]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
Merge remote-tracking branch 'mpc5xxx/next'
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85  * Receipt of information from last regulatory request,
86  * protected by RTNL (and can be accessed with RCU protection)
87  */
88 static struct regulatory_request __rcu *last_request =
89         (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static struct device_type reg_device_type = {
95         .uevent = reg_device_uevent,
96 };
97
98 /*
99  * Central wireless core regulatory domains, we only need two,
100  * the current one and a world regulatory domain in case we have no
101  * information to give us an alpha2.
102  * (protected by RTNL, can be read under RCU)
103  */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107  * Number of devices that registered to the core
108  * that support cellular base station regulatory hints
109  * (protected by RTNL)
110  */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115         return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120         return rtnl_dereference(wiphy->regd);
121 }
122
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
124 {
125         if (!r)
126                 return;
127         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
128 }
129
130 static struct regulatory_request *get_last_request(void)
131 {
132         return rcu_dereference_rtnl(last_request);
133 }
134
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
138
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
142
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
145
146 struct reg_beacon {
147         struct list_head list;
148         struct ieee80211_channel chan;
149 };
150
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
153
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
156
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
159         .n_reg_rules = 6,
160         .alpha2 =  "00",
161         .reg_rules = {
162                 /* IEEE 802.11b/g, channels 1..11 */
163                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164                 /* IEEE 802.11b/g, channels 12..13. */
165                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
166                         NL80211_RRF_PASSIVE_SCAN |
167                         NL80211_RRF_NO_IBSS),
168                 /* IEEE 802.11 channel 14 - Only JP enables
169                  * this and for 802.11b only */
170                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
171                         NL80211_RRF_PASSIVE_SCAN |
172                         NL80211_RRF_NO_IBSS |
173                         NL80211_RRF_NO_OFDM),
174                 /* IEEE 802.11a, channel 36..48 */
175                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
176                         NL80211_RRF_PASSIVE_SCAN |
177                         NL80211_RRF_NO_IBSS),
178
179                 /* NB: 5260 MHz - 5700 MHz requires DFS */
180
181                 /* IEEE 802.11a, channel 149..165 */
182                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
183                         NL80211_RRF_PASSIVE_SCAN |
184                         NL80211_RRF_NO_IBSS),
185
186                 /* IEEE 802.11ad (60gHz), channels 1..3 */
187                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
188         }
189 };
190
191 /* protected by RTNL */
192 static const struct ieee80211_regdomain *cfg80211_world_regdom =
193         &world_regdom;
194
195 static char *ieee80211_regdom = "00";
196 static char user_alpha2[2];
197
198 module_param(ieee80211_regdom, charp, 0444);
199 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
200
201 static void reset_regdomains(bool full_reset,
202                              const struct ieee80211_regdomain *new_regdom)
203 {
204         const struct ieee80211_regdomain *r;
205         struct regulatory_request *lr;
206
207         ASSERT_RTNL();
208
209         r = get_cfg80211_regdom();
210
211         /* avoid freeing static information or freeing something twice */
212         if (r == cfg80211_world_regdom)
213                 r = NULL;
214         if (cfg80211_world_regdom == &world_regdom)
215                 cfg80211_world_regdom = NULL;
216         if (r == &world_regdom)
217                 r = NULL;
218
219         rcu_free_regdom(r);
220         rcu_free_regdom(cfg80211_world_regdom);
221
222         cfg80211_world_regdom = &world_regdom;
223         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
224
225         if (!full_reset)
226                 return;
227
228         lr = get_last_request();
229         if (lr != &core_request_world && lr)
230                 kfree_rcu(lr, rcu_head);
231         rcu_assign_pointer(last_request, &core_request_world);
232 }
233
234 /*
235  * Dynamic world regulatory domain requested by the wireless
236  * core upon initialization
237  */
238 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
239 {
240         struct regulatory_request *lr;
241
242         lr = get_last_request();
243
244         WARN_ON(!lr);
245
246         reset_regdomains(false, rd);
247
248         cfg80211_world_regdom = rd;
249 }
250
251 bool is_world_regdom(const char *alpha2)
252 {
253         if (!alpha2)
254                 return false;
255         return alpha2[0] == '0' && alpha2[1] == '0';
256 }
257
258 static bool is_alpha2_set(const char *alpha2)
259 {
260         if (!alpha2)
261                 return false;
262         return alpha2[0] && alpha2[1];
263 }
264
265 static bool is_unknown_alpha2(const char *alpha2)
266 {
267         if (!alpha2)
268                 return false;
269         /*
270          * Special case where regulatory domain was built by driver
271          * but a specific alpha2 cannot be determined
272          */
273         return alpha2[0] == '9' && alpha2[1] == '9';
274 }
275
276 static bool is_intersected_alpha2(const char *alpha2)
277 {
278         if (!alpha2)
279                 return false;
280         /*
281          * Special case where regulatory domain is the
282          * result of an intersection between two regulatory domain
283          * structures
284          */
285         return alpha2[0] == '9' && alpha2[1] == '8';
286 }
287
288 static bool is_an_alpha2(const char *alpha2)
289 {
290         if (!alpha2)
291                 return false;
292         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
293 }
294
295 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
296 {
297         if (!alpha2_x || !alpha2_y)
298                 return false;
299         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
300 }
301
302 static bool regdom_changes(const char *alpha2)
303 {
304         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
305
306         if (!r)
307                 return true;
308         return !alpha2_equal(r->alpha2, alpha2);
309 }
310
311 /*
312  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
313  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
314  * has ever been issued.
315  */
316 static bool is_user_regdom_saved(void)
317 {
318         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
319                 return false;
320
321         /* This would indicate a mistake on the design */
322         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
323                  "Unexpected user alpha2: %c%c\n",
324                  user_alpha2[0], user_alpha2[1]))
325                 return false;
326
327         return true;
328 }
329
330 static const struct ieee80211_regdomain *
331 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
332 {
333         struct ieee80211_regdomain *regd;
334         int size_of_regd;
335         unsigned int i;
336
337         size_of_regd =
338                 sizeof(struct ieee80211_regdomain) +
339                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
340
341         regd = kzalloc(size_of_regd, GFP_KERNEL);
342         if (!regd)
343                 return ERR_PTR(-ENOMEM);
344
345         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
346
347         for (i = 0; i < src_regd->n_reg_rules; i++)
348                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
349                        sizeof(struct ieee80211_reg_rule));
350
351         return regd;
352 }
353
354 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
355 struct reg_regdb_search_request {
356         char alpha2[2];
357         struct list_head list;
358 };
359
360 static LIST_HEAD(reg_regdb_search_list);
361 static DEFINE_MUTEX(reg_regdb_search_mutex);
362
363 static void reg_regdb_search(struct work_struct *work)
364 {
365         struct reg_regdb_search_request *request;
366         const struct ieee80211_regdomain *curdom, *regdom = NULL;
367         int i;
368
369         rtnl_lock();
370
371         mutex_lock(&reg_regdb_search_mutex);
372         while (!list_empty(&reg_regdb_search_list)) {
373                 request = list_first_entry(&reg_regdb_search_list,
374                                            struct reg_regdb_search_request,
375                                            list);
376                 list_del(&request->list);
377
378                 for (i = 0; i < reg_regdb_size; i++) {
379                         curdom = reg_regdb[i];
380
