]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
cfg80211: replace print_dfs_region() with reg_dfs_region_str() helper
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85  * Receipt of information from last regulatory request,
86  * protected by RTNL (and can be accessed with RCU protection)
87  */
88 static struct regulatory_request __rcu *last_request =
89         (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static struct device_type reg_device_type = {
95         .uevent = reg_device_uevent,
96 };
97
98 /*
99  * Central wireless core regulatory domains, we only need two,
100  * the current one and a world regulatory domain in case we have no
101  * information to give us an alpha2.
102  * (protected by RTNL, can be read under RCU)
103  */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107  * Number of devices that registered to the core
108  * that support cellular base station regulatory hints
109  * (protected by RTNL)
110  */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115         return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120         return rtnl_dereference(wiphy->regd);
121 }
122
123 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
124 {
125         switch (dfs_region) {
126         case NL80211_DFS_UNSET:
127                 return "unset";
128         case NL80211_DFS_FCC:
129                 return "FCC";
130         case NL80211_DFS_ETSI:
131                 return "ETSI";
132         case NL80211_DFS_JP:
133                 return "JP";
134         }
135         return "Unknown";
136 }
137
138 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
139 {
140         if (!r)
141                 return;
142         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
143 }
144
145 static struct regulatory_request *get_last_request(void)
146 {
147         return rcu_dereference_rtnl(last_request);
148 }
149
150 /* Used to queue up regulatory hints */
151 static LIST_HEAD(reg_requests_list);
152 static spinlock_t reg_requests_lock;
153
154 /* Used to queue up beacon hints for review */
155 static LIST_HEAD(reg_pending_beacons);
156 static spinlock_t reg_pending_beacons_lock;
157
158 /* Used to keep track of processed beacon hints */
159 static LIST_HEAD(reg_beacon_list);
160
161 struct reg_beacon {
162         struct list_head list;
163         struct ieee80211_channel chan;
164 };
165
166 static void reg_todo(struct work_struct *work);
167 static DECLARE_WORK(reg_work, reg_todo);
168
169 static void reg_timeout_work(struct work_struct *work);
170 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
171
172 /* We keep a static world regulatory domain in case of the absence of CRDA */
173 static const struct ieee80211_regdomain world_regdom = {
174         .n_reg_rules = 6,
175         .alpha2 =  "00",
176         .reg_rules = {
177                 /* IEEE 802.11b/g, channels 1..11 */
178                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
179                 /* IEEE 802.11b/g, channels 12..13. */
180                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
181                         NL80211_RRF_NO_IR),
182                 /* IEEE 802.11 channel 14 - Only JP enables
183                  * this and for 802.11b only */
184                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
185                         NL80211_RRF_NO_IR |
186                         NL80211_RRF_NO_OFDM),
187                 /* IEEE 802.11a, channel 36..48 */
188                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
189                         NL80211_RRF_NO_IR),
190
191                 /* IEEE 802.11a, channel 52..64 - DFS required */
192                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
193                         NL80211_RRF_NO_IR |
194                         NL80211_RRF_DFS),
195
196                 /* IEEE 802.11a, channel 100..144 - DFS required */
197                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
198                         NL80211_RRF_NO_IR |
199                         NL80211_RRF_DFS),
200
201                 /* IEEE 802.11a, channel 149..165 */
202                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
203                         NL80211_RRF_NO_IR),
204
205                 /* IEEE 802.11ad (60gHz), channels 1..3 */
206                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
207         }
208 };
209
210 /* protected by RTNL */
211 static const struct ieee80211_regdomain *cfg80211_world_regdom =
212         &world_regdom;
213
214 static char *ieee80211_regdom = "00";
215 static char user_alpha2[2];
216
217 module_param(ieee80211_regdom, charp, 0444);
218 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
219
220 static void reg_kfree_last_request(void)
221 {
222         struct regulatory_request *lr;
223
224         lr = get_last_request();
225
226         if (lr != &core_request_world && lr)
227                 kfree_rcu(lr, rcu_head);
228 }
229
230 static void reg_update_last_request(struct regulatory_request *request)
231 {
232         reg_kfree_last_request();
233         rcu_assign_pointer(last_request, request);
234 }
235
236 static void reset_regdomains(bool full_reset,
237                              const struct ieee80211_regdomain *new_regdom)
238 {
239         const struct ieee80211_regdomain *r;
240
241         ASSERT_RTNL();
242
243         r = get_cfg80211_regdom();
244
245         /* avoid freeing static information or freeing something twice */
246         if (r == cfg80211_world_regdom)
247                 r = NULL;
248         if (cfg80211_world_regdom == &world_regdom)
249                 cfg80211_world_regdom = NULL;
250         if (r == &world_regdom)
251                 r = NULL;
252
253         rcu_free_regdom(r);
254         rcu_free_regdom(cfg80211_world_regdom);
255
256         cfg80211_world_regdom = &world_regdom;
257         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
258
259         if (!full_reset)
260                 return;
261
262         reg_update_last_request(&core_request_world);
263 }
264
265 /*
266  * Dynamic world regulatory domain requested by the wireless
267  * core upon initialization
268  */
269 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
270 {
271         struct regulatory_request *lr;
272
273         lr = get_last_request();
274
275         WARN_ON(!lr);
276
277         reset_regdomains(false, rd);
278
279         cfg80211_world_regdom = rd;
280 }
281
282 bool is_world_regdom(const char *alpha2)
283 {
284         if (!alpha2)
285                 return false;
286         return alpha2[0] == '0' && alpha2[1] == '0';
287 }
288
289 static bool is_alpha2_set(const char *alpha2)
290 {
291         if (!alpha2)
292                 return false;
293         return alpha2[0] && alpha2[1];
294 }
295
296 static bool is_unknown_alpha2(const char *alpha2)
297 {
298         if (!alpha2)
299                 return false;
300         /*
301          * Special case where regulatory domain was built by driver
302          * but a specific alpha2 cannot be determined
303          */
304         return alpha2[0] == '9' && alpha2[1] == '9';
305 }
306
307 static bool is_intersected_alpha2(const char *alpha2)
308 {
309         if (!alpha2)
310                 return false;
311         /*
312          * Special case where regulatory domain is the
313          * result of an intersection between two regulatory domain
314          * structures
315          */
316         return alpha2[0] == '9' && alpha2[1] == '8';
317 }
318
319 static bool is_an_alpha2(const char *alpha2)
320 {
321         if (!alpha2)
322                 return false;
323         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
324 }
325
326 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
327 {
328         if (!alpha2_x || !alpha2_y)
329                 return false;
330         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
331 }
332
333 static bool regdom_changes(const char *alpha2)
334 {
335         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
336
337         if (!r)
338                 return true;
339         return !alpha2_equal(r->alpha2, alpha2);
340 }
341
342 /*
343  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
344  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
345  * has ever been issued.
