]> git.karo-electronics.de Git - mv-sheeva.git/blob - net/wireless/reg.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mv-sheeva.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/nl80211.h>
40 #include <linux/platform_device.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44 #include "regdb.h"
45 #include "nl80211.h"
46
47 #ifdef CONFIG_CFG80211_REG_DEBUG
48 #define REG_DBG_PRINT(format, args...) \
49         do { \
50                 printk(KERN_DEBUG format , ## args); \
51         } while (0)
52 #else
53 #define REG_DBG_PRINT(args...)
54 #endif
55
56 /* Receipt of information from last regulatory request */
57 static struct regulatory_request *last_request;
58
59 /* To trigger userspace events */
60 static struct platform_device *reg_pdev;
61
62 /*
63  * Central wireless core regulatory domains, we only need two,
64  * the current one and a world regulatory domain in case we have no
65  * information to give us an alpha2
66  */
67 const struct ieee80211_regdomain *cfg80211_regdomain;
68
69 /*
70  * We use this as a place for the rd structure built from the
71  * last parsed country IE to rest until CRDA gets back to us with
72  * what it thinks should apply for the same country
73  */
74 static const struct ieee80211_regdomain *country_ie_regdomain;
75
76 /*
77  * Protects static reg.c components:
78  *     - cfg80211_world_regdom
79  *     - cfg80211_regdom
80  *     - country_ie_regdomain
81  *     - last_request
82  */
83 DEFINE_MUTEX(reg_mutex);
84 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
85
86 /* Used to queue up regulatory hints */
87 static LIST_HEAD(reg_requests_list);
88 static spinlock_t reg_requests_lock;
89
90 /* Used to queue up beacon hints for review */
91 static LIST_HEAD(reg_pending_beacons);
92 static spinlock_t reg_pending_beacons_lock;
93
94 /* Used to keep track of processed beacon hints */
95 static LIST_HEAD(reg_beacon_list);
96
97 struct reg_beacon {
98         struct list_head list;
99         struct ieee80211_channel chan;
100 };
101
102 /* We keep a static world regulatory domain in case of the absence of CRDA */
103 static const struct ieee80211_regdomain world_regdom = {
104         .n_reg_rules = 5,
105         .alpha2 =  "00",
106         .reg_rules = {
107                 /* IEEE 802.11b/g, channels 1..11 */
108                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
109                 /* IEEE 802.11b/g, channels 12..13. No HT40
110                  * channel fits here. */
111                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
112                         NL80211_RRF_PASSIVE_SCAN |
113                         NL80211_RRF_NO_IBSS),
114                 /* IEEE 802.11 channel 14 - Only JP enables
115                  * this and for 802.11b only */
116                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
117                         NL80211_RRF_PASSIVE_SCAN |
118                         NL80211_RRF_NO_IBSS |
119                         NL80211_RRF_NO_OFDM),
120                 /* IEEE 802.11a, channel 36..48 */
121                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
122                         NL80211_RRF_PASSIVE_SCAN |
123                         NL80211_RRF_NO_IBSS),
124
125                 /* NB: 5260 MHz - 5700 MHz requies DFS */
126
127                 /* IEEE 802.11a, channel 149..165 */
128                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
129                         NL80211_RRF_PASSIVE_SCAN |
130                         NL80211_RRF_NO_IBSS),
131         }
132 };
133
134 static const struct ieee80211_regdomain *cfg80211_world_regdom =
135         &world_regdom;
136
137 static char *ieee80211_regdom = "00";
138 static char user_alpha2[2];
139
140 module_param(ieee80211_regdom, charp, 0444);
141 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
142
143 static void reset_regdomains(void)
144 {
145         /* avoid freeing static information or freeing something twice */
146         if (cfg80211_regdomain == cfg80211_world_regdom)
147                 cfg80211_regdomain = NULL;
148         if (cfg80211_world_regdom == &world_regdom)
149                 cfg80211_world_regdom = NULL;
150         if (cfg80211_regdomain == &world_regdom)
151                 cfg80211_regdomain = NULL;
152
153         kfree(cfg80211_regdomain);
154         kfree(cfg80211_world_regdom);
155
156         cfg80211_world_regdom = &world_regdom;
157         cfg80211_regdomain = NULL;
158 }
159
160 /*
161  * Dynamic world regulatory domain requested by the wireless
162  * core upon initialization
163  */
164 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
165 {
166         BUG_ON(!last_request);
167
168         reset_regdomains();
169
170         cfg80211_world_regdom = rd;
171         cfg80211_regdomain = rd;
172 }
173
174 bool is_world_regdom(const char *alpha2)
175 {
176         if (!alpha2)
177                 return false;
178         if (alpha2[0] == '0' && alpha2[1] == '0')
179                 return true;
180         return false;
181 }
182
183 static bool is_alpha2_set(const char *alpha2)
184 {
185         if (!alpha2)
186                 return false;
187         if (alpha2[0] != 0 && alpha2[1] != 0)
188                 return true;
189         return false;
190 }
191
192 static bool is_alpha_upper(char letter)
193 {
194         /* ASCII A - Z */
195         if (letter >= 65 && letter <= 90)
196                 return true;
197         return false;
198 }
199
200 static bool is_unknown_alpha2(const char *alpha2)
201 {
202         if (!alpha2)
203                 return false;
204         /*
205          * Special case where regulatory domain was built by driver
206          * but a specific alpha2 cannot be determined
207          */
208         if (alpha2[0] == '9' && alpha2[1] == '9')
209                 return true;
210         return false;
211 }
212
213 static bool is_intersected_alpha2(const char *alpha2)
214 {
215         if (!alpha2)
216                 return false;
217         /*
218          * Special case where regulatory domain is the
219          * result of an intersection between two regulatory domain
220          * structures
221          */
222         if (alpha2[0] == '9' && alpha2[1] == '8')
223                 return true;
224         return false;
225 }
226
227 static bool is_an_alpha2(const char *alpha2)
228 {
229         if (!alpha2)
230                 return false;
231         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
232                 return true;
233         return false;
234 }
235
236 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 {
238         if (!alpha2_x || !alpha2_y)
239                 return false;
240         if (alpha2_x[0] == alpha2_y[0] &&
241                 alpha2_x[1] == alpha2_y[1])
242                 return true;
243         return false;
244 }
245
246 static bool regdom_changes(const char *alpha2)
247 {
248         assert_cfg80211_lock();
249
250         if (!cfg80211_regdomain)
251                 return true;
252         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
253                 return false;
254         return true;
255 }
256
257 /*
258  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
259  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
260  * has ever been issued.
261  */
262 static bool is_user_regdom_saved(void)
263 {
264         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
265                 return false;
266
267         /* This would indicate a mistake on the design */
268         if (WARN((!is_world_regdom(user_alpha2) &&
269                   !is_an_alpha2(user_alpha2)),
270                  "Unexpected user alpha2: %c%c\n",
271                  user_alpha2[0],
272                  user_alpha2[1]))
273                 return false;
274
275         return true;
276 }
277
278 /**
279  * country_ie_integrity_changes - tells us if the country IE has changed
280  * @checksum: checksum of country IE of fields we are interested in
281  *
282  * If the country IE has not changed you can ignore it safely. This is
283  * useful to determine if two devices are seeing two different country IEs
284  * even on the same alpha2. Note that this will return false if no IE has
285  * been set on the wireless core yet.
286  */
287 static bool country_ie_integrity_changes(u32 checksum)
288 {
289         /* If no IE has been set then the checksum doesn't change */
290         if (unlikely(!last_request->country_ie_checksum))
291                 return false;
292         if (unlikely(last_request->country_ie_checksum != checksum))
293                 return true;
294         return false;
295 }
296
297 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
298                          const struct ieee80211_regdomain *src_regd)
299 {
300         struct ieee80211_regdomain *regd;
301         int size_of_regd = 0;
302         unsigned int i;
303
304         size_of_regd = sizeof(struct ieee80211_regdomain) +
305           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
306
307         regd = kzalloc(size_of_regd, GFP_KERNEL);
308         if (!regd)
309                 return -ENOMEM;
310
311         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
312
313         for (i = 0; i < src_regd->n_reg_rules; i++)
314                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
315                         sizeof(struct ieee80211_reg_rule));
316
317         *dst_regd = regd;
318         return 0;
319 }
320
321 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
322 struct reg_regdb_search_request {
323         char alpha2[2];
324         struct list_head list;
325 };
326
327 static LIST_HEAD(reg_regdb_search_list);
328 static DEFINE_SPINLOCK(reg_regdb_search_lock);
329
330 static void reg_regdb_search(struct work_struct *work)
331 {
332         struct reg_regdb_search_request *request;
333         const struct ieee80211_regdomain *curdom, *regdom;
334         int i, r;
335
336         spin_lock(&reg_regdb_search_lock);
337         while (!list_empty(&reg_regdb_search_list)) {
338                 request = list_first_entry(&reg_regdb_search_list,
339                                            struct reg_regdb_search_request,
340                                            list);
341                 list_del(&request->list);
342
343                 for (i=0; i<reg_regdb_size; i++) {
344                         curdom = reg_regdb[i];
345
346                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
347                                 r = reg_copy_regd(&regdom, curdom);
348                                 if (r)
349                                         break;
350                                 spin_unlock(&reg_regdb_search_lock);
351                                 mutex_lock(&cfg80211_mutex);
352                                 set_regdom(regdom);
353                                 mutex_unlock(&cfg80211_mutex);
354                                 spin_lock(&reg_regdb_search_lock);
355                                 break;
356                         }
357                 }
358
359                 kfree(request);
360         }
361         spin_unlock(&reg_regdb_search_lock);
362 }
363
364 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
365
366 static void reg_regdb_query(const char *alpha2)
367 {
368         struct reg_regdb_search_request *request;
369
370         if (!alpha2)
371                 return;
372
373         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
374         if (!request)
375                 return;
376
377         memcpy(request->alpha2, alpha2, 2);
378
379         spin_lock(&reg_regdb_search_lock);
380         list_add_tail(&request->list, &reg_regdb_search_list);
381         spin_unlock(&reg_regdb_search_lock);
382
383         schedule_work(&reg_regdb_work);
384 }
385 #else
386 static inline void reg_regdb_query(const char *alpha2) {}
387 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
388
389 /*
390  * This lets us keep regulatory code which is updated on a regulatory
391  * basis in userspace.