381                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
382                                 regdom = reg_copy_regd(curdom);
383                                 break;
384                         }
385                 }
386
387                 kfree(request);
388         }
389         mutex_unlock(&reg_regdb_search_mutex);
390
391         if (!IS_ERR_OR_NULL(regdom))
392                 set_regdom(regdom);
393
394         rtnl_unlock();
395 }
396
397 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
398
399 static void reg_regdb_query(const char *alpha2)
400 {
401         struct reg_regdb_search_request *request;
402
403         if (!alpha2)
404                 return;
405
406         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
407         if (!request)
408                 return;
409
410         memcpy(request->alpha2, alpha2, 2);
411
412         mutex_lock(&reg_regdb_search_mutex);
413         list_add_tail(&request->list, &reg_regdb_search_list);
414         mutex_unlock(&reg_regdb_search_mutex);
415
416         schedule_work(&reg_regdb_work);
417 }
418
419 /* Feel free to add any other sanity checks here */
420 static void reg_regdb_size_check(void)
421 {
422         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
423         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
424 }
425 #else
426 static inline void reg_regdb_size_check(void) {}
427 static inline void reg_regdb_query(const char *alpha2) {}
428 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
429
430 /*
431  * This lets us keep regulatory code which is updated on a regulatory
432  * basis in userspace. Country information is filled in by
433  * reg_device_uevent
434  */
435 static int call_crda(const char *alpha2)
436 {
437         if (!is_world_regdom((char *) alpha2))
438                 pr_info("Calling CRDA for country: %c%c\n",
439                         alpha2[0], alpha2[1]);
440         else
441                 pr_info("Calling CRDA to update world regulatory domain\n");
442
443         /* query internal regulatory database (if it exists) */
444         reg_regdb_query(alpha2);
445
446         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
447 }
448
449 static bool reg_is_valid_request(const char *alpha2)
450 {
451         struct regulatory_request *lr = get_last_request();
452
453         if (!lr || lr->processed)
454                 return false;
455
456         return alpha2_equal(lr->alpha2, alpha2);
457 }
458
459 /* Sanity check on a regulatory rule */
460 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
461 {
462         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
463         u32 freq_diff;
464
465         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
466                 return false;
467
468         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
469                 return false;
470
471         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
472
473         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
474             freq_range->max_bandwidth_khz > freq_diff)
475                 return false;
476
477         return true;
478 }
479
480 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
481 {
482         const struct ieee80211_reg_rule *reg_rule = NULL;
483         unsigned int i;
484
485         if (!rd->n_reg_rules)
486                 return false;
487
488         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
489                 return false;
490
491         for (i = 0; i < rd->n_reg_rules; i++) {
492                 reg_rule = &rd->reg_rules[i];
493                 if (!is_valid_reg_rule(reg_rule))
494                         return false;
495         }
496
497         return true;
498 }
499
500 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
501                             u32 center_freq_khz, u32 bw_khz)
502 {
503         u32 start_freq_khz, end_freq_khz;
504
505         start_freq_khz = center_freq_khz - (bw_khz/2);
506         end_freq_khz = center_freq_khz + (bw_khz/2);
507
508         if (start_freq_khz >= freq_range->start_freq_khz &&
509             end_freq_khz <= freq_range->end_freq_khz)
510                 return true;
511
512         return false;
513 }
514
515 /**
516  * freq_in_rule_band - tells us if a frequency is in a frequency band
517  * @freq_range: frequency rule we want to query
518  * @freq_khz: frequency we are inquiring about
519  *
520  * This lets us know if a specific frequency rule is or is not relevant to
521  * a specific frequency's band. Bands are device specific and artificial
522  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
523  * however it is safe for now to assume that a frequency rule should not be
524  * part of a frequency's band if the start freq or end freq are off by more
525  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
526  * 60 GHz band.
527  * This resolution can be lowered and should be considered as we add
528  * regulatory rule support for other "bands".
529  **/
530 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
531                               u32 freq_khz)
532 {
533 #define ONE_GHZ_IN_KHZ  1000000
534         /*
535          * From 802.11ad: directional multi-gigabit (DMG):
536          * Pertaining to operation in a frequency band containing a channel
537          * with the Channel starting frequency above 45 GHz.
538          */
539         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
540                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
541         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
542                 return true;
543         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
544                 return true;
545         return false;
546 #undef ONE_GHZ_IN_KHZ
547 }
548
549 /*
550  * Helper for regdom_intersect(), this does the real
551  * mathematical intersection fun
552  */
553 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
554                                const struct ieee80211_reg_rule *rule2,
555                                struct ieee80211_reg_rule *intersected_rule)
556 {
557         const struct ieee80211_freq_range *freq_range1, *freq_range2;
558         struct ieee80211_freq_range *freq_range;
559         const struct ieee80211_power_rule *power_rule1, *power_rule2;
560         struct ieee80211_power_rule *power_rule;
561         u32 freq_diff;
562
563         freq_range1 = &rule1->freq_range;
564         freq_range2 = &rule2->freq_range;
565         freq_range = &intersected_rule->freq_range;
566
567         power_rule1 = &rule1->power_rule;
568         power_rule2 = &rule2->power_rule;
569         power_rule = &intersected_rule->power_rule;
570
571         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
572                                          freq_range2->start_freq_khz);
573         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
574                                        freq_range2->end_freq_khz);
575         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
576                                             freq_range2->max_bandwidth_khz);
577
578         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
579         if (freq_range->max_bandwidth_khz > freq_diff)
580                 freq_range->max_bandwidth_khz = freq_diff;
581
582         power_rule->max_eirp = min(power_rule1->max_eirp,
583                 power_rule2->max_eirp);
584         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
585                 power_rule2->max_antenna_gain);
586
587         intersected_rule->flags = rule1->flags | rule2->flags;
588
589         if (!is_valid_reg_rule(intersected_rule))
590                 return -EINVAL;
591
592         return 0;
593 }
594
595 /**
596  * regdom_intersect - do the intersection between two regulatory domains
597  * @rd1: first regulatory domain
598  * @rd2: second regulatory domain
599  *
600  * Use this function to get the intersection between two regulatory domains.
601  * Once completed we will mark the alpha2 for the rd as intersected, "98",
602  * as no one single alpha2 can represent this regulatory domain.
603  *
604  * Returns a pointer to the regulatory domain structure which will hold the
605  * resulting intersection of rules between rd1 and rd2. We will
606  * kzalloc() this structure for you.
607  */
608 static struct ieee80211_regdomain *
609 regdom_intersect(const struct ieee80211_regdomain *rd1,
610                  const struct ieee80211_regdomain *rd2)
611 {
612         int r, size_of_regd;
613         unsigned int x, y;
614         unsigned int num_rules = 0, rule_idx = 0;
615         const struct ieee80211_reg_rule *rule1, *rule2;
616         struct ieee80211_reg_rule *intersected_rule;
617         struct ieee80211_regdomain *rd;
618         /* This is just a dummy holder to help us count */
619         struct ieee80211_reg_rule dummy_rule;
620
621         if (!rd1 || !rd2)
622                 return NULL;
623
624         /*
625          * First we get a count of the rules we'll need, then we actually
626          * build them. This is to so we can malloc() and free() a
627          * regdomain once. The reason we use reg_rules_intersect() here
628          * is it will return -EINVAL if the rule computed makes no sense.
629          * All rules that do check out OK are valid.
