (c->center_freq == (channel->center_freq + 20))
1132                         channel_after = c;
1133         }
1134
1135         /*
1136          * Please note that this assumes target bandwidth is 20 MHz,
1137          * if that ever changes we also need to change the below logic
1138          * to include that as well.
1139          */
1140         if (!is_ht40_allowed(channel_before))
1141                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1142         else
1143                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1144
1145         if (!is_ht40_allowed(channel_after))
1146                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1147         else
1148                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1149 }
1150
1151 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1152                                       struct ieee80211_supported_band *sband)
1153 {
1154         unsigned int i;
1155
1156         if (!sband)
1157                 return;
1158
1159         for (i = 0; i < sband->n_channels; i++)
1160                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1161 }
1162
1163 static void reg_process_ht_flags(struct wiphy *wiphy)
1164 {
1165         enum ieee80211_band band;
1166
1167         if (!wiphy)
1168                 return;
1169
1170         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1171                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1172 }
1173
1174 static void wiphy_update_regulatory(struct wiphy *wiphy,
1175                                     enum nl80211_reg_initiator initiator)
1176 {
1177         enum ieee80211_band band;
1178
1179         assert_cfg80211_lock();
1180         assert_reg_lock();
1181
1182         if (ignore_reg_update(wiphy, initiator))
1183                 return;
1184
1185         last_request->dfs_region = cfg80211_regdomain->dfs_region;
1186
1187         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1188                 handle_band(wiphy, initiator, wiphy->bands[band]);
1189
1190         reg_process_beacons(wiphy);
1191         reg_process_ht_flags(wiphy);
1192
1193         if (wiphy->reg_notifier)
1194                 wiphy->reg_notifier(wiphy, last_request);
1195 }
1196
1197 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1198 {
1199         struct cfg80211_registered_device *rdev;
1200         struct wiphy *wiphy;
1201
1202         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1203                 wiphy = &rdev->wiphy;
1204                 wiphy_update_regulatory(wiphy, initiator);
1205                 /*
1206                  * Regulatory updates set by CORE are ignored for custom
1207                  * regulatory cards. Let us notify the changes to the driver,
1208                  * as some drivers used this to restore its orig_* reg domain.
1209                  */
1210                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1211                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1212                     wiphy->reg_notifier)
1213                         wiphy->reg_notifier(wiphy, last_request);
1214         }
1215 }
1216
1217 static void handle_channel_custom(struct wiphy *wiphy,
1218                                   struct ieee80211_channel *chan,
1219                                   const struct ieee80211_regdomain *regd)
1220 {
1221         int r;
1222         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1223         u32 bw_flags = 0;
1224         const struct ieee80211_reg_rule *reg_rule = NULL;
1225         const struct ieee80211_power_rule *power_rule = NULL;
1226         const struct ieee80211_freq_range *freq_range = NULL;
1227
1228         r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1229                                desired_bw_khz, &reg_rule, regd);
1230
1231         if (r) {
1232                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits a %d MHz wide channel\n",
1233                               chan->center_freq, KHZ_TO_MHZ(desired_bw_khz));
1234                 chan->flags = IEEE80211_CHAN_DISABLED;
1235                 return;
1236         }
1237
1238         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1239
1240         power_rule = &reg_rule->power_rule;
1241         freq_range = &reg_rule->freq_range;
1242
1243         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1244                 bw_flags = IEEE80211_CHAN_NO_HT40;
1245
1246         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1247         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1248         chan->max_reg_power = chan->max_power =
1249                 (int) MBM_TO_DBM(power_rule->max_eirp);
1250 }
1251
1252 static void handle_band_custom(struct wiphy *wiphy,
1253                                struct ieee80211_supported_band *sband,
1254                                const struct ieee80211_regdomain *regd)
1255 {
1256         unsigned int i;
1257
1258         if (!sband)
1259                 return;
1260
1261         for (i = 0; i < sband->n_channels; i++)
1262                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1263 }
1264
1265 /* Used by drivers prior to wiphy registration */
1266 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1267                                    const struct ieee80211_regdomain *regd)
1268 {
1269         enum ieee80211_band band;
1270         unsigned int bands_set = 0;
1271
1272         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1273                 if (!wiphy->bands[band])
1274                         continue;
1275                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1276                 bands_set++;
1277         }
1278
1279         /*
1280          * no point in calling this if it won't have any effect
1281          * on your device's supported bands.
1282          */
1283         WARN_ON(!bands_set);
1284 }
1285 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1286
1287 /* This has the logic which determines when a new request
1288  * should be ignored. */
1289 static enum reg_request_treatment
1290 get_reg_request_treatment(struct wiphy *wiphy,
1291                           struct regulatory_request *pending_request)
1292 {
1293         struct wiphy *last_wiphy = NULL;
1294
1295         /* All initial requests are respected */
1296         if (!last_request)
1297                 return REG_REQ_OK;
1298
1299         switch (pending_request->initiator) {
1300         case NL80211_REGDOM_SET_BY_CORE:
1301                 return REG_REQ_OK;
1302         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1303                 if (reg_request_cell_base(last_request)) {
1304                         /* Trust a Cell base station over the AP's country IE */
1305                         if (regdom_changes(pending_request->alpha2))
1306                                 return REG_REQ_IGNORE;
1307                         return REG_REQ_ALREADY_SET;
1308                 }
1309
1310                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1311
1312                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1313                         return -EINVAL;
1314                 if (last_request->initiator ==
1315                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1316                         if (last_wiphy != wiphy) {
1317                                 /*
1318                                  * Two cards with two APs claiming different
1319                                  * Country IE alpha2s. We could
1320                                  * intersect them, but that seems unlikely
1321                                  * to be correct. Reject second one for now.
1322                                  */
1323                                 if (regdom_changes(pending_request->alpha2))
1324                                         return REG_REQ_IGNORE;
1325                                 return REG_REQ_ALREADY_SET;
1326                         }
1327                         /*
1328                          * Two consecutive Country IE hints on the same wiphy.
1329                          * This should be picked up early by the driver/stack
1330                          */
1331                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1332                                 return REG_REQ_OK;
1333                         return REG_REQ_ALREADY_SET;
1334                 }
1335                 return 0;
1336         case NL80211_REGDOM_SET_BY_DRIVER:
1337                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1338                         if (regdom_changes(pending_request->alpha2))
1339                                 return REG_REQ_OK;
1340                         return REG_REQ_ALREADY_SET;
1341                 }
1342
1343                 /*
1344                  * This would happen if you unplug and plug your card
1345                  * back in or if you add a new device for which the previously
1346                  * loaded card also agrees on the regulatory domain.
1347                  */
1348                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1349                     !regdom_changes(pending_request->alpha2))
1350                         return REG_REQ_ALREADY_SET;
1351
1352                 return REG_REQ_INTERSECT;
1353         case NL80211_REGDOM_SET_BY_USER:
1354                 if (reg_request_cell_base(pending_request))
1355                         return reg_ignore_cell_hint(pending_request);
1356
1357                 if (reg_request_cell_base(last_request))
1358                         return REG_REQ_IGNORE;
1359
1360                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1361                         return REG_REQ_INTERSECT;
1362                 /*
1363                  * If the user knows better the user should set the regdom
1364                  * to their country before the IE is picked up
1365                  */
1366                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1367                     last_request->intersect)
1368                         return REG_REQ_IGNORE;
1369                 /*
1370                  * Process user requests only after previous user/driver/core
1371                  * requests have been processed
1372                  */
1373                 if ((last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1374                      last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1375                      last_request->initiator == NL80211_REGDOM_SET_BY_USER) &&
1376                     regdom_changes(last_request->alpha2))
1377                         return REG_REQ_IGNORE;
1378
1379                 if (!regdom_changes(pending_request->alpha2))
1380                         return REG_REQ_ALREADY_SET;
1381
1382                 return REG_REQ_OK;
1383         }
1384
1385         return REG_REQ_IGNORE;
1386 }
1387
1388 static void reg_set_request_processed(void)
1389 {
1390         bool need_more_processing = false;
1391
1392         last_request->processed = true;
1393
1394         spin_lock(&reg_requests_lock);
1395         if (!list_empty(&reg_requests_list))
1396                 need_more_processing = true;
1397         spin_unlock(&reg_requests_lock);
1398
1399         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1400                 cancel_delayed_work(&reg_timeout);
1401
1402         if (need_more_processing)
1403                 schedule_work(&reg_work);
1404 }
1405
1406 /**
1407  * __regulatory_hint - hint to the wireless core a regulatory domain
1408  * @wiphy: if the hint comes from country information from an AP, this
1409  *      is required to be set to the wiphy that received the information
1410  * @pending_request: the regulatory request currently being processed
1411  *
1412  * The Wireless subsystem can use this function to hint to the wireless core
1413  * what it believes should be the current regulatory domain.
1414  *
1415  * Returns one of the different reg request treatment values.
1416  *
1417  * Caller must hold &cfg80211_mutex and &reg_mutex
1418  */
1419 static enum reg_request_treatment
1420 __regulatory_hint(struct wiphy *wiphy,
1421                   struct regulatory_request *pending_request)
1422 {
1423         const struct ieee80211_regdomain *regd;
1424         bool intersect = false;
1425         enum reg_request_treatment treatment;
1426
1427         assert_cfg80211_lock();
1428
1429         treatment = get_reg_request_treatment(wiphy, pending_request);
1430
1431         switch (treatment) {
1432         case REG_REQ_INTERSECT:
1433                 if (pending_request->initiator ==
1434                     NL80211_REGDOM_SET_BY_DRIVER) {
1435                         regd = reg_copy_regd(cfg80211_regdomain);
1436                         if (IS_ERR(regd)) {
1437                                 kfree(pending_request);
1438                                 return PTR_ERR(regd);
1439                         }
1440                         wiphy->regd = regd;
1441                 }
1442                 intersect = true;
1443                 break;
1444         case REG_REQ_OK:
1445                 break;
1446         default:
1447                 /*
1448                  * If the regulatory domain being requested by the
1449                  * driver has already been set just copy it to the
1450                  * wiphy
1451                  */
1452                 if (treatment == REG_REQ_ALREADY_SET &&
1453                     pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1454                         regd = reg_copy_regd(cfg80211_regdomain);
1455                         if (IS_ERR(regd)) {
1456                                 kfree(pending_request);
1457                                 return REG_REQ_IGNORE;
1458                         }
1459                         treatment = REG_REQ_ALREADY_SET;
1460                         wiphy->regd = regd;
1461                         goto new_request;
1462                 }
1463                 kfree(pending_request);
1464                 return treatment;
1465         }
1466
1467 new_request:
1468         if (last_request != &core_request_world)
1469                 kfree(last_request);
1470
1471         last_request = pending_request;
1472         last_request->intersect = intersect;
1473
1474         pending_request = NULL;
1475
1476         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1477                 user_alpha2[0] = last_request->alpha2[0];
1478                 user_alpha2[1] = last_request->alpha2[1];
1479         }
1480
1481         /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1482         if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1483                 /*
1484                  * Since CRDA will not be called in this case as we already
1485                  * have applied the requested regulatory domain before we just
1486                  * inform userspace we have processed the request
1487                  */
1488                 if (treatment == REG_REQ_ALREADY_SET) {
1489                         nl80211_send_reg_change_event(last_request);
1490                         reg_set_request_processed();
1491                 }
1492                 return treatment;
1493         }
1494
1495         if (call_crda(last_request->alpha2))
1496                 return REG_REQ_IGNORE;
1497         return REG_REQ_OK;
1498 }
1499
1500 /* This processes *all* regulatory hints */
1501 static void reg_process_hint(struct regulatory_request *reg_request,
1502                              enum nl80211_reg_initiator reg_initiator)
1503 {
1504         struct wiphy *wiphy = NULL;
1505
1506         if (WARN_ON(!reg_request->alpha2))
1507                 return;
1508
1509         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1510                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1511
1512         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1513                 kfree(reg_request);
1514                 return;
1515         }
1516
1517         switch (__regulatory_hint(wiphy, reg_request)) {
1518         case REG_REQ_ALREADY_SET:
1519                 /* This is required so that the orig_* parameters are saved */
1520                 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1521                         wiphy_update_regulatory(wiphy, reg_initiator);
1522                 break;
1523         default:
1524                 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1525                         schedule_delayed_work(&reg_timeout,
1526                                               msecs_to_jiffies(3142));
1527                 break;
1528         }
1529 }
1530
1531 /*
1532  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1533  * Regulatory hints come on a first come first serve basis and we
1534  * must process each one atomically.
1535  */
1536 static void reg_process_pending_hints(void)
1537 {
1538         struct regulatory_request *reg_request;
1539
1540         mutex_lock(&cfg80211_mutex);
1541         mutex_lock(&reg_mutex);
1542
1543         /* When last_request->processed becomes true this will be rescheduled */
1544         if (last_request && !last_request->processed) {
1545                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1546                 goto out;
1547         }
1548
1549         spin_lock(&reg_requests_lock);
1550
1551         if (list_empty(&reg_requests_list)) {
1552                 spin_unlock(&reg_requests_lock);
1553                 goto out;
1554         }
1555
1556         reg_request = list_first_entry(&reg_requests_list,
1557                                        struct regulatory_request,
1558                                        list);
1559         list_del_init(&reg_request->list);
1560
1561         spin_unlock(&reg_requests_lock);
1562
1563         reg_process_hint(reg_request, reg_request->initiator);
1564
1565 out:
1566         mutex_unlock(&reg_mutex);
1567         mutex_unlock(&cfg80211_mutex);
1568 }
1569
1570 /* Processes beacon hints -- this has nothing to do with country IEs */
1571 static void reg_process_pending_beacon_hints(void)
1572 {
1573         struct cfg80211_registered_device *rdev;
1574         struct reg_beacon *pending_beacon, *tmp;
1575
1576         /*
1577          * No need to hold the reg_mutex here as we just touch wiphys
1578          * and do not read or access regulatory variables.
1579          */
1580         mutex_lock(&cfg80211_mutex);
1581
1582         /* This goes through the _pending_ beacon list */
1583         spin_lock_bh(&reg_pending_beacons_lock);
1584
1585         list_for_each_entry_safe(pending_beacon, tmp,
1586                                  &reg_pending_beacons, list) {
1587                 list_del_init(&pending_beacon->list);
1588
1589                 /* Applies the beacon hint to current wiphys */
1590                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1591                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1592
1593                 /* Remembers the beacon hint for new wiphys or reg changes */
1594                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1595         }
1596
1597         spin_unlock_bh(&reg_pending_beacons_lock);
1598         mutex_unlock(&cfg80211_mutex);
1599 }
1600
1601 static void reg_todo(struct work_struct *work)
1602 {
1603         reg_process_pending_hints();
1604         reg_process_pending_beacon_hints();
1605 }
1606
1607 static void queue_regulatory_request(struct regulatory_request *request)
1608 {
1609         request->alpha2[0] = toupper(request->alpha2[0]);
1610         request->alpha2[1] = toupper(request->alpha2[1]);
1611
1612         spin_lock(&reg_requests_lock);
1613         list_add_tail(&request->list, &reg_requests_list);
1614         spin_unlock(&reg_requests_lock);
1615
1616         schedule_work(&reg_work);
1617 }
1618
1619 /*
1620  * Core regulatory hint -- happens during cfg80211_init()
1621  * and when we restore regulatory settings.
1622  */
1623 static int regulatory_hint_core(const char *alpha2)
1624 {
1625         struct regulatory_request *request;
1626
1627         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1628         if (!request)
1629                 return -ENOMEM;
1630
1631         request->alpha2[0] = alpha2[0];
1632         request->alpha2[1] = alpha2[1];
1633         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1634
1635         queue_regulatory_request(request);
1636
1637         return 0;
1638 }
1639
1640 /* User hints */
1641 int regulatory_hint_user(const char *alpha2,
1642                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1643 {
1644         struct regulatory_request *request;
1645
1646         if (WARN_ON(!alpha2))
1647                 return -EINVAL;
1648
1649         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1650         if (!request)
1651                 return -ENOMEM;
1652
1653         request->wiphy_idx = WIPHY_IDX_INVALID;
1654         request->alpha2[0] = alpha2[0];
1655         request->alpha2[1] = alpha2[1];
1656         request->initiator = NL80211_REGDOM_SET_BY_USER;
1657         request->user_reg_hint_type = user_reg_hint_type;
1658
1659         queue_regulatory_request(request);
1660
1661         return 0;
1662 }
1663
1664 /* Driver hints */
1665 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1666 {
1667         struct regulatory_request *request;
1668
1669         if (WARN_ON(!alpha2 || !wiphy))
1670                 return -EINVAL;
1671
1672         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1673         if (!request)
1674                 return -ENOMEM;
1675
1676         request->wiphy_idx = get_wiphy_idx(wiphy);
1677
1678         request->alpha2[0] = alpha2[0];
1679         request->alpha2[1] = alpha2[1];
1680         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1681
1682         queue_regulatory_request(request);
1683
1684         return 0;
1685 }
1686 EXPORT_SYMBOL(regulatory_hint);
1687
1688 /*
1689  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1690  * therefore cannot iterate over the rdev list here.
1691  */
1692 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1693                          const u8 *country_ie, u8 country_ie_len)
1694 {
1695         char alpha2[2];
1696         enum environment_cap env = ENVIRON_ANY;
1697         struct regulatory_request *request;
1698
1699         mutex_lock(&reg_mutex);
1700
1701         if (unlikely(!last_request))
1702                 goto out;
1703
1704         /* IE len must be evenly divisible by 2 */
1705         if (country_ie_len & 0x01)
1706                 goto out;
1707
1708         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1709                 goto out;
1710
1711         alpha2[0] = country_ie[0];
1712         alpha2[1] = country_ie[1];
1713
1714         if (country_ie[2] == 'I')
1715                 env = ENVIRON_INDOOR;
1716         else if (country_ie[2] == 'O')
1717                 env = ENVIRON_OUTDOOR;
1718
1719         /*
1720          * We will run this only upon a successful connection on cfg80211.
1721          * We leave conflict resolution to the workqueue, where can hold
1722          * cfg80211_mutex.
1723          */
1724         if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1725             last_request->wiphy_idx != WIPHY_IDX_INVALID)
1726                 goto out;
1727
1728         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1729         if (!request)
1730                 goto out;
1731
1732         request->wiphy_idx = get_wiphy_idx(wiphy);
1733         request->alpha2[0] = alpha2[0];
1734         request->alpha2[1] = alpha2[1];
1735         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1736         request->country_ie_env = env;
1737
1738         queue_regulatory_request(request);
1739 out:
1740         mutex_unlock(&reg_mutex);
1741 }
1742
1743 static void restore_alpha2(char *alpha2, bool reset_user)
1744 {
1745         /* indicates there is no alpha2 to consider for restoration */
1746         alpha2[0] = '9';
1747         alpha2[1] = '7';
1748
1749         /* The user setting has precedence over the module parameter */
1750         if (is_user_regdom_saved()) {
1751                 /* Unless we're asked to ignore it and reset it */
1752                 if (reset_user) {
1753                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1754                         user_alpha2[0] = '9';
1755                         user_alpha2[1] = '7';
1756
1757                         /*
1758                          * If we're ignoring user settings, we still need to
1759                          * check the module parameter to ensure we put things
1760                          * back as they were for a full restore.
1761                          */
1762                         if (!is_world_regdom(ieee80211_regdom)) {
1763                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1764                                               ieee80211_regdom[0], ieee80211_regdom[1]);
1765                                 alpha2[0] = ieee80211_regdom[0];
1766                                 alpha2[1] = ieee80211_regdom[1];
1767                         }
1768                 } else {
1769                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1770                                       user_alpha2[0], user_alpha2[1]);
1771                         alpha2[0] = user_alpha2[0];
1772                         alpha2[1] = user_alpha2[1];
1773                 }
1774         } else if (!is_world_regdom(ieee80211_regdom)) {
1775                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1776                               ieee80211_regdom[0], ieee80211_regdom[1]);
1777                 alpha2[0] = ieee80211_regdom[0];
1778                 alpha2[1] = ieee80211_regdom[1];
1779         } else
1780                 REG_DBG_PRINT("Restoring regulatory settings\n");
1781 }
1782
1783 static void restore_custom_reg_settings(struct wiphy *wiphy)
1784 {
1785         struct ieee80211_supported_band *sband;
1786         enum ieee80211_band band;
1787         struct ieee80211_channel *chan;
1788         int i;
1789
1790         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1791                 sband = wiphy->bands[band];
1792                 if (!sband)
1793                         continue;
1794                 for (i = 0; i < sband->n_channels; i++) {
1795                         chan = &sband->channels[i];
1796                         chan->flags = chan->orig_flags;
1797                         chan->max_antenna_gain = chan->orig_mag;
1798                         chan->max_power = chan->orig_mpwr;
1799                         chan->beacon_found = false;
1800                 }
1801         }
1802 }
1803
1804 /*
1805  * Restoring regulatory settings involves ingoring any
1806  * possibly stale country IE information and user regulatory
1807  * settings if so desired, this includes any beacon hints
1808  * learned as we could have traveled outside to another country
1809  * after disconnection. To restore regulatory settings we do
1810  * exactly what we did at bootup:
1811  *
1812  *   - send a core regulatory hint
1813  *   - send a user regulatory hint if applicable
1814  *
1815  * Device drivers that send a regulatory hint for a specific country
1816  * keep their own regulatory domain on wiphy->regd so that does does
1817  * not need to be remembered.
1818  */
1819 static void restore_regulatory_settings(bool reset_user)
1820 {
1821         char alpha2[2];
1822         char world_alpha2[2];
1823         struct reg_beacon *reg_beacon, *btmp;
1824         struct regulatory_request *reg_request, *tmp;
1825         LIST_HEAD(tmp_reg_req_list);
1826         struct cfg80211_registered_device *rdev;
1827
1828         mutex_lock(&cfg80211_mutex);
1829         mutex_lock(&reg_mutex);
1830
1831         reset_regdomains(true);
1832         restore_alpha2(alpha2, reset_user);
1833
1834         /*
1835          * If there's any pending requests we simply
1836          * stash them to a temporary pending queue and
1837          * add then after we've restored regulatory
1838          * settings.
1839          */
1840         spin_lock(&reg_requests_lock);
1841         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1842                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1843                         continue;
1844                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1845         }
1846         spin_unlock(&reg_requests_lock);
1847
1848         /* Clear beacon hints */
1849         spin_lock_bh(&reg_pending_beacons_lock);
1850         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1851                 list_del(&reg_beacon->list);
1852                 kfree(reg_beacon);
1853         }
1854         spin_unlock_bh(&reg_pending_beacons_lock);
1855
1856         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1857                 list_del(&reg_beacon->list);
1858                 kfree(reg_beacon);
1859         }
1860
1861         /* First restore to the basic regulatory settings */
1862         cfg80211_regdomain = cfg80211_world_regdom;
1863         world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1864         world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1865
1866         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1867                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1868                         restore_custom_reg_settings(&rdev->wiphy);
1869         }
1870
1871         regulatory_hint_core(world_alpha2);
1872
1873         /*
1874          * This restores the ieee80211_regdom module parameter
1875          * preference or the last user requested regulatory
1876          * settings, user regulatory settings takes precedence.
1877          */
1878         if (is_an_alpha2(alpha2))
1879                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1880
1881         spin_lock(&reg_requests_lock);
1882         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1883         spin_unlock(&reg_requests_lock);
1884
1885         mutex_unlock(&reg_mutex);
1886         mutex_unlock(&cfg80211_mutex);
1887
1888         REG_DBG_PRINT("Kicking the queue\n");
1889
1890         schedule_work(&reg_work);
1891 }
1892
1893 void regulatory_hint_disconnect(void)
1894 {
1895         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1896         restore_regulatory_settings(false);
1897 }
1898
1899 static bool freq_is_chan_12_13_14(u16 freq)
1900 {
1901         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1902             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1903             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1904                 return true;
1905         return false;
1906 }
1907
1908 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1909                                  struct ieee80211_channel *beacon_chan,
1910                                  gfp_t gfp)
1911 {
1912         struct reg_beacon *reg_beacon;
1913
1914         if (beacon_chan->beacon_found ||
1915             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1916             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1917              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1918                 return 0;
1919
1920         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1921         if (!reg_beacon)
1922                 return -ENOMEM;
1923
1924         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1925                       beacon_chan->center_freq,
1926                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1927                       wiphy_name(wiphy));
1928
1929         memcpy(&reg_beacon->chan, beacon_chan,
1930                sizeof(struct ieee80211_channel));
1931
1932         /*
1933          * Since we can be called from BH or and non-BH context
1934          * we must use spin_lock_bh()
1935          */
1936         spin_lock_bh(&reg_pending_beacons_lock);
1937         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1938         spin_unlock_bh(&reg_pending_beacons_lock);
1939
1940         schedule_work(&reg_work);
1941
1942         return 0;
1943 }
1944
1945 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1946 {
1947         unsigned int i;
1948         const struct ieee80211_reg_rule *reg_rule = NULL;
1949         const struct ieee80211_freq_range *freq_range = NULL;
1950         const struct ieee80211_power_rule *power_rule = NULL;
1951
1952         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1953
1954         for (i = 0; i < rd->n_reg_rules; i++) {
1955                 reg_rule = &rd->reg_rules[i];
1956                 freq_range = &reg_rule->freq_range;
1957                 power_rule = &reg_rule->power_rule;
1958
1959                 /*
1960                  * There may not be documentation for max antenna gain
1961                  * in certain regions
1962                  */
1963                 if (power_rule->max_antenna_gain)
1964                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1965                                 freq_range->start_freq_khz,
1966                                 freq_range->end_freq_khz,
1967                                 freq_range->max_bandwidth_khz,
1968                                 power_rule->max_antenna_gain,
1969                                 power_rule->max_eirp);
1970                 else
1971                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1972                                 freq_range->start_freq_khz,
1973                                 freq_range->end_freq_khz,
1974                                 freq_range->max_bandwidth_khz,
1975                                 power_rule->max_eirp);
1976         }
1977 }
1978
1979 bool reg_supported_dfs_region(u8 dfs_region)
1980 {
1981         switch (dfs_region) {
1982         case NL80211_DFS_UNSET:
1983         case NL80211_DFS_FCC:
1984         case NL80211_DFS_ETSI:
1985         case NL80211_DFS_JP:
1986                 return true;
1987         default:
1988                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
1989                               dfs_region);
1990                 return false;
1991         }
1992 }
1993
1994 static void print_dfs_region(u8 dfs_region)
1995 {
1996         if (!dfs_region)
1997                 return;
1998
1999         switch (dfs_region) {
2000         case NL80211_DFS_FCC:
2001                 pr_info(" DFS Master region FCC");
2002                 break;
2003         case NL80211_DFS_ETSI:
2004                 pr_info(" DFS Master region ETSI");
2005                 break;
2006         case NL80211_DFS_JP:
2007                 pr_info(" DFS Master region JP");
2008                 break;
2009         default:
2010                 pr_info(" DFS Master region Unknown");
2011                 break;
2012         }
2013 }
2014
2015 static void print_regdomain(const struct ieee80211_regdomain *rd)
2016 {
2017
2018         if (is_intersected_alpha2(rd->alpha2)) {
2019                 if (last_request->initiator ==
2020                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2021                         struct cfg80211_registered_device *rdev;
2022                         rdev = cfg80211_rdev_by_wiphy_idx(
2023                                 last_request->wiphy_idx);
2024                         if (rdev) {
2025                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2026                                         rdev->country_ie_alpha2[0],
2027                                         rdev->country_ie_alpha2[1]);
2028                         } else
2029                                 pr_info("Current regulatory domain intersected:\n");
2030                 } else
2031                         pr_info("Current regulatory domain intersected:\n");
2032         } else if (is_world_regdom(rd->alpha2)) {
2033                 pr_info("World regulatory domain updated:\n");
2034         } else {
2035                 if (is_unknown_alpha2(rd->alpha2))
2036                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2037                 else {
2038                         if (reg_request_cell_base(last_request))
2039                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2040                                         rd->alpha2[0], rd->alpha2[1]);
2041                         else
2042                                 pr_info("Regulatory domain changed to country: %c%c\n",
2043                                         rd->alpha2[0], rd->alpha2[1]);
2044                 }
2045         }
2046
2047         print_dfs_region(rd->dfs_region);
2048         print_rd_rules(rd);
2049 }
2050
2051 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2052 {
2053         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2054         print_rd_rules(rd);
2055 }
2056
2057 /* Takes ownership of rd only if it doesn't fail */
2058 static int __set_regdom(const struct ieee80211_regdomain *rd)
2059 {
2060         const struct ieee80211_regdomain *regd;
2061         const struct ieee80211_regdomain *intersected_rd = NULL;
2062         struct wiphy *request_wiphy;
2063         /* Some basic sanity checks first */
2064
2065         if (is_world_regdom(rd->alpha2)) {
2066                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2067                         return -EINVAL;
2068                 update_world_regdomain(rd);
2069                 return 0;
2070         }
2071
2072         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2073             !is_unknown_alpha2(rd->alpha2))
2074                 return -EINVAL;
2075
2076         if (!last_request)
2077                 return -EINVAL;
2078
2079         /*
2080          * Lets only bother proceeding on the same alpha2 if the current
2081          * rd is non static (it means CRDA was present and was used last)
2082          * and the pending request came in from a country IE
2083          */
2084         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2085                 /*
2086                  * If someone else asked us to change the rd lets only bother
2087                  * checking if the alpha2 changes if CRDA was already called
2088                  */
2089                 if (!regdom_changes(rd->alpha2))
2090                         return -EALREADY;
2091         }
2092
2093         /*
2094          * Now lets set the regulatory domain, update all driver channels
2095          * and finally inform them of what we have done, in case they want
2096          * to review or adjust their own settings based on their own
2097          * internal EEPROM data
2098          */
2099
2100         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2101                 return -EINVAL;
2102
2103         if (!is_valid_rd(rd)) {
2104                 pr_err("Invalid regulatory domain detected:\n");
2105                 print_regdomain_info(rd);
2106                 return -EINVAL;
2107         }
2108
2109         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2110         if (!request_wiphy &&
2111             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2112              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2113                 schedule_delayed_work(&reg_timeout, 0);
2114                 return -ENODEV;
2115         }
2116
2117         if (!last_request->intersect) {
2118                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2119                         reset_regdomains(false);
2120                         cfg80211_regdomain = rd;
2121                         return 0;
2122                 }
2123
2124                 /*
2125                  * For a driver hint, lets copy the regulatory domain the
2126                  * driver wanted to the wiphy to deal with conflicts
2127                  */
2128
2129                 /*
2130                  * Userspace could have sent two replies with only
2131                  * one kernel request.
2132                  */
2133                 if (request_wiphy->regd)
2134                         return -EALREADY;
2135
2136                 regd = reg_copy_regd(rd);
2137                 if (IS_ERR(regd))
2138                         return PTR_ERR(regd);
2139
2140                 request_wiphy->regd = regd;
2141                 reset_regdomains(false);
2142                 cfg80211_regdomain = rd;
2143                 return 0;
2144         }
2145
2146         /* Intersection requires a bit more work */
2147
2148         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2149                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2150                 if (!intersected_rd)
2151                         return -EINVAL;
2152
2153                 /*
2154                  * We can trash what CRDA provided now.
2155                  * However if a driver requested this specific regulatory
2156                  * domain we keep it for its private use
2157                  */
2158                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2159                         request_wiphy->regd = rd;
2160                 else
2161                         kfree(rd);
2162
2163                 rd = NULL;
2164
2165                 reset_regdomains(false);
2166                 cfg80211_regdomain = intersected_rd;
2167
2168                 return 0;
2169         }
2170
2171         return -EINVAL;
2172 }
2173
2174
2175 /*
2176  * Use this call to set the current regulatory domain. Conflicts with
2177  * multiple drivers can be ironed out later. Caller must've already
2178  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2179  */
2180 int set_regdom(const struct ieee80211_regdomain *rd)
2181 {
2182         int r;
2183
2184         assert_cfg80211_lock();
2185
2186         mutex_lock(&reg_mutex);
2187
2188         /* Note that this doesn't update the wiphys, this is done below */
2189         r = __set_regdom(rd);
2190         if (r) {
2191                 if (r == -EALREADY)
2192                         reg_set_request_processed();
2193
2194                 kfree(rd);
2195                 goto out;
2196         }
2197
2198         /* This would make this whole thing pointless */
2199         if (WARN_ON(!last_request->intersect && rd != cfg80211_regdomain)) {
2200                 r = -EINVAL;
2201                 goto out;
2202         }
2203
2204         /* update all wiphys now with the new established regulatory domain */
2205         update_all_wiphy_regulatory(last_request->initiator);
2206
2207         print_regdomain(cfg80211_regdomain);
2208
2209         nl80211_send_reg_change_event(last_request);
2210
2211         reg_set_request_processed();
2212
2213  out:
2214         mutex_unlock(&reg_mutex);
2215
2216         return r;
2217 }
2218
2219 #ifdef CONFIG_HOTPLUG
2220 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2221 {
2222         if (last_request && !last_request->processed) {
2223                 if (add_uevent_var(env, "COUNTRY=%c%c",
2224                                    last_request->alpha2[0],
2225                                    last_request->alpha2[1]))
2226                         return -ENOMEM;
2227         }
2228
2229         return 0;
2230 }
2231 #else
2232 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2233 {
2234         return -ENODEV;
2235 }
2236 #endif /* CONFIG_HOTPLUG */
2237
2238 void wiphy_regulatory_register(struct wiphy *wiphy)
2239 {
2240         mutex_lock(&reg_mutex);
2241
2242         if (!reg_dev_ignore_cell_hint(wiphy))
2243                 reg_num_devs_support_basehint++;
2244
2245         wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2246
2247         mutex_unlock(&reg_mutex);
2248 }
2249
2250 /* Caller must hold cfg80211_mutex */
2251 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2252 {
2253         struct wiphy *request_wiphy = NULL;
2254
2255         mutex_lock(&reg_mutex);
2256
2257         if (!reg_dev_ignore_cell_hint(wiphy))
2258                 reg_num_devs_support_basehint--;
2259
2260         kfree(wiphy->regd);
2261
2262         if (last_request)
2263                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2264
2265         if (!request_wiphy || request_wiphy != wiphy)
2266                 goto out;
2267
2268         last_request->wiphy_idx = WIPHY_IDX_INVALID;
2269         last_request->country_ie_env = ENVIRON_ANY;
2270 out:
2271         mutex_unlock(&reg_mutex);
2272 }
2273
2274 static void reg_timeout_work(struct work_struct *work)
2275 {
2276         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2277         restore_regulatory_settings(true);
2278 }
2279
2280 int __init regulatory_init(void)
2281 {
2282         int err = 0;
2283
2284         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2285         if (IS_ERR(reg_pdev))
2286                 return PTR_ERR(reg_pdev);
2287
2288         reg_pdev->dev.type = &reg_device_type;
2289
2290         spin_lock_init(&reg_requests_lock);
2291         spin_lock_init(&reg_pending_beacons_lock);
2292
2293         reg_regdb_size_check();
2294
2295         cfg80211_regdomain = cfg80211_world_regdom;
2296
2297         user_alpha2[0] = '9';
2298         user_alpha2[1] = '7';
2299
2300         /* We always try to get an update for the static regdomain */
2301         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2302         if (err) {
2303                 if (err == -ENOMEM)
2304                         return err;
2305                 /*
2306                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2307                  * memory which is handled and propagated appropriately above
2308                  * but it can also fail during a netlink_broadcast() or during
2309                  * early boot for call_usermodehelper(). For now treat these
2310                  * errors as non-fatal.
2311                  */
2312                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2313         }
2314
2315         /*
2316          * Finally, if the user set the module parameter treat it
2317          * as a user hint.
2318          */
2319         if (!is_world_regdom(ieee80211_regdom))
2320                 regulatory_hint_user(ieee80211_regdom,
2321                                      NL80211_USER_REG_HINT_USER);
2322
2323         return 0;
2324 }
2325
2326 void regulatory_exit(void)
2327 {
2328         struct regulatory_request *reg_request, *tmp;
2329         struct reg_beacon *reg_beacon, *btmp;
2330
2331         cancel_work_sync(&reg_work);
2332         cancel_delayed_work_sync(&reg_timeout);
2333
2334         /* Lock to suppress warnings */
2335         mutex_lock(&cfg80211_mutex);
2336         mutex_lock(&reg_mutex);
2337         reset_regdomains(true);
2338         mutex_unlock(&cfg80211_mutex);
2339         mutex_unlock(&reg_mutex);
2340
2341         dev_set_uevent_suppress(&reg_pdev->dev, true);
2342
2343         platform_device_unregister(reg_pdev);
2344
2345         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2346                 list_del(&reg_beacon->list);
2347                 kfree(reg_beacon);
2348         }
2349
2350         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2351                 list_del(&reg_beacon->list);
2352                 kfree(reg_beacon);
2353         }
2354
2355         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2356                 list_del(&reg_request->list);
2357                 kfree(reg_request);
2358         }
2359 }