346  */
347 static bool is_user_regdom_saved(void)
348 {
349         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
350                 return false;
351
352         /* This would indicate a mistake on the design */
353         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
354                  "Unexpected user alpha2: %c%c\n",
355                  user_alpha2[0], user_alpha2[1]))
356                 return false;
357
358         return true;
359 }
360
361 static const struct ieee80211_regdomain *
362 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
363 {
364         struct ieee80211_regdomain *regd;
365         int size_of_regd;
366         unsigned int i;
367
368         size_of_regd =
369                 sizeof(struct ieee80211_regdomain) +
370                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
371
372         regd = kzalloc(size_of_regd, GFP_KERNEL);
373         if (!regd)
374                 return ERR_PTR(-ENOMEM);
375
376         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
377
378         for (i = 0; i < src_regd->n_reg_rules; i++)
379                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
380                        sizeof(struct ieee80211_reg_rule));
381
382         return regd;
383 }
384
385 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
386 struct reg_regdb_search_request {
387         char alpha2[2];
388         struct list_head list;
389 };
390
391 static LIST_HEAD(reg_regdb_search_list);
392 static DEFINE_MUTEX(reg_regdb_search_mutex);
393
394 static void reg_regdb_search(struct work_struct *work)
395 {
396         struct reg_regdb_search_request *request;
397         const struct ieee80211_regdomain *curdom, *regdom = NULL;
398         int i;
399
400         rtnl_lock();
401
402         mutex_lock(&reg_regdb_search_mutex);
403         while (!list_empty(&reg_regdb_search_list)) {
404                 request = list_first_entry(&reg_regdb_search_list,
405                                            struct reg_regdb_search_request,
406                                            list);
407                 list_del(&request->list);
408
409                 for (i = 0; i < reg_regdb_size; i++) {
410                         curdom = reg_regdb[i];
411
412                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
413                                 regdom = reg_copy_regd(curdom);
414                                 break;
415                         }
416                 }
417
418                 kfree(request);
419         }
420         mutex_unlock(&reg_regdb_search_mutex);
421
422         if (!IS_ERR_OR_NULL(regdom))
423                 set_regdom(regdom);
424
425         rtnl_unlock();
426 }
427
428 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
429
430 static void reg_regdb_query(const char *alpha2)
431 {
432         struct reg_regdb_search_request *request;
433
434         if (!alpha2)
435                 return;
436
437         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
438         if (!request)
439                 return;
440
441         memcpy(request->alpha2, alpha2, 2);
442
443         mutex_lock(&reg_regdb_search_mutex);
444         list_add_tail(&request->list, &reg_regdb_search_list);
445         mutex_unlock(&reg_regdb_search_mutex);
446
447         schedule_work(&reg_regdb_work);
448 }
449
450 /* Feel free to add any other sanity checks here */
451 static void reg_regdb_size_check(void)
452 {
453         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
454         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
455 }
456 #else
457 static inline void reg_regdb_size_check(void) {}
458 static inline void reg_regdb_query(const char *alpha2) {}
459 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
460
461 /*
462  * This lets us keep regulatory code which is updated on a regulatory
463  * basis in userspace. Country information is filled in by
464  * reg_device_uevent
465  */
466 static int call_crda(const char *alpha2)
467 {
468         if (!is_world_regdom((char *) alpha2))
469                 pr_info("Calling CRDA for country: %c%c\n",
470                         alpha2[0], alpha2[1]);
471         else
472                 pr_info("Calling CRDA to update world regulatory domain\n");
473
474         /* query internal regulatory database (if it exists) */
475         reg_regdb_query(alpha2);
476
477         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
478 }
479
480 static enum reg_request_treatment
481 reg_call_crda(struct regulatory_request *request)
482 {
483         if (call_crda(request->alpha2))
484                 return REG_REQ_IGNORE;
485         return REG_REQ_OK;
486 }
487
488 bool reg_is_valid_request(const char *alpha2)
489 {
490         struct regulatory_request *lr = get_last_request();
491
492         if (!lr || lr->processed)
493                 return false;
494
495         return alpha2_equal(lr->alpha2, alpha2);
496 }
497
498 /* Sanity check on a regulatory rule */
499 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
500 {
501         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
502         u32 freq_diff;
503
504         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
505                 return false;
506
507         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
508                 return false;
509
510         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
511
512         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
513             freq_range->max_bandwidth_khz > freq_diff)
514                 return false;
515
516         return true;
517 }
518
519 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
520 {
521         const struct ieee80211_reg_rule *reg_rule = NULL;
522         unsigned int i;
523
524         if (!rd->n_reg_rules)
525                 return false;
526
527         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
528                 return false;
529
530         for (i = 0; i < rd->n_reg_rules; i++) {
531                 reg_rule = &rd->reg_rules[i];
532                 if (!is_valid_reg_rule(reg_rule))
533                         return false;
534         }
535
536         return true;
537 }
538
539 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
540                             u32 center_freq_khz, u32 bw_khz)
541 {
542         u32 start_freq_khz, end_freq_khz;
543
544         start_freq_khz = center_freq_khz - (bw_khz/2);
545         end_freq_khz = center_freq_khz + (bw_khz/2);
546
547         if (start_freq_khz >= freq_range->start_freq_khz &&
548             end_freq_khz <= freq_range->end_freq_khz)
549                 return true;
550
551         return false;
552 }
553
554 /**
555  * freq_in_rule_band - tells us if a frequency is in a frequency band
556  * @freq_range: frequency rule we want to query
557  * @freq_khz: frequency we are inquiring about
558  *
559  * This lets us know if a specific frequency rule is or is not relevant to
560  * a specific frequency's band. Bands are device specific and artificial
561  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
562  * however it is safe for now to assume that a frequency rule should not be
563  * part of a frequency's band if the start freq or end freq are off by more
564  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
565  * 60 GHz band.
566  * This resolution can be lowered and should be considered as we add
567  * regulatory rule support for other "bands".
568  **/
569 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
570                               u32 freq_khz)
571 {
572 #define ONE_GHZ_IN_KHZ  1000000
573         /*
574          * From 802.11ad: directional multi-gigabit (DMG):
575          * Pertaining to operation in a frequency band containing a channel
576          * with the Channel starting frequency above 45 GHz.
577          */
578         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
579                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
580         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
581                 return true;
582         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
583                 return true;
584         return false;
585 #undef ONE_GHZ_IN_KHZ
586 }
587
588 /*
589  * Later on we can perhaps use the more restrictive DFS
590  * region but we don't have information for that yet so
591  * for now simply disallow conflicts.
592  */
593 static enum nl80211_dfs_regions
594 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
595                          const enum nl80211_dfs_regions dfs_region2)
596 {
597         if (dfs_region1 != dfs_region2)
598                 return NL80211_DFS_UNSET;
599         return dfs_region1;
600 }
601
602 /*
603  * Helper for regdom_intersect(), this does the real
604  * mathematical intersection fun
605  */
606 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
607                                const struct ieee80211_reg_rule *rule2,
608                                struct ieee80211_reg_rule *intersected_rule)
609 {
610         const struct ieee80211_freq_range *freq_range1, *freq_range2;
611         struct ieee80211_freq_range *freq_range;
612         const struct ieee80211_power_rule *power_rule1, *power_rule2;
613         struct ieee80211_power_rule *power_rule;
614         u32 freq_diff;
615
616         freq_range1 = &rule1->freq_range;
617         freq_range2 = &rule2->freq_range;
618         freq_range = &intersected_rule->freq_range;
619
620         power_rule1 = &rule1->power_rule;
621         power_rule2 = &rule2->power_rule;
622         power_rule = &intersected_rule->power_rule;
623
624         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
625                                          freq_range2->start_freq_khz);
626         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
627                                        freq_range2->end_freq_khz);
628         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
629                                             freq_range2->max_bandwidth_khz);
630
631         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
632         if (freq_range->max_bandwidth_khz > freq_diff)
633                 freq_range->max_bandwidth_khz = freq_diff;
634
635         power_rule->max_eirp = min(power_rule1->max_eirp,
636                 power_rule2->max_eirp);
637         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
638                 power_rule2->max_antenna_gain);
639
640         intersected_rule->flags = rule1->flags | rule2->flags;
641
642         if (!is_valid_reg_rule(intersected_rule))
643                 return -EINVAL;
644
645         return 0;
646 }
647
648 /**
649  * regdom_intersect - do the intersection between two regulatory domains
650  * @rd1: first regulatory domain
651  * @rd2: second regulatory domain
652  *
653  * Use this function to get the intersection between two regulatory domains.
654  * Once completed we will mark the alpha2 for the rd as intersected, "98",
655  * as no one single alpha2 can represent this regulatory domain.
656  *
657  * Returns a pointer to the regulatory domain structure which will hold the
658  * resulting intersection of rules between rd1 and rd2. We will
659  * kzalloc() this structure for you.
660  */
661 static struct ieee80211_regdomain *
662 regdom_intersect(const struct ieee80211_regdomain *rd1,
663                  const struct ieee80211_regdomain *rd2)
664 {
665         int r, size_of_regd;
666         unsigned int x, y;
667         unsigned int num_rules = 0, rule_idx = 0;
668         const struct ieee80211_reg_rule *rule1, *rule2;
669         struct ieee80211_reg_rule *intersected_rule;
670         struct ieee80211_regdomain *rd;
671         /* This is just a dummy holder to help us count */
672         struct ieee80211_reg_rule dummy_rule;
673
674         if (!rd1 || !rd2)
675                 return NULL;
676
677         /*
678          * First we get a count of the rules we'll need, then we actually
679          * build them. This is to so we can malloc() and free() a
680          * regdomain once. The reason we use reg_rules_intersect() here
681          * is it will return -EINVAL if the rule computed makes no sense.
682          * All rules that do check out OK are valid.