630          */
631
632         for (x = 0; x < rd1->n_reg_rules; x++) {
633                 rule1 = &rd1->reg_rules[x];
634                 for (y = 0; y < rd2->n_reg_rules; y++) {
635                         rule2 = &rd2->reg_rules[y];
636                         if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
637                                 num_rules++;
638                 }
639         }
640
641         if (!num_rules)
642                 return NULL;
643
644         size_of_regd = sizeof(struct ieee80211_regdomain) +
645                        num_rules * sizeof(struct ieee80211_reg_rule);
646
647         rd = kzalloc(size_of_regd, GFP_KERNEL);
648         if (!rd)
649                 return NULL;
650
651         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
652                 rule1 = &rd1->reg_rules[x];
653                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
654                         rule2 = &rd2->reg_rules[y];
655                         /*
656                          * This time around instead of using the stack lets
657                          * write to the target rule directly saving ourselves
658                          * a memcpy()
659                          */
660                         intersected_rule = &rd->reg_rules[rule_idx];
661                         r = reg_rules_intersect(rule1, rule2, intersected_rule);
662                         /*
663                          * No need to memset here the intersected rule here as
664                          * we're not using the stack anymore
665                          */
666                         if (r)
667                                 continue;
668                         rule_idx++;
669                 }
670         }
671
672         if (rule_idx != num_rules) {
673                 kfree(rd);
674                 return NULL;
675         }
676
677         rd->n_reg_rules = num_rules;
678         rd->alpha2[0] = '9';
679         rd->alpha2[1] = '8';
680
681         return rd;
682 }
683
684 /*
685  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
686  * want to just have the channel structure use these
687  */
688 static u32 map_regdom_flags(u32 rd_flags)
689 {
690         u32 channel_flags = 0;
691         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
692                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
693         if (rd_flags & NL80211_RRF_NO_IBSS)
694                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
695         if (rd_flags & NL80211_RRF_DFS)
696                 channel_flags |= IEEE80211_CHAN_RADAR;
697         if (rd_flags & NL80211_RRF_NO_OFDM)
698                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
699         return channel_flags;
700 }
701
702 static const struct ieee80211_reg_rule *
703 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
704                    const struct ieee80211_regdomain *regd)
705 {
706         int i;
707         bool band_rule_found = false;
708         bool bw_fits = false;
709
710         if (!regd)
711                 return ERR_PTR(-EINVAL);
712
713         for (i = 0; i < regd->n_reg_rules; i++) {
714                 const struct ieee80211_reg_rule *rr;
715                 const struct ieee80211_freq_range *fr = NULL;
716
717                 rr = &regd->reg_rules[i];
718                 fr = &rr->freq_range;
719
720                 /*
721                  * We only need to know if one frequency rule was
722                  * was in center_freq's band, that's enough, so lets
723                  * not overwrite it once found
724                  */
725                 if (!band_rule_found)
726                         band_rule_found = freq_in_rule_band(fr, center_freq);
727
728                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
729
730                 if (band_rule_found && bw_fits)
731                         return rr;
732         }
733
734         if (!band_rule_found)
735                 return ERR_PTR(-ERANGE);
736
737         return ERR_PTR(-EINVAL);
738 }
739
740 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
741                                                u32 center_freq)
742 {
743         const struct ieee80211_regdomain *regd;
744         struct regulatory_request *lr = get_last_request();
745
746         /*
747          * Follow the driver's regulatory domain, if present, unless a country
748          * IE has been processed or a user wants to help complaince further
749          */
750         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
751             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
752             wiphy->regd)
753                 regd = get_wiphy_regdom(wiphy);
754         else
755                 regd = get_cfg80211_regdom();
756
757         return freq_reg_info_regd(wiphy, center_freq, regd);
758 }
759 EXPORT_SYMBOL(freq_reg_info);
760
761 #ifdef CONFIG_CFG80211_REG_DEBUG
762 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
763 {
764         switch (initiator) {
765         case NL80211_REGDOM_SET_BY_CORE:
766                 return "Set by core";
767         case NL80211_REGDOM_SET_BY_USER:
768                 return "Set by user";
769         case NL80211_REGDOM_SET_BY_DRIVER:
770                 return "Set by driver";
771         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
772                 return "Set by country IE";
773         default:
774                 WARN_ON(1);
775                 return "Set by bug";
776         }
777 }
778
779 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
780                                     const struct ieee80211_reg_rule *reg_rule)
781 {
782         const struct ieee80211_power_rule *power_rule;
783         const struct ieee80211_freq_range *freq_range;
784         char max_antenna_gain[32];
785
786         power_rule = &reg_rule->power_rule;
787         freq_range = &reg_rule->freq_range;
788
789         if (!power_rule->max_antenna_gain)
790                 snprintf(max_antenna_gain, 32, "N/A");
791         else
792                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
793
794         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
795                       chan->center_freq);
796
797         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
798                       freq_range->start_freq_khz, freq_range->end_freq_khz,
799                       freq_range->max_bandwidth_khz, max_antenna_gain,
800                       power_rule->max_eirp);
801 }
802 #else
803 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
804                                     const struct ieee80211_reg_rule *reg_rule)
805 {
806         return;
807 }
808 #endif
809
810 /*
811  * Note that right now we assume the desired channel bandwidth
812  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
813  * per channel, the primary and the extension channel).
814  */
815 static void handle_channel(struct wiphy *wiphy,
816                            enum nl80211_reg_initiator initiator,
817                            struct ieee80211_channel *chan)
818 {
819         u32 flags, bw_flags = 0;
820         const struct ieee80211_reg_rule *reg_rule = NULL;
821         const struct ieee80211_power_rule *power_rule = NULL;
822         const struct ieee80211_freq_range *freq_range = NULL;
823         struct wiphy *request_wiphy = NULL;
824         struct regulatory_request *lr = get_last_request();
825
826         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
827
828         flags = chan->orig_flags;
829
830         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
831         if (IS_ERR(reg_rule)) {
832                 /*
833                  * We will disable all channels that do not match our
834                  * received regulatory rule unless the hint is coming
835                  * from a Country IE and the Country IE had no information
836                  * about a band. The IEEE 802.11 spec allows for an AP
837                  * to send only a subset of the regulatory rules allowed,
838                  * so an AP in the US that only supports 2.4 GHz may only send
839                  * a country IE with information for the 2.4 GHz band
840                  * while 5 GHz is still supported.
841                  */
842                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
843                     PTR_ERR(reg_rule) == -ERANGE)
844                         return;
845
846                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
847                 chan->flags |= IEEE80211_CHAN_DISABLED;
848                 return;
849         }
850
851         chan_reg_rule_print_dbg(chan, reg_rule);
852
853         power_rule = &reg_rule->power_rule;
854         freq_range = &reg_rule->freq_range;
855
856         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
857                 bw_flags = IEEE80211_CHAN_NO_HT40;
858         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
859                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
860         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
861                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
862
863         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
864             request_wiphy && request_wiphy == wiphy &&
865             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
866                 /*
867                  * This guarantees the driver's requested regulatory domain
868                  * will always be used as a base for further regulatory
869                  * settings
870                  */
871                 chan->flags = chan->orig_flags =
872                         map_regdom_flags(reg_rule->flags) | bw_flags;
873                 chan->max_antenna_gain = chan->orig_mag =
874                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
875                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
876                         (int) MBM_TO_DBM(power_rule->max_eirp);
877                 return;
878         }
879
880         chan->dfs_state = NL80211_DFS_USABLE;
881         chan->dfs_state_entered = jiffies;
882
883         chan->beacon_found = false;
884         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
885         chan->max_antenna_gain =
886                 min_t(int, chan->orig_mag,
887                       MBI_TO_DBI(power_rule->max_antenna_gain));
888         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
889         if (chan->orig_mpwr) {
890                 /*
891                  * Devices that have their own custom regulatory domain
892                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
893                  * passed country IE power settings.
894                  */
895                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
896                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
897                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
898                         chan->max_power = chan->max_reg_power;
899                 else
900                         chan->max_power = min(chan->orig_mpwr,
901                                               chan->max_reg_power);
902         } else
903                 chan->max_power = chan->max_reg_power;
904 }
905
906 static void handle_band(struct wiphy *wiphy,
907                         enum nl80211_reg_initiator initiator,
908                         struct ieee80211_supported_band *sband)
909 {
910         unsigned int i;
911
912         if (!sband)
913                 return;
914
915         for (i = 0; i < sband->n_channels; i++)
916                 handle_channel(wiphy, initiator, &sband->channels[i]);
917 }
918
919 static bool reg_request_cell_base(struct regulatory_request *request)
920 {
921         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
922                 return false;
923         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
924 }
925
926 bool reg_last_request_cell_base(void)
927 {
928         return reg_request_cell_base(get_last_request());
929 }
930
931 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
932 /* Core specific check */
933 static enum reg_request_treatment
934 reg_ignore_cell_hint(struct regulatory_request *pending_request)
935 {
936         struct regulatory_request *lr = get_last_request();
937
938         if (!reg_num_devs_support_basehint)
939                 return REG_REQ_IGNORE;
940
941         if (reg_request_cell_base(lr) &&
942             !regdom_changes(pending_request->alpha2))
943                 return REG_REQ_ALREADY_SET;
944
945         return REG_REQ_OK;
946 }
947
948 /* Device specific check */
949 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
950 {
951         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
952 }
953 #else
954 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
955 {
956         return REG_REQ_IGNORE;
957 }
958
959 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
960 {
961         return true;
962 }
963 #endif
964
965
966 static bool ignore_reg_update(struct wiphy *wiphy,
967                               enum nl80211_reg_initiator initiator)
968 {
969         struct regulatory_request *lr = get_last_request();
970
971         if (!lr) {
972                 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
973                               reg_initiator_name(initiator));
974                 return true;
975         }
976
977         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
978             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
979                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
980                               reg_initiator_name(initiator));
981                 return true;
982         }
983
984         /*
985          * wiphy->regd will be set once the device has its own
986          * desired regulatory domain set
987          */
988         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
989             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
990             !is_world_regdom(lr->alpha2)) {
991                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
992                               reg_initiator_name(initiator));
993                 return true;
994         }
995
996         if (reg_request_cell_base(lr))
997                 return reg_dev_ignore_cell_hint(wiphy);
998
999         return false;
1000 }
1001
1002 static bool reg_is_world_roaming(struct wiphy *wiphy)
1003 {
1004         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1005         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1006         struct regulatory_request *lr = get_last_request();
1007
1008         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1009                 return true;
1010
1011         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1012             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1013                 return true;
1014
1015         return false;
1016 }
1017
1018 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1019                               struct reg_beacon *reg_beacon)
1020 {
1021         struct ieee80211_supported_band *sband;
1022         struct ieee80211_channel *chan;
1023         bool channel_changed = false;
1024         struct ieee80211_channel chan_before;
1025
1026         sband = wiphy->bands[reg_beacon->chan.band];
1027         chan = &sband->channels[chan_idx];
1028
1029         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1030                 return;
1031
1032         if (chan->beacon_found)
1033                 return;
1034
1035         chan->beacon_found = true;
1036
1037         if (!reg_is_world_roaming(wiphy))
1038                 return;
1039
1040         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1041                 return;
1042
1043         chan_before.center_freq = chan->center_freq;
1044         chan_before.flags = chan->flags;
1045
1046         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1047                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1048                 channel_changed = true;
1049         }
1050
1051         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1052                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1053                 channel_changed = true;
1054         }
1055
1056         if (channel_changed)
1057                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1058 }
1059
1060 /*
1061  * Called when a scan on a wiphy finds a beacon on
1062  * new channel
1063  */
1064 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1065                                     struct reg_beacon *reg_beacon)
1066 {
1067         unsigned int i;
1068         struct ieee80211_supported_band *sband;
1069
1070         if (!wiphy->bands[reg_beacon->chan.band])
1071                 return;
1072
1073         sband = wiphy->bands[reg_beacon->chan.band];
1074
1075         for (i = 0; i < sband->n_channels; i++)
1076                 handle_reg_beacon(wiphy, i, reg_beacon);
1077 }
1078
1079 /*
1080  * Called upon reg changes or a new wiphy is added
1081  */
1082 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1083 {
1084         unsigned int i;
1085         struct ieee80211_supported_band *sband;
1086         struct reg_beacon *reg_beacon;
1087
1088         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1089                 if (!wiphy->bands[reg_beacon->chan.band])
1090                         continue;
1091                 sband = wiphy->bands[reg_beacon->chan.band];
1092                 for (i = 0; i < sband->n_channels; i++)
1093                         handle_reg_beacon(wiphy, i, reg_beacon);
1094         }
1095 }
1096
1097 /* Reap the advantages of previously found beacons */
1098 static void reg_process_beacons(struct wiphy *wiphy)
1099 {
1100         /*
1101          * Means we are just firing up cfg80211, so no beacons would
1102          * have been processed yet.
1103          */
1104         if (!last_request)
1105                 return;
1106         wiphy_update_beacon_reg(wiphy);
1107 }
1108
1109 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1110 {
1111         if (!chan)
1112                 return false;
1113         if (chan->flags & IEEE80211_CHAN_DISABLED)
1114                 return false;
1115         /* This would happen when regulatory rules disallow HT40 completely */
1116         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1117                 return false;
1118         return true;
1119 }
1120
1121 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1122                                          struct ieee80211_channel *channel)
1123 {
1124         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1125         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1126         unsigned int i;
1127
1128         if (!is_ht40_allowed(channel)) {
1129                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1130                 return;
1131         }
1132
1133         /*
1134          * We need to ensure the extension channels exist to
1135          * be able to use HT40- or HT40+, this finds them (or not)
1136          */
1137         for (i = 0; i < sband->n_channels; i++) {
1138                 struct ieee80211_channel *c = &sband->channels[i];
1139
1140                 if (c->center_freq == (channel->center_freq - 20))
1141                         channel_before = c;
1142                 if (c->center_freq == (channel->center_freq + 20))
1143                         channel_after = c;
1144         }
1145
1146         /*
1147          * Please note that this assumes target bandwidth is 20 MHz,
1148          * if that ever changes we also need to change the below logic
1149          * to include that as well.
1150          */
1151         if (!is_ht40_allowed(channel_before))
1152                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1153         else
1154                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1155
1156         if (!is_ht40_allowed(channel_after))
1157                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1158         else
1159                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1160 }
1161
1162 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1163                                       struct ieee80211_supported_band *sband)
1164 {
1165         unsigned int i;
1166
1167         if (!sband)
1168                 return;
1169
1170         for (i = 0; i < sband->n_channels; i++)
1171                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1172 }
1173
1174 static void reg_process_ht_flags(struct wiphy *wiphy)
1175 {
1176         enum ieee80211_band band;
1177
1178         if (!wiphy)
1179                 return;
1180
1181         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1182                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1183 }
1184
1185 static void wiphy_update_regulatory(struct wiphy *wiphy,
1186                                     enum nl80211_reg_initiator initiator)
1187 {
1188         enum ieee80211_band band;
1189         struct regulatory_request *lr = get_last_request();
1190
1191         if (ignore_reg_update(wiphy, initiator))
1192                 return;
1193
1194         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1195
1196         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1197                 handle_band(wiphy, initiator, wiphy->bands[band]);
1198
1199         reg_process_beacons(wiphy);
1200         reg_process_ht_flags(wiphy);
1201
1202         if (wiphy->reg_notifier)
1203                 wiphy->reg_notifier(wiphy, lr);
1204 }
1205
1206 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1207 {
1208         struct cfg80211_registered_device *rdev;
1209         struct wiphy *wiphy;
1210
1211         ASSERT_RTNL();
1212
1213         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1214                 wiphy = &rdev->wiphy;
1215                 wiphy_update_regulatory(wiphy, initiator);
1216                 /*
1217                  * Regulatory updates set by CORE are ignored for custom
1218                  * regulatory cards. Let us notify the changes to the driver,
1219                  * as some drivers used this to restore its orig_* reg domain.
1220                  */
1221                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1222                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1223                     wiphy->reg_notifier)
1224                         wiphy->reg_notifier(wiphy, get_last_request());
1225         }
1226 }
1227
1228 static void handle_channel_custom(struct wiphy *wiphy,
1229                                   struct ieee80211_channel *chan,
1230                                   const struct ieee80211_regdomain *regd)
1231 {
1232         u32 bw_flags = 0;
1233         const struct ieee80211_reg_rule *reg_rule = NULL;
1234         const struct ieee80211_power_rule *power_rule = NULL;
1235         const struct ieee80211_freq_range *freq_range = NULL;
1236
1237         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1238                                       regd);
1239
1240         if (IS_ERR(reg_rule)) {
1241                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1242                               chan->center_freq);
1243                 chan->flags = IEEE80211_CHAN_DISABLED;
1244                 return;
1245         }
1246
1247         chan_reg_rule_print_dbg(chan, reg_rule);
1248
1249         power_rule = &reg_rule->power_rule;
1250         freq_range = &reg_rule->freq_range;
1251
1252         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1253                 bw_flags = IEEE80211_CHAN_NO_HT40;
1254         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1255                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1256         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1257                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1258
1259         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1260         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1261         chan->max_reg_power = chan->max_power =
1262                 (int) MBM_TO_DBM(power_rule->max_eirp);
1263 }
1264
1265 static void handle_band_custom(struct wiphy *wiphy,
1266                                struct ieee80211_supported_band *sband,
1267                                const struct ieee80211_regdomain *regd)
1268 {
1269         unsigned int i;
1270
1271         if (!sband)
1272                 return;
1273
1274         for (i = 0; i < sband->n_channels; i++)
1275                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1276 }
1277
1278 /* Used by drivers prior to wiphy registration */
1279 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1280                                    const struct ieee80211_regdomain *regd)
1281 {
1282         enum ieee80211_band band;
1283         unsigned int bands_set = 0;
1284
1285         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1286                 if (!wiphy->bands[band])
1287                         continue;
1288                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1289                 bands_set++;
1290         }
1291
1292         /*
1293          * no point in calling this if it won't have any effect
1294          * on your device's supported bands.
1295          */
1296         WARN_ON(!bands_set);
1297 }
1298 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1299
1300 /* This has the logic which determines when a new request
1301  * should be ignored. */
1302 static enum reg_request_treatment
1303 get_reg_request_treatment(struct wiphy *wiphy,
1304                           struct regulatory_request *pending_request)
1305 {
1306         struct wiphy *last_wiphy = NULL;
1307         struct regulatory_request *lr = get_last_request();
1308
1309         /* All initial requests are respected */
1310         if (!lr)
1311                 return REG_REQ_OK;
1312
1313         switch (pending_request->initiator) {
1314         case NL80211_REGDOM_SET_BY_CORE:
1315                 return REG_REQ_OK;
1316         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1317                 if (reg_request_cell_base(lr)) {
1318                         /* Trust a Cell base station over the AP's country IE */
1319                         if (regdom_changes(pending_request->alpha2))
1320                                 return REG_REQ_IGNORE;
1321                         return REG_REQ_ALREADY_SET;
1322                 }
1323
1324                 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1325
1326                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1327                         return -EINVAL;
1328                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1329                         if (last_wiphy != wiphy) {
1330                                 /*
1331                                  * Two cards with two APs claiming different
1332                                  * Country IE alpha2s. We could
1333                                  * intersect them, but that seems unlikely
1334                                  * to be correct. Reject second one for now.
1335                                  */
1336                                 if (regdom_changes(pending_request->alpha2))
1337                                         return REG_REQ_IGNORE;
1338                                 return REG_REQ_ALREADY_SET;
1339                         }
1340                         /*
1341                          * Two consecutive Country IE hints on the same wiphy.
1342                          * This should be picked up early by the driver/stack
1343                          */
1344                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1345                                 return REG_REQ_OK;
1346                         return REG_REQ_ALREADY_SET;
1347                 }
1348                 return REG_REQ_OK;
1349         case NL80211_REGDOM_SET_BY_DRIVER:
1350                 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1351                         if (regdom_changes(pending_request->alpha2))
1352                                 return REG_REQ_OK;
1353                         return REG_REQ_ALREADY_SET;
1354                 }
1355
1356                 /*
1357                  * This would happen if you unplug and plug your card
1358                  * back in or if you add a new device for which the previously
1359                  * loaded card also agrees on the regulatory domain.
1360                  */
1361                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1362                     !regdom_changes(pending_request->alpha2))
1363                         return REG_REQ_ALREADY_SET;
1364
1365                 return REG_REQ_INTERSECT;
1366         case NL80211_REGDOM_SET_BY_USER:
1367                 if (reg_request_cell_base(pending_request))
1368                         return reg_ignore_cell_hint(pending_request);
1369
1370                 if (reg_request_cell_base(lr))
1371                         return REG_REQ_IGNORE;
1372
1373                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1374                         return REG_REQ_INTERSECT;
1375                 /*
1376                  * If the user knows better the user should set the regdom
1377                  * to their country before the IE is picked up
1378                  */
1379                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1380                     lr->intersect)
1381                         return REG_REQ_IGNORE;
1382                 /*
1383                  * Process user requests only after previous user/driver/core
1384                  * requests have been processed
1385                  */
1386                 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1387                      lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1388                      lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1389                     regdom_changes(lr->alpha2))
1390                         return REG_REQ_IGNORE;
1391
1392                 if (!regdom_changes(pending_request->alpha2))
1393                         return REG_REQ_ALREADY_SET;
1394
1395                 return REG_REQ_OK;
1396         }
1397
1398         return REG_REQ_IGNORE;
1399 }
1400
1401 static void reg_set_request_processed(void)
1402 {
1403         bool need_more_processing = false;
1404         struct regulatory_request *lr = get_last_request();
1405
1406         lr->processed = true;
1407
1408         spin_lock(&reg_requests_lock);
1409         if (!list_empty(&reg_requests_list))
1410                 need_more_processing = true;
1411         spin_unlock(&reg_requests_lock);
1412
1413         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1414                 cancel_delayed_work(&reg_timeout);
1415
1416         if (need_more_processing)
1417                 schedule_work(&reg_work);
1418 }
1419
1420 /**
1421  * __regulatory_hint - hint to the wireless core a regulatory domain
1422  * @wiphy: if the hint comes from country information from an AP, this
1423  *      is required to be set to the wiphy that received the information
1424  * @pending_request: the regulatory request currently being processed
1425  *
1426  * The Wireless subsystem can use this function to hint to the wireless core
1427  * what it believes should be the current regulatory domain.
1428  *
1429  * Returns one of the different reg request treatment values.
1430  */
1431 static enum reg_request_treatment
1432 __regulatory_hint(struct wiphy *wiphy,
1433                   struct regulatory_request *pending_request)
1434 {
1435         const struct ieee80211_regdomain *regd;
1436         bool intersect = false;
1437         enum reg_request_treatment treatment;
1438         struct regulatory_request *lr;
1439
1440         treatment = get_reg_request_treatment(wiphy, pending_request);
1441
1442         switch (treatment) {
1443         case REG_REQ_INTERSECT:
1444                 if (pending_request->initiator ==
1445                     NL80211_REGDOM_SET_BY_DRIVER) {
1446                         regd = reg_copy_regd(get_cfg80211_regdom());
1447                         if (IS_ERR(regd)) {
1448                                 kfree(pending_request);
1449                                 return PTR_ERR(regd);
1450                         }
1451                         rcu_assign_pointer(wiphy->regd, regd);
1452                 }
1453                 intersect = true;
1454                 break;
1455         case REG_REQ_OK:
1456                 break;
1457         default:
1458                 /*
1459                  * If the regulatory domain being requested by the
1460                  * driver has already been set just copy it to the
1461                  * wiphy
1462                  */
1463                 if (treatment == REG_REQ_ALREADY_SET &&
1464                     pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1465                         regd = reg_copy_regd(get_cfg80211_regdom());
1466                         if (IS_ERR(regd)) {
1467                                 kfree(pending_request);
1468                                 return REG_REQ_IGNORE;
1469                         }
1470                         treatment = REG_REQ_ALREADY_SET;
1471                         rcu_assign_pointer(wiphy->regd, regd);
1472                         goto new_request;
1473                 }
1474                 kfree(pending_request);
1475                 return treatment;
1476         }
1477
1478 new_request:
1479         lr = get_last_request();
1480         if (lr != &core_request_world && lr)
1481                 kfree_rcu(lr, rcu_head);
1482
1483         pending_request->intersect = intersect;
1484         pending_request->processed = false;
1485         rcu_assign_pointer(last_request, pending_request);
1486         lr = pending_request;
1487
1488         pending_request = NULL;
1489
1490         if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1491                 user_alpha2[0] = lr->alpha2[0];
1492                 user_alpha2[1] = lr->alpha2[1];
1493         }
1494
1495         /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1496         if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1497                 /*
1498                  * Since CRDA will not be called in this case as we already
1499                  * have applied the requested regulatory domain before we just
1500                  * inform userspace we have processed the request
1501                  */
1502                 if (treatment == REG_REQ_ALREADY_SET) {
1503                         nl80211_send_reg_change_event(lr);
1504                         reg_set_request_processed();
1505                 }
1506                 return treatment;
1507         }
1508
1509         if (call_crda(lr->alpha2))
1510                 return REG_REQ_IGNORE;
1511         return REG_REQ_OK;
1512 }
1513
1514 /* This processes *all* regulatory hints */
1515 static void reg_process_hint(struct regulatory_request *reg_request,
1516                              enum nl80211_reg_initiator reg_initiator)
1517 {
1518         struct wiphy *wiphy = NULL;
1519
1520         if (WARN_ON(!reg_request->alpha2))
1521                 return;
1522
1523         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1524                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1525
1526         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1527                 kfree(reg_request);
1528                 return;
1529         }
1530
1531         switch (__regulatory_hint(wiphy, reg_request)) {
1532         case REG_REQ_ALREADY_SET:
1533                 /* This is required so that the orig_* parameters are saved */
1534                 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1535                         wiphy_update_regulatory(wiphy, reg_initiator);
1536                 break;
1537         default:
1538                 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1539                         schedule_delayed_work(&reg_timeout,
1540                                               msecs_to_jiffies(3142));
1541                 break;
1542         }
1543 }
1544
1545 /*
1546  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1547  * Regulatory hints come on a first come first serve basis and we
1548  * must process each one atomically.
1549  */
1550 static void reg_process_pending_hints(void)
1551 {
1552         struct regulatory_request *reg_request, *lr;
1553
1554         lr = get_last_request();
1555
1556         /* When last_request->processed becomes true this will be rescheduled */
1557         if (lr && !lr->processed) {
1558                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1559                 return;
1560         }
1561
1562         spin_lock(&reg_requests_lock);
1563
1564         if (list_empty(&reg_requests_list)) {
1565                 spin_unlock(&reg_requests_lock);
1566                 return;
1567         }
1568
1569         reg_request = list_first_entry(&reg_requests_list,
1570                                        struct regulatory_request,
1571                                        list);
1572         list_del_init(&reg_request->list);
1573
1574         spin_unlock(&reg_requests_lock);
1575
1576         reg_process_hint(reg_request, reg_request->initiator);
1577 }
1578
1579 /* Processes beacon hints -- this has nothing to do with country IEs */
1580 static void reg_process_pending_beacon_hints(void)
1581 {
1582         struct cfg80211_registered_device *rdev;
1583         struct reg_beacon *pending_beacon, *tmp;
1584
1585         /* This goes through the _pending_ beacon list */
1586         spin_lock_bh(&reg_pending_beacons_lock);
1587
1588         list_for_each_entry_safe(pending_beacon, tmp,
1589                                  &reg_pending_beacons, list) {
1590                 list_del_init(&pending_beacon->list);
1591
1592                 /* Applies the beacon hint to current wiphys */
1593                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1594                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1595
1596                 /* Remembers the beacon hint for new wiphys or reg changes */
1597                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1598         }
1599
1600         spin_unlock_bh(&reg_pending_beacons_lock);
1601 }
1602
1603 static void reg_todo(struct work_struct *work)
1604 {
1605         rtnl_lock();
1606         reg_process_pending_hints();
1607         reg_process_pending_beacon_hints();
1608         rtnl_unlock();
1609 }
1610
1611 static void queue_regulatory_request(struct regulatory_request *request)
1612 {
1613         request->alpha2[0] = toupper(request->alpha2[0]);
1614         request->alpha2[1] = toupper(request->alpha2[1]);
1615
1616         spin_lock(&reg_requests_lock);
1617         list_add_tail(&request->list, &reg_requests_list);
1618         spin_unlock(&reg_requests_lock);
1619
1620         schedule_work(&reg_work);
1621 }
1622
1623 /*
1624  * Core regulatory hint -- happens during cfg80211_init()
1625  * and when we restore regulatory settings.
1626  */
1627 static int regulatory_hint_core(const char *alpha2)
1628 {
1629         struct regulatory_request *request;
1630
1631         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1632         if (!request)
1633                 return -ENOMEM;
1634
1635         request->alpha2[0] = alpha2[0];
1636         request->alpha2[1] = alpha2[1];
1637         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1638
1639         queue_regulatory_request(request);
1640
1641         return 0;
1642 }
1643
1644 /* User hints */
1645 int regulatory_hint_user(const char *alpha2,
1646                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1647 {
1648         struct regulatory_request *request;
1649
1650         if (WARN_ON(!alpha2))
1651                 return -EINVAL;
1652
1653         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1654         if (!request)
1655                 return -ENOMEM;
1656
1657         request->wiphy_idx = WIPHY_IDX_INVALID;
1658         request->alpha2[0] = alpha2[0];
1659         request->alpha2[1] = alpha2[1];
1660         request->initiator = NL80211_REGDOM_SET_BY_USER;
1661         request->user_reg_hint_type = user_reg_hint_type;
1662
1663         queue_regulatory_request(request);
1664
1665         return 0;
1666 }
1667
1668 /* Driver hints */
1669 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1670 {
1671         struct regulatory_request *request;
1672
1673         if (WARN_ON(!alpha2 || !wiphy))
1674                 return -EINVAL;
1675
1676         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1677         if (!request)
1678                 return -ENOMEM;
1679
1680         request->wiphy_idx = get_wiphy_idx(wiphy);
1681
1682         request->alpha2[0] = alpha2[0];
1683         request->alpha2[1] = alpha2[1];
1684         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1685
1686         queue_regulatory_request(request);
1687
1688         return 0;
1689 }
1690 EXPORT_SYMBOL(regulatory_hint);
1691
1692 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1693                          const u8 *country_ie, u8 country_ie_len)
1694 {
1695         char alpha2[2];
1696         enum environment_cap env = ENVIRON_ANY;
1697         struct regulatory_request *request = NULL, *lr;
1698
1699         /* IE len must be evenly divisible by 2 */
1700         if (country_ie_len & 0x01)
1701                 return;
1702
1703         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1704                 return;
1705
1706         request = kzalloc(sizeof(*request), GFP_KERNEL);
1707         if (!request)
1708                 return;
1709
1710         alpha2[0] = country_ie[0];
1711         alpha2[1] = country_ie[1];
1712
1713         if (country_ie[2] == 'I')
1714                 env = ENVIRON_INDOOR;
1715         else if (country_ie[2] == 'O')
1716                 env = ENVIRON_OUTDOOR;
1717
1718         rcu_read_lock();
1719         lr = get_last_request();
1720
1721         if (unlikely(!lr))
1722                 goto out;
1723
1724         /*
1725          * We will run this only upon a successful connection on cfg80211.
1726          * We leave conflict resolution to the workqueue, where can hold
1727          * the RTNL.
1728          */
1729         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1730             lr->wiphy_idx != WIPHY_IDX_INVALID)
1731                 goto out;
1732
1733         request->wiphy_idx = get_wiphy_idx(wiphy);
1734         request->alpha2[0] = alpha2[0];
1735         request->alpha2[1] = alpha2[1];
1736         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1737         request->country_ie_env = env;
1738
1739         queue_regulatory_request(request);
1740         request = NULL;
1741 out:
1742         kfree(request);
1743         rcu_read_unlock();
1744 }
1745
1746 static void restore_alpha2(char *alpha2, bool reset_user)
1747 {
1748         /* indicates there is no alpha2 to consider for restoration */
1749         alpha2[0] = '9';
1750         alpha2[1] = '7';
1751
1752         /* The user setting has precedence over the module parameter */
1753         if (is_user_regdom_saved()) {
1754                 /* Unless we're asked to ignore it and reset it */
1755                 if (reset_user) {
1756                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1757                         user_alpha2[0] = '9';
1758                         user_alpha2[1] = '7';
1759
1760                         /*
1761                          * If we're ignoring user settings, we still need to
1762                          * check the module parameter to ensure we put things
1763                          * back as they were for a full restore.
1764                          */
1765                         if (!is_world_regdom(ieee80211_regdom)) {
1766                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1767                                               ieee80211_regdom[0], ieee80211_regdom[1]);
1768                                 alpha2[0] = ieee80211_regdom[0];
1769                                 alpha2[1] = ieee80211_regdom[1];
1770                         }
1771                 } else {
1772                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1773                                       user_alpha2[0], user_alpha2[1]);
1774                         alpha2[0] = user_alpha2[0];
1775                         alpha2[1] = user_alpha2[1];
1776                 }
1777         } else if (!is_world_regdom(ieee80211_regdom)) {
1778                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1779                               ieee80211_regdom[0], ieee80211_regdom[1]);
1780                 alpha2[0] = ieee80211_regdom[0];
1781                 alpha2[1] = ieee80211_regdom[1];
1782         } else
1783                 REG_DBG_PRINT("Restoring regulatory settings\n");
1784 }
1785
1786 static void restore_custom_reg_settings(struct wiphy *wiphy)
1787 {
1788         struct ieee80211_supported_band *sband;
1789         enum ieee80211_band band;
1790         struct ieee80211_channel *chan;
1791         int i;
1792
1793         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1794                 sband = wiphy->bands[band];
1795                 if (!sband)
1796                         continue;
1797                 for (i = 0; i < sband->n_channels; i++) {
1798                         chan = &sband->channels[i];
1799                         chan->flags = chan->orig_flags;
1800                         chan->max_antenna_gain = chan->orig_mag;
1801                         chan->max_power = chan->orig_mpwr;
1802                         chan->beacon_found = false;
1803                 }
1804         }
1805 }
1806
1807 /*
1808  * Restoring regulatory settings involves ingoring any
1809  * possibly stale country IE information and user regulatory
1810  * settings if so desired, this includes any beacon hints
1811  * learned as we could have traveled outside to another country
1812  * after disconnection. To restore regulatory settings we do
1813  * exactly what we did at bootup:
1814  *
1815  *   - send a core regulatory hint
1816  *   - send a user regulatory hint if applicable
1817  *
1818  * Device drivers that send a regulatory hint for a specific country
1819  * keep their own regulatory domain on wiphy->regd so that does does
1820  * not need to be remembered.
1821  */
1822 static void restore_regulatory_settings(bool reset_user)
1823 {
1824         char alpha2[2];
1825         char world_alpha2[2];
1826         struct reg_beacon *reg_beacon, *btmp;
1827         struct regulatory_request *reg_request, *tmp;
1828         LIST_HEAD(tmp_reg_req_list);
1829         struct cfg80211_registered_device *rdev;
1830
1831         ASSERT_RTNL();
1832
1833         reset_regdomains(true, &world_regdom);
1834         restore_alpha2(alpha2, reset_user);
1835
1836         /*
1837          * If there's any pending requests we simply
1838          * stash them to a temporary pending queue and
1839          * add then after we've restored regulatory
1840          * settings.
1841          */
1842         spin_lock(&reg_requests_lock);
1843         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1844                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1845                         continue;
1846                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1847         }
1848         spin_unlock(&reg_requests_lock);
1849
1850         /* Clear beacon hints */
1851         spin_lock_bh(&reg_pending_beacons_lock);
1852         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1853                 list_del(&reg_beacon->list);
1854                 kfree(reg_beacon);
1855         }
1856         spin_unlock_bh(&reg_pending_beacons_lock);
1857
1858         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1859                 list_del(&reg_beacon->list);
1860                 kfree(reg_beacon);
1861         }
1862
1863         /* First restore to the basic regulatory settings */
1864         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1865         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1866
1867         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1868                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1869                         restore_custom_reg_settings(&rdev->wiphy);
1870         }
1871
1872         regulatory_hint_core(world_alpha2);
1873
1874         /*
1875          * This restores the ieee80211_regdom module parameter
1876          * preference or the last user requested regulatory
1877          * settings, user regulatory settings takes precedence.
1878          */
1879         if (is_an_alpha2(alpha2))
1880                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1881
1882         spin_lock(&reg_requests_lock);
1883         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1884         spin_unlock(&reg_requests_lock);
1885
1886         REG_DBG_PRINT("Kicking the queue\n");
1887
1888         schedule_work(&reg_work);
1889 }
1890
1891 void regulatory_hint_disconnect(void)
1892 {
1893         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1894         restore_regulatory_settings(false);
1895 }
1896
1897 static bool freq_is_chan_12_13_14(u16 freq)
1898 {
1899         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1900             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1901             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1902                 return true;
1903         return false;
1904 }
1905
1906 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1907 {
1908         struct reg_beacon *pending_beacon;
1909
1910         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1911                 if (beacon_chan->center_freq ==
1912                     pending_beacon->chan.center_freq)
1913                         return true;
1914         return false;
1915 }
1916
1917 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1918                                  struct ieee80211_channel *beacon_chan,
1919                                  gfp_t gfp)
1920 {
1921         struct reg_beacon *reg_beacon;
1922         bool processing;
1923
1924         if (beacon_chan->beacon_found ||
1925             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1926             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1927              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1928                 return 0;
1929
1930         spin_lock_bh(&reg_pending_beacons_lock);
1931         processing = pending_reg_beacon(beacon_chan);
1932         spin_unlock_bh(&reg_pending_beacons_lock);
1933
1934         if (processing)
1935                 return 0;
1936
1937         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1938         if (!reg_beacon)
1939                 return -ENOMEM;
1940
1941         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1942                       beacon_chan->center_freq,
1943                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1944                       wiphy_name(wiphy));
1945
1946         memcpy(&reg_beacon->chan, beacon_chan,
1947                sizeof(struct ieee80211_channel));
1948
1949         /*
1950          * Since we can be called from BH or and non-BH context
1951          * we must use spin_lock_bh()
1952          */
1953         spin_lock_bh(&reg_pending_beacons_lock);
1954         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1955         spin_unlock_bh(&reg_pending_beacons_lock);
1956
1957         schedule_work(&reg_work);
1958
1959         return 0;
1960 }
1961
1962 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1963 {
1964         unsigned int i;
1965         const struct ieee80211_reg_rule *reg_rule = NULL;
1966         const struct ieee80211_freq_range *freq_range = NULL;
1967         const struct ieee80211_power_rule *power_rule = NULL;
1968
1969         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1970
1971         for (i = 0; i < rd->n_reg_rules; i++) {
1972                 reg_rule = &rd->reg_rules[i];
1973                 freq_range = &reg_rule->freq_range;
1974                 power_rule = &reg_rule->power_rule;
1975
1976                 /*
1977                  * There may not be documentation for max antenna gain
1978                  * in certain regions
1979                  */
1980                 if (power_rule->max_antenna_gain)
1981                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1982                                 freq_range->start_freq_khz,
1983                                 freq_range->end_freq_khz,
1984                                 freq_range->max_bandwidth_khz,
1985                                 power_rule->max_antenna_gain,
1986                                 power_rule->max_eirp);
1987                 else
1988                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1989                                 freq_range->start_freq_khz,
1990                                 freq_range->end_freq_khz,
1991                                 freq_range->max_bandwidth_khz,
1992                                 power_rule->max_eirp);
1993         }
1994 }
1995
1996 bool reg_supported_dfs_region(u8 dfs_region)
1997 {
1998         switch (dfs_region) {
1999         case NL80211_DFS_UNSET:
2000         case NL80211_DFS_FCC:
2001         case NL80211_DFS_ETSI:
2002         case NL80211_DFS_JP:
2003                 return true;
2004         default:
2005                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2006                               dfs_region);
2007                 return false;
2008         }
2009 }
2010
2011 static void print_dfs_region(u8 dfs_region)
2012 {
2013         if (!dfs_region)
2014                 return;
2015
2016         switch (dfs_region) {
2017         case NL80211_DFS_FCC:
2018                 pr_info(" DFS Master region FCC");
2019                 break;
2020         case NL80211_DFS_ETSI:
2021                 pr_info(" DFS Master region ETSI");
2022                 break;
2023         case NL80211_DFS_JP:
2024                 pr_info(" DFS Master region JP");
2025                 break;
2026         default:
2027                 pr_info(" DFS Master region Unknown");
2028                 break;
2029         }
2030 }
2031
2032 static void print_regdomain(const struct ieee80211_regdomain *rd)
2033 {
2034         struct regulatory_request *lr = get_last_request();
2035
2036         if (is_intersected_alpha2(rd->alpha2)) {
2037                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2038                         struct cfg80211_registered_device *rdev;
2039                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2040                         if (rdev) {
2041                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2042                                         rdev->country_ie_alpha2[0],
2043                                         rdev->country_ie_alpha2[1]);
2044                         } else
2045                                 pr_info("Current regulatory domain intersected:\n");
2046                 } else
2047                         pr_info("Current regulatory domain intersected:\n");
2048         } else if (is_world_regdom(rd->alpha2)) {
2049                 pr_info("World regulatory domain updated:\n");
2050         } else {
2051                 if (is_unknown_alpha2(rd->alpha2))
2052                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2053                 else {
2054                         if (reg_request_cell_base(lr))
2055                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2056                                         rd->alpha2[0], rd->alpha2[1]);
2057                         else
2058                                 pr_info("Regulatory domain changed to country: %c%c\n",
2059                                         rd->alpha2[0], rd->alpha2[1]);
2060                 }
2061         }
2062
2063         print_dfs_region(rd->dfs_region);
2064         print_rd_rules(rd);
2065 }
2066
2067 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2068 {
2069         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2070         print_rd_rules(rd);
2071 }
2072
2073 /* Takes ownership of rd only if it doesn't fail */
2074 static int __set_regdom(const struct ieee80211_regdomain *rd)
2075 {
2076         const struct ieee80211_regdomain *regd;
2077         const struct ieee80211_regdomain *intersected_rd = NULL;
2078         struct wiphy *request_wiphy;
2079         struct regulatory_request *lr = get_last_request();
2080
2081         /* Some basic sanity checks first */
2082
2083         if (!reg_is_valid_request(rd->alpha2))
2084                 return -EINVAL;
2085
2086         if (is_world_regdom(rd->alpha2)) {
2087                 update_world_regdomain(rd);
2088                 return 0;
2089         }
2090
2091         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2092             !is_unknown_alpha2(rd->alpha2))
2093                 return -EINVAL;
2094
2095         /*
2096          * Lets only bother proceeding on the same alpha2 if the current
2097          * rd is non static (it means CRDA was present and was used last)
2098          * and the pending request came in from a country IE
2099          */
2100         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2101                 /*
2102                  * If someone else asked us to change the rd lets only bother
2103                  * checking if the alpha2 changes if CRDA was already called
2104                  */
2105                 if (!regdom_changes(rd->alpha2))
2106                         return -EALREADY;
2107         }
2108
2109         /*
2110          * Now lets set the regulatory domain, update all driver channels
2111          * and finally inform them of what we have done, in case they want
2112          * to review or adjust their own settings based on their own
2113          * internal EEPROM data
2114          */
2115
2116         if (!is_valid_rd(rd)) {
2117                 pr_err("Invalid regulatory domain detected:\n");
2118                 print_regdomain_info(rd);
2119                 return -EINVAL;
2120         }
2121
2122         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2123         if (!request_wiphy &&
2124             (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2125              lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2126                 schedule_delayed_work(&reg_timeout, 0);
2127                 return -ENODEV;
2128         }
2129
2130         if (!lr->intersect) {
2131                 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2132                         reset_regdomains(false, rd);
2133                         return 0;
2134                 }
2135
2136                 /*
2137                  * For a driver hint, lets copy the regulatory domain the
2138                  * driver wanted to the wiphy to deal with conflicts
2139                  */
2140
2141                 /*
2142                  * Userspace could have sent two replies with only
2143                  * one kernel request.
2144                  */
2145                 if (request_wiphy->regd)
2146                         return -EALREADY;
2147
2148                 regd = reg_copy_regd(rd);
2149                 if (IS_ERR(regd))
2150                         return PTR_ERR(regd);
2151
2152                 rcu_assign_pointer(request_wiphy->regd, regd);
2153                 reset_regdomains(false, rd);
2154                 return 0;
2155         }
2156
2157         /* Intersection requires a bit more work */
2158
2159         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2160                 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2161                 if (!intersected_rd)
2162                         return -EINVAL;
2163
2164                 /*
2165                  * We can trash what CRDA provided now.
2166                  * However if a driver requested this specific regulatory
2167                  * domain we keep it for its private use
2168                  */
2169                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2170                         const struct ieee80211_regdomain *tmp;
2171
2172                         tmp = get_wiphy_regdom(request_wiphy);
2173                         rcu_assign_pointer(request_wiphy->regd, rd);
2174                         rcu_free_regdom(tmp);
2175                 } else {
2176                         kfree(rd);
2177                 }
2178
2179                 rd = NULL;
2180
2181                 reset_regdomains(false, intersected_rd);
2182
2183                 return 0;
2184         }
2185
2186         return -EINVAL;
2187 }
2188
2189
2190 /*
2191  * Use this call to set the current regulatory domain. Conflicts with
2192  * multiple drivers can be ironed out later. Caller must've already
2193  * kmalloc'd the rd structure.
2194  */
2195 int set_regdom(const struct ieee80211_regdomain *rd)
2196 {
2197         struct regulatory_request *lr;
2198         int r;
2199
2200         lr = get_last_request();
2201
2202         /* Note that this doesn't update the wiphys, this is done below */
2203         r = __set_regdom(rd);
2204         if (r) {
2205                 if (r == -EALREADY)
2206                         reg_set_request_processed();
2207
2208                 kfree(rd);
2209                 return r;
2210         }
2211
2212         /* This would make this whole thing pointless */
2213         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2214                 return -EINVAL;
2215
2216         /* update all wiphys now with the new established regulatory domain */
2217         update_all_wiphy_regulatory(lr->initiator);
2218
2219         print_regdomain(get_cfg80211_regdom());
2220
2221         nl80211_send_reg_change_event(lr);
2222
2223         reg_set_request_processed();
2224
2225         return 0;
2226 }
2227
2228 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2229 {
2230         struct regulatory_request *lr;
2231         u8 alpha2[2];
2232         bool add = false;
2233
2234         rcu_read_lock();
2235         lr = get_last_request();
2236         if (lr && !lr->processed) {
2237                 memcpy(alpha2, lr->alpha2, 2);
2238                 add = true;
2239         }
2240         rcu_read_unlock();
2241
2242         if (add)
2243                 return add_uevent_var(env, "COUNTRY=%c%c",
2244                                       alpha2[0], alpha2[1]);
2245         return 0;
2246 }
2247
2248 void wiphy_regulatory_register(struct wiphy *wiphy)
2249 {
2250         struct regulatory_request *lr;
2251
2252         if (!reg_dev_ignore_cell_hint(wiphy))
2253                 reg_num_devs_support_basehint++;
2254
2255         lr = get_last_request();
2256         wiphy_update_regulatory(wiphy, lr->initiator);
2257 }
2258
2259 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2260 {
2261         struct wiphy *request_wiphy = NULL;
2262         struct regulatory_request *lr;
2263
2264         lr = get_last_request();
2265
2266         if (!reg_dev_ignore_cell_hint(wiphy))
2267                 reg_num_devs_support_basehint--;
2268
2269         rcu_free_regdom(get_wiphy_regdom(wiphy));
2270         rcu_assign_pointer(wiphy->regd, NULL);
2271
2272         if (lr)
2273                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2274
2275         if (!request_wiphy || request_wiphy != wiphy)
2276                 return;
2277
2278         lr->wiphy_idx = WIPHY_IDX_INVALID;
2279         lr->country_ie_env = ENVIRON_ANY;
2280 }
2281
2282 static void reg_timeout_work(struct work_struct *work)
2283 {
2284         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2285         rtnl_lock();
2286         restore_regulatory_settings(true);
2287         rtnl_unlock();
2288 }
2289
2290 int __init regulatory_init(void)
2291 {
2292         int err = 0;
2293
2294         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2295         if (IS_ERR(reg_pdev))
2296                 return PTR_ERR(reg_pdev);
2297
2298         reg_pdev->dev.type = &reg_device_type;
2299
2300         spin_lock_init(&reg_requests_lock);
2301         spin_lock_init(&reg_pending_beacons_lock);
2302
2303         reg_regdb_size_check();
2304
2305         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2306
2307         user_alpha2[0] = '9';
2308         user_alpha2[1] = '7';
2309
2310         /* We always try to get an update for the static regdomain */
2311         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2312         if (err) {
2313                 if (err == -ENOMEM)
2314                         return err;
2315                 /*
2316                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2317                  * memory which is handled and propagated appropriately above
2318                  * but it can also fail during a netlink_broadcast() or during
2319                  * early boot for call_usermodehelper(). For now treat these
2320                  * errors as non-fatal.
2321                  */
2322                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2323         }
2324
2325         /*
2326          * Finally, if the user set the module parameter treat it
2327          * as a user hint.
2328          */
2329         if (!is_world_regdom(ieee80211_regdom))
2330                 regulatory_hint_user(ieee80211_regdom,
2331                                      NL80211_USER_REG_HINT_USER);
2332
2333         return 0;
2334 }
2335
2336 void regulatory_exit(void)
2337 {
2338         struct regulatory_request *reg_request, *tmp;
2339         struct reg_beacon *reg_beacon, *btmp;
2340
2341         cancel_work_sync(&reg_work);
2342         cancel_delayed_work_sync(&reg_timeout);
2343
2344         /* Lock to suppress warnings */
2345         rtnl_lock();
2346         reset_regdomains(true, NULL);
2347         rtnl_unlock();
2348
2349         dev_set_uevent_suppress(&reg_pdev->dev, true);
2350
2351         platform_device_unregister(reg_pdev);
2352
2353         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2354                 list_del(&reg_beacon->list);
2355                 kfree(reg_beacon);
2356         }
2357
2358         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2359                 list_del(&reg_beacon->list);
2360                 kfree(reg_beacon);
2361         }
2362
2363         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2364                 list_del(&reg_request->list);
2365                 kfree(reg_request);
2366         }
2367 }