392  */
393 static int call_crda(const char *alpha2)
394 {
395         char country_env[9 + 2] = "COUNTRY=";
396         char *envp[] = {
397                 country_env,
398                 NULL
399         };
400
401         if (!is_world_regdom((char *) alpha2))
402                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
403                         alpha2[0], alpha2[1]);
404         else
405                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
406                         "regulatory domain\n");
407
408         /* query internal regulatory database (if it exists) */
409         reg_regdb_query(alpha2);
410
411         country_env[8] = alpha2[0];
412         country_env[9] = alpha2[1];
413
414         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
415 }
416
417 /* Used by nl80211 before kmalloc'ing our regulatory domain */
418 bool reg_is_valid_request(const char *alpha2)
419 {
420         assert_cfg80211_lock();
421
422         if (!last_request)
423                 return false;
424
425         return alpha2_equal(last_request->alpha2, alpha2);
426 }
427
428 /* Sanity check on a regulatory rule */
429 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
430 {
431         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
432         u32 freq_diff;
433
434         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
435                 return false;
436
437         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
438                 return false;
439
440         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
441
442         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
443                         freq_range->max_bandwidth_khz > freq_diff)
444                 return false;
445
446         return true;
447 }
448
449 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
450 {
451         const struct ieee80211_reg_rule *reg_rule = NULL;
452         unsigned int i;
453
454         if (!rd->n_reg_rules)
455                 return false;
456
457         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
458                 return false;
459
460         for (i = 0; i < rd->n_reg_rules; i++) {
461                 reg_rule = &rd->reg_rules[i];
462                 if (!is_valid_reg_rule(reg_rule))
463                         return false;
464         }
465
466         return true;
467 }
468
469 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
470                             u32 center_freq_khz,
471                             u32 bw_khz)
472 {
473         u32 start_freq_khz, end_freq_khz;
474
475         start_freq_khz = center_freq_khz - (bw_khz/2);
476         end_freq_khz = center_freq_khz + (bw_khz/2);
477
478         if (start_freq_khz >= freq_range->start_freq_khz &&
479             end_freq_khz <= freq_range->end_freq_khz)
480                 return true;
481
482         return false;
483 }
484
485 /**
486  * freq_in_rule_band - tells us if a frequency is in a frequency band
487  * @freq_range: frequency rule we want to query
488  * @freq_khz: frequency we are inquiring about
489  *
490  * This lets us know if a specific frequency rule is or is not relevant to
491  * a specific frequency's band. Bands are device specific and artificial
492  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
493  * safe for now to assume that a frequency rule should not be part of a
494  * frequency's band if the start freq or end freq are off by more than 2 GHz.
495  * This resolution can be lowered and should be considered as we add
496  * regulatory rule support for other "bands".
497  **/
498 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
499         u32 freq_khz)
500 {
501 #define ONE_GHZ_IN_KHZ  1000000
502         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
503                 return true;
504         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
505                 return true;
506         return false;
507 #undef ONE_GHZ_IN_KHZ
508 }
509
510 /*
511  * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
512  * work. ieee80211_channel_to_frequency() can for example currently provide a
513  * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
514  * an AP providing channel 8 on a country IE triplet when it sent this on the
515  * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
516  * channel.
517  *
518  * This can be removed once ieee80211_channel_to_frequency() takes in a band.
519  */
520 static bool chan_in_band(int chan, enum ieee80211_band band)
521 {
522         int center_freq = ieee80211_channel_to_frequency(chan);
523
524         switch (band) {
525         case IEEE80211_BAND_2GHZ:
526                 if (center_freq <= 2484)
527                         return true;
528                 return false;
529         case IEEE80211_BAND_5GHZ:
530                 if (center_freq >= 5005)
531                         return true;
532                 return false;
533         default:
534                 return false;
535         }
536 }
537
538 /*
539  * Some APs may send a country IE triplet for each channel they
540  * support and while this is completely overkill and silly we still
541  * need to support it. We avoid making a single rule for each channel
542  * though and to help us with this we use this helper to find the
543  * actual subband end channel. These type of country IE triplet
544  * scenerios are handled then, all yielding two regulaotry rules from
545  * parsing a country IE:
546  *
547  * [1]
548  * [2]
549  * [36]
550  * [40]
551  *
552  * [1]
553  * [2-4]
554  * [5-12]
555  * [36]
556  * [40-44]
557  *
558  * [1-4]
559  * [5-7]
560  * [36-44]
561  * [48-64]
562  *
563  * [36-36]
564  * [40-40]
565  * [44-44]
566  * [48-48]
567  * [52-52]
568  * [56-56]
569  * [60-60]
570  * [64-64]
571  * [100-100]
572  * [104-104]
573  * [108-108]
574  * [112-112]
575  * [116-116]
576  * [120-120]
577  * [124-124]
578  * [128-128]
579  * [132-132]
580  * [136-136]
581  * [140-140]
582  *
583  * Returns 0 if the IE has been found to be invalid in the middle
584  * somewhere.
585  */
586 static int max_subband_chan(enum ieee80211_band band,
587                             int orig_cur_chan,
588                             int orig_end_channel,
589                             s8 orig_max_power,
590                             u8 **country_ie,
591                             u8 *country_ie_len)
592 {
593         u8 *triplets_start = *country_ie;
594         u8 len_at_triplet = *country_ie_len;
595         int end_subband_chan = orig_end_channel;
596
597         /*
598          * We'll deal with padding for the caller unless
599          * its not immediate and we don't process any channels
600          */
601         if (*country_ie_len == 1) {
602                 *country_ie += 1;
603                 *country_ie_len -= 1;
604                 return orig_end_channel;
605         }
606
607         /* Move to the next triplet and then start search */
608         *country_ie += 3;
609         *country_ie_len -= 3;
610
611         if (!chan_in_band(orig_cur_chan, band))
612                 return 0;
613
614         while (*country_ie_len >= 3) {
615                 int end_channel = 0;
616                 struct ieee80211_country_ie_triplet *triplet =
617                         (struct ieee80211_country_ie_triplet *) *country_ie;
618                 int cur_channel = 0, next_expected_chan;
619
620                 /* means last triplet is completely unrelated to this one */
621                 if (triplet->ext.reg_extension_id >=
622                                 IEEE80211_COUNTRY_EXTENSION_ID) {
623                         *country_ie -= 3;
624                         *country_ie_len += 3;
625                         break;
626                 }
627
628                 if (triplet->chans.first_channel == 0) {
629                         *country_ie += 1;
630                         *country_ie_len -= 1;
631                         if (*country_ie_len != 0)
632                                 return 0;
633                         break;
634                 }
635
636                 if (triplet->chans.num_channels == 0)
637                         return 0;
638
639                 /* Monitonically increasing channel order */
640                 if (triplet->chans.first_channel <= end_subband_chan)
641                         return 0;
642
643                 if (!chan_in_band(triplet->chans.first_channel, band))
644                         return 0;
645
646                 /* 2 GHz */
647                 if (triplet->chans.first_channel <= 14) {
648                         end_channel = triplet->chans.first_channel +
649                                 triplet->chans.num_channels - 1;
650                 }
651                 else {
652                         end_channel =  triplet->chans.first_channel +
653                                 (4 * (triplet->chans.num_channels - 1));
654                 }
655
656                 if (!chan_in_band(end_channel, band))
657                         return 0;
658
659                 if (orig_max_power != triplet->chans.max_power) {
660                         *country_ie -= 3;
661                         *country_ie_len += 3;
662                         break;
663                 }
664
665                 cur_channel = triplet->chans.first_channel;
666
667                 /* The key is finding the right next expected channel */
668                 if (band == IEEE80211_BAND_2GHZ)
669                         next_expected_chan = end_subband_chan + 1;
670                  else
671                         next_expected_chan = end_subband_chan + 4;
672
673                 if (cur_channel != next_expected_chan) {
674                         *country_ie -= 3;
675                         *country_ie_len += 3;
676                         break;
677                 }
678
679                 end_subband_chan = end_channel;
680
681                 /* Move to the next one */
682                 *country_ie += 3;
683                 *country_ie_len -= 3;
684
685                 /*
686                  * Padding needs to be dealt with if we processed
687                  * some channels.
688                  */
689                 if (*country_ie_len == 1) {
690                         *country_ie += 1;
691                         *country_ie_len -= 1;
692                         break;
693                 }
694
695                 /* If seen, the IE is invalid */
696                 if (*country_ie_len == 2)
697                         return 0;
698         }
699
700         if (end_subband_chan == orig_end_channel) {
701                 *country_ie = triplets_start;
702                 *country_ie_len = len_at_triplet;
703                 return orig_end_channel;
704         }
705
706         return end_subband_chan;
707 }
708
709 /*
710  * Converts a country IE to a regulatory domain. A regulatory domain
711  * structure has a lot of information which the IE doesn't yet have,
712  * so for the other values we use upper max values as we will intersect
713  * with our userspace regulatory agent to get lower bounds.
714  */
715 static struct ieee80211_regdomain *country_ie_2_rd(
716                                 enum ieee80211_band band,
717                                 u8 *country_ie,
718                                 u8 country_ie_len,
719                                 u32 *checksum)
720 {
721         struct ieee80211_regdomain *rd = NULL;
722         unsigned int i = 0;
723         char alpha2[2];
724         u32 flags = 0;
725         u32 num_rules = 0, size_of_regd = 0;
726         u8 *triplets_start = NULL;
727         u8 len_at_triplet = 0;
728         /* the last channel we have registered in a subband (triplet) */
729         int last_sub_max_channel = 0;
730
731         *checksum = 0xDEADBEEF;
732
733         /* Country IE requirements */
734         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
735                 country_ie_len & 0x01);
736
737         alpha2[0] = country_ie[0];
738         alpha2[1] = country_ie[1];
739
740         /*
741          * Third octet can be:
742          *    'I' - Indoor
743          *    'O' - Outdoor
744          *
745          *  anything else we assume is no restrictions
746          */
747         if (country_ie[2] == 'I')
748                 flags = NL80211_RRF_NO_OUTDOOR;
749         else if (country_ie[2] == 'O')
750                 flags = NL80211_RRF_NO_INDOOR;
751
752         country_ie += 3;
753         country_ie_len -= 3;
754
755         triplets_start = country_ie;
756         len_at_triplet = country_ie_len;
757
758         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
759
760         /*
761          * We need to build a reg rule for each triplet, but first we must
762          * calculate the number of reg rules we will need. We will need one
763          * for each channel subband
764          */
765         while (country_ie_len >= 3) {
766                 int end_channel = 0;
767                 struct ieee80211_country_ie_triplet *triplet =
768                         (struct ieee80211_country_ie_triplet *) country_ie;
769                 int cur_sub_max_channel = 0, cur_channel = 0;
770
771                 if (triplet->ext.reg_extension_id >=
772                                 IEEE80211_COUNTRY_EXTENSION_ID) {
773                         country_ie += 3;
774                         country_ie_len -= 3;
775                         continue;
776                 }
777
778                 /*
779                  * APs can add padding to make length divisible
780                  * by two, required by the spec.
781                  */
782                 if (triplet->chans.first_channel == 0) {
783                         country_ie++;
784                         country_ie_len--;
785                         /* This is expected to be at the very end only */
786                         if (country_ie_len != 0)
787                                 return NULL;
788                         break;
789                 }
790
791                 if (triplet->chans.num_channels == 0)
792                         return NULL;
793
794                 if (!chan_in_band(triplet->chans.first_channel, band))
795                         return NULL;
796
797                 /* 2 GHz */
798                 if (band == IEEE80211_BAND_2GHZ)
799                         end_channel = triplet->chans.first_channel +
800                                 triplet->chans.num_channels - 1;
801                 else
802                         /*
803                          * 5 GHz -- For example in country IEs if the first
804                          * channel given is 36 and the number of channels is 4
805                          * then the individual channel numbers defined for the
806                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
807                          * and not 36, 37, 38, 39.
808                          *
809                          * See: http://tinyurl.com/11d-clarification
810                          */
811                         end_channel =  triplet->chans.first_channel +
812                                 (4 * (triplet->chans.num_channels - 1));
813
814                 cur_channel = triplet->chans.first_channel;
815
816                 /*
817                  * Enhancement for APs that send a triplet for every channel
818                  * or for whatever reason sends triplets with multiple channels
819                  * separated when in fact they should be together.
820                  */
821                 end_channel = max_subband_chan(band,
822                                                cur_channel,
823                                                end_channel,
824                                                triplet->chans.max_power,
825                                                &country_ie,
826                                                &country_ie_len);
827                 if (!end_channel)
828                         return NULL;
829
830                 if (!chan_in_band(end_channel, band))
831                         return NULL;
832
833                 cur_sub_max_channel = end_channel;
834
835                 /* Basic sanity check */
836                 if (cur_sub_max_channel < cur_channel)
837                         return NULL;
838
839                 /*
840                  * Do not allow overlapping channels. Also channels
841                  * passed in each subband must be monotonically
842                  * increasing
843                  */
844                 if (last_sub_max_channel) {
845                         if (cur_channel <= last_sub_max_channel)
846                                 return NULL;
847                         if (cur_sub_max_channel <= last_sub_max_channel)
848                                 return NULL;
849                 }
850
851                 /*
852                  * When dot11RegulatoryClassesRequired is supported
853                  * we can throw ext triplets as part of this soup,
854                  * for now we don't care when those change as we
855                  * don't support them
856                  */
857                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
858                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
859                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
860
861                 last_sub_max_channel = cur_sub_max_channel;
862
863                 num_rules++;
864
865                 if (country_ie_len >= 3) {
866                         country_ie += 3;
867                         country_ie_len -= 3;
868                 }
869
870                 /*
871                  * Note: this is not a IEEE requirement but
872                  * simply a memory requirement
873                  */
874                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
875                         return NULL;
876         }
877
878         country_ie = triplets_start;
879         country_ie_len = len_at_triplet;
880
881         size_of_regd = sizeof(struct ieee80211_regdomain) +
882                 (num_rules * sizeof(struct ieee80211_reg_rule));
883
884         rd = kzalloc(size_of_regd, GFP_KERNEL);
885         if (!rd)
886                 return NULL;
887
888         rd->n_reg_rules = num_rules;
889         rd->alpha2[0] = alpha2[0];
890         rd->alpha2[1] = alpha2[1];
891
892         /* This time around we fill in the rd */
893         while (country_ie_len >= 3) {
894                 int end_channel = 0;
895                 struct ieee80211_country_ie_triplet *triplet =
896                         (struct ieee80211_country_ie_triplet *) country_ie;
897                 struct ieee80211_reg_rule *reg_rule = NULL;
898                 struct ieee80211_freq_range *freq_range = NULL;
899                 struct ieee80211_power_rule *power_rule = NULL;
900
901                 /*
902                  * Must parse if dot11RegulatoryClassesRequired is true,
903                  * we don't support this yet
904                  */
905                 if (triplet->ext.reg_extension_id >=
906                                 IEEE80211_COUNTRY_EXTENSION_ID) {
907                         country_ie += 3;
908                         country_ie_len -= 3;
909                         continue;
910                 }
911
912                 if (triplet->chans.first_channel == 0) {
913                         country_ie++;
914                         country_ie_len--;
915                         break;
916                 }
917
918                 reg_rule = &rd->reg_rules[i];
919                 freq_range = &reg_rule->freq_range;
920                 power_rule = &reg_rule->power_rule;
921
922                 reg_rule->flags = flags;
923
924                 /* 2 GHz */
925                 if (band == IEEE80211_BAND_2GHZ)
926                         end_channel = triplet->chans.first_channel +
927                                 triplet->chans.num_channels -1;
928                 else
929                         end_channel =  triplet->chans.first_channel +
930                                 (4 * (triplet->chans.num_channels - 1));
931
932                 end_channel = max_subband_chan(band,
933                                                triplet->chans.first_channel,
934                                                end_channel,
935                                                triplet->chans.max_power,
936                                                &country_ie,
937                                                &country_ie_len);
938
939                 /*
940                  * The +10 is since the regulatory domain expects
941                  * the actual band edge, not the center of freq for
942                  * its start and end freqs, assuming 20 MHz bandwidth on
943                  * the channels passed
944                  */
945                 freq_range->start_freq_khz =
946                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
947                                 triplet->chans.first_channel) - 10);
948                 freq_range->end_freq_khz =
949                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
950                                 end_channel) + 10);
951
952                 /*
953                  * These are large arbitrary values we use to intersect later.
954                  * Increment this if we ever support >= 40 MHz channels
955                  * in IEEE 802.11
956                  */
957                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
958                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
959                 power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
960
961                 i++;
962
963                 if (country_ie_len >= 3) {
964                         country_ie += 3;
965                         country_ie_len -= 3;
966                 }
967
968                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
969         }
970
971         return rd;
972 }
973
974
975 /*
976  * Helper for regdom_intersect(), this does the real
977  * mathematical intersection fun
978  */
979 static int reg_rules_intersect(
980         const struct ieee80211_reg_rule *rule1,
981         const struct ieee80211_reg_rule *rule2,
982         struct ieee80211_reg_rule *intersected_rule)
983 {
984         const struct ieee80211_freq_range *freq_range1, *freq_range2;
985         struct ieee80211_freq_range *freq_range;
986         const struct ieee80211_power_rule *power_rule1, *power_rule2;
987         struct ieee80211_power_rule *power_rule;
988         u32 freq_diff;
989
990         freq_range1 = &rule1->freq_range;
991         freq_range2 = &rule2->freq_range;
992         freq_range = &intersected_rule->freq_range;
993
994         power_rule1 = &rule1->power_rule;
995         power_rule2 = &rule2->power_rule;
996         power_rule = &intersected_rule->power_rule;
997
998         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
999                 freq_range2->start_freq_khz);
1000         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1001                 freq_range2->end_freq_khz);
1002         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
1003                 freq_range2->max_bandwidth_khz);
1004
1005         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1006         if (freq_range->max_bandwidth_khz > freq_diff)
1007                 freq_range->max_bandwidth_khz = freq_diff;
1008
1009         power_rule->max_eirp = min(power_rule1->max_eirp,
1010                 power_rule2->max_eirp);
1011         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1012                 power_rule2->max_antenna_gain);
1013
1014         intersected_rule->flags = (rule1->flags | rule2->flags);
1015
1016         if (!is_valid_reg_rule(intersected_rule))
1017                 return -EINVAL;
1018
1019         return 0;
1020 }
1021
1022 /**
1023  * regdom_intersect - do the intersection between two regulatory domains
1024  * @rd1: first regulatory domain
1025  * @rd2: second regulatory domain
1026  *
1027  * Use this function to get the intersection between two regulatory domains.
1028  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1029  * as no one single alpha2 can represent this regulatory domain.
1030  *
1031  * Returns a pointer to the regulatory domain structure which will hold the
1032  * resulting intersection of rules between rd1 and rd2. We will
1033  * kzalloc() this structure for you.
1034  */
1035 static struct ieee80211_regdomain *regdom_intersect(
1036         const struct ieee80211_regdomain *rd1,
1037         const struct ieee80211_regdomain *rd2)
1038 {
1039         int r, size_of_regd;
1040         unsigned int x, y;
1041         unsigned int num_rules = 0, rule_idx = 0;
1042         const struct ieee80211_reg_rule *rule1, *rule2;
1043         struct ieee80211_reg_rule *intersected_rule;
1044         struct ieee80211_regdomain *rd;
1045         /* This is just a dummy holder to help us count */
1046         struct ieee80211_reg_rule irule;
1047
1048         /* Uses the stack temporarily for counter arithmetic */
1049         intersected_rule = &irule;
1050
1051         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
1052
1053         if (!rd1 || !rd2)
1054                 return NULL;
1055
1056         /*
1057          * First we get a count of the rules we'll need, then we actually
1058          * build them. This is to so we can malloc() and free() a
1059          * regdomain once. The reason we use reg_rules_intersect() here
1060          * is it will return -EINVAL if the rule computed makes no sense.
1061          * All rules that do check out OK are valid.
1062          */
1063
1064         for (x = 0; x < rd1->n_reg_rules; x++) {
1065                 rule1 = &rd1->reg_rules[x];
1066                 for (y = 0; y < rd2->n_reg_rules; y++) {
1067                         rule2 = &rd2->reg_rules[y];
1068                         if (!reg_rules_intersect(rule1, rule2,
1069                                         intersected_rule))
1070                                 num_rules++;
1071                         memset(intersected_rule, 0,
1072                                         sizeof(struct ieee80211_reg_rule));
1073                 }
1074         }
1075
1076         if (!num_rules)
1077                 return NULL;
1078
1079         size_of_regd = sizeof(struct ieee80211_regdomain) +
1080                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
1081
1082         rd = kzalloc(size_of_regd, GFP_KERNEL);
1083         if (!rd)
1084                 return NULL;
1085
1086         for (x = 0; x < rd1->n_reg_rules; x++) {
1087                 rule1 = &rd1->reg_rules[x];
1088                 for (y = 0; y < rd2->n_reg_rules; y++) {
1089                         rule2 = &rd2->reg_rules[y];
1090                         /*
1091                          * This time around instead of using the stack lets
1092                          * write to the target rule directly saving ourselves
1093                          * a memcpy()
1094                          */
1095                         intersected_rule = &rd->reg_rules[rule_idx];
1096                         r = reg_rules_intersect(rule1, rule2,
1097                                 intersected_rule);
1098                         /*
1099                          * No need to memset here the intersected rule here as
1100                          * we're not using the stack anymore
1101                          */
1102                         if (r)
1103                                 continue;
1104                         rule_idx++;
1105                 }
1106         }
1107
1108         if (rule_idx != num_rules) {
1109                 kfree(rd);
1110                 return NULL;
1111         }
1112
1113         rd->n_reg_rules = num_rules;
1114         rd->alpha2[0] = '9';
1115         rd->alpha2[1] = '8';
1116
1117         return rd;
1118 }
1119
1120 /*
1121  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1122  * want to just have the channel structure use these
1123  */
1124 static u32 map_regdom_flags(u32 rd_flags)
1125 {
1126         u32 channel_flags = 0;
1127         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
1128                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
1129         if (rd_flags & NL80211_RRF_NO_IBSS)
1130                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
1131         if (rd_flags & NL80211_RRF_DFS)
1132                 channel_flags |= IEEE80211_CHAN_RADAR;
1133         return channel_flags;
1134 }
1135
1136 static int freq_reg_info_regd(struct wiphy *wiphy,
1137                               u32 center_freq,
1138                               u32 desired_bw_khz,
1139                               const struct ieee80211_reg_rule **reg_rule,
1140                               const struct ieee80211_regdomain *custom_regd)
1141 {
1142         int i;
1143         bool band_rule_found = false;
1144         const struct ieee80211_regdomain *regd;
1145         bool bw_fits = false;
1146
1147         if (!desired_bw_khz)
1148                 desired_bw_khz = MHZ_TO_KHZ(20);
1149
1150         regd = custom_regd ? custom_regd : cfg80211_regdomain;
1151
1152         /*
1153          * Follow the driver's regulatory domain, if present, unless a country
1154          * IE has been processed or a user wants to help complaince further
1155          */
1156         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1157             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1158             wiphy->regd)
1159                 regd = wiphy->regd;
1160
1161         if (!regd)
1162                 return -EINVAL;
1163
1164         for (i = 0; i < regd->n_reg_rules; i++) {
1165                 const struct ieee80211_reg_rule *rr;
1166                 const struct ieee80211_freq_range *fr = NULL;
1167                 const struct ieee80211_power_rule *pr = NULL;
1168
1169                 rr = &regd->reg_rules[i];
1170                 fr = &rr->freq_range;
1171                 pr = &rr->power_rule;
1172
1173                 /*
1174                  * We only need to know if one frequency rule was
1175                  * was in center_freq's band, that's enough, so lets
1176                  * not overwrite it once found
1177                  */
1178                 if (!band_rule_found)
1179                         band_rule_found = freq_in_rule_band(fr, center_freq);
1180
1181                 bw_fits = reg_does_bw_fit(fr,
1182                                           center_freq,
1183                                           desired_bw_khz);
1184
1185                 if (band_rule_found && bw_fits) {
1186                         *reg_rule = rr;
1187                         return 0;
1188                 }
1189         }
1190
1191         if (!band_rule_found)
1192                 return -ERANGE;
1193
1194         return -EINVAL;
1195 }
1196 EXPORT_SYMBOL(freq_reg_info);
1197
1198 int freq_reg_info(struct wiphy *wiphy,
1199                   u32 center_freq,
1200                   u32 desired_bw_khz,
1201                   const struct ieee80211_reg_rule **reg_rule)
1202 {
1203         assert_cfg80211_lock();
1204         return freq_reg_info_regd(wiphy,
1205                                   center_freq,
1206                                   desired_bw_khz,
1207                                   reg_rule,
1208                                   NULL);
1209 }
1210
1211 /*
1212  * Note that right now we assume the desired channel bandwidth
1213  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1214  * per channel, the primary and the extension channel). To support
1215  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
1216  * new ieee80211_channel.target_bw and re run the regulatory check
1217  * on the wiphy with the target_bw specified. Then we can simply use
1218  * that below for the desired_bw_khz below.
1219  */
1220 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
1221                            unsigned int chan_idx)
1222 {
1223         int r;
1224         u32 flags, bw_flags = 0;
1225         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1226         const struct ieee80211_reg_rule *reg_rule = NULL;
1227         const struct ieee80211_power_rule *power_rule = NULL;
1228         const struct ieee80211_freq_range *freq_range = NULL;
1229         struct ieee80211_supported_band *sband;
1230         struct ieee80211_channel *chan;
1231         struct wiphy *request_wiphy = NULL;
1232
1233         assert_cfg80211_lock();
1234
1235         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1236
1237         sband = wiphy->bands[band];
1238         BUG_ON(chan_idx >= sband->n_channels);
1239         chan = &sband->channels[chan_idx];
1240
1241         flags = chan->orig_flags;
1242
1243         r = freq_reg_info(wiphy,
1244                           MHZ_TO_KHZ(chan->center_freq),
1245                           desired_bw_khz,
1246                           &reg_rule);
1247
1248         if (r) {
1249                 /*
1250                  * This means no regulatory rule was found in the country IE
1251                  * with a frequency range on the center_freq's band, since
1252                  * IEEE-802.11 allows for a country IE to have a subset of the
1253                  * regulatory information provided in a country we ignore
1254                  * disabling the channel unless at least one reg rule was
1255                  * found on the center_freq's band. For details see this
1256                  * clarification:
1257                  *
1258                  * http://tinyurl.com/11d-clarification
1259                  */
1260                 if (r == -ERANGE &&
1261                     last_request->initiator ==
1262                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1263                         REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1264                                 "intact on %s - no rule found in band on "
1265                                 "Country IE\n",
1266                         chan->center_freq, wiphy_name(wiphy));
1267                 } else {
1268                 /*
1269                  * In this case we know the country IE has at least one reg rule
1270                  * for the band so we respect its band definitions
1271                  */
1272                         if (last_request->initiator ==
1273                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
1274                                 REG_DBG_PRINT("cfg80211: Disabling "
1275                                         "channel %d MHz on %s due to "
1276                                         "Country IE\n",
1277                                         chan->center_freq, wiphy_name(wiphy));
1278                         flags |= IEEE80211_CHAN_DISABLED;
1279                         chan->flags = flags;
1280                 }
1281                 return;
1282         }
1283
1284         power_rule = &reg_rule->power_rule;
1285         freq_range = &reg_rule->freq_range;
1286
1287         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1288                 bw_flags = IEEE80211_CHAN_NO_HT40;
1289
1290         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1291             request_wiphy && request_wiphy == wiphy &&
1292             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1293                 /*
1294                  * This gaurantees the driver's requested regulatory domain
1295                  * will always be used as a base for further regulatory
1296                  * settings
1297                  */
1298                 chan->flags = chan->orig_flags =
1299                         map_regdom_flags(reg_rule->flags) | bw_flags;
1300                 chan->max_antenna_gain = chan->orig_mag =
1301                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1302                 chan->max_power = chan->orig_mpwr =
1303                         (int) MBM_TO_DBM(power_rule->max_eirp);
1304                 return;
1305         }
1306
1307         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1308         chan->max_antenna_gain = min(chan->orig_mag,
1309                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1310         if (chan->orig_mpwr)
1311                 chan->max_power = min(chan->orig_mpwr,
1312                         (int) MBM_TO_DBM(power_rule->max_eirp));
1313         else
1314                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1315 }
1316
1317 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1318 {
1319         unsigned int i;
1320         struct ieee80211_supported_band *sband;
1321
1322         BUG_ON(!wiphy->bands[band]);
1323         sband = wiphy->bands[band];
1324
1325         for (i = 0; i < sband->n_channels; i++)
1326                 handle_channel(wiphy, band, i);
1327 }
1328
1329 static bool ignore_reg_update(struct wiphy *wiphy,
1330                               enum nl80211_reg_initiator initiator)
1331 {
1332         if (!last_request)
1333                 return true;
1334         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1335             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1336                 return true;
1337         /*
1338          * wiphy->regd will be set once the device has its own
1339          * desired regulatory domain set
1340          */
1341         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1342             !is_world_regdom(last_request->alpha2))
1343                 return true;
1344         return false;
1345 }
1346
1347 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1348 {
1349         struct cfg80211_registered_device *rdev;
1350
1351         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1352                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1353 }
1354
1355 static void handle_reg_beacon(struct wiphy *wiphy,
1356                               unsigned int chan_idx,
1357                               struct reg_beacon *reg_beacon)
1358 {
1359         struct ieee80211_supported_band *sband;
1360         struct ieee80211_channel *chan;
1361         bool channel_changed = false;
1362         struct ieee80211_channel chan_before;
1363
1364         assert_cfg80211_lock();
1365
1366         sband = wiphy->bands[reg_beacon->chan.band];
1367         chan = &sband->channels[chan_idx];
1368
1369         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1370                 return;
1371
1372         if (chan->beacon_found)
1373                 return;
1374
1375         chan->beacon_found = true;
1376
1377         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1378                 return;
1379
1380         chan_before.center_freq = chan->center_freq;
1381         chan_before.flags = chan->flags;
1382
1383         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1384                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1385                 channel_changed = true;
1386         }
1387
1388         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1389                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1390                 channel_changed = true;
1391         }
1392
1393         if (channel_changed)
1394                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1395 }
1396
1397 /*
1398  * Called when a scan on a wiphy finds a beacon on
1399  * new channel
1400  */
1401 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1402                                     struct reg_beacon *reg_beacon)
1403 {
1404         unsigned int i;
1405         struct ieee80211_supported_band *sband;
1406
1407         assert_cfg80211_lock();
1408
1409         if (!wiphy->bands[reg_beacon->chan.band])
1410                 return;
1411
1412         sband = wiphy->bands[reg_beacon->chan.band];
1413
1414         for (i = 0; i < sband->n_channels; i++)
1415                 handle_reg_beacon(wiphy, i, reg_beacon);
1416 }
1417
1418 /*
1419  * Called upon reg changes or a new wiphy is added
1420  */
1421 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1422 {
1423         unsigned int i;
1424         struct ieee80211_supported_band *sband;
1425         struct reg_beacon *reg_beacon;
1426
1427         assert_cfg80211_lock();
1428
1429         if (list_empty(&reg_beacon_list))
1430                 return;
1431
1432         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1433                 if (!wiphy->bands[reg_beacon->chan.band])
1434                         continue;
1435                 sband = wiphy->bands[reg_beacon->chan.band];
1436                 for (i = 0; i < sband->n_channels; i++)
1437                         handle_reg_beacon(wiphy, i, reg_beacon);
1438         }
1439 }
1440
1441 static bool reg_is_world_roaming(struct wiphy *wiphy)
1442 {
1443         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1444             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1445                 return true;
1446         if (last_request &&
1447             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1448             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1449                 return true;
1450         return false;
1451 }
1452
1453 /* Reap the advantages of previously found beacons */
1454 static void reg_process_beacons(struct wiphy *wiphy)
1455 {
1456         /*
1457          * Means we are just firing up cfg80211, so no beacons would
1458          * have been processed yet.
1459          */
1460         if (!last_request)
1461                 return;
1462         if (!reg_is_world_roaming(wiphy))
1463                 return;
1464         wiphy_update_beacon_reg(wiphy);
1465 }
1466
1467 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1468 {
1469         if (!chan)
1470                 return true;
1471         if (chan->flags & IEEE80211_CHAN_DISABLED)
1472                 return true;
1473         /* This would happen when regulatory rules disallow HT40 completely */
1474         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1475                 return true;
1476         return false;
1477 }
1478
1479 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1480                                          enum ieee80211_band band,
1481                                          unsigned int chan_idx)
1482 {
1483         struct ieee80211_supported_band *sband;
1484         struct ieee80211_channel *channel;
1485         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1486         unsigned int i;
1487
1488         assert_cfg80211_lock();
1489
1490         sband = wiphy->bands[band];
1491         BUG_ON(chan_idx >= sband->n_channels);
1492         channel = &sband->channels[chan_idx];
1493
1494         if (is_ht40_not_allowed(channel)) {
1495                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1496                 return;
1497         }
1498
1499         /*
1500          * We need to ensure the extension channels exist to
1501          * be able to use HT40- or HT40+, this finds them (or not)
1502          */
1503         for (i = 0; i < sband->n_channels; i++) {
1504                 struct ieee80211_channel *c = &sband->channels[i];
1505                 if (c->center_freq == (channel->center_freq - 20))
1506                         channel_before = c;
1507                 if (c->center_freq == (channel->center_freq + 20))
1508                         channel_after = c;
1509         }
1510
1511         /*
1512          * Please note that this assumes target bandwidth is 20 MHz,
1513          * if that ever changes we also need to change the below logic
1514          * to include that as well.
1515          */
1516         if (is_ht40_not_allowed(channel_before))
1517                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1518         else
1519                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1520
1521         if (is_ht40_not_allowed(channel_after))
1522                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1523         else
1524                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1525 }
1526
1527 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1528                                       enum ieee80211_band band)
1529 {
1530         unsigned int i;
1531         struct ieee80211_supported_band *sband;
1532
1533         BUG_ON(!wiphy->bands[band]);
1534         sband = wiphy->bands[band];
1535
1536         for (i = 0; i < sband->n_channels; i++)
1537                 reg_process_ht_flags_channel(wiphy, band, i);
1538 }
1539
1540 static void reg_process_ht_flags(struct wiphy *wiphy)
1541 {
1542         enum ieee80211_band band;
1543
1544         if (!wiphy)
1545                 return;
1546
1547         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1548                 if (wiphy->bands[band])
1549                         reg_process_ht_flags_band(wiphy, band);
1550         }
1551
1552 }
1553
1554 void wiphy_update_regulatory(struct wiphy *wiphy,
1555                              enum nl80211_reg_initiator initiator)
1556 {
1557         enum ieee80211_band band;
1558
1559         if (ignore_reg_update(wiphy, initiator))
1560                 goto out;
1561         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1562                 if (wiphy->bands[band])
1563                         handle_band(wiphy, band);
1564         }
1565 out:
1566         reg_process_beacons(wiphy);
1567         reg_process_ht_flags(wiphy);
1568         if (wiphy->reg_notifier)
1569                 wiphy->reg_notifier(wiphy, last_request);
1570 }
1571
1572 static void handle_channel_custom(struct wiphy *wiphy,
1573                                   enum ieee80211_band band,
1574                                   unsigned int chan_idx,
1575                                   const struct ieee80211_regdomain *regd)
1576 {
1577         int r;
1578         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1579         u32 bw_flags = 0;
1580         const struct ieee80211_reg_rule *reg_rule = NULL;
1581         const struct ieee80211_power_rule *power_rule = NULL;
1582         const struct ieee80211_freq_range *freq_range = NULL;
1583         struct ieee80211_supported_band *sband;
1584         struct ieee80211_channel *chan;
1585
1586         assert_reg_lock();
1587
1588         sband = wiphy->bands[band];
1589         BUG_ON(chan_idx >= sband->n_channels);
1590         chan = &sband->channels[chan_idx];
1591
1592         r = freq_reg_info_regd(wiphy,
1593                                MHZ_TO_KHZ(chan->center_freq),
1594                                desired_bw_khz,
1595                                &reg_rule,
1596                                regd);
1597
1598         if (r) {
1599                 chan->flags = IEEE80211_CHAN_DISABLED;
1600                 return;
1601         }
1602
1603         power_rule = &reg_rule->power_rule;
1604         freq_range = &reg_rule->freq_range;
1605
1606         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1607                 bw_flags = IEEE80211_CHAN_NO_HT40;
1608
1609         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1610         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1611         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1612 }
1613
1614 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1615                                const struct ieee80211_regdomain *regd)
1616 {
1617         unsigned int i;
1618         struct ieee80211_supported_band *sband;
1619
1620         BUG_ON(!wiphy->bands[band]);
1621         sband = wiphy->bands[band];
1622
1623         for (i = 0; i < sband->n_channels; i++)
1624                 handle_channel_custom(wiphy, band, i, regd);
1625 }
1626
1627 /* Used by drivers prior to wiphy registration */
1628 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1629                                    const struct ieee80211_regdomain *regd)
1630 {
1631         enum ieee80211_band band;
1632         unsigned int bands_set = 0;
1633
1634         mutex_lock(&reg_mutex);
1635         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1636                 if (!wiphy->bands[band])
1637                         continue;
1638                 handle_band_custom(wiphy, band, regd);
1639                 bands_set++;
1640         }
1641         mutex_unlock(&reg_mutex);
1642
1643         /*
1644          * no point in calling this if it won't have any effect
1645          * on your device's supportd bands.
1646          */
1647         WARN_ON(!bands_set);
1648 }
1649 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1650
1651 /*
1652  * Return value which can be used by ignore_request() to indicate
1653  * it has been determined we should intersect two regulatory domains
1654  */
1655 #define REG_INTERSECT   1
1656
1657 /* This has the logic which determines when a new request
1658  * should be ignored. */
1659 static int ignore_request(struct wiphy *wiphy,
1660                           struct regulatory_request *pending_request)
1661 {
1662         struct wiphy *last_wiphy = NULL;
1663
1664         assert_cfg80211_lock();
1665
1666         /* All initial requests are respected */
1667         if (!last_request)
1668                 return 0;
1669
1670         switch (pending_request->initiator) {
1671         case NL80211_REGDOM_SET_BY_CORE:
1672                 return 0;
1673         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1674
1675                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1676
1677                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1678                         return -EINVAL;
1679                 if (last_request->initiator ==
1680                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1681                         if (last_wiphy != wiphy) {
1682                                 /*
1683                                  * Two cards with two APs claiming different
1684                                  * Country IE alpha2s. We could
1685                                  * intersect them, but that seems unlikely
1686                                  * to be correct. Reject second one for now.
1687                                  */
1688                                 if (regdom_changes(pending_request->alpha2))
1689                                         return -EOPNOTSUPP;
1690                                 return -EALREADY;
1691                         }
1692                         /*
1693                          * Two consecutive Country IE hints on the same wiphy.
1694                          * This should be picked up early by the driver/stack
1695                          */
1696                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1697                                 return 0;
1698                         return -EALREADY;
1699                 }
1700                 return REG_INTERSECT;
1701         case NL80211_REGDOM_SET_BY_DRIVER:
1702                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1703                         if (regdom_changes(pending_request->alpha2))
1704                                 return 0;
1705                         return -EALREADY;
1706                 }
1707
1708                 /*
1709                  * This would happen if you unplug and plug your card
1710                  * back in or if you add a new device for which the previously
1711                  * loaded card also agrees on the regulatory domain.
1712                  */
1713                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1714                     !regdom_changes(pending_request->alpha2))
1715                         return -EALREADY;
1716
1717                 return REG_INTERSECT;
1718         case NL80211_REGDOM_SET_BY_USER:
1719                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1720                         return REG_INTERSECT;
1721                 /*
1722                  * If the user knows better the user should set the regdom
1723                  * to their country before the IE is picked up
1724                  */
1725                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1726                           last_request->intersect)
1727                         return -EOPNOTSUPP;
1728                 /*
1729                  * Process user requests only after previous user/driver/core
1730                  * requests have been processed
1731                  */
1732                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1733                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1734                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1735                         if (regdom_changes(last_request->alpha2))
1736                                 return -EAGAIN;
1737                 }
1738
1739                 if (!regdom_changes(pending_request->alpha2))
1740                         return -EALREADY;
1741
1742                 return 0;
1743         }
1744
1745         return -EINVAL;
1746 }
1747
1748 /**
1749  * __regulatory_hint - hint to the wireless core a regulatory domain
1750  * @wiphy: if the hint comes from country information from an AP, this
1751  *      is required to be set to the wiphy that received the information
1752  * @pending_request: the regulatory request currently being processed
1753  *
1754  * The Wireless subsystem can use this function to hint to the wireless core
1755  * what it believes should be the current regulatory domain.
1756  *
1757  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1758  * already been set or other standard error codes.
1759  *
1760  * Caller must hold &cfg80211_mutex and &reg_mutex
1761  */
1762 static int __regulatory_hint(struct wiphy *wiphy,
1763                              struct regulatory_request *pending_request)
1764 {
1765         bool intersect = false;
1766         int r = 0;
1767
1768         assert_cfg80211_lock();
1769
1770         r = ignore_request(wiphy, pending_request);
1771
1772         if (r == REG_INTERSECT) {
1773                 if (pending_request->initiator ==
1774                     NL80211_REGDOM_SET_BY_DRIVER) {
1775                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1776                         if (r) {
1777                                 kfree(pending_request);
1778                                 return r;
1779                         }
1780                 }
1781                 intersect = true;
1782         } else if (r) {
1783                 /*
1784                  * If the regulatory domain being requested by the
1785                  * driver has already been set just copy it to the
1786                  * wiphy
1787                  */
1788                 if (r == -EALREADY &&
1789                     pending_request->initiator ==
1790                     NL80211_REGDOM_SET_BY_DRIVER) {
1791                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1792                         if (r) {
1793                                 kfree(pending_request);
1794                                 return r;
1795                         }
1796                         r = -EALREADY;
1797                         goto new_request;
1798                 }
1799                 kfree(pending_request);
1800                 return r;
1801         }
1802
1803 new_request:
1804         kfree(last_request);
1805
1806         last_request = pending_request;
1807         last_request->intersect = intersect;
1808
1809         pending_request = NULL;
1810
1811         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1812                 user_alpha2[0] = last_request->alpha2[0];
1813                 user_alpha2[1] = last_request->alpha2[1];
1814         }
1815
1816         /* When r == REG_INTERSECT we do need to call CRDA */
1817         if (r < 0) {
1818                 /*
1819                  * Since CRDA will not be called in this case as we already
1820                  * have applied the requested regulatory domain before we just
1821                  * inform userspace we have processed the request
1822                  */
1823                 if (r == -EALREADY)
1824                         nl80211_send_reg_change_event(last_request);
1825                 return r;
1826         }
1827
1828         return call_crda(last_request->alpha2);
1829 }
1830
1831 /* This processes *all* regulatory hints */
1832 static void reg_process_hint(struct regulatory_request *reg_request)
1833 {
1834         int r = 0;
1835         struct wiphy *wiphy = NULL;
1836
1837         BUG_ON(!reg_request->alpha2);
1838
1839         mutex_lock(&cfg80211_mutex);
1840         mutex_lock(&reg_mutex);
1841
1842         if (wiphy_idx_valid(reg_request->wiphy_idx))
1843                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1844
1845         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1846             !wiphy) {
1847                 kfree(reg_request);
1848                 goto out;
1849         }
1850
1851         r = __regulatory_hint(wiphy, reg_request);
1852         /* This is required so that the orig_* parameters are saved */
1853         if (r == -EALREADY && wiphy &&
1854             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1855                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1856 out:
1857         mutex_unlock(&reg_mutex);
1858         mutex_unlock(&cfg80211_mutex);
1859 }
1860
1861 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1862 static void reg_process_pending_hints(void)
1863         {
1864         struct regulatory_request *reg_request;
1865
1866         spin_lock(&reg_requests_lock);
1867         while (!list_empty(&reg_requests_list)) {
1868                 reg_request = list_first_entry(&reg_requests_list,
1869                                                struct regulatory_request,
1870                                                list);
1871                 list_del_init(&reg_request->list);
1872
1873                 spin_unlock(&reg_requests_lock);
1874                 reg_process_hint(reg_request);
1875                 spin_lock(&reg_requests_lock);
1876         }
1877         spin_unlock(&reg_requests_lock);
1878 }
1879
1880 /* Processes beacon hints -- this has nothing to do with country IEs */
1881 static void reg_process_pending_beacon_hints(void)
1882 {
1883         struct cfg80211_registered_device *rdev;
1884         struct reg_beacon *pending_beacon, *tmp;
1885
1886         /*
1887          * No need to hold the reg_mutex here as we just touch wiphys
1888          * and do not read or access regulatory variables.
1889          */
1890         mutex_lock(&cfg80211_mutex);
1891
1892         /* This goes through the _pending_ beacon list */
1893         spin_lock_bh(&reg_pending_beacons_lock);
1894
1895         if (list_empty(&reg_pending_beacons)) {
1896                 spin_unlock_bh(&reg_pending_beacons_lock);
1897                 goto out;
1898         }
1899
1900         list_for_each_entry_safe(pending_beacon, tmp,
1901                                  &reg_pending_beacons, list) {
1902
1903                 list_del_init(&pending_beacon->list);
1904
1905                 /* Applies the beacon hint to current wiphys */
1906                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1907                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1908
1909                 /* Remembers the beacon hint for new wiphys or reg changes */
1910                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1911         }
1912
1913         spin_unlock_bh(&reg_pending_beacons_lock);
1914 out:
1915         mutex_unlock(&cfg80211_mutex);
1916 }
1917
1918 static void reg_todo(struct work_struct *work)
1919 {
1920         reg_process_pending_hints();
1921         reg_process_pending_beacon_hints();
1922 }
1923
1924 static DECLARE_WORK(reg_work, reg_todo);
1925
1926 static void queue_regulatory_request(struct regulatory_request *request)
1927 {
1928         spin_lock(&reg_requests_lock);
1929         list_add_tail(&request->list, &reg_requests_list);
1930         spin_unlock(&reg_requests_lock);
1931
1932         schedule_work(&reg_work);
1933 }
1934
1935 /*
1936  * Core regulatory hint -- happens during cfg80211_init()
1937  * and when we restore regulatory settings.
1938  */
1939 static int regulatory_hint_core(const char *alpha2)
1940 {
1941         struct regulatory_request *request;
1942
1943         kfree(last_request);
1944         last_request = NULL;
1945
1946         request = kzalloc(sizeof(struct regulatory_request),
1947                           GFP_KERNEL);
1948         if (!request)
1949                 return -ENOMEM;
1950
1951         request->alpha2[0] = alpha2[0];
1952         request->alpha2[1] = alpha2[1];
1953         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1954
1955         /*
1956          * This ensures last_request is populated once modules
1957          * come swinging in and calling regulatory hints and
1958          * wiphy_apply_custom_regulatory().
1959          */
1960         reg_process_hint(request);
1961
1962         return 0;
1963 }
1964
1965 /* User hints */
1966 int regulatory_hint_user(const char *alpha2)
1967 {
1968         struct regulatory_request *request;
1969
1970         BUG_ON(!alpha2);
1971
1972         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1973         if (!request)
1974                 return -ENOMEM;
1975
1976         request->wiphy_idx = WIPHY_IDX_STALE;
1977         request->alpha2[0] = alpha2[0];
1978         request->alpha2[1] = alpha2[1];
1979         request->initiator = NL80211_REGDOM_SET_BY_USER;
1980
1981         queue_regulatory_request(request);
1982
1983         return 0;
1984 }
1985
1986 /* Driver hints */
1987 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1988 {
1989         struct regulatory_request *request;
1990
1991         BUG_ON(!alpha2);
1992         BUG_ON(!wiphy);
1993
1994         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1995         if (!request)
1996                 return -ENOMEM;
1997
1998         request->wiphy_idx = get_wiphy_idx(wiphy);
1999
2000         /* Must have registered wiphy first */
2001         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
2002
2003         request->alpha2[0] = alpha2[0];
2004         request->alpha2[1] = alpha2[1];
2005         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2006
2007         queue_regulatory_request(request);
2008
2009         return 0;
2010 }
2011 EXPORT_SYMBOL(regulatory_hint);
2012
2013 /* Caller must hold reg_mutex */
2014 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
2015                         u32 country_ie_checksum)
2016 {
2017         struct wiphy *request_wiphy;
2018
2019         assert_reg_lock();
2020
2021         if (unlikely(last_request->initiator !=
2022             NL80211_REGDOM_SET_BY_COUNTRY_IE))
2023                 return false;
2024
2025         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2026
2027         if (!request_wiphy)
2028                 return false;
2029
2030         if (likely(request_wiphy != wiphy))
2031                 return !country_ie_integrity_changes(country_ie_checksum);
2032         /*
2033          * We should not have let these through at this point, they
2034          * should have been picked up earlier by the first alpha2 check
2035          * on the device
2036          */
2037         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
2038                 return true;
2039         return false;
2040 }
2041
2042 /*
2043  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
2044  * therefore cannot iterate over the rdev list here.
2045  */
2046 void regulatory_hint_11d(struct wiphy *wiphy,
2047                          enum ieee80211_band band,
2048                          u8 *country_ie,
2049                          u8 country_ie_len)
2050 {
2051         struct ieee80211_regdomain *rd = NULL;
2052         char alpha2[2];
2053         u32 checksum = 0;
2054         enum environment_cap env = ENVIRON_ANY;
2055         struct regulatory_request *request;
2056
2057         mutex_lock(&reg_mutex);
2058
2059         if (unlikely(!last_request))
2060                 goto out;
2061
2062         /* IE len must be evenly divisible by 2 */
2063         if (country_ie_len & 0x01)
2064                 goto out;
2065
2066         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2067                 goto out;
2068
2069         /*
2070          * Pending country IE processing, this can happen after we
2071          * call CRDA and wait for a response if a beacon was received before
2072          * we were able to process the last regulatory_hint_11d() call
2073          */
2074         if (country_ie_regdomain)
2075                 goto out;
2076
2077         alpha2[0] = country_ie[0];
2078         alpha2[1] = country_ie[1];
2079
2080         if (country_ie[2] == 'I')
2081                 env = ENVIRON_INDOOR;
2082         else if (country_ie[2] == 'O')
2083                 env = ENVIRON_OUTDOOR;
2084
2085         /*
2086          * We will run this only upon a successful connection on cfg80211.
2087          * We leave conflict resolution to the workqueue, where can hold
2088          * cfg80211_mutex.
2089          */
2090         if (likely(last_request->initiator ==
2091             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2092             wiphy_idx_valid(last_request->wiphy_idx)))
2093                 goto out;
2094
2095         rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
2096         if (!rd) {
2097                 REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2098                 goto out;
2099         }
2100
2101         /*
2102          * This will not happen right now but we leave it here for the
2103          * the future when we want to add suspend/resume support and having
2104          * the user move to another country after doing so, or having the user
2105          * move to another AP. Right now we just trust the first AP.
2106          *
2107          * If we hit this before we add this support we want to be informed of
2108          * it as it would indicate a mistake in the current design
2109          */
2110         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2111                 goto free_rd_out;
2112
2113         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2114         if (!request)
2115                 goto free_rd_out;
2116
2117         /*
2118          * We keep this around for when CRDA comes back with a response so
2119          * we can intersect with that
2120          */
2121         country_ie_regdomain = rd;
2122
2123         request->wiphy_idx = get_wiphy_idx(wiphy);
2124         request->alpha2[0] = rd->alpha2[0];
2125         request->alpha2[1] = rd->alpha2[1];
2126         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2127         request->country_ie_checksum = checksum;
2128         request->country_ie_env = env;
2129
2130         mutex_unlock(&reg_mutex);
2131
2132         queue_regulatory_request(request);
2133
2134         return;
2135
2136 free_rd_out:
2137         kfree(rd);
2138 out:
2139         mutex_unlock(&reg_mutex);
2140 }
2141
2142 static void restore_alpha2(char *alpha2, bool reset_user)
2143 {
2144         /* indicates there is no alpha2 to consider for restoration */
2145         alpha2[0] = '9';
2146         alpha2[1] = '7';
2147
2148         /* The user setting has precedence over the module parameter */
2149         if (is_user_regdom_saved()) {
2150                 /* Unless we're asked to ignore it and reset it */
2151                 if (reset_user) {
2152                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2153                                "including user preference\n");
2154                         user_alpha2[0] = '9';
2155                         user_alpha2[1] = '7';
2156
2157                         /*
2158                          * If we're ignoring user settings, we still need to
2159                          * check the module parameter to ensure we put things
2160                          * back as they were for a full restore.
2161                          */
2162                         if (!is_world_regdom(ieee80211_regdom)) {
2163                                 REG_DBG_PRINT("cfg80211: Keeping preference on "
2164                                        "module parameter ieee80211_regdom: %c%c\n",
2165                                        ieee80211_regdom[0],
2166                                        ieee80211_regdom[1]);
2167                                 alpha2[0] = ieee80211_regdom[0];
2168                                 alpha2[1] = ieee80211_regdom[1];
2169                         }
2170                 } else {
2171                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2172                                "while preserving user preference for: %c%c\n",
2173                                user_alpha2[0],
2174                                user_alpha2[1]);
2175                         alpha2[0] = user_alpha2[0];
2176                         alpha2[1] = user_alpha2[1];
2177                 }
2178         } else if (!is_world_regdom(ieee80211_regdom)) {
2179                 REG_DBG_PRINT("cfg80211: Keeping preference on "
2180                        "module parameter ieee80211_regdom: %c%c\n",
2181                        ieee80211_regdom[0],
2182                        ieee80211_regdom[1]);
2183                 alpha2[0] = ieee80211_regdom[0];
2184                 alpha2[1] = ieee80211_regdom[1];
2185         } else
2186                 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
2187 }
2188
2189 /*
2190  * Restoring regulatory settings involves ingoring any
2191  * possibly stale country IE information and user regulatory
2192  * settings if so desired, this includes any beacon hints
2193  * learned as we could have traveled outside to another country
2194  * after disconnection. To restore regulatory settings we do
2195  * exactly what we did at bootup:
2196  *
2197  *   - send a core regulatory hint
2198  *   - send a user regulatory hint if applicable
2199  *
2200  * Device drivers that send a regulatory hint for a specific country
2201  * keep their own regulatory domain on wiphy->regd so that does does
2202  * not need to be remembered.
2203  */
2204 static void restore_regulatory_settings(bool reset_user)
2205 {
2206         char alpha2[2];
2207         struct reg_beacon *reg_beacon, *btmp;
2208
2209         mutex_lock(&cfg80211_mutex);
2210         mutex_lock(&reg_mutex);
2211
2212         reset_regdomains();
2213         restore_alpha2(alpha2, reset_user);
2214
2215         /* Clear beacon hints */
2216         spin_lock_bh(&reg_pending_beacons_lock);
2217         if (!list_empty(&reg_pending_beacons)) {
2218                 list_for_each_entry_safe(reg_beacon, btmp,
2219                                          &reg_pending_beacons, list) {
2220                         list_del(&reg_beacon->list);
2221                         kfree(reg_beacon);
2222                 }
2223         }
2224         spin_unlock_bh(&reg_pending_beacons_lock);
2225
2226         if (!list_empty(&reg_beacon_list)) {
2227                 list_for_each_entry_safe(reg_beacon, btmp,
2228                                          &reg_beacon_list, list) {
2229                         list_del(&reg_beacon->list);
2230                         kfree(reg_beacon);
2231                 }
2232         }
2233
2234         /* First restore to the basic regulatory settings */
2235         cfg80211_regdomain = cfg80211_world_regdom;
2236
2237         mutex_unlock(&reg_mutex);
2238         mutex_unlock(&cfg80211_mutex);
2239
2240         regulatory_hint_core(cfg80211_regdomain->alpha2);
2241
2242         /*
2243          * This restores the ieee80211_regdom module parameter
2244          * preference or the last user requested regulatory
2245          * settings, user regulatory settings takes precedence.
2246          */
2247         if (is_an_alpha2(alpha2))
2248                 regulatory_hint_user(user_alpha2);
2249 }
2250
2251
2252 void regulatory_hint_disconnect(void)
2253 {
2254         REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
2255                       "restore regulatory settings\n");
2256         restore_regulatory_settings(false);
2257 }
2258
2259 static bool freq_is_chan_12_13_14(u16 freq)
2260 {
2261         if (freq == ieee80211_channel_to_frequency(12) ||
2262             freq == ieee80211_channel_to_frequency(13) ||
2263             freq == ieee80211_channel_to_frequency(14))
2264                 return true;
2265         return false;
2266 }
2267
2268 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2269                                  struct ieee80211_channel *beacon_chan,
2270                                  gfp_t gfp)
2271 {
2272         struct reg_beacon *reg_beacon;
2273
2274         if (likely((beacon_chan->beacon_found ||
2275             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2276             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2277              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2278                 return 0;
2279
2280         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2281         if (!reg_beacon)
2282                 return -ENOMEM;
2283
2284         REG_DBG_PRINT("cfg80211: Found new beacon on "
2285                       "frequency: %d MHz (Ch %d) on %s\n",
2286                       beacon_chan->center_freq,
2287                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2288                       wiphy_name(wiphy));
2289
2290         memcpy(&reg_beacon->chan, beacon_chan,
2291                 sizeof(struct ieee80211_channel));
2292
2293
2294         /*
2295          * Since we can be called from BH or and non-BH context
2296          * we must use spin_lock_bh()
2297          */
2298         spin_lock_bh(&reg_pending_beacons_lock);
2299         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2300         spin_unlock_bh(&reg_pending_beacons_lock);
2301
2302         schedule_work(&reg_work);
2303
2304         return 0;
2305 }
2306
2307 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2308 {
2309         unsigned int i;
2310         const struct ieee80211_reg_rule *reg_rule = NULL;
2311         const struct ieee80211_freq_range *freq_range = NULL;
2312         const struct ieee80211_power_rule *power_rule = NULL;
2313
2314         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
2315                 "(max_antenna_gain, max_eirp)\n");
2316
2317         for (i = 0; i < rd->n_reg_rules; i++) {
2318                 reg_rule = &rd->reg_rules[i];
2319                 freq_range = &reg_rule->freq_range;
2320                 power_rule = &reg_rule->power_rule;
2321
2322                 /*
2323                  * There may not be documentation for max antenna gain
2324                  * in certain regions
2325                  */
2326                 if (power_rule->max_antenna_gain)
2327                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2328                                 "(%d mBi, %d mBm)\n",
2329                                 freq_range->start_freq_khz,
2330                                 freq_range->end_freq_khz,
2331                                 freq_range->max_bandwidth_khz,
2332                                 power_rule->max_antenna_gain,
2333                                 power_rule->max_eirp);
2334                 else
2335                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2336                                 "(N/A, %d mBm)\n",
2337                                 freq_range->start_freq_khz,
2338                                 freq_range->end_freq_khz,
2339                                 freq_range->max_bandwidth_khz,
2340                                 power_rule->max_eirp);
2341         }
2342 }
2343
2344 static void print_regdomain(const struct ieee80211_regdomain *rd)
2345 {
2346
2347         if (is_intersected_alpha2(rd->alpha2)) {
2348
2349                 if (last_request->initiator ==
2350                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2351                         struct cfg80211_registered_device *rdev;
2352                         rdev = cfg80211_rdev_by_wiphy_idx(
2353                                 last_request->wiphy_idx);
2354                         if (rdev) {
2355                                 printk(KERN_INFO "cfg80211: Current regulatory "
2356                                         "domain updated by AP to: %c%c\n",
2357                                         rdev->country_ie_alpha2[0],
2358                                         rdev->country_ie_alpha2[1]);
2359                         } else
2360                                 printk(KERN_INFO "cfg80211: Current regulatory "
2361                                         "domain intersected: \n");
2362                 } else
2363                                 printk(KERN_INFO "cfg80211: Current regulatory "
2364                                         "domain intersected: \n");
2365         } else if (is_world_regdom(rd->alpha2))
2366                 printk(KERN_INFO "cfg80211: World regulatory "
2367                         "domain updated:\n");
2368         else {
2369                 if (is_unknown_alpha2(rd->alpha2))
2370                         printk(KERN_INFO "cfg80211: Regulatory domain "
2371                                 "changed to driver built-in settings "
2372                                 "(unknown country)\n");
2373                 else
2374                         printk(KERN_INFO "cfg80211: Regulatory domain "
2375                                 "changed to country: %c%c\n",
2376                                 rd->alpha2[0], rd->alpha2[1]);
2377         }
2378         print_rd_rules(rd);
2379 }
2380
2381 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2382 {
2383         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2384                 rd->alpha2[0], rd->alpha2[1]);
2385         print_rd_rules(rd);
2386 }
2387
2388 #ifdef CONFIG_CFG80211_REG_DEBUG
2389 static void reg_country_ie_process_debug(
2390         const struct ieee80211_regdomain *rd,
2391         const struct ieee80211_regdomain *country_ie_regdomain,
2392         const struct ieee80211_regdomain *intersected_rd)
2393 {
2394         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2395         print_regdomain_info(country_ie_regdomain);
2396         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2397         print_regdomain_info(rd);
2398         if (intersected_rd) {
2399                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2400                         "and get:\n");
2401                 print_regdomain_info(intersected_rd);
2402                 return;
2403         }
2404         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2405 }
2406 #else
2407 static inline void reg_country_ie_process_debug(
2408         const struct ieee80211_regdomain *rd,
2409         const struct ieee80211_regdomain *country_ie_regdomain,
2410         const struct ieee80211_regdomain *intersected_rd)
2411 {
2412 }
2413 #endif
2414
2415 /* Takes ownership of rd only if it doesn't fail */
2416 static int __set_regdom(const struct ieee80211_regdomain *rd)
2417 {
2418         const struct ieee80211_regdomain *intersected_rd = NULL;
2419         struct cfg80211_registered_device *rdev = NULL;
2420         struct wiphy *request_wiphy;
2421         /* Some basic sanity checks first */
2422
2423         if (is_world_regdom(rd->alpha2)) {
2424                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2425                         return -EINVAL;
2426                 update_world_regdomain(rd);
2427                 return 0;
2428         }
2429
2430         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2431                         !is_unknown_alpha2(rd->alpha2))
2432                 return -EINVAL;
2433
2434         if (!last_request)
2435                 return -EINVAL;
2436
2437         /*
2438          * Lets only bother proceeding on the same alpha2 if the current
2439          * rd is non static (it means CRDA was present and was used last)
2440          * and the pending request came in from a country IE
2441          */
2442         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2443                 /*
2444                  * If someone else asked us to change the rd lets only bother
2445                  * checking if the alpha2 changes if CRDA was already called
2446                  */
2447                 if (!regdom_changes(rd->alpha2))
2448                         return -EINVAL;
2449         }
2450
2451         /*
2452          * Now lets set the regulatory domain, update all driver channels
2453          * and finally inform them of what we have done, in case they want
2454          * to review or adjust their own settings based on their own
2455          * internal EEPROM data
2456          */
2457
2458         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2459                 return -EINVAL;
2460
2461         if (!is_valid_rd(rd)) {
2462                 printk(KERN_ERR "cfg80211: Invalid "
2463                         "regulatory domain detected:\n");
2464                 print_regdomain_info(rd);
2465                 return -EINVAL;
2466         }
2467
2468         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2469
2470         if (!last_request->intersect) {
2471                 int r;
2472
2473                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2474                         reset_regdomains();
2475                         cfg80211_regdomain = rd;
2476                         return 0;
2477                 }
2478
2479                 /*
2480                  * For a driver hint, lets copy the regulatory domain the
2481                  * driver wanted to the wiphy to deal with conflicts
2482                  */
2483
2484                 /*
2485                  * Userspace could have sent two replies with only
2486                  * one kernel request.
2487                  */
2488                 if (request_wiphy->regd)
2489                         return -EALREADY;
2490
2491                 r = reg_copy_regd(&request_wiphy->regd, rd);
2492                 if (r)
2493                         return r;
2494
2495                 reset_regdomains();
2496                 cfg80211_regdomain = rd;
2497                 return 0;
2498         }
2499
2500         /* Intersection requires a bit more work */
2501
2502         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2503
2504                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2505                 if (!intersected_rd)
2506                         return -EINVAL;
2507
2508                 /*
2509                  * We can trash what CRDA provided now.
2510                  * However if a driver requested this specific regulatory
2511                  * domain we keep it for its private use
2512                  */
2513                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2514                         request_wiphy->regd = rd;
2515                 else
2516                         kfree(rd);
2517
2518                 rd = NULL;
2519
2520                 reset_regdomains();
2521                 cfg80211_regdomain = intersected_rd;
2522
2523                 return 0;
2524         }
2525
2526         /*
2527          * Country IE requests are handled a bit differently, we intersect
2528          * the country IE rd with what CRDA believes that country should have
2529          */
2530
2531         /*
2532          * Userspace could have sent two replies with only
2533          * one kernel request. By the second reply we would have
2534          * already processed and consumed the country_ie_regdomain.
2535          */
2536         if (!country_ie_regdomain)
2537                 return -EALREADY;
2538         BUG_ON(rd == country_ie_regdomain);
2539
2540         /*
2541          * Intersect what CRDA returned and our what we
2542          * had built from the Country IE received
2543          */
2544
2545         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2546
2547         reg_country_ie_process_debug(rd,
2548                                      country_ie_regdomain,
2549                                      intersected_rd);
2550
2551         kfree(country_ie_regdomain);
2552         country_ie_regdomain = NULL;
2553
2554         if (!intersected_rd)
2555                 return -EINVAL;
2556
2557         rdev = wiphy_to_dev(request_wiphy);
2558
2559         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2560         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2561         rdev->env = last_request->country_ie_env;
2562
2563         BUG_ON(intersected_rd == rd);
2564
2565         kfree(rd);
2566         rd = NULL;
2567
2568         reset_regdomains();
2569         cfg80211_regdomain = intersected_rd;
2570
2571         return 0;
2572 }
2573
2574
2575 /*
2576  * Use this call to set the current regulatory domain. Conflicts with
2577  * multiple drivers can be ironed out later. Caller must've already
2578  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2579  */
2580 int set_regdom(const struct ieee80211_regdomain *rd)
2581 {
2582         int r;
2583
2584         assert_cfg80211_lock();
2585
2586         mutex_lock(&reg_mutex);
2587
2588         /* Note that this doesn't update the wiphys, this is done below */
2589         r = __set_regdom(rd);
2590         if (r) {
2591                 kfree(rd);
2592                 mutex_unlock(&reg_mutex);
2593                 return r;
2594         }
2595
2596         /* This would make this whole thing pointless */
2597         if (!last_request->intersect)
2598                 BUG_ON(rd != cfg80211_regdomain);
2599
2600         /* update all wiphys now with the new established regulatory domain */
2601         update_all_wiphy_regulatory(last_request->initiator);
2602
2603         print_regdomain(cfg80211_regdomain);
2604
2605         nl80211_send_reg_change_event(last_request);
2606
2607         mutex_unlock(&reg_mutex);
2608
2609         return r;
2610 }
2611
2612 /* Caller must hold cfg80211_mutex */
2613 void reg_device_remove(struct wiphy *wiphy)
2614 {
2615         struct wiphy *request_wiphy = NULL;
2616
2617         assert_cfg80211_lock();
2618
2619         mutex_lock(&reg_mutex);
2620
2621         kfree(wiphy->regd);
2622
2623         if (last_request)
2624                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2625
2626         if (!request_wiphy || request_wiphy != wiphy)
2627                 goto out;
2628
2629         last_request->wiphy_idx = WIPHY_IDX_STALE;
2630         last_request->country_ie_env = ENVIRON_ANY;
2631 out:
2632         mutex_unlock(&reg_mutex);
2633 }
2634
2635 int regulatory_init(void)
2636 {
2637         int err = 0;
2638
2639         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2640         if (IS_ERR(reg_pdev))
2641                 return PTR_ERR(reg_pdev);
2642
2643         spin_lock_init(&reg_requests_lock);
2644         spin_lock_init(&reg_pending_beacons_lock);
2645
2646         cfg80211_regdomain = cfg80211_world_regdom;
2647
2648         user_alpha2[0] = '9';
2649         user_alpha2[1] = '7';
2650
2651         /* We always try to get an update for the static regdomain */
2652         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2653         if (err) {
2654                 if (err == -ENOMEM)
2655                         return err;
2656                 /*
2657                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2658                  * memory which is handled and propagated appropriately above
2659                  * but it can also fail during a netlink_broadcast() or during
2660                  * early boot for call_usermodehelper(). For now treat these
2661                  * errors as non-fatal.
2662                  */
2663                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2664                         "to call CRDA during init");
2665 #ifdef CONFIG_CFG80211_REG_DEBUG
2666                 /* We want to find out exactly why when debugging */
2667                 WARN_ON(err);
2668 #endif
2669         }
2670
2671         /*
2672          * Finally, if the user set the module parameter treat it
2673          * as a user hint.
2674          */
2675         if (!is_world_regdom(ieee80211_regdom))
2676                 regulatory_hint_user(ieee80211_regdom);
2677
2678         return 0;
2679 }
2680
2681 void regulatory_exit(void)
2682 {
2683         struct regulatory_request *reg_request, *tmp;
2684         struct reg_beacon *reg_beacon, *btmp;
2685
2686         cancel_work_sync(&reg_work);
2687
2688         mutex_lock(&cfg80211_mutex);
2689         mutex_lock(&reg_mutex);
2690
2691         reset_regdomains();
2692
2693         kfree(country_ie_regdomain);
2694         country_ie_regdomain = NULL;
2695
2696         kfree(last_request);
2697
2698         platform_device_unregister(reg_pdev);
2699
2700         spin_lock_bh(&reg_pending_beacons_lock);
2701         if (!list_empty(&reg_pending_beacons)) {
2702                 list_for_each_entry_safe(reg_beacon, btmp,
2703                                          &reg_pending_beacons, list) {
2704                         list_del(&reg_beacon->list);
2705                         kfree(reg_beacon);
2706                 }
2707         }
2708         spin_unlock_bh(&reg_pending_beacons_lock);
2709
2710         if (!list_empty(&reg_beacon_list)) {
2711                 list_for_each_entry_safe(reg_beacon, btmp,
2712                                          &reg_beacon_list, list) {
2713                         list_del(&reg_beacon->list);
2714                         kfree(reg_beacon);
2715                 }
2716         }
2717
2718         spin_lock(&reg_requests_lock);
2719         if (!list_empty(&reg_requests_list)) {
2720                 list_for_each_entry_safe(reg_request, tmp,
2721                                          &reg_requests_list, list) {
2722                         list_del(&reg_request->list);
2723                         kfree(reg_request);
2724                 }
2725         }
2726         spin_unlock(&reg_requests_lock);
2727
2728         mutex_unlock(&reg_mutex);
2729         mutex_unlock(&cfg80211_mutex);
2730 }