]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
cfg80211: allow following country IE power for custom regdom cards
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
48 #include "core.h"
49 #include "reg.h"
50 #include "regdb.h"
51 #include "nl80211.h"
52
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...)                  \
55         printk(KERN_DEBUG pr_fmt(format), ##args)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 static struct regulatory_request core_request_world = {
61         .initiator = NL80211_REGDOM_SET_BY_CORE,
62         .alpha2[0] = '0',
63         .alpha2[1] = '0',
64         .intersect = false,
65         .processed = true,
66         .country_ie_env = ENVIRON_ANY,
67 };
68
69 /* Receipt of information from last regulatory request */
70 static struct regulatory_request *last_request = &core_request_world;
71
72 /* To trigger userspace events */
73 static struct platform_device *reg_pdev;
74
75 static struct device_type reg_device_type = {
76         .uevent = reg_device_uevent,
77 };
78
79 /*
80  * Central wireless core regulatory domains, we only need two,
81  * the current one and a world regulatory domain in case we have no
82  * information to give us an alpha2
83  */
84 const struct ieee80211_regdomain *cfg80211_regdomain;
85
86 /*
87  * Protects static reg.c components:
88  *     - cfg80211_world_regdom
89  *     - cfg80211_regdom
90  *     - last_request
91  */
92 static DEFINE_MUTEX(reg_mutex);
93
94 static inline void assert_reg_lock(void)
95 {
96         lockdep_assert_held(&reg_mutex);
97 }
98
99 /* Used to queue up regulatory hints */
100 static LIST_HEAD(reg_requests_list);
101 static spinlock_t reg_requests_lock;
102
103 /* Used to queue up beacon hints for review */
104 static LIST_HEAD(reg_pending_beacons);
105 static spinlock_t reg_pending_beacons_lock;
106
107 /* Used to keep track of processed beacon hints */
108 static LIST_HEAD(reg_beacon_list);
109
110 struct reg_beacon {
111         struct list_head list;
112         struct ieee80211_channel chan;
113 };
114
115 static void reg_todo(struct work_struct *work);
116 static DECLARE_WORK(reg_work, reg_todo);
117
118 static void reg_timeout_work(struct work_struct *work);
119 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
120
121 /* We keep a static world regulatory domain in case of the absence of CRDA */
122 static const struct ieee80211_regdomain world_regdom = {
123         .n_reg_rules = 5,
124         .alpha2 =  "00",
125         .reg_rules = {
126                 /* IEEE 802.11b/g, channels 1..11 */
127                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128                 /* IEEE 802.11b/g, channels 12..13. No HT40
129                  * channel fits here. */
130                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
131                         NL80211_RRF_PASSIVE_SCAN |
132                         NL80211_RRF_NO_IBSS),
133                 /* IEEE 802.11 channel 14 - Only JP enables
134                  * this and for 802.11b only */
135                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
136                         NL80211_RRF_PASSIVE_SCAN |
137                         NL80211_RRF_NO_IBSS |
138                         NL80211_RRF_NO_OFDM),
139                 /* IEEE 802.11a, channel 36..48 */
140                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
141                         NL80211_RRF_PASSIVE_SCAN |
142                         NL80211_RRF_NO_IBSS),
143
144                 /* NB: 5260 MHz - 5700 MHz requies DFS */
145
146                 /* IEEE 802.11a, channel 149..165 */
147                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
148                         NL80211_RRF_PASSIVE_SCAN |
149                         NL80211_RRF_NO_IBSS),
150         }
151 };
152
153 static const struct ieee80211_regdomain *cfg80211_world_regdom =
154         &world_regdom;
155
156 static char *ieee80211_regdom = "00";
157 static char user_alpha2[2];
158
159 module_param(ieee80211_regdom, charp, 0444);
160 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
161
162 static void reset_regdomains(bool full_reset)
163 {
164         /* avoid freeing static information or freeing something twice */
165         if (cfg80211_regdomain == cfg80211_world_regdom)
166                 cfg80211_regdomain = NULL;
167         if (cfg80211_world_regdom == &world_regdom)
168                 cfg80211_world_regdom = NULL;
169         if (cfg80211_regdomain == &world_regdom)
170                 cfg80211_regdomain = NULL;
171
172         kfree(cfg80211_regdomain);
173         kfree(cfg80211_world_regdom);
174
175         cfg80211_world_regdom = &world_regdom;
176         cfg80211_regdomain = NULL;
177
178         if (!full_reset)
179                 return;
180
181         if (last_request != &core_request_world)
182                 kfree(last_request);
183         last_request = &core_request_world;
184 }
185
186 /*
187  * Dynamic world regulatory domain requested by the wireless
188  * core upon initialization
189  */
190 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
191 {
192         BUG_ON(!last_request);
193
194         reset_regdomains(false);
195
196         cfg80211_world_regdom = rd;
197         cfg80211_regdomain = rd;
198 }
199
200 bool is_world_regdom(const char *alpha2)
201 {
202         if (!alpha2)
203                 return false;
204         if (alpha2[0] == '0' && alpha2[1] == '0')
205                 return true;
206         return false;
207 }
208
209 static bool is_alpha2_set(const char *alpha2)
210 {
211         if (!alpha2)
212                 return false;
213         if (alpha2[0] != 0 && alpha2[1] != 0)
214                 return true;
215         return false;
216 }
217
218 static bool is_unknown_alpha2(const char *alpha2)
219 {
220         if (!alpha2)
221                 return false;
222         /*
223          * Special case where regulatory domain was built by driver
224          * but a specific alpha2 cannot be determined
225          */
226         if (alpha2[0] == '9' && alpha2[1] == '9')
227                 return true;
228         return false;
229 }
230
231 static bool is_intersected_alpha2(const char *alpha2)
232 {
233         if (!alpha2)
234                 return false;
235         /*
236          * Special case where regulatory domain is the
237          * result of an intersection between two regulatory domain
238          * structures
239          */
240         if (alpha2[0] == '9' && alpha2[1] == '8')
241                 return true;
242         return false;
243 }
244
245 static bool is_an_alpha2(const char *alpha2)
246 {
247         if (!alpha2)
248                 return false;
249         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
250                 return true;
251         return false;
252 }
253
254 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
255 {
256         if (!alpha2_x || !alpha2_y)
257                 return false;
258         if (alpha2_x[0] == alpha2_y[0] &&
259                 alpha2_x[1] == alpha2_y[1])
260                 return true;
261         return false;
262 }
263
264 static bool regdom_changes(const char *alpha2)
265 {
266         assert_cfg80211_lock();
267
268         if (!cfg80211_regdomain)
269                 return true;
270         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
271                 return false;
272         return true;
273 }
274
275 /*
276  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
277  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
278  * has ever been issued.