683          */
684
685         for (x = 0; x < rd1->n_reg_rules; x++) {
686                 rule1 = &rd1->reg_rules[x];
687                 for (y = 0; y < rd2->n_reg_rules; y++) {
688                         rule2 = &rd2->reg_rules[y];
689                         if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
690                                 num_rules++;
691                 }
692         }
693
694         if (!num_rules)
695                 return NULL;
696
697         size_of_regd = sizeof(struct ieee80211_regdomain) +
698                        num_rules * sizeof(struct ieee80211_reg_rule);
699
700         rd = kzalloc(size_of_regd, GFP_KERNEL);
701         if (!rd)
702                 return NULL;
703
704         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
705                 rule1 = &rd1->reg_rules[x];
706                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
707                         rule2 = &rd2->reg_rules[y];
708                         /*
709                          * This time around instead of using the stack lets
710                          * write to the target rule directly saving ourselves
711                          * a memcpy()
712                          */
713                         intersected_rule = &rd->reg_rules[rule_idx];
714                         r = reg_rules_intersect(rule1, rule2, intersected_rule);
715                         /*
716                          * No need to memset here the intersected rule here as
717                          * we're not using the stack anymore
718                          */
719                         if (r)
720                                 continue;
721                         rule_idx++;
722                 }
723         }
724
725         if (rule_idx != num_rules) {
726                 kfree(rd);
727                 return NULL;
728         }
729
730         rd->n_reg_rules = num_rules;
731         rd->alpha2[0] = '9';
732         rd->alpha2[1] = '8';
733         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
734                                                   rd2->dfs_region);
735
736         return rd;
737 }
738
739 /*
740  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
741  * want to just have the channel structure use these
742  */
743 static u32 map_regdom_flags(u32 rd_flags)
744 {
745         u32 channel_flags = 0;
746         if (rd_flags & NL80211_RRF_NO_IR_ALL)
747                 channel_flags |= IEEE80211_CHAN_NO_IR;
748         if (rd_flags & NL80211_RRF_DFS)
749                 channel_flags |= IEEE80211_CHAN_RADAR;
750         if (rd_flags & NL80211_RRF_NO_OFDM)
751                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
752         return channel_flags;
753 }
754
755 static const struct ieee80211_reg_rule *
756 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
757                    const struct ieee80211_regdomain *regd)
758 {
759         int i;
760         bool band_rule_found = false;
761         bool bw_fits = false;
762
763         if (!regd)
764                 return ERR_PTR(-EINVAL);
765
766         for (i = 0; i < regd->n_reg_rules; i++) {
767                 const struct ieee80211_reg_rule *rr;
768                 const struct ieee80211_freq_range *fr = NULL;
769
770                 rr = &regd->reg_rules[i];
771                 fr = &rr->freq_range;
772
773                 /*
774                  * We only need to know if one frequency rule was
775                  * was in center_freq's band, that's enough, so lets
776                  * not overwrite it once found
777                  */
778                 if (!band_rule_found)
779                         band_rule_found = freq_in_rule_band(fr, center_freq);
780
781                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
782
783                 if (band_rule_found && bw_fits)
784                         return rr;
785         }
786
787         if (!band_rule_found)
788                 return ERR_PTR(-ERANGE);
789
790         return ERR_PTR(-EINVAL);
791 }
792
793 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
794                                                u32 center_freq)
795 {
796         const struct ieee80211_regdomain *regd;
797         struct regulatory_request *lr = get_last_request();
798
799         /*
800          * Follow the driver's regulatory domain, if present, unless a country
801          * IE has been processed or a user wants to help complaince further
802          */
803         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
804             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
805             wiphy->regd)
806                 regd = get_wiphy_regdom(wiphy);
807         else
808                 regd = get_cfg80211_regdom();
809
810         return freq_reg_info_regd(wiphy, center_freq, regd);
811 }
812 EXPORT_SYMBOL(freq_reg_info);
813
814 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
815 {
816         switch (initiator) {
817         case NL80211_REGDOM_SET_BY_CORE:
818                 return "core";
819         case NL80211_REGDOM_SET_BY_USER:
820                 return "user";
821         case NL80211_REGDOM_SET_BY_DRIVER:
822                 return "driver";
823         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
824                 return "country IE";
825         default:
826                 WARN_ON(1);
827                 return "bug";
828         }
829 }
830 EXPORT_SYMBOL(reg_initiator_name);
831
832 #ifdef CONFIG_CFG80211_REG_DEBUG
833 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
834                                     const struct ieee80211_reg_rule *reg_rule)
835 {
836         const struct ieee80211_power_rule *power_rule;
837         const struct ieee80211_freq_range *freq_range;
838         char max_antenna_gain[32];
839
840         power_rule = &reg_rule->power_rule;
841         freq_range = &reg_rule->freq_range;
842
843         if (!power_rule->max_antenna_gain)
844                 snprintf(max_antenna_gain, 32, "N/A");
845         else
846                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
847
848         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
849                       chan->center_freq);
850
851         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
852                       freq_range->start_freq_khz, freq_range->end_freq_khz,
853                       freq_range->max_bandwidth_khz, max_antenna_gain,
854                       power_rule->max_eirp);
855 }
856 #else
857 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
858                                     const struct ieee80211_reg_rule *reg_rule)
859 {
860         return;
861 }
862 #endif
863
864 /*
865  * Note that right now we assume the desired channel bandwidth
866  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
867  * per channel, the primary and the extension channel).
868  */
869 static void handle_channel(struct wiphy *wiphy,
870                            enum nl80211_reg_initiator initiator,
871                            struct ieee80211_channel *chan)
872 {
873         u32 flags, bw_flags = 0;
874         const struct ieee80211_reg_rule *reg_rule = NULL;
875         const struct ieee80211_power_rule *power_rule = NULL;
876         const struct ieee80211_freq_range *freq_range = NULL;
877         struct wiphy *request_wiphy = NULL;
878         struct regulatory_request *lr = get_last_request();
879
880         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
881
882         flags = chan->orig_flags;
883
884         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
885         if (IS_ERR(reg_rule)) {
886                 /*
887                  * We will disable all channels that do not match our
888                  * received regulatory rule unless the hint is coming
889                  * from a Country IE and the Country IE had no information
890                  * about a band. The IEEE 802.11 spec allows for an AP
891                  * to send only a subset of the regulatory rules allowed,
892                  * so an AP in the US that only supports 2.4 GHz may only send
893                  * a country IE with information for the 2.4 GHz band
894                  * while 5 GHz is still supported.
895                  */
896                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
897                     PTR_ERR(reg_rule) == -ERANGE)
898                         return;
899
900                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
901                     request_wiphy && request_wiphy == wiphy &&
902                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
903                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
904                                       chan->center_freq);
905                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
906                         chan->flags = chan->orig_flags;
907                 } else {
908                         REG_DBG_PRINT("Disabling freq %d MHz\n",
909                                       chan->center_freq);
910                         chan->flags |= IEEE80211_CHAN_DISABLED;
911                 }
912                 return;
913         }
914
915         chan_reg_rule_print_dbg(chan, reg_rule);
916
917         power_rule = &reg_rule->power_rule;
918         freq_range = &reg_rule->freq_range;
919
920         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
921                 bw_flags = IEEE80211_CHAN_NO_HT40;
922         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
923                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
924         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
925                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
926
927         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
928             request_wiphy && request_wiphy == wiphy &&
929             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
930                 /*
931                  * This guarantees the driver's requested regulatory domain
932                  * will always be used as a base for further regulatory
933                  * settings
934                  */
935                 chan->flags = chan->orig_flags =
936                         map_regdom_flags(reg_rule->flags) | bw_flags;
937                 chan->max_antenna_gain = chan->orig_mag =
938                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
939                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
940                         (int) MBM_TO_DBM(power_rule->max_eirp);
941                 return;
942         }
943
944         chan->dfs_state = NL80211_DFS_USABLE;
945         chan->dfs_state_entered = jiffies;
946
947         chan->beacon_found = false;
948         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
949         chan->max_antenna_gain =
950                 min_t(int, chan->orig_mag,
951                       MBI_TO_DBI(power_rule->max_antenna_gain));
952         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
953         if (chan->orig_mpwr) {
954                 /*
955                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
956                  * will always follow the passed country IE power settings.
957                  */
958                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
959                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
960                         chan->max_power = chan->max_reg_power;
961                 else
962                         chan->max_power = min(chan->orig_mpwr,
963                                               chan->max_reg_power);
964         } else
965                 chan->max_power = chan->max_reg_power;
966 }
967
968 static void handle_band(struct wiphy *wiphy,
969                         enum nl80211_reg_initiator initiator,
970                         struct ieee80211_supported_band *sband)
971 {
972         unsigned int i;
973
974         if (!sband)
975                 return;
976
977         for (i = 0; i < sband->n_channels; i++)
978                 handle_channel(wiphy, initiator, &sband->channels[i]);
979 }
980
981 static bool reg_request_cell_base(struct regulatory_request *request)
982 {
983         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
984                 return false;
985         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
986 }
987
988 bool reg_last_request_cell_base(void)
989 {
990         return reg_request_cell_base(get_last_request());
991 }
992
993 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
994 /* Core specific check */
995 static enum reg_request_treatment
996 reg_ignore_cell_hint(struct regulatory_request *pending_request)
997 {
998         struct regulatory_request *lr = get_last_request();
999
1000         if (!reg_num_devs_support_basehint)
1001                 return REG_REQ_IGNORE;
1002
1003         if (reg_request_cell_base(lr) &&
1004             !regdom_changes(pending_request->alpha2))
1005                 return REG_REQ_ALREADY_SET;
1006
1007         return REG_REQ_OK;
1008 }
1009
1010 /* Device specific check */
1011 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1012 {
1013         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1014 }
1015 #else
1016 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1017 {
1018         return REG_REQ_IGNORE;
1019 }
1020
1021 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1022 {
1023         return true;
1024 }
1025 #endif
1026
1027 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1028 {
1029         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1030             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1031                 return true;
1032         return false;
1033 }
1034
1035 static bool ignore_reg_update(struct wiphy *wiphy,
1036                               enum nl80211_reg_initiator initiator)
1037 {
1038         struct regulatory_request *lr = get_last_request();
1039
1040         if (!lr) {
1041                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1042                               "since last_request is not set\n",
1043                               reg_initiator_name(initiator));
1044                 return true;
1045         }
1046
1047         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1048             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1049                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1050                               "since the driver uses its own custom "
1051                               "regulatory domain\n",
1052                               reg_initiator_name(initiator));
1053                 return true;
1054         }
1055
1056         /*
1057          * wiphy->regd will be set once the device has its own
1058          * desired regulatory domain set
1059          */
1060         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1061             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1062             !is_world_regdom(lr->alpha2)) {
1063                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1064                               "since the driver requires its own regulatory "
1065                               "domain to be set first\n",
1066                               reg_initiator_name(initiator));
1067                 return true;
1068         }
1069
1070         if (reg_request_cell_base(lr))
1071                 return reg_dev_ignore_cell_hint(wiphy);
1072
1073         return false;
1074 }
1075
1076 static bool reg_is_world_roaming(struct wiphy *wiphy)
1077 {
1078         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1079         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1080         struct regulatory_request *lr = get_last_request();
1081
1082         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1083                 return true;
1084
1085         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1086             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1087                 return true;
1088
1089         return false;
1090 }
1091
1092 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1093                               struct reg_beacon *reg_beacon)
1094 {
1095         struct ieee80211_supported_band *sband;
1096         struct ieee80211_channel *chan;
1097         bool channel_changed = false;
1098         struct ieee80211_channel chan_before;
1099
1100         sband = wiphy->bands[reg_beacon->chan.band];
1101         chan = &sband->channels[chan_idx];
1102
1103         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1104                 return;
1105
1106         if (chan->beacon_found)
1107                 return;
1108
1109         chan->beacon_found = true;
1110
1111         if (!reg_is_world_roaming(wiphy))
1112                 return;
1113
1114         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1115                 return;
1116
1117         chan_before.center_freq = chan->center_freq;
1118         chan_before.flags = chan->flags;
1119
1120         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1121                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1122                 channel_changed = true;
1123         }
1124
1125         if (channel_changed)
1126                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1127 }
1128
1129 /*
1130  * Called when a scan on a wiphy finds a beacon on
1131  * new channel
1132  */
1133 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1134                                     struct reg_beacon *reg_beacon)
1135 {
1136         unsigned int i;
1137         struct ieee80211_supported_band *sband;
1138
1139         if (!wiphy->bands[reg_beacon->chan.band])
1140                 return;
1141
1142         sband = wiphy->bands[reg_beacon->chan.band];
1143
1144         for (i = 0; i < sband->n_channels; i++)
1145                 handle_reg_beacon(wiphy, i, reg_beacon);
1146 }
1147
1148 /*
1149  * Called upon reg changes or a new wiphy is added
1150  */
1151 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1152 {
1153         unsigned int i;
1154         struct ieee80211_supported_band *sband;
1155         struct reg_beacon *reg_beacon;
1156
1157         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1158                 if (!wiphy->bands[reg_beacon->chan.band])
1159                         continue;
1160                 sband = wiphy->bands[reg_beacon->chan.band];
1161                 for (i = 0; i < sband->n_channels; i++)
1162                         handle_reg_beacon(wiphy, i, reg_beacon);
1163         }
1164 }
1165
1166 /* Reap the advantages of previously found beacons */
1167 static void reg_process_beacons(struct wiphy *wiphy)
1168 {
1169         /*
1170          * Means we are just firing up cfg80211, so no beacons would
1171          * have been processed yet.
1172          */
1173         if (!last_request)
1174                 return;
1175         wiphy_update_beacon_reg(wiphy);
1176 }
1177
1178 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1179 {
1180         if (!chan)
1181                 return false;
1182         if (chan->flags & IEEE80211_CHAN_DISABLED)
1183                 return false;
1184         /* This would happen when regulatory rules disallow HT40 completely */
1185         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1186                 return false;
1187         return true;
1188 }
1189
1190 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1191                                          struct ieee80211_channel *channel)
1192 {
1193         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1194         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1195         unsigned int i;
1196
1197         if (!is_ht40_allowed(channel)) {
1198                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1199                 return;
1200         }
1201
1202         /*
1203          * We need to ensure the extension channels exist to
1204          * be able to use HT40- or HT40+, this finds them (or not)
1205          */
1206         for (i = 0; i < sband->n_channels; i++) {
1207                 struct ieee80211_channel *c = &sband->channels[i];
1208
1209                 if (c->center_freq == (channel->center_freq - 20))
1210                         channel_before = c;
1211                 if (c->center_freq == (channel->center_freq + 20))
1212                         channel_after = c;
1213         }
1214
1215         /*
1216          * Please note that this assumes target bandwidth is 20 MHz,
1217          * if that ever changes we also need to change the below logic
1218          * to include that as well.
1219          */
1220         if (!is_ht40_allowed(channel_before))
1221                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1222         else
1223                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1224
1225         if (!is_ht40_allowed(channel_after))
1226                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1227         else
1228                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1229 }
1230
1231 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1232                                       struct ieee80211_supported_band *sband)
1233 {
1234         unsigned int i;
1235
1236         if (!sband)
1237                 return;
1238
1239         for (i = 0; i < sband->n_channels; i++)
1240                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1241 }
1242
1243 static void reg_process_ht_flags(struct wiphy *wiphy)
1244 {
1245         enum ieee80211_band band;
1246
1247         if (!wiphy)
1248                 return;
1249
1250         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1251                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1252 }
1253
1254 static void reg_call_notifier(struct wiphy *wiphy,
1255                               struct regulatory_request *request)
1256 {
1257         if (wiphy->reg_notifier)
1258                 wiphy->reg_notifier(wiphy, request);
1259 }
1260
1261 static void wiphy_update_regulatory(struct wiphy *wiphy,
1262                                     enum nl80211_reg_initiator initiator)
1263 {
1264         enum ieee80211_band band;
1265         struct regulatory_request *lr = get_last_request();
1266
1267         if (ignore_reg_update(wiphy, initiator)) {
1268                 /*
1269                  * Regulatory updates set by CORE are ignored for custom
1270                  * regulatory cards. Let us notify the changes to the driver,
1271                  * as some drivers used this to restore its orig_* reg domain.
1272                  */
1273                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1274                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1275                         reg_call_notifier(wiphy, lr);
1276                 return;
1277         }
1278
1279         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1280
1281         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1282                 handle_band(wiphy, initiator, wiphy->bands[band]);
1283
1284         reg_process_beacons(wiphy);
1285         reg_process_ht_flags(wiphy);
1286         reg_call_notifier(wiphy, lr);
1287 }
1288
1289 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1290 {
1291         struct cfg80211_registered_device *rdev;
1292         struct wiphy *wiphy;
1293
1294         ASSERT_RTNL();
1295
1296         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1297                 wiphy = &rdev->wiphy;
1298                 wiphy_update_regulatory(wiphy, initiator);
1299         }
1300 }
1301
1302 static void handle_channel_custom(struct wiphy *wiphy,
1303                                   struct ieee80211_channel *chan,
1304                                   const struct ieee80211_regdomain *regd)
1305 {
1306         u32 bw_flags = 0;
1307         const struct ieee80211_reg_rule *reg_rule = NULL;
1308         const struct ieee80211_power_rule *power_rule = NULL;
1309         const struct ieee80211_freq_range *freq_range = NULL;
1310
1311         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1312                                       regd);
1313
1314         if (IS_ERR(reg_rule)) {
1315                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1316                               chan->center_freq);
1317                 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1318                 chan->flags = chan->orig_flags;
1319                 return;
1320         }
1321
1322         chan_reg_rule_print_dbg(chan, reg_rule);
1323
1324         power_rule = &reg_rule->power_rule;
1325         freq_range = &reg_rule->freq_range;
1326
1327         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1328                 bw_flags = IEEE80211_CHAN_NO_HT40;
1329         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1330                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1331         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1332                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1333
1334         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1335         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1336         chan->max_reg_power = chan->max_power =
1337                 (int) MBM_TO_DBM(power_rule->max_eirp);
1338 }
1339
1340 static void handle_band_custom(struct wiphy *wiphy,
1341                                struct ieee80211_supported_band *sband,
1342                                const struct ieee80211_regdomain *regd)
1343 {
1344         unsigned int i;
1345
1346         if (!sband)
1347                 return;
1348
1349         for (i = 0; i < sband->n_channels; i++)
1350                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1351 }
1352
1353 /* Used by drivers prior to wiphy registration */
1354 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1355                                    const struct ieee80211_regdomain *regd)
1356 {
1357         enum ieee80211_band band;
1358         unsigned int bands_set = 0;
1359
1360         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1361              "wiphy should have REGULATORY_CUSTOM_REG\n");
1362         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1363
1364         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1365                 if (!wiphy->bands[band])
1366                         continue;
1367                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1368                 bands_set++;
1369         }
1370
1371         /*
1372          * no point in calling this if it won't have any effect
1373          * on your device's supported bands.
1374          */
1375         WARN_ON(!bands_set);
1376 }
1377 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1378
1379 static void reg_set_request_processed(void)
1380 {
1381         bool need_more_processing = false;
1382         struct regulatory_request *lr = get_last_request();
1383
1384         lr->processed = true;
1385
1386         spin_lock(&reg_requests_lock);
1387         if (!list_empty(&reg_requests_list))
1388                 need_more_processing = true;
1389         spin_unlock(&reg_requests_lock);
1390
1391         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1392                 cancel_delayed_work(&reg_timeout);
1393
1394         if (need_more_processing)
1395                 schedule_work(&reg_work);
1396 }
1397
1398 /**
1399  * reg_process_hint_core - process core regulatory requests
1400  * @pending_request: a pending core regulatory request
1401  *
1402  * The wireless subsystem can use this function to process
1403  * a regulatory request issued by the regulatory core.
1404  *
1405  * Returns one of the different reg request treatment values.
1406  */
1407 static enum reg_request_treatment
1408 reg_process_hint_core(struct regulatory_request *core_request)
1409 {
1410
1411         core_request->intersect = false;
1412         core_request->processed = false;
1413
1414         reg_update_last_request(core_request);
1415
1416         return reg_call_crda(core_request);
1417 }
1418
1419 static enum reg_request_treatment
1420 __reg_process_hint_user(struct regulatory_request *user_request)
1421 {
1422         struct regulatory_request *lr = get_last_request();
1423
1424         if (reg_request_cell_base(user_request))
1425                 return reg_ignore_cell_hint(user_request);
1426
1427         if (reg_request_cell_base(lr))
1428                 return REG_REQ_IGNORE;
1429
1430         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1431                 return REG_REQ_INTERSECT;
1432         /*
1433          * If the user knows better the user should set the regdom
1434          * to their country before the IE is picked up
1435          */
1436         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1437             lr->intersect)
1438                 return REG_REQ_IGNORE;
1439         /*
1440          * Process user requests only after previous user/driver/core
1441          * requests have been processed
1442          */
1443         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1444              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1445              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1446             regdom_changes(lr->alpha2))
1447                 return REG_REQ_IGNORE;
1448
1449         if (!regdom_changes(user_request->alpha2))
1450                 return REG_REQ_ALREADY_SET;
1451
1452         return REG_REQ_OK;
1453 }
1454
1455 /**
1456  * reg_process_hint_user - process user regulatory requests
1457  * @user_request: a pending user regulatory request
1458  *
1459  * The wireless subsystem can use this function to process
1460  * a regulatory request initiated by userspace.
1461  *
1462  * Returns one of the different reg request treatment values.
1463  */
1464 static enum reg_request_treatment
1465 reg_process_hint_user(struct regulatory_request *user_request)
1466 {
1467         enum reg_request_treatment treatment;
1468
1469         treatment = __reg_process_hint_user(user_request);
1470         if (treatment == REG_REQ_IGNORE ||
1471             treatment == REG_REQ_ALREADY_SET) {
1472                 kfree(user_request);
1473                 return treatment;
1474         }
1475
1476         user_request->intersect = treatment == REG_REQ_INTERSECT;
1477         user_request->processed = false;
1478
1479         reg_update_last_request(user_request);
1480
1481         user_alpha2[0] = user_request->alpha2[0];
1482         user_alpha2[1] = user_request->alpha2[1];
1483
1484         return reg_call_crda(user_request);
1485 }
1486
1487 static enum reg_request_treatment
1488 __reg_process_hint_driver(struct regulatory_request *driver_request)
1489 {
1490         struct regulatory_request *lr = get_last_request();
1491
1492         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1493                 if (regdom_changes(driver_request->alpha2))
1494                         return REG_REQ_OK;
1495                 return REG_REQ_ALREADY_SET;
1496         }
1497
1498         /*
1499          * This would happen if you unplug and plug your card
1500          * back in or if you add a new device for which the previously
1501          * loaded card also agrees on the regulatory domain.
1502          */
1503         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1504             !regdom_changes(driver_request->alpha2))
1505                 return REG_REQ_ALREADY_SET;
1506
1507         return REG_REQ_INTERSECT;
1508 }
1509
1510 /**
1511  * reg_process_hint_driver - process driver regulatory requests
1512  * @driver_request: a pending driver regulatory request
1513  *
1514  * The wireless subsystem can use this function to process
1515  * a regulatory request issued by an 802.11 driver.
1516  *
1517  * Returns one of the different reg request treatment values.
1518  */
1519 static enum reg_request_treatment
1520 reg_process_hint_driver(struct wiphy *wiphy,
1521                         struct regulatory_request *driver_request)
1522 {
1523         const struct ieee80211_regdomain *regd;
1524         enum reg_request_treatment treatment;
1525
1526         treatment = __reg_process_hint_driver(driver_request);
1527
1528         switch (treatment) {
1529         case REG_REQ_OK:
1530                 break;
1531         case REG_REQ_IGNORE:
1532                 kfree(driver_request);
1533                 return treatment;
1534         case REG_REQ_INTERSECT:
1535                 /* fall through */
1536         case REG_REQ_ALREADY_SET:
1537                 regd = reg_copy_regd(get_cfg80211_regdom());
1538                 if (IS_ERR(regd)) {
1539                         kfree(driver_request);
1540                         return REG_REQ_IGNORE;
1541                 }
1542                 rcu_assign_pointer(wiphy->regd, regd);
1543         }
1544
1545
1546         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1547         driver_request->processed = false;
1548
1549         reg_update_last_request(driver_request);
1550
1551         /*
1552          * Since CRDA will not be called in this case as we already
1553          * have applied the requested regulatory domain before we just
1554          * inform userspace we have processed the request
1555          */
1556         if (treatment == REG_REQ_ALREADY_SET) {
1557                 nl80211_send_reg_change_event(driver_request);
1558                 reg_set_request_processed();
1559                 return treatment;
1560         }
1561
1562         return reg_call_crda(driver_request);
1563 }
1564
1565 static enum reg_request_treatment
1566 __reg_process_hint_country_ie(struct wiphy *wiphy,
1567                               struct regulatory_request *country_ie_request)
1568 {
1569         struct wiphy *last_wiphy = NULL;
1570         struct regulatory_request *lr = get_last_request();
1571
1572         if (reg_request_cell_base(lr)) {
1573                 /* Trust a Cell base station over the AP's country IE */
1574                 if (regdom_changes(country_ie_request->alpha2))
1575                         return REG_REQ_IGNORE;
1576                 return REG_REQ_ALREADY_SET;
1577         } else {
1578                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1579                         return REG_REQ_IGNORE;
1580         }
1581
1582         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1583                 return -EINVAL;
1584
1585         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1586                 return REG_REQ_OK;
1587
1588         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1589
1590         if (last_wiphy != wiphy) {
1591                 /*
1592                  * Two cards with two APs claiming different
1593                  * Country IE alpha2s. We could
1594                  * intersect them, but that seems unlikely
1595                  * to be correct. Reject second one for now.
1596                  */
1597                 if (regdom_changes(country_ie_request->alpha2))
1598                         return REG_REQ_IGNORE;
1599                 return REG_REQ_ALREADY_SET;
1600         }
1601         /*
1602          * Two consecutive Country IE hints on the same wiphy.
1603          * This should be picked up early by the driver/stack
1604          */
1605         if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1606                 return REG_REQ_OK;
1607         return REG_REQ_ALREADY_SET;
1608 }
1609
1610 /**
1611  * reg_process_hint_country_ie - process regulatory requests from country IEs
1612  * @country_ie_request: a regulatory request from a country IE
1613  *
1614  * The wireless subsystem can use this function to process
1615  * a regulatory request issued by a country Information Element.
1616  *
1617  * Returns one of the different reg request treatment values.
1618  */
1619 static enum reg_request_treatment
1620 reg_process_hint_country_ie(struct wiphy *wiphy,
1621                             struct regulatory_request *country_ie_request)
1622 {
1623         enum reg_request_treatment treatment;
1624
1625         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1626
1627         switch (treatment) {
1628         case REG_REQ_OK:
1629                 break;
1630         case REG_REQ_IGNORE:
1631                 /* fall through */
1632         case REG_REQ_ALREADY_SET:
1633                 kfree(country_ie_request);
1634                 return treatment;
1635         case REG_REQ_INTERSECT:
1636                 kfree(country_ie_request);
1637                 /*
1638                  * This doesn't happen yet, not sure we
1639                  * ever want to support it for this case.
1640                  */
1641                 WARN_ONCE(1, "Unexpected intersection for country IEs");
1642                 return REG_REQ_IGNORE;
1643         }
1644
1645         country_ie_request->intersect = false;
1646         country_ie_request->processed = false;
1647
1648         reg_update_last_request(country_ie_request);
1649
1650         return reg_call_crda(country_ie_request);
1651 }
1652
1653 /* This processes *all* regulatory hints */
1654 static void reg_process_hint(struct regulatory_request *reg_request)
1655 {
1656         struct wiphy *wiphy = NULL;
1657         enum reg_request_treatment treatment;
1658
1659         if (WARN_ON(!reg_request->alpha2))
1660                 return;
1661
1662         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1663                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1664
1665         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1666                 kfree(reg_request);
1667                 return;
1668         }
1669
1670         switch (reg_request->initiator) {
1671         case NL80211_REGDOM_SET_BY_CORE:
1672                 reg_process_hint_core(reg_request);
1673                 return;
1674         case NL80211_REGDOM_SET_BY_USER:
1675                 treatment = reg_process_hint_user(reg_request);
1676                 if (treatment == REG_REQ_OK ||
1677                     treatment == REG_REQ_ALREADY_SET)
1678                         return;
1679                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1680                 return;
1681         case NL80211_REGDOM_SET_BY_DRIVER:
1682                 treatment = reg_process_hint_driver(wiphy, reg_request);
1683                 break;
1684         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1685                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1686                 break;
1687         default:
1688                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1689                 return;
1690         }
1691
1692         /* This is required so that the orig_* parameters are saved */
1693         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1694             wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1695                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1696 }
1697
1698 /*
1699  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1700  * Regulatory hints come on a first come first serve basis and we
1701  * must process each one atomically.
1702  */
1703 static void reg_process_pending_hints(void)
1704 {
1705         struct regulatory_request *reg_request, *lr;
1706
1707         lr = get_last_request();
1708
1709         /* When last_request->processed becomes true this will be rescheduled */
1710         if (lr && !lr->processed) {
1711                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1712                 return;
1713         }
1714
1715         spin_lock(&reg_requests_lock);
1716
1717         if (list_empty(&reg_requests_list)) {
1718                 spin_unlock(&reg_requests_lock);
1719                 return;
1720         }
1721
1722         reg_request = list_first_entry(&reg_requests_list,
1723                                        struct regulatory_request,
1724                                        list);
1725         list_del_init(&reg_request->list);
1726
1727         spin_unlock(&reg_requests_lock);
1728
1729         reg_process_hint(reg_request);
1730 }
1731
1732 /* Processes beacon hints -- this has nothing to do with country IEs */
1733 static void reg_process_pending_beacon_hints(void)
1734 {
1735         struct cfg80211_registered_device *rdev;
1736         struct reg_beacon *pending_beacon, *tmp;
1737
1738         /* This goes through the _pending_ beacon list */
1739         spin_lock_bh(&reg_pending_beacons_lock);
1740
1741         list_for_each_entry_safe(pending_beacon, tmp,
1742                                  &reg_pending_beacons, list) {
1743                 list_del_init(&pending_beacon->list);
1744
1745                 /* Applies the beacon hint to current wiphys */
1746                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1747                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1748
1749                 /* Remembers the beacon hint for new wiphys or reg changes */
1750                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1751         }
1752
1753         spin_unlock_bh(&reg_pending_beacons_lock);
1754 }
1755
1756 static void reg_todo(struct work_struct *work)
1757 {
1758         rtnl_lock();
1759         reg_process_pending_hints();
1760         reg_process_pending_beacon_hints();
1761         rtnl_unlock();
1762 }
1763
1764 static void queue_regulatory_request(struct regulatory_request *request)
1765 {
1766         request->alpha2[0] = toupper(request->alpha2[0]);
1767         request->alpha2[1] = toupper(request->alpha2[1]);
1768
1769         spin_lock(&reg_requests_lock);
1770         list_add_tail(&request->list, &reg_requests_list);
1771         spin_unlock(&reg_requests_lock);
1772
1773         schedule_work(&reg_work);
1774 }
1775
1776 /*
1777  * Core regulatory hint -- happens during cfg80211_init()
1778  * and when we restore regulatory settings.
1779  */
1780 static int regulatory_hint_core(const char *alpha2)
1781 {
1782         struct regulatory_request *request;
1783
1784         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1785         if (!request)
1786                 return -ENOMEM;
1787
1788         request->alpha2[0] = alpha2[0];
1789         request->alpha2[1] = alpha2[1];
1790         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1791
1792         queue_regulatory_request(request);
1793
1794         return 0;
1795 }
1796
1797 /* User hints */
1798 int regulatory_hint_user(const char *alpha2,
1799                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1800 {
1801         struct regulatory_request *request;
1802
1803         if (WARN_ON(!alpha2))
1804                 return -EINVAL;
1805
1806         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1807         if (!request)
1808                 return -ENOMEM;
1809
1810         request->wiphy_idx = WIPHY_IDX_INVALID;
1811         request->alpha2[0] = alpha2[0];
1812         request->alpha2[1] = alpha2[1];
1813         request->initiator = NL80211_REGDOM_SET_BY_USER;
1814         request->user_reg_hint_type = user_reg_hint_type;
1815
1816         queue_regulatory_request(request);
1817
1818         return 0;
1819 }
1820
1821 /* Driver hints */
1822 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1823 {
1824         struct regulatory_request *request;
1825
1826         if (WARN_ON(!alpha2 || !wiphy))
1827                 return -EINVAL;
1828
1829         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1830         if (!request)
1831                 return -ENOMEM;
1832
1833         request->wiphy_idx = get_wiphy_idx(wiphy);
1834
1835         request->alpha2[0] = alpha2[0];
1836         request->alpha2[1] = alpha2[1];
1837         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1838
1839         queue_regulatory_request(request);
1840
1841         return 0;
1842 }
1843 EXPORT_SYMBOL(regulatory_hint);
1844
1845 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1846                                 const u8 *country_ie, u8 country_ie_len)
1847 {
1848         char alpha2[2];
1849         enum environment_cap env = ENVIRON_ANY;
1850         struct regulatory_request *request = NULL, *lr;
1851
1852         /* IE len must be evenly divisible by 2 */
1853         if (country_ie_len & 0x01)
1854                 return;
1855
1856         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1857                 return;
1858
1859         request = kzalloc(sizeof(*request), GFP_KERNEL);
1860         if (!request)
1861                 return;
1862
1863         alpha2[0] = country_ie[0];
1864         alpha2[1] = country_ie[1];
1865
1866         if (country_ie[2] == 'I')
1867                 env = ENVIRON_INDOOR;
1868         else if (country_ie[2] == 'O')
1869                 env = ENVIRON_OUTDOOR;
1870
1871         rcu_read_lock();
1872         lr = get_last_request();
1873
1874         if (unlikely(!lr))
1875                 goto out;
1876
1877         /*
1878          * We will run this only upon a successful connection on cfg80211.
1879          * We leave conflict resolution to the workqueue, where can hold
1880          * the RTNL.
1881          */
1882         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1883             lr->wiphy_idx != WIPHY_IDX_INVALID)
1884                 goto out;
1885
1886         request->wiphy_idx = get_wiphy_idx(wiphy);
1887         request->alpha2[0] = alpha2[0];
1888         request->alpha2[1] = alpha2[1];
1889         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1890         request->country_ie_env = env;
1891
1892         queue_regulatory_request(request);
1893         request = NULL;
1894 out:
1895         kfree(request);
1896         rcu_read_unlock();
1897 }
1898
1899 static void restore_alpha2(char *alpha2, bool reset_user)
1900 {
1901         /* indicates there is no alpha2 to consider for restoration */
1902         alpha2[0] = '9';
1903         alpha2[1] = '7';
1904
1905         /* The user setting has precedence over the module parameter */
1906         if (is_user_regdom_saved()) {
1907                 /* Unless we're asked to ignore it and reset it */
1908                 if (reset_user) {
1909                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1910                         user_alpha2[0] = '9';
1911                         user_alpha2[1] = '7';
1912
1913                         /*
1914                          * If we're ignoring user settings, we still need to
1915                          * check the module parameter to ensure we put things
1916                          * back as they were for a full restore.
1917                          */
1918                         if (!is_world_regdom(ieee80211_regdom)) {
1919                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1920                                               ieee80211_regdom[0], ieee80211_regdom[1]);
1921                                 alpha2[0] = ieee80211_regdom[0];
1922                                 alpha2[1] = ieee80211_regdom[1];
1923                         }
1924                 } else {
1925                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1926                                       user_alpha2[0], user_alpha2[1]);
1927                         alpha2[0] = user_alpha2[0];
1928                         alpha2[1] = user_alpha2[1];
1929                 }
1930         } else if (!is_world_regdom(ieee80211_regdom)) {
1931                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1932                               ieee80211_regdom[0], ieee80211_regdom[1]);
1933                 alpha2[0] = ieee80211_regdom[0];
1934                 alpha2[1] = ieee80211_regdom[1];
1935         } else
1936                 REG_DBG_PRINT("Restoring regulatory settings\n");
1937 }
1938
1939 static void restore_custom_reg_settings(struct wiphy *wiphy)
1940 {
1941         struct ieee80211_supported_band *sband;
1942         enum ieee80211_band band;
1943         struct ieee80211_channel *chan;
1944         int i;
1945
1946         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1947                 sband = wiphy->bands[band];
1948                 if (!sband)
1949                         continue;
1950                 for (i = 0; i < sband->n_channels; i++) {
1951                         chan = &sband->channels[i];
1952                         chan->flags = chan->orig_flags;
1953                         chan->max_antenna_gain = chan->orig_mag;
1954                         chan->max_power = chan->orig_mpwr;
1955                         chan->beacon_found = false;
1956                 }
1957         }
1958 }
1959
1960 /*
1961  * Restoring regulatory settings involves ingoring any
1962  * possibly stale country IE information and user regulatory
1963  * settings if so desired, this includes any beacon hints
1964  * learned as we could have traveled outside to another country
1965  * after disconnection. To restore regulatory settings we do
1966  * exactly what we did at bootup:
1967  *
1968  *   - send a core regulatory hint
1969  *   - send a user regulatory hint if applicable
1970  *
1971  * Device drivers that send a regulatory hint for a specific country
1972  * keep their own regulatory domain on wiphy->regd so that does does
1973  * not need to be remembered.
1974  */
1975 static void restore_regulatory_settings(bool reset_user)
1976 {
1977         char alpha2[2];
1978         char world_alpha2[2];
1979         struct reg_beacon *reg_beacon, *btmp;
1980         struct regulatory_request *reg_request, *tmp;
1981         LIST_HEAD(tmp_reg_req_list);
1982         struct cfg80211_registered_device *rdev;
1983
1984         ASSERT_RTNL();
1985
1986         reset_regdomains(true, &world_regdom);
1987         restore_alpha2(alpha2, reset_user);
1988
1989         /*
1990          * If there's any pending requests we simply
1991          * stash them to a temporary pending queue and
1992          * add then after we've restored regulatory
1993          * settings.
1994          */
1995         spin_lock(&reg_requests_lock);
1996         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1997                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1998                         continue;
1999                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2000         }
2001         spin_unlock(&reg_requests_lock);
2002
2003         /* Clear beacon hints */
2004         spin_lock_bh(&reg_pending_beacons_lock);
2005         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2006                 list_del(&reg_beacon->list);
2007                 kfree(reg_beacon);
2008         }
2009         spin_unlock_bh(&reg_pending_beacons_lock);
2010
2011         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2012                 list_del(&reg_beacon->list);
2013                 kfree(reg_beacon);
2014         }
2015
2016         /* First restore to the basic regulatory settings */
2017         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2018         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2019
2020         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2021                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2022                         restore_custom_reg_settings(&rdev->wiphy);
2023         }
2024
2025         regulatory_hint_core(world_alpha2);
2026
2027         /*
2028          * This restores the ieee80211_regdom module parameter
2029          * preference or the last user requested regulatory
2030          * settings, user regulatory settings takes precedence.
2031          */
2032         if (is_an_alpha2(alpha2))
2033                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2034
2035         spin_lock(&reg_requests_lock);
2036         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2037         spin_unlock(&reg_requests_lock);
2038
2039         REG_DBG_PRINT("Kicking the queue\n");
2040
2041         schedule_work(&reg_work);
2042 }
2043
2044 void regulatory_hint_disconnect(void)
2045 {
2046         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2047         restore_regulatory_settings(false);
2048 }
2049
2050 static bool freq_is_chan_12_13_14(u16 freq)
2051 {
2052         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2053             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2054             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2055                 return true;
2056         return false;
2057 }
2058
2059 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2060 {
2061         struct reg_beacon *pending_beacon;
2062
2063         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2064                 if (beacon_chan->center_freq ==
2065                     pending_beacon->chan.center_freq)
2066                         return true;
2067         return false;
2068 }
2069
2070 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2071                                  struct ieee80211_channel *beacon_chan,
2072                                  gfp_t gfp)
2073 {
2074         struct reg_beacon *reg_beacon;
2075         bool processing;
2076
2077         if (beacon_chan->beacon_found ||
2078             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2079             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2080              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2081                 return 0;
2082
2083         spin_lock_bh(&reg_pending_beacons_lock);
2084         processing = pending_reg_beacon(beacon_chan);
2085         spin_unlock_bh(&reg_pending_beacons_lock);
2086
2087         if (processing)
2088                 return 0;
2089
2090         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2091         if (!reg_beacon)
2092                 return -ENOMEM;
2093
2094         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2095                       beacon_chan->center_freq,
2096                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2097                       wiphy_name(wiphy));
2098
2099         memcpy(&reg_beacon->chan, beacon_chan,
2100                sizeof(struct ieee80211_channel));
2101
2102         /*
2103          * Since we can be called from BH or and non-BH context
2104          * we must use spin_lock_bh()
2105          */
2106         spin_lock_bh(&reg_pending_beacons_lock);
2107         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2108         spin_unlock_bh(&reg_pending_beacons_lock);
2109
2110         schedule_work(&reg_work);
2111
2112         return 0;
2113 }
2114
2115 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2116 {
2117         unsigned int i;
2118         const struct ieee80211_reg_rule *reg_rule = NULL;
2119         const struct ieee80211_freq_range *freq_range = NULL;
2120         const struct ieee80211_power_rule *power_rule = NULL;
2121
2122         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2123
2124         for (i = 0; i < rd->n_reg_rules; i++) {
2125                 reg_rule = &rd->reg_rules[i];
2126                 freq_range = &reg_rule->freq_range;
2127                 power_rule = &reg_rule->power_rule;
2128
2129                 /*
2130                  * There may not be documentation for max antenna gain
2131                  * in certain regions
2132                  */
2133                 if (power_rule->max_antenna_gain)
2134                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2135                                 freq_range->start_freq_khz,
2136                                 freq_range->end_freq_khz,
2137                                 freq_range->max_bandwidth_khz,
2138                                 power_rule->max_antenna_gain,
2139                                 power_rule->max_eirp);
2140                 else
2141                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2142                                 freq_range->start_freq_khz,
2143                                 freq_range->end_freq_khz,
2144                                 freq_range->max_bandwidth_khz,
2145                                 power_rule->max_eirp);
2146         }
2147 }
2148
2149 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2150 {
2151         switch (dfs_region) {
2152         case NL80211_DFS_UNSET:
2153         case NL80211_DFS_FCC:
2154         case NL80211_DFS_ETSI:
2155         case NL80211_DFS_JP:
2156                 return true;
2157         default:
2158                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2159                               dfs_region);
2160                 return false;
2161         }
2162 }
2163
2164 static void print_regdomain(const struct ieee80211_regdomain *rd)
2165 {
2166         struct regulatory_request *lr = get_last_request();
2167
2168         if (is_intersected_alpha2(rd->alpha2)) {
2169                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2170                         struct cfg80211_registered_device *rdev;
2171                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2172                         if (rdev) {
2173                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2174                                         rdev->country_ie_alpha2[0],
2175                                         rdev->country_ie_alpha2[1]);
2176                         } else
2177                                 pr_info("Current regulatory domain intersected:\n");
2178                 } else
2179                         pr_info("Current regulatory domain intersected:\n");
2180         } else if (is_world_regdom(rd->alpha2)) {
2181                 pr_info("World regulatory domain updated:\n");
2182         } else {
2183                 if (is_unknown_alpha2(rd->alpha2))
2184                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2185                 else {
2186                         if (reg_request_cell_base(lr))
2187                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2188                                         rd->alpha2[0], rd->alpha2[1]);
2189                         else
2190                                 pr_info("Regulatory domain changed to country: %c%c\n",
2191                                         rd->alpha2[0], rd->alpha2[1]);
2192                 }
2193         }
2194
2195         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2196         print_rd_rules(rd);
2197 }
2198
2199 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2200 {
2201         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2202         print_rd_rules(rd);
2203 }
2204
2205 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2206 {
2207         if (!is_world_regdom(rd->alpha2))
2208                 return -EINVAL;
2209         update_world_regdomain(rd);
2210         return 0;
2211 }
2212
2213 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2214                            struct regulatory_request *user_request)
2215 {
2216         const struct ieee80211_regdomain *intersected_rd = NULL;
2217
2218         if (is_world_regdom(rd->alpha2))
2219                 return -EINVAL;
2220
2221         if (!regdom_changes(rd->alpha2))
2222                 return -EALREADY;
2223
2224         if (!is_valid_rd(rd)) {
2225                 pr_err("Invalid regulatory domain detected:\n");
2226                 print_regdomain_info(rd);
2227                 return -EINVAL;
2228         }
2229
2230         if (!user_request->intersect) {
2231                 reset_regdomains(false, rd);
2232                 return 0;
2233         }
2234
2235         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2236         if (!intersected_rd)
2237                 return -EINVAL;
2238
2239         kfree(rd);
2240         rd = NULL;
2241         reset_regdomains(false, intersected_rd);
2242
2243         return 0;
2244 }
2245
2246 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2247                              struct regulatory_request *driver_request)
2248 {
2249         const struct ieee80211_regdomain *regd;
2250         const struct ieee80211_regdomain *intersected_rd = NULL;
2251         const struct ieee80211_regdomain *tmp;
2252         struct wiphy *request_wiphy;
2253
2254         if (is_world_regdom(rd->alpha2))
2255                 return -EINVAL;
2256
2257         if (!regdom_changes(rd->alpha2))
2258                 return -EALREADY;
2259
2260         if (!is_valid_rd(rd)) {
2261                 pr_err("Invalid regulatory domain detected:\n");
2262                 print_regdomain_info(rd);
2263                 return -EINVAL;
2264         }
2265
2266         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2267         if (!request_wiphy) {
2268                 schedule_delayed_work(&reg_timeout, 0);
2269                 return -ENODEV;
2270         }
2271
2272         if (!driver_request->intersect) {
2273                 if (request_wiphy->regd)
2274                         return -EALREADY;
2275
2276                 regd = reg_copy_regd(rd);
2277                 if (IS_ERR(regd))
2278                         return PTR_ERR(regd);
2279
2280                 rcu_assign_pointer(request_wiphy->regd, regd);
2281                 reset_regdomains(false, rd);
2282                 return 0;
2283         }
2284
2285         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2286         if (!intersected_rd)
2287                 return -EINVAL;
2288
2289         /*
2290          * We can trash what CRDA provided now.
2291          * However if a driver requested this specific regulatory
2292          * domain we keep it for its private use
2293          */
2294         tmp = get_wiphy_regdom(request_wiphy);
2295         rcu_assign_pointer(request_wiphy->regd, rd);
2296         rcu_free_regdom(tmp);
2297
2298         rd = NULL;
2299
2300         reset_regdomains(false, intersected_rd);
2301
2302         return 0;
2303 }
2304
2305 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2306                                  struct regulatory_request *country_ie_request)
2307 {
2308         struct wiphy *request_wiphy;
2309
2310         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2311             !is_unknown_alpha2(rd->alpha2))
2312                 return -EINVAL;
2313
2314         /*
2315          * Lets only bother proceeding on the same alpha2 if the current
2316          * rd is non static (it means CRDA was present and was used last)
2317          * and the pending request came in from a country IE
2318          */
2319
2320         if (!is_valid_rd(rd)) {
2321                 pr_err("Invalid regulatory domain detected:\n");
2322                 print_regdomain_info(rd);
2323                 return -EINVAL;
2324         }
2325
2326         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2327         if (!request_wiphy) {
2328                 schedule_delayed_work(&reg_timeout, 0);
2329                 return -ENODEV;
2330         }
2331
2332         if (country_ie_request->intersect)
2333                 return -EINVAL;
2334
2335         reset_regdomains(false, rd);
2336         return 0;
2337 }
2338
2339 /*
2340  * Use this call to set the current regulatory domain. Conflicts with
2341  * multiple drivers can be ironed out later. Caller must've already
2342  * kmalloc'd the rd structure.
2343  */
2344 int set_regdom(const struct ieee80211_regdomain *rd)
2345 {
2346         struct regulatory_request *lr;
2347         int r;
2348
2349         if (!reg_is_valid_request(rd->alpha2)) {
2350                 kfree(rd);
2351                 return -EINVAL;
2352         }
2353
2354         lr = get_last_request();
2355
2356         /* Note that this doesn't update the wiphys, this is done below */
2357         switch (lr->initiator) {
2358         case NL80211_REGDOM_SET_BY_CORE:
2359                 r = reg_set_rd_core(rd);
2360                 break;
2361         case NL80211_REGDOM_SET_BY_USER:
2362                 r = reg_set_rd_user(rd, lr);
2363                 break;
2364         case NL80211_REGDOM_SET_BY_DRIVER:
2365                 r = reg_set_rd_driver(rd, lr);
2366                 break;
2367         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2368                 r = reg_set_rd_country_ie(rd, lr);
2369                 break;
2370         default:
2371                 WARN(1, "invalid initiator %d\n", lr->initiator);
2372                 return -EINVAL;
2373         }
2374
2375         if (r) {
2376                 if (r == -EALREADY)
2377                         reg_set_request_processed();
2378
2379                 kfree(rd);
2380                 return r;
2381         }
2382
2383         /* This would make this whole thing pointless */
2384         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2385                 return -EINVAL;
2386
2387         /* update all wiphys now with the new established regulatory domain */
2388         update_all_wiphy_regulatory(lr->initiator);
2389
2390         print_regdomain(get_cfg80211_regdom());
2391
2392         nl80211_send_reg_change_event(lr);
2393
2394         reg_set_request_processed();
2395
2396         return 0;
2397 }
2398
2399 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2400 {
2401         struct regulatory_request *lr;
2402         u8 alpha2[2];
2403         bool add = false;
2404
2405         rcu_read_lock();
2406         lr = get_last_request();
2407         if (lr && !lr->processed) {
2408                 memcpy(alpha2, lr->alpha2, 2);
2409                 add = true;
2410         }
2411         rcu_read_unlock();
2412
2413         if (add)
2414                 return add_uevent_var(env, "COUNTRY=%c%c",
2415                                       alpha2[0], alpha2[1]);
2416         return 0;
2417 }
2418
2419 void wiphy_regulatory_register(struct wiphy *wiphy)
2420 {
2421         struct regulatory_request *lr;
2422
2423         if (!reg_dev_ignore_cell_hint(wiphy))
2424                 reg_num_devs_support_basehint++;
2425
2426         lr = get_last_request();
2427         wiphy_update_regulatory(wiphy, lr->initiator);
2428 }
2429
2430 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2431 {
2432         struct wiphy *request_wiphy = NULL;
2433         struct regulatory_request *lr;
2434
2435         lr = get_last_request();
2436
2437         if (!reg_dev_ignore_cell_hint(wiphy))
2438                 reg_num_devs_support_basehint--;
2439
2440         rcu_free_regdom(get_wiphy_regdom(wiphy));
2441         rcu_assign_pointer(wiphy->regd, NULL);
2442
2443         if (lr)
2444                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2445
2446         if (!request_wiphy || request_wiphy != wiphy)
2447                 return;
2448
2449         lr->wiphy_idx = WIPHY_IDX_INVALID;
2450         lr->country_ie_env = ENVIRON_ANY;
2451 }
2452
2453 static void reg_timeout_work(struct work_struct *work)
2454 {
2455         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2456         rtnl_lock();
2457         restore_regulatory_settings(true);
2458         rtnl_unlock();
2459 }
2460
2461 int __init regulatory_init(void)
2462 {
2463         int err = 0;
2464
2465         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2466         if (IS_ERR(reg_pdev))
2467                 return PTR_ERR(reg_pdev);
2468
2469         reg_pdev->dev.type = &reg_device_type;
2470
2471         spin_lock_init(&reg_requests_lock);
2472         spin_lock_init(&reg_pending_beacons_lock);
2473
2474         reg_regdb_size_check();
2475
2476         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2477
2478         user_alpha2[0] = '9';
2479         user_alpha2[1] = '7';
2480
2481         /* We always try to get an update for the static regdomain */
2482         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2483         if (err) {
2484                 if (err == -ENOMEM)
2485                         return err;
2486                 /*
2487                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2488                  * memory which is handled and propagated appropriately above
2489                  * but it can also fail during a netlink_broadcast() or during
2490                  * early boot for call_usermodehelper(). For now treat these
2491                  * errors as non-fatal.
2492                  */
2493                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2494         }
2495
2496         /*
2497          * Finally, if the user set the module parameter treat it
2498          * as a user hint.
2499          */
2500         if (!is_world_regdom(ieee80211_regdom))
2501                 regulatory_hint_user(ieee80211_regdom,
2502                                      NL80211_USER_REG_HINT_USER);
2503
2504         return 0;
2505 }
2506
2507 void regulatory_exit(void)
2508 {
2509         struct regulatory_request *reg_request, *tmp;
2510         struct reg_beacon *reg_beacon, *btmp;
2511
2512         cancel_work_sync(&reg_work);
2513         cancel_delayed_work_sync(&reg_timeout);
2514
2515         /* Lock to suppress warnings */
2516         rtnl_lock();
2517         reset_regdomains(true, NULL);
2518         rtnl_unlock();
2519
2520         dev_set_uevent_suppress(&reg_pdev->dev, true);
2521
2522         platform_device_unregister(reg_pdev);
2523
2524         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2525                 list_del(&reg_beacon->list);
2526                 kfree(reg_beacon);
2527         }
2528
2529         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2530                 list_del(&reg_beacon->list);
2531                 kfree(reg_beacon);
2532         }
2533
2534         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2535                 list_del(&reg_request->list);
2536                 kfree(reg_request);
2537         }
2538 }