279  */
280 static bool is_user_regdom_saved(void)
281 {
282         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
283                 return false;
284
285         /* This would indicate a mistake on the design */
286         if (WARN((!is_world_regdom(user_alpha2) &&
287                   !is_an_alpha2(user_alpha2)),
288                  "Unexpected user alpha2: %c%c\n",
289                  user_alpha2[0],
290                  user_alpha2[1]))
291                 return false;
292
293         return true;
294 }
295
296 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
297                          const struct ieee80211_regdomain *src_regd)
298 {
299         struct ieee80211_regdomain *regd;
300         int size_of_regd = 0;
301         unsigned int i;
302
303         size_of_regd = sizeof(struct ieee80211_regdomain) +
304           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
305
306         regd = kzalloc(size_of_regd, GFP_KERNEL);
307         if (!regd)
308                 return -ENOMEM;
309
310         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
311
312         for (i = 0; i < src_regd->n_reg_rules; i++)
313                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
314                         sizeof(struct ieee80211_reg_rule));
315
316         *dst_regd = regd;
317         return 0;
318 }
319
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request {
322         char alpha2[2];
323         struct list_head list;
324 };
325
326 static LIST_HEAD(reg_regdb_search_list);
327 static DEFINE_MUTEX(reg_regdb_search_mutex);
328
329 static void reg_regdb_search(struct work_struct *work)
330 {
331         struct reg_regdb_search_request *request;
332         const struct ieee80211_regdomain *curdom, *regdom;
333         int i, r;
334
335         mutex_lock(&reg_regdb_search_mutex);
336         while (!list_empty(&reg_regdb_search_list)) {
337                 request = list_first_entry(&reg_regdb_search_list,
338                                            struct reg_regdb_search_request,
339                                            list);
340                 list_del(&request->list);
341
342                 for (i=0; i<reg_regdb_size; i++) {
343                         curdom = reg_regdb[i];
344
345                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
346                                 r = reg_copy_regd(&regdom, curdom);
347                                 if (r)
348                                         break;
349                                 mutex_lock(&cfg80211_mutex);
350                                 set_regdom(regdom);
351                                 mutex_unlock(&cfg80211_mutex);
352                                 break;
353                         }
354                 }
355
356                 kfree(request);
357         }
358         mutex_unlock(&reg_regdb_search_mutex);
359 }
360
361 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
362
363 static void reg_regdb_query(const char *alpha2)
364 {
365         struct reg_regdb_search_request *request;
366
367         if (!alpha2)
368                 return;
369
370         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
371         if (!request)
372                 return;
373
374         memcpy(request->alpha2, alpha2, 2);
375
376         mutex_lock(&reg_regdb_search_mutex);
377         list_add_tail(&request->list, &reg_regdb_search_list);
378         mutex_unlock(&reg_regdb_search_mutex);
379
380         schedule_work(&reg_regdb_work);
381 }
382 #else
383 static inline void reg_regdb_query(const char *alpha2) {}
384 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
385
386 /*
387  * This lets us keep regulatory code which is updated on a regulatory
388  * basis in userspace. Country information is filled in by
389  * reg_device_uevent
390  */
391 static int call_crda(const char *alpha2)
392 {
393         if (!is_world_regdom((char *) alpha2))
394                 pr_info("Calling CRDA for country: %c%c\n",
395                         alpha2[0], alpha2[1]);
396         else
397                 pr_info("Calling CRDA to update world regulatory domain\n");
398
399         /* query internal regulatory database (if it exists) */
400         reg_regdb_query(alpha2);
401
402         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
403 }
404
405 /* Used by nl80211 before kmalloc'ing our regulatory domain */
406 bool reg_is_valid_request(const char *alpha2)
407 {
408         assert_cfg80211_lock();
409
410         if (!last_request)
411                 return false;
412
413         return alpha2_equal(last_request->alpha2, alpha2);
414 }
415
416 /* Sanity check on a regulatory rule */
417 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
418 {
419         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
420         u32 freq_diff;
421
422         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
423                 return false;
424
425         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
426                 return false;
427
428         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
429
430         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
431                         freq_range->max_bandwidth_khz > freq_diff)
432                 return false;
433
434         return true;
435 }
436
437 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
438 {
439         const struct ieee80211_reg_rule *reg_rule = NULL;
440         unsigned int i;
441
442         if (!rd->n_reg_rules)
443                 return false;
444
445         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
446                 return false;
447
448         for (i = 0; i < rd->n_reg_rules; i++) {
449                 reg_rule = &rd->reg_rules[i];
450                 if (!is_valid_reg_rule(reg_rule))
451                         return false;
452         }
453
454         return true;
455 }
456
457 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
458                             u32 center_freq_khz,
459                             u32 bw_khz)
460 {
461         u32 start_freq_khz, end_freq_khz;
462
463         start_freq_khz = center_freq_khz - (bw_khz/2);
464         end_freq_khz = center_freq_khz + (bw_khz/2);
465
466         if (start_freq_khz >= freq_range->start_freq_khz &&
467             end_freq_khz <= freq_range->end_freq_khz)
468                 return true;
469
470         return false;
471 }
472
473 /**
474  * freq_in_rule_band - tells us if a frequency is in a frequency band
475  * @freq_range: frequency rule we want to query
476  * @freq_khz: frequency we are inquiring about
477  *
478  * This lets us know if a specific frequency rule is or is not relevant to
479  * a specific frequency's band. Bands are device specific and artificial
480  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
481  * safe for now to assume that a frequency rule should not be part of a
482  * frequency's band if the start freq or end freq are off by more than 2 GHz.
483  * This resolution can be lowered and should be considered as we add
484  * regulatory rule support for other "bands".
485  **/
486 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
487         u32 freq_khz)
488 {
489 #define ONE_GHZ_IN_KHZ  1000000
490         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
491                 return true;
492         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
493                 return true;
494         return false;
495 #undef ONE_GHZ_IN_KHZ
496 }
497
498 /*
499  * Helper for regdom_intersect(), this does the real
500  * mathematical intersection fun
501  */
502 static int reg_rules_intersect(
503         const struct ieee80211_reg_rule *rule1,
504         const struct ieee80211_reg_rule *rule2,
505         struct ieee80211_reg_rule *intersected_rule)
506 {
507         const struct ieee80211_freq_range *freq_range1, *freq_range2;
508         struct ieee80211_freq_range *freq_range;
509         const struct ieee80211_power_rule *power_rule1, *power_rule2;
510         struct ieee80211_power_rule *power_rule;
511         u32 freq_diff;
512
513         freq_range1 = &rule1->freq_range;
514         freq_range2 = &rule2->freq_range;
515         freq_range = &intersected_rule->freq_range;
516
517         power_rule1 = &rule1->power_rule;
518         power_rule2 = &rule2->power_rule;
519         power_rule = &intersected_rule->power_rule;
520
521         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
522                 freq_range2->start_freq_khz);
523         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
524                 freq_range2->end_freq_khz);
525         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
526                 freq_range2->max_bandwidth_khz);
527
528         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
529         if (freq_range->max_bandwidth_khz > freq_diff)
530                 freq_range->max_bandwidth_khz = freq_diff;
531
532         power_rule->max_eirp = min(power_rule1->max_eirp,
533                 power_rule2->max_eirp);
534         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
535                 power_rule2->max_antenna_gain);
536
537         intersected_rule->flags = (rule1->flags | rule2->flags);
538
539         if (!is_valid_reg_rule(intersected_rule))
540                 return -EINVAL;
541
542         return 0;
543 }
544
545 /**
546  * regdom_intersect - do the intersection between two regulatory domains
547  * @rd1: first regulatory domain
548  * @rd2: second regulatory domain
549  *
550  * Use this function to get the intersection between two regulatory domains.
551  * Once completed we will mark the alpha2 for the rd as intersected, "98",
552  * as no one single alpha2 can represent this regulatory domain.
553  *
554  * Returns a pointer to the regulatory domain structure which will hold the
555  * resulting intersection of rules between rd1 and rd2. We will
556  * kzalloc() this structure for you.
557  */
558 static struct ieee80211_regdomain *regdom_intersect(
559         const struct ieee80211_regdomain *rd1,
560         const struct ieee80211_regdomain *rd2)
561 {
562         int r, size_of_regd;
563         unsigned int x, y;
564         unsigned int num_rules = 0, rule_idx = 0;
565         const struct ieee80211_reg_rule *rule1, *rule2;
566         struct ieee80211_reg_rule *intersected_rule;
567         struct ieee80211_regdomain *rd;
568         /* This is just a dummy holder to help us count */
569         struct ieee80211_reg_rule irule;
570
571         /* Uses the stack temporarily for counter arithmetic */
572         intersected_rule = &irule;
573
574         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
575
576         if (!rd1 || !rd2)
577                 return NULL;
578
579         /*
580          * First we get a count of the rules we'll need, then we actually
581          * build them. This is to so we can malloc() and free() a
582          * regdomain once. The reason we use reg_rules_intersect() here
583          * is it will return -EINVAL if the rule computed makes no sense.
584          * All rules that do check out OK are valid.
585          */
586
587         for (x = 0; x < rd1->n_reg_rules; x++) {
588                 rule1 = &rd1->reg_rules[x];
589                 for (y = 0; y < rd2->n_reg_rules; y++) {
590                         rule2 = &rd2->reg_rules[y];
591                         if (!reg_rules_intersect(rule1, rule2,
592                                         intersected_rule))
593                                 num_rules++;
594                         memset(intersected_rule, 0,
595                                         sizeof(struct ieee80211_reg_rule));
596                 }
597         }
598
599         if (!num_rules)
600                 return NULL;
601
602         size_of_regd = sizeof(struct ieee80211_regdomain) +
603                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
604
605         rd = kzalloc(size_of_regd, GFP_KERNEL);
606         if (!rd)
607                 return NULL;
608
609         for (x = 0; x < rd1->n_reg_rules; x++) {
610                 rule1 = &rd1->reg_rules[x];
611                 for (y = 0; y < rd2->n_reg_rules; y++) {
612                         rule2 = &rd2->reg_rules[y];
613                         /*
614                          * This time around instead of using the stack lets
615                          * write to the target rule directly saving ourselves
616                          * a memcpy()
617                          */
618                         intersected_rule = &rd->reg_rules[rule_idx];
619                         r = reg_rules_intersect(rule1, rule2,
620                                 intersected_rule);
621                         /*
622                          * No need to memset here the intersected rule here as
623                          * we're not using the stack anymore
624                          */
625                         if (r)
626                                 continue;
627                         rule_idx++;
628                 }
629         }
630
631         if (rule_idx != num_rules) {
632                 kfree(rd);
633                 return NULL;
634         }
635
636         rd->n_reg_rules = num_rules;
637         rd->alpha2[0] = '9';
638         rd->alpha2[1] = '8';
639
640         return rd;
641 }
642
643 /*
644  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
645  * want to just have the channel structure use these
646  */
647 static u32 map_regdom_flags(u32 rd_flags)
648 {
649         u32 channel_flags = 0;
650         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
651                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
652         if (rd_flags & NL80211_RRF_NO_IBSS)
653                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
654         if (rd_flags & NL80211_RRF_DFS)
655                 channel_flags |= IEEE80211_CHAN_RADAR;
656         return channel_flags;
657 }
658
659 static int freq_reg_info_regd(struct wiphy *wiphy,
660                               u32 center_freq,
661                               u32 desired_bw_khz,
662                               const struct ieee80211_reg_rule **reg_rule,
663                               const struct ieee80211_regdomain *custom_regd)
664 {
665         int i;
666         bool band_rule_found = false;
667         const struct ieee80211_regdomain *regd;
668         bool bw_fits = false;
669
670         if (!desired_bw_khz)
671                 desired_bw_khz = MHZ_TO_KHZ(20);
672
673         regd = custom_regd ? custom_regd : cfg80211_regdomain;
674
675         /*
676          * Follow the driver's regulatory domain, if present, unless a country
677          * IE has been processed or a user wants to help complaince further
678          */
679         if (!custom_regd &&
680             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
681             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
682             wiphy->regd)
683                 regd = wiphy->regd;
684
685         if (!regd)
686                 return -EINVAL;
687
688         for (i = 0; i < regd->n_reg_rules; i++) {
689                 const struct ieee80211_reg_rule *rr;
690                 const struct ieee80211_freq_range *fr = NULL;
691
692                 rr = &regd->reg_rules[i];
693                 fr = &rr->freq_range;
694
695                 /*
696                  * We only need to know if one frequency rule was
697                  * was in center_freq's band, that's enough, so lets
698                  * not overwrite it once found
699                  */
700                 if (!band_rule_found)
701                         band_rule_found = freq_in_rule_band(fr, center_freq);
702
703                 bw_fits = reg_does_bw_fit(fr,
704                                           center_freq,
705                                           desired_bw_khz);
706
707                 if (band_rule_found && bw_fits) {
708                         *reg_rule = rr;
709                         return 0;
710                 }
711         }
712
713         if (!band_rule_found)
714                 return -ERANGE;
715
716         return -EINVAL;
717 }
718
719 int freq_reg_info(struct wiphy *wiphy,
720                   u32 center_freq,
721                   u32 desired_bw_khz,
722                   const struct ieee80211_reg_rule **reg_rule)
723 {
724         assert_cfg80211_lock();
725         return freq_reg_info_regd(wiphy,
726                                   center_freq,
727                                   desired_bw_khz,
728                                   reg_rule,
729                                   NULL);
730 }
731 EXPORT_SYMBOL(freq_reg_info);
732
733 #ifdef CONFIG_CFG80211_REG_DEBUG
734 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
735 {
736         switch (initiator) {
737         case NL80211_REGDOM_SET_BY_CORE:
738                 return "Set by core";
739         case NL80211_REGDOM_SET_BY_USER:
740                 return "Set by user";
741         case NL80211_REGDOM_SET_BY_DRIVER:
742                 return "Set by driver";
743         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
744                 return "Set by country IE";
745         default:
746                 WARN_ON(1);
747                 return "Set by bug";
748         }
749 }
750
751 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
752                                     u32 desired_bw_khz,
753                                     const struct ieee80211_reg_rule *reg_rule)
754 {
755         const struct ieee80211_power_rule *power_rule;
756         const struct ieee80211_freq_range *freq_range;
757         char max_antenna_gain[32];
758
759         power_rule = &reg_rule->power_rule;
760         freq_range = &reg_rule->freq_range;
761
762         if (!power_rule->max_antenna_gain)
763                 snprintf(max_antenna_gain, 32, "N/A");
764         else
765                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
766
767         REG_DBG_PRINT("Updating information on frequency %d MHz "
768                       "for a %d MHz width channel with regulatory rule:\n",
769                       chan->center_freq,
770                       KHZ_TO_MHZ(desired_bw_khz));
771
772         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
773                       freq_range->start_freq_khz,
774                       freq_range->end_freq_khz,
775                       freq_range->max_bandwidth_khz,
776                       max_antenna_gain,
777                       power_rule->max_eirp);
778 }
779 #else
780 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
781                                     u32 desired_bw_khz,
782                                     const struct ieee80211_reg_rule *reg_rule)
783 {
784         return;
785 }
786 #endif
787
788 /*
789  * Note that right now we assume the desired channel bandwidth
790  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
791  * per channel, the primary and the extension channel). To support
792  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
793  * new ieee80211_channel.target_bw and re run the regulatory check
794  * on the wiphy with the target_bw specified. Then we can simply use
795  * that below for the desired_bw_khz below.
796  */
797 static void handle_channel(struct wiphy *wiphy,
798                            enum nl80211_reg_initiator initiator,
799                            enum ieee80211_band band,
800                            unsigned int chan_idx)
801 {
802         int r;
803         u32 flags, bw_flags = 0;
804         u32 desired_bw_khz = MHZ_TO_KHZ(20);
805         const struct ieee80211_reg_rule *reg_rule = NULL;
806         const struct ieee80211_power_rule *power_rule = NULL;
807         const struct ieee80211_freq_range *freq_range = NULL;
808         struct ieee80211_supported_band *sband;
809         struct ieee80211_channel *chan;
810         struct wiphy *request_wiphy = NULL;
811
812         assert_cfg80211_lock();
813
814         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
815
816         sband = wiphy->bands[band];
817         BUG_ON(chan_idx >= sband->n_channels);
818         chan = &sband->channels[chan_idx];
819
820         flags = chan->orig_flags;
821
822         r = freq_reg_info(wiphy,
823                           MHZ_TO_KHZ(chan->center_freq),
824                           desired_bw_khz,
825                           &reg_rule);
826
827         if (r) {
828                 /*
829                  * We will disable all channels that do not match our
830                  * received regulatory rule unless the hint is coming
831                  * from a Country IE and the Country IE had no information
832                  * about a band. The IEEE 802.11 spec allows for an AP
833                  * to send only a subset of the regulatory rules allowed,
834                  * so an AP in the US that only supports 2.4 GHz may only send
835                  * a country IE with information for the 2.4 GHz band
836                  * while 5 GHz is still supported.
837                  */
838                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
839                     r == -ERANGE)
840                         return;
841
842                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
843                 chan->flags = IEEE80211_CHAN_DISABLED;
844                 return;
845         }
846
847         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
848
849         power_rule = &reg_rule->power_rule;
850         freq_range = &reg_rule->freq_range;
851
852         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
853                 bw_flags = IEEE80211_CHAN_NO_HT40;
854
855         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
856             request_wiphy && request_wiphy == wiphy &&
857             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
858                 /*
859                  * This guarantees the driver's requested regulatory domain
860                  * will always be used as a base for further regulatory
861                  * settings
862                  */
863                 chan->flags = chan->orig_flags =
864                         map_regdom_flags(reg_rule->flags) | bw_flags;
865                 chan->max_antenna_gain = chan->orig_mag =
866                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
867                 chan->max_power = chan->orig_mpwr =
868                         (int) MBM_TO_DBM(power_rule->max_eirp);
869                 return;
870         }
871
872         chan->beacon_found = false;
873         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
874         chan->max_antenna_gain = min(chan->orig_mag,
875                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
876         if (chan->orig_mpwr) {
877                 /*
878                  * Devices that have their own custom regulatory domain
879                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
880                  * passed country IE power settings.
881                  */
882                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
883                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
884                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
885                         chan->max_power =
886                                 MBM_TO_DBM(power_rule->max_eirp);
887                 } else {
888                         chan->max_power = min(chan->orig_mpwr,
889                                 (int) MBM_TO_DBM(power_rule->max_eirp));
890                 }
891         } else
892                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
893 }
894
895 static void handle_band(struct wiphy *wiphy,
896                         enum ieee80211_band band,
897                         enum nl80211_reg_initiator initiator)
898 {
899         unsigned int i;
900         struct ieee80211_supported_band *sband;
901
902         BUG_ON(!wiphy->bands[band]);
903         sband = wiphy->bands[band];
904
905         for (i = 0; i < sband->n_channels; i++)
906                 handle_channel(wiphy, initiator, band, i);
907 }
908
909 static bool ignore_reg_update(struct wiphy *wiphy,
910                               enum nl80211_reg_initiator initiator)
911 {
912         if (!last_request) {
913                 REG_DBG_PRINT("Ignoring regulatory request %s since "
914                               "last_request is not set\n",
915                               reg_initiator_name(initiator));
916                 return true;
917         }
918
919         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
920             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
921                 REG_DBG_PRINT("Ignoring regulatory request %s "
922                               "since the driver uses its own custom "
923                               "regulatory domain\n",
924                               reg_initiator_name(initiator));
925                 return true;
926         }
927
928         /*
929          * wiphy->regd will be set once the device has its own
930          * desired regulatory domain set
931          */
932         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
933             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
934             !is_world_regdom(last_request->alpha2)) {
935                 REG_DBG_PRINT("Ignoring regulatory request %s "
936                               "since the driver requires its own regulatory "
937                               "domain to be set first\n",
938                               reg_initiator_name(initiator));
939                 return true;
940         }
941
942         return false;
943 }
944
945 static void handle_reg_beacon(struct wiphy *wiphy,
946                               unsigned int chan_idx,
947                               struct reg_beacon *reg_beacon)
948 {
949         struct ieee80211_supported_band *sband;
950         struct ieee80211_channel *chan;
951         bool channel_changed = false;
952         struct ieee80211_channel chan_before;
953
954         assert_cfg80211_lock();
955
956         sband = wiphy->bands[reg_beacon->chan.band];
957         chan = &sband->channels[chan_idx];
958
959         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
960                 return;
961
962         if (chan->beacon_found)
963                 return;
964
965         chan->beacon_found = true;
966
967         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
968                 return;
969
970         chan_before.center_freq = chan->center_freq;
971         chan_before.flags = chan->flags;
972
973         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
974                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
975                 channel_changed = true;
976         }
977
978         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
979                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
980                 channel_changed = true;
981         }
982
983         if (channel_changed)
984                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
985 }
986
987 /*
988  * Called when a scan on a wiphy finds a beacon on
989  * new channel
990  */
991 static void wiphy_update_new_beacon(struct wiphy *wiphy,
992                                     struct reg_beacon *reg_beacon)
993 {
994         unsigned int i;
995         struct ieee80211_supported_band *sband;
996
997         assert_cfg80211_lock();
998
999         if (!wiphy->bands[reg_beacon->chan.band])
1000                 return;
1001
1002         sband = wiphy->bands[reg_beacon->chan.band];
1003
1004         for (i = 0; i < sband->n_channels; i++)
1005                 handle_reg_beacon(wiphy, i, reg_beacon);
1006 }
1007
1008 /*
1009  * Called upon reg changes or a new wiphy is added
1010  */
1011 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1012 {
1013         unsigned int i;
1014         struct ieee80211_supported_band *sband;
1015         struct reg_beacon *reg_beacon;
1016
1017         assert_cfg80211_lock();
1018
1019         if (list_empty(&reg_beacon_list))
1020                 return;
1021
1022         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1023                 if (!wiphy->bands[reg_beacon->chan.band])
1024                         continue;
1025                 sband = wiphy->bands[reg_beacon->chan.band];
1026                 for (i = 0; i < sband->n_channels; i++)
1027                         handle_reg_beacon(wiphy, i, reg_beacon);
1028         }
1029 }
1030
1031 static bool reg_is_world_roaming(struct wiphy *wiphy)
1032 {
1033         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1034             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1035                 return true;
1036         if (last_request &&
1037             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1038             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1039                 return true;
1040         return false;
1041 }
1042
1043 /* Reap the advantages of previously found beacons */
1044 static void reg_process_beacons(struct wiphy *wiphy)
1045 {
1046         /*
1047          * Means we are just firing up cfg80211, so no beacons would
1048          * have been processed yet.
1049          */
1050         if (!last_request)
1051                 return;
1052         if (!reg_is_world_roaming(wiphy))
1053                 return;
1054         wiphy_update_beacon_reg(wiphy);
1055 }
1056
1057 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1058 {
1059         if (!chan)
1060                 return true;
1061         if (chan->flags & IEEE80211_CHAN_DISABLED)
1062                 return true;
1063         /* This would happen when regulatory rules disallow HT40 completely */
1064         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1065                 return true;
1066         return false;
1067 }
1068
1069 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1070                                          enum ieee80211_band band,
1071                                          unsigned int chan_idx)
1072 {
1073         struct ieee80211_supported_band *sband;
1074         struct ieee80211_channel *channel;
1075         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1076         unsigned int i;
1077
1078         assert_cfg80211_lock();
1079
1080         sband = wiphy->bands[band];
1081         BUG_ON(chan_idx >= sband->n_channels);
1082         channel = &sband->channels[chan_idx];
1083
1084         if (is_ht40_not_allowed(channel)) {
1085                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1086                 return;
1087         }
1088
1089         /*
1090          * We need to ensure the extension channels exist to
1091          * be able to use HT40- or HT40+, this finds them (or not)
1092          */
1093         for (i = 0; i < sband->n_channels; i++) {
1094                 struct ieee80211_channel *c = &sband->channels[i];
1095                 if (c->center_freq == (channel->center_freq - 20))
1096                         channel_before = c;
1097                 if (c->center_freq == (channel->center_freq + 20))
1098                         channel_after = c;
1099         }
1100
1101         /*
1102          * Please note that this assumes target bandwidth is 20 MHz,
1103          * if that ever changes we also need to change the below logic
1104          * to include that as well.
1105          */
1106         if (is_ht40_not_allowed(channel_before))
1107                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1108         else
1109                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1110
1111         if (is_ht40_not_allowed(channel_after))
1112                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1113         else
1114                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1115 }
1116
1117 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1118                                       enum ieee80211_band band)
1119 {
1120         unsigned int i;
1121         struct ieee80211_supported_band *sband;
1122
1123         BUG_ON(!wiphy->bands[band]);
1124         sband = wiphy->bands[band];
1125
1126         for (i = 0; i < sband->n_channels; i++)
1127                 reg_process_ht_flags_channel(wiphy, band, i);
1128 }
1129
1130 static void reg_process_ht_flags(struct wiphy *wiphy)
1131 {
1132         enum ieee80211_band band;
1133
1134         if (!wiphy)
1135                 return;
1136
1137         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1138                 if (wiphy->bands[band])
1139                         reg_process_ht_flags_band(wiphy, band);
1140         }
1141
1142 }
1143
1144 static void wiphy_update_regulatory(struct wiphy *wiphy,
1145                                     enum nl80211_reg_initiator initiator)
1146 {
1147         enum ieee80211_band band;
1148
1149         assert_reg_lock();
1150
1151         if (ignore_reg_update(wiphy, initiator))
1152                 return;
1153
1154         last_request->dfs_region = cfg80211_regdomain->dfs_region;
1155
1156         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1157                 if (wiphy->bands[band])
1158                         handle_band(wiphy, band, initiator);
1159         }
1160
1161         reg_process_beacons(wiphy);
1162         reg_process_ht_flags(wiphy);
1163         if (wiphy->reg_notifier)
1164                 wiphy->reg_notifier(wiphy, last_request);
1165 }
1166
1167 void regulatory_update(struct wiphy *wiphy,
1168                        enum nl80211_reg_initiator setby)
1169 {
1170         mutex_lock(&reg_mutex);
1171         wiphy_update_regulatory(wiphy, setby);
1172         mutex_unlock(&reg_mutex);
1173 }
1174
1175 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1176 {
1177         struct cfg80211_registered_device *rdev;
1178         struct wiphy *wiphy;
1179
1180         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1181                 wiphy = &rdev->wiphy;
1182                 wiphy_update_regulatory(wiphy, initiator);
1183                 /*
1184                  * Regulatory updates set by CORE are ignored for custom
1185                  * regulatory cards. Let us notify the changes to the driver,
1186                  * as some drivers used this to restore its orig_* reg domain.
1187                  */
1188                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1189                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1190                     wiphy->reg_notifier)
1191                         wiphy->reg_notifier(wiphy, last_request);
1192         }
1193 }
1194
1195 static void handle_channel_custom(struct wiphy *wiphy,
1196                                   enum ieee80211_band band,
1197                                   unsigned int chan_idx,
1198                                   const struct ieee80211_regdomain *regd)
1199 {
1200         int r;
1201         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1202         u32 bw_flags = 0;
1203         const struct ieee80211_reg_rule *reg_rule = NULL;
1204         const struct ieee80211_power_rule *power_rule = NULL;
1205         const struct ieee80211_freq_range *freq_range = NULL;
1206         struct ieee80211_supported_band *sband;
1207         struct ieee80211_channel *chan;
1208
1209         assert_reg_lock();
1210
1211         sband = wiphy->bands[band];
1212         BUG_ON(chan_idx >= sband->n_channels);
1213         chan = &sband->channels[chan_idx];
1214
1215         r = freq_reg_info_regd(wiphy,
1216                                MHZ_TO_KHZ(chan->center_freq),
1217                                desired_bw_khz,
1218                                &reg_rule,
1219                                regd);
1220
1221         if (r) {
1222                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1223                               "regd has no rule that fits a %d MHz "
1224                               "wide channel\n",
1225                               chan->center_freq,
1226                               KHZ_TO_MHZ(desired_bw_khz));
1227                 chan->flags = IEEE80211_CHAN_DISABLED;
1228                 return;
1229         }
1230
1231         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1232
1233         power_rule = &reg_rule->power_rule;
1234         freq_range = &reg_rule->freq_range;
1235
1236         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1237                 bw_flags = IEEE80211_CHAN_NO_HT40;
1238
1239         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1240         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1241         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1242 }
1243
1244 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1245                                const struct ieee80211_regdomain *regd)
1246 {
1247         unsigned int i;
1248         struct ieee80211_supported_band *sband;
1249
1250         BUG_ON(!wiphy->bands[band]);
1251         sband = wiphy->bands[band];
1252
1253         for (i = 0; i < sband->n_channels; i++)
1254                 handle_channel_custom(wiphy, band, i, regd);
1255 }
1256
1257 /* Used by drivers prior to wiphy registration */
1258 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1259                                    const struct ieee80211_regdomain *regd)
1260 {
1261         enum ieee80211_band band;
1262         unsigned int bands_set = 0;
1263
1264         mutex_lock(&reg_mutex);
1265         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1266                 if (!wiphy->bands[band])
1267                         continue;
1268                 handle_band_custom(wiphy, band, regd);
1269                 bands_set++;
1270         }
1271         mutex_unlock(&reg_mutex);
1272
1273         /*
1274          * no point in calling this if it won't have any effect
1275          * on your device's supportd bands.
1276          */
1277         WARN_ON(!bands_set);
1278 }
1279 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1280
1281 /*
1282  * Return value which can be used by ignore_request() to indicate
1283  * it has been determined we should intersect two regulatory domains
1284  */
1285 #define REG_INTERSECT   1
1286
1287 /* This has the logic which determines when a new request
1288  * should be ignored. */
1289 static int ignore_request(struct wiphy *wiphy,
1290                           struct regulatory_request *pending_request)
1291 {
1292         struct wiphy *last_wiphy = NULL;
1293
1294         assert_cfg80211_lock();
1295
1296         /* All initial requests are respected */
1297         if (!last_request)
1298                 return 0;
1299
1300         switch (pending_request->initiator) {
1301         case NL80211_REGDOM_SET_BY_CORE:
1302                 return 0;
1303         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1304
1305                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1306
1307                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1308                         return -EINVAL;
1309                 if (last_request->initiator ==
1310                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1311                         if (last_wiphy != wiphy) {
1312                                 /*
1313                                  * Two cards with two APs claiming different
1314                                  * Country IE alpha2s. We could
1315                                  * intersect them, but that seems unlikely
1316                                  * to be correct. Reject second one for now.
1317                                  */
1318                                 if (regdom_changes(pending_request->alpha2))
1319                                         return -EOPNOTSUPP;
1320                                 return -EALREADY;
1321                         }
1322                         /*
1323                          * Two consecutive Country IE hints on the same wiphy.
1324                          * This should be picked up early by the driver/stack
1325                          */
1326                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1327                                 return 0;
1328                         return -EALREADY;
1329                 }
1330                 return 0;
1331         case NL80211_REGDOM_SET_BY_DRIVER:
1332                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1333                         if (regdom_changes(pending_request->alpha2))
1334                                 return 0;
1335                         return -EALREADY;
1336                 }
1337
1338                 /*
1339                  * This would happen if you unplug and plug your card
1340                  * back in or if you add a new device for which the previously
1341                  * loaded card also agrees on the regulatory domain.
1342                  */
1343                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1344                     !regdom_changes(pending_request->alpha2))
1345                         return -EALREADY;
1346
1347                 return REG_INTERSECT;
1348         case NL80211_REGDOM_SET_BY_USER:
1349                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1350                         return REG_INTERSECT;
1351                 /*
1352                  * If the user knows better the user should set the regdom
1353                  * to their country before the IE is picked up
1354                  */
1355                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1356                           last_request->intersect)
1357                         return -EOPNOTSUPP;
1358                 /*
1359                  * Process user requests only after previous user/driver/core
1360                  * requests have been processed
1361                  */
1362                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1363                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1364                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1365                         if (regdom_changes(last_request->alpha2))
1366                                 return -EAGAIN;
1367                 }
1368
1369                 if (!regdom_changes(pending_request->alpha2))
1370                         return -EALREADY;
1371
1372                 return 0;
1373         }
1374
1375         return -EINVAL;
1376 }
1377
1378 static void reg_set_request_processed(void)
1379 {
1380         bool need_more_processing = false;
1381
1382         last_request->processed = true;
1383
1384         spin_lock(&reg_requests_lock);
1385         if (!list_empty(&reg_requests_list))
1386                 need_more_processing = true;
1387         spin_unlock(&reg_requests_lock);
1388
1389         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1390                 cancel_delayed_work_sync(&reg_timeout);
1391
1392         if (need_more_processing)
1393                 schedule_work(&reg_work);
1394 }
1395
1396 /**
1397  * __regulatory_hint - hint to the wireless core a regulatory domain
1398  * @wiphy: if the hint comes from country information from an AP, this
1399  *      is required to be set to the wiphy that received the information
1400  * @pending_request: the regulatory request currently being processed
1401  *
1402  * The Wireless subsystem can use this function to hint to the wireless core
1403  * what it believes should be the current regulatory domain.
1404  *
1405  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1406  * already been set or other standard error codes.
1407  *
1408  * Caller must hold &cfg80211_mutex and &reg_mutex
1409  */
1410 static int __regulatory_hint(struct wiphy *wiphy,
1411                              struct regulatory_request *pending_request)
1412 {
1413         bool intersect = false;
1414         int r = 0;
1415
1416         assert_cfg80211_lock();
1417
1418         r = ignore_request(wiphy, pending_request);
1419
1420         if (r == REG_INTERSECT) {
1421                 if (pending_request->initiator ==
1422                     NL80211_REGDOM_SET_BY_DRIVER) {
1423                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1424                         if (r) {
1425                                 kfree(pending_request);
1426                                 return r;
1427                         }
1428                 }
1429                 intersect = true;
1430         } else if (r) {
1431                 /*
1432                  * If the regulatory domain being requested by the
1433                  * driver has already been set just copy it to the
1434                  * wiphy
1435                  */
1436                 if (r == -EALREADY &&
1437                     pending_request->initiator ==
1438                     NL80211_REGDOM_SET_BY_DRIVER) {
1439                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1440                         if (r) {
1441                                 kfree(pending_request);
1442                                 return r;
1443                         }
1444                         r = -EALREADY;
1445                         goto new_request;
1446                 }
1447                 kfree(pending_request);
1448                 return r;
1449         }
1450
1451 new_request:
1452         if (last_request != &core_request_world)
1453                 kfree(last_request);
1454
1455         last_request = pending_request;
1456         last_request->intersect = intersect;
1457
1458         pending_request = NULL;
1459
1460         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1461                 user_alpha2[0] = last_request->alpha2[0];
1462                 user_alpha2[1] = last_request->alpha2[1];
1463         }
1464
1465         /* When r == REG_INTERSECT we do need to call CRDA */
1466         if (r < 0) {
1467                 /*
1468                  * Since CRDA will not be called in this case as we already
1469                  * have applied the requested regulatory domain before we just
1470                  * inform userspace we have processed the request
1471                  */
1472                 if (r == -EALREADY) {
1473                         nl80211_send_reg_change_event(last_request);
1474                         reg_set_request_processed();
1475                 }
1476                 return r;
1477         }
1478
1479         return call_crda(last_request->alpha2);
1480 }
1481
1482 /* This processes *all* regulatory hints */
1483 static void reg_process_hint(struct regulatory_request *reg_request)
1484 {
1485         int r = 0;
1486         struct wiphy *wiphy = NULL;
1487         enum nl80211_reg_initiator initiator = reg_request->initiator;
1488
1489         BUG_ON(!reg_request->alpha2);
1490
1491         if (wiphy_idx_valid(reg_request->wiphy_idx))
1492                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1493
1494         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1495             !wiphy) {
1496                 kfree(reg_request);
1497                 return;
1498         }
1499
1500         r = __regulatory_hint(wiphy, reg_request);
1501         /* This is required so that the orig_* parameters are saved */
1502         if (r == -EALREADY && wiphy &&
1503             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1504                 wiphy_update_regulatory(wiphy, initiator);
1505                 return;
1506         }
1507
1508         /*
1509          * We only time out user hints, given that they should be the only
1510          * source of bogus requests.
1511          */
1512         if (r != -EALREADY &&
1513             reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1514                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1515 }
1516
1517 /*
1518  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1519  * Regulatory hints come on a first come first serve basis and we
1520  * must process each one atomically.
1521  */
1522 static void reg_process_pending_hints(void)
1523 {
1524         struct regulatory_request *reg_request;
1525
1526         mutex_lock(&cfg80211_mutex);
1527         mutex_lock(&reg_mutex);
1528
1529         /* When last_request->processed becomes true this will be rescheduled */
1530         if (last_request && !last_request->processed) {
1531                 REG_DBG_PRINT("Pending regulatory request, waiting "
1532                               "for it to be processed...\n");
1533                 goto out;
1534         }
1535
1536         spin_lock(&reg_requests_lock);
1537
1538         if (list_empty(&reg_requests_list)) {
1539                 spin_unlock(&reg_requests_lock);
1540                 goto out;
1541         }
1542
1543         reg_request = list_first_entry(&reg_requests_list,
1544                                        struct regulatory_request,
1545                                        list);
1546         list_del_init(&reg_request->list);
1547
1548         spin_unlock(&reg_requests_lock);
1549
1550         reg_process_hint(reg_request);
1551
1552 out:
1553         mutex_unlock(&reg_mutex);
1554         mutex_unlock(&cfg80211_mutex);
1555 }
1556
1557 /* Processes beacon hints -- this has nothing to do with country IEs */
1558 static void reg_process_pending_beacon_hints(void)
1559 {
1560         struct cfg80211_registered_device *rdev;
1561         struct reg_beacon *pending_beacon, *tmp;
1562
1563         /*
1564          * No need to hold the reg_mutex here as we just touch wiphys
1565          * and do not read or access regulatory variables.
1566          */
1567         mutex_lock(&cfg80211_mutex);
1568
1569         /* This goes through the _pending_ beacon list */
1570         spin_lock_bh(&reg_pending_beacons_lock);
1571
1572         if (list_empty(&reg_pending_beacons)) {
1573                 spin_unlock_bh(&reg_pending_beacons_lock);
1574                 goto out;
1575         }
1576
1577         list_for_each_entry_safe(pending_beacon, tmp,
1578                                  &reg_pending_beacons, list) {
1579
1580                 list_del_init(&pending_beacon->list);
1581
1582                 /* Applies the beacon hint to current wiphys */
1583                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1584                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1585
1586                 /* Remembers the beacon hint for new wiphys or reg changes */
1587                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1588         }
1589
1590         spin_unlock_bh(&reg_pending_beacons_lock);
1591 out:
1592         mutex_unlock(&cfg80211_mutex);
1593 }
1594
1595 static void reg_todo(struct work_struct *work)
1596 {
1597         reg_process_pending_hints();
1598         reg_process_pending_beacon_hints();
1599 }
1600
1601 static void queue_regulatory_request(struct regulatory_request *request)
1602 {
1603         if (isalpha(request->alpha2[0]))
1604                 request->alpha2[0] = toupper(request->alpha2[0]);
1605         if (isalpha(request->alpha2[1]))
1606                 request->alpha2[1] = toupper(request->alpha2[1]);
1607
1608         spin_lock(&reg_requests_lock);
1609         list_add_tail(&request->list, &reg_requests_list);
1610         spin_unlock(&reg_requests_lock);
1611
1612         schedule_work(&reg_work);
1613 }
1614
1615 /*
1616  * Core regulatory hint -- happens during cfg80211_init()
1617  * and when we restore regulatory settings.
1618  */
1619 static int regulatory_hint_core(const char *alpha2)
1620 {
1621         struct regulatory_request *request;
1622
1623         request = kzalloc(sizeof(struct regulatory_request),
1624                           GFP_KERNEL);
1625         if (!request)
1626                 return -ENOMEM;
1627
1628         request->alpha2[0] = alpha2[0];
1629         request->alpha2[1] = alpha2[1];
1630         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1631
1632         queue_regulatory_request(request);
1633
1634         return 0;
1635 }
1636
1637 /* User hints */
1638 int regulatory_hint_user(const char *alpha2)
1639 {
1640         struct regulatory_request *request;
1641
1642         BUG_ON(!alpha2);
1643
1644         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1645         if (!request)
1646                 return -ENOMEM;
1647
1648         request->wiphy_idx = WIPHY_IDX_STALE;
1649         request->alpha2[0] = alpha2[0];
1650         request->alpha2[1] = alpha2[1];
1651         request->initiator = NL80211_REGDOM_SET_BY_USER;
1652
1653         queue_regulatory_request(request);
1654
1655         return 0;
1656 }
1657
1658 /* Driver hints */
1659 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1660 {
1661         struct regulatory_request *request;
1662
1663         BUG_ON(!alpha2);
1664         BUG_ON(!wiphy);
1665
1666         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1667         if (!request)
1668                 return -ENOMEM;
1669
1670         request->wiphy_idx = get_wiphy_idx(wiphy);
1671
1672         /* Must have registered wiphy first */
1673         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1674
1675         request->alpha2[0] = alpha2[0];
1676         request->alpha2[1] = alpha2[1];
1677         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1678
1679         queue_regulatory_request(request);
1680
1681         return 0;
1682 }
1683 EXPORT_SYMBOL(regulatory_hint);
1684
1685 /*
1686  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1687  * therefore cannot iterate over the rdev list here.
1688  */
1689 void regulatory_hint_11d(struct wiphy *wiphy,
1690                          enum ieee80211_band band,
1691                          u8 *country_ie,
1692                          u8 country_ie_len)
1693 {
1694         char alpha2[2];
1695         enum environment_cap env = ENVIRON_ANY;
1696         struct regulatory_request *request;
1697
1698         mutex_lock(&reg_mutex);
1699
1700         if (unlikely(!last_request))
1701                 goto out;
1702
1703         /* IE len must be evenly divisible by 2 */
1704         if (country_ie_len & 0x01)
1705                 goto out;
1706
1707         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1708                 goto out;
1709
1710         alpha2[0] = country_ie[0];
1711         alpha2[1] = country_ie[1];
1712
1713         if (country_ie[2] == 'I')
1714                 env = ENVIRON_INDOOR;
1715         else if (country_ie[2] == 'O')
1716                 env = ENVIRON_OUTDOOR;
1717
1718         /*
1719          * We will run this only upon a successful connection on cfg80211.
1720          * We leave conflict resolution to the workqueue, where can hold
1721          * cfg80211_mutex.
1722          */
1723         if (likely(last_request->initiator ==
1724             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1725             wiphy_idx_valid(last_request->wiphy_idx)))
1726                 goto out;
1727
1728         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1729         if (!request)
1730                 goto out;
1731
1732         request->wiphy_idx = get_wiphy_idx(wiphy);
1733         request->alpha2[0] = alpha2[0];
1734         request->alpha2[1] = alpha2[1];
1735         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1736         request->country_ie_env = env;
1737
1738         mutex_unlock(&reg_mutex);
1739
1740         queue_regulatory_request(request);
1741
1742         return;
1743
1744 out:
1745         mutex_unlock(&reg_mutex);
1746 }
1747
1748 static void restore_alpha2(char *alpha2, bool reset_user)
1749 {
1750         /* indicates there is no alpha2 to consider for restoration */
1751         alpha2[0] = '9';
1752         alpha2[1] = '7';
1753
1754         /* The user setting has precedence over the module parameter */
1755         if (is_user_regdom_saved()) {
1756                 /* Unless we're asked to ignore it and reset it */
1757                 if (reset_user) {
1758                         REG_DBG_PRINT("Restoring regulatory settings "
1759                                "including user preference\n");
1760                         user_alpha2[0] = '9';
1761                         user_alpha2[1] = '7';
1762
1763                         /*
1764                          * If we're ignoring user settings, we still need to
1765                          * check the module parameter to ensure we put things
1766                          * back as they were for a full restore.
1767                          */
1768                         if (!is_world_regdom(ieee80211_regdom)) {
1769                                 REG_DBG_PRINT("Keeping preference on "
1770                                        "module parameter ieee80211_regdom: %c%c\n",
1771                                        ieee80211_regdom[0],
1772                                        ieee80211_regdom[1]);
1773                                 alpha2[0] = ieee80211_regdom[0];
1774                                 alpha2[1] = ieee80211_regdom[1];
1775                         }
1776                 } else {
1777                         REG_DBG_PRINT("Restoring regulatory settings "
1778                                "while preserving user preference for: %c%c\n",
1779                                user_alpha2[0],
1780                                user_alpha2[1]);
1781                         alpha2[0] = user_alpha2[0];
1782                         alpha2[1] = user_alpha2[1];
1783                 }
1784         } else if (!is_world_regdom(ieee80211_regdom)) {
1785                 REG_DBG_PRINT("Keeping preference on "
1786                        "module parameter ieee80211_regdom: %c%c\n",
1787                        ieee80211_regdom[0],
1788                        ieee80211_regdom[1]);
1789                 alpha2[0] = ieee80211_regdom[0];
1790                 alpha2[1] = ieee80211_regdom[1];
1791         } else
1792                 REG_DBG_PRINT("Restoring regulatory settings\n");
1793 }
1794
1795 /*
1796  * Restoring regulatory settings involves ingoring any
1797  * possibly stale country IE information and user regulatory
1798  * settings if so desired, this includes any beacon hints
1799  * learned as we could have traveled outside to another country
1800  * after disconnection. To restore regulatory settings we do
1801  * exactly what we did at bootup:
1802  *
1803  *   - send a core regulatory hint
1804  *   - send a user regulatory hint if applicable
1805  *
1806  * Device drivers that send a regulatory hint for a specific country
1807  * keep their own regulatory domain on wiphy->regd so that does does
1808  * not need to be remembered.
1809  */
1810 static void restore_regulatory_settings(bool reset_user)
1811 {
1812         char alpha2[2];
1813         struct reg_beacon *reg_beacon, *btmp;
1814         struct regulatory_request *reg_request, *tmp;
1815         LIST_HEAD(tmp_reg_req_list);
1816
1817         mutex_lock(&cfg80211_mutex);
1818         mutex_lock(&reg_mutex);
1819
1820         reset_regdomains(true);
1821         restore_alpha2(alpha2, reset_user);
1822
1823         /*
1824          * If there's any pending requests we simply
1825          * stash them to a temporary pending queue and
1826          * add then after we've restored regulatory
1827          * settings.
1828          */
1829         spin_lock(&reg_requests_lock);
1830         if (!list_empty(&reg_requests_list)) {
1831                 list_for_each_entry_safe(reg_request, tmp,
1832                                          &reg_requests_list, list) {
1833                         if (reg_request->initiator !=
1834                             NL80211_REGDOM_SET_BY_USER)
1835                                 continue;
1836                         list_del(&reg_request->list);
1837                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1838                 }
1839         }
1840         spin_unlock(&reg_requests_lock);
1841
1842         /* Clear beacon hints */
1843         spin_lock_bh(&reg_pending_beacons_lock);
1844         if (!list_empty(&reg_pending_beacons)) {
1845                 list_for_each_entry_safe(reg_beacon, btmp,
1846                                          &reg_pending_beacons, list) {
1847                         list_del(&reg_beacon->list);
1848                         kfree(reg_beacon);
1849                 }
1850         }
1851         spin_unlock_bh(&reg_pending_beacons_lock);
1852
1853         if (!list_empty(&reg_beacon_list)) {
1854                 list_for_each_entry_safe(reg_beacon, btmp,
1855                                          &reg_beacon_list, list) {
1856                         list_del(&reg_beacon->list);
1857                         kfree(reg_beacon);
1858                 }
1859         }
1860
1861         /* First restore to the basic regulatory settings */
1862         cfg80211_regdomain = cfg80211_world_regdom;
1863
1864         mutex_unlock(&reg_mutex);
1865         mutex_unlock(&cfg80211_mutex);
1866
1867         regulatory_hint_core(cfg80211_regdomain->alpha2);
1868
1869         /*
1870          * This restores the ieee80211_regdom module parameter
1871          * preference or the last user requested regulatory
1872          * settings, user regulatory settings takes precedence.
1873          */
1874         if (is_an_alpha2(alpha2))
1875                 regulatory_hint_user(user_alpha2);
1876
1877         if (list_empty(&tmp_reg_req_list))
1878                 return;
1879
1880         mutex_lock(&cfg80211_mutex);
1881         mutex_lock(&reg_mutex);
1882
1883         spin_lock(&reg_requests_lock);
1884         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1885                 REG_DBG_PRINT("Adding request for country %c%c back "
1886                               "into the queue\n",
1887                               reg_request->alpha2[0],
1888                               reg_request->alpha2[1]);
1889                 list_del(&reg_request->list);
1890                 list_add_tail(&reg_request->list, &reg_requests_list);
1891         }
1892         spin_unlock(&reg_requests_lock);
1893
1894         mutex_unlock(&reg_mutex);
1895         mutex_unlock(&cfg80211_mutex);
1896
1897         REG_DBG_PRINT("Kicking the queue\n");
1898
1899         schedule_work(&reg_work);
1900 }
1901
1902 void regulatory_hint_disconnect(void)
1903 {
1904         REG_DBG_PRINT("All devices are disconnected, going to "
1905                       "restore regulatory settings\n");
1906         restore_regulatory_settings(false);
1907 }
1908
1909 static bool freq_is_chan_12_13_14(u16 freq)
1910 {
1911         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1912             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1913             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1914                 return true;
1915         return false;
1916 }
1917
1918 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1919                                  struct ieee80211_channel *beacon_chan,
1920                                  gfp_t gfp)
1921 {
1922         struct reg_beacon *reg_beacon;
1923
1924         if (likely((beacon_chan->beacon_found ||
1925             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1926             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1927              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1928                 return 0;
1929
1930         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1931         if (!reg_beacon)
1932                 return -ENOMEM;
1933
1934         REG_DBG_PRINT("Found new beacon on "
1935                       "frequency: %d MHz (Ch %d) on %s\n",
1936                       beacon_chan->center_freq,
1937                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1938                       wiphy_name(wiphy));
1939
1940         memcpy(&reg_beacon->chan, beacon_chan,
1941                 sizeof(struct ieee80211_channel));
1942
1943
1944         /*
1945          * Since we can be called from BH or and non-BH context
1946          * we must use spin_lock_bh()
1947          */
1948         spin_lock_bh(&reg_pending_beacons_lock);
1949         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1950         spin_unlock_bh(&reg_pending_beacons_lock);
1951
1952         schedule_work(&reg_work);
1953
1954         return 0;
1955 }
1956
1957 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1958 {
1959         unsigned int i;
1960         const struct ieee80211_reg_rule *reg_rule = NULL;
1961         const struct ieee80211_freq_range *freq_range = NULL;
1962         const struct ieee80211_power_rule *power_rule = NULL;
1963
1964         pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1965
1966         for (i = 0; i < rd->n_reg_rules; i++) {
1967                 reg_rule = &rd->reg_rules[i];
1968                 freq_range = &reg_rule->freq_range;
1969                 power_rule = &reg_rule->power_rule;
1970
1971                 /*
1972                  * There may not be documentation for max antenna gain
1973                  * in certain regions
1974                  */
1975                 if (power_rule->max_antenna_gain)
1976                         pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1977                                 freq_range->start_freq_khz,
1978                                 freq_range->end_freq_khz,
1979                                 freq_range->max_bandwidth_khz,
1980                                 power_rule->max_antenna_gain,
1981                                 power_rule->max_eirp);
1982                 else
1983                         pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1984                                 freq_range->start_freq_khz,
1985                                 freq_range->end_freq_khz,
1986                                 freq_range->max_bandwidth_khz,
1987                                 power_rule->max_eirp);
1988         }
1989 }
1990
1991 bool reg_supported_dfs_region(u8 dfs_region)
1992 {
1993         switch (dfs_region) {
1994         case NL80211_DFS_UNSET:
1995         case NL80211_DFS_FCC:
1996         case NL80211_DFS_ETSI:
1997         case NL80211_DFS_JP:
1998                 return true;
1999         default:
2000                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2001                               dfs_region);
2002                 return false;
2003         }
2004 }
2005
2006 static void print_dfs_region(u8 dfs_region)
2007 {
2008         if (!dfs_region)
2009                 return;
2010
2011         switch (dfs_region) {
2012         case NL80211_DFS_FCC:
2013                 pr_info(" DFS Master region FCC");
2014                 break;
2015         case NL80211_DFS_ETSI:
2016                 pr_info(" DFS Master region ETSI");
2017                 break;
2018         case NL80211_DFS_JP:
2019                 pr_info(" DFS Master region JP");
2020                 break;
2021         default:
2022                 pr_info(" DFS Master region Uknown");
2023                 break;
2024         }
2025 }
2026
2027 static void print_regdomain(const struct ieee80211_regdomain *rd)
2028 {
2029
2030         if (is_intersected_alpha2(rd->alpha2)) {
2031
2032                 if (last_request->initiator ==
2033                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2034                         struct cfg80211_registered_device *rdev;
2035                         rdev = cfg80211_rdev_by_wiphy_idx(
2036                                 last_request->wiphy_idx);
2037                         if (rdev) {
2038                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2039                                         rdev->country_ie_alpha2[0],
2040                                         rdev->country_ie_alpha2[1]);
2041                         } else
2042                                 pr_info("Current regulatory domain intersected:\n");
2043                 } else
2044                         pr_info("Current regulatory domain intersected:\n");
2045         } else if (is_world_regdom(rd->alpha2))
2046                 pr_info("World regulatory domain updated:\n");
2047         else {
2048                 if (is_unknown_alpha2(rd->alpha2))
2049                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2050                 else
2051                         pr_info("Regulatory domain changed to country: %c%c\n",
2052                                 rd->alpha2[0], rd->alpha2[1]);
2053         }
2054         print_dfs_region(rd->dfs_region);
2055         print_rd_rules(rd);
2056 }
2057
2058 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2059 {
2060         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2061         print_rd_rules(rd);
2062 }
2063
2064 /* Takes ownership of rd only if it doesn't fail */
2065 static int __set_regdom(const struct ieee80211_regdomain *rd)
2066 {
2067         const struct ieee80211_regdomain *intersected_rd = NULL;
2068         struct cfg80211_registered_device *rdev = NULL;
2069         struct wiphy *request_wiphy;
2070         /* Some basic sanity checks first */
2071
2072         if (is_world_regdom(rd->alpha2)) {
2073                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2074                         return -EINVAL;
2075                 update_world_regdomain(rd);
2076                 return 0;
2077         }
2078
2079         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2080                         !is_unknown_alpha2(rd->alpha2))
2081                 return -EINVAL;
2082
2083         if (!last_request)
2084                 return -EINVAL;
2085
2086         /*
2087          * Lets only bother proceeding on the same alpha2 if the current
2088          * rd is non static (it means CRDA was present and was used last)
2089          * and the pending request came in from a country IE
2090          */
2091         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2092                 /*
2093                  * If someone else asked us to change the rd lets only bother
2094                  * checking if the alpha2 changes if CRDA was already called
2095                  */
2096                 if (!regdom_changes(rd->alpha2))
2097                         return -EINVAL;
2098         }
2099
2100         /*
2101          * Now lets set the regulatory domain, update all driver channels
2102          * and finally inform them of what we have done, in case they want
2103          * to review or adjust their own settings based on their own
2104          * internal EEPROM data
2105          */
2106
2107         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2108                 return -EINVAL;
2109
2110         if (!is_valid_rd(rd)) {
2111                 pr_err("Invalid regulatory domain detected:\n");
2112                 print_regdomain_info(rd);
2113                 return -EINVAL;
2114         }
2115
2116         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2117         if (!request_wiphy &&
2118             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2119              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2120                 schedule_delayed_work(&reg_timeout, 0);
2121                 return -ENODEV;
2122         }
2123
2124         if (!last_request->intersect) {
2125                 int r;
2126
2127                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2128                         reset_regdomains(false);
2129                         cfg80211_regdomain = rd;
2130                         return 0;
2131                 }
2132
2133                 /*
2134                  * For a driver hint, lets copy the regulatory domain the
2135                  * driver wanted to the wiphy to deal with conflicts
2136                  */
2137
2138                 /*
2139                  * Userspace could have sent two replies with only
2140                  * one kernel request.
2141                  */
2142                 if (request_wiphy->regd)
2143                         return -EALREADY;
2144
2145                 r = reg_copy_regd(&request_wiphy->regd, rd);
2146                 if (r)
2147                         return r;
2148
2149                 reset_regdomains(false);
2150                 cfg80211_regdomain = rd;
2151                 return 0;
2152         }
2153
2154         /* Intersection requires a bit more work */
2155
2156         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2157
2158                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2159                 if (!intersected_rd)
2160                         return -EINVAL;
2161
2162                 /*
2163                  * We can trash what CRDA provided now.
2164                  * However if a driver requested this specific regulatory
2165                  * domain we keep it for its private use
2166                  */
2167                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2168                         request_wiphy->regd = rd;
2169                 else
2170                         kfree(rd);
2171
2172                 rd = NULL;
2173
2174                 reset_regdomains(false);
2175                 cfg80211_regdomain = intersected_rd;
2176
2177                 return 0;
2178         }
2179
2180         if (!intersected_rd)
2181                 return -EINVAL;
2182
2183         rdev = wiphy_to_dev(request_wiphy);
2184
2185         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2186         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2187         rdev->env = last_request->country_ie_env;
2188
2189         BUG_ON(intersected_rd == rd);
2190
2191         kfree(rd);
2192         rd = NULL;
2193
2194         reset_regdomains(false);
2195         cfg80211_regdomain = intersected_rd;
2196
2197         return 0;
2198 }
2199
2200
2201 /*
2202  * Use this call to set the current regulatory domain. Conflicts with
2203  * multiple drivers can be ironed out later. Caller must've already
2204  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2205  */
2206 int set_regdom(const struct ieee80211_regdomain *rd)
2207 {
2208         int r;
2209
2210         assert_cfg80211_lock();
2211
2212         mutex_lock(&reg_mutex);
2213
2214         /* Note that this doesn't update the wiphys, this is done below */
2215         r = __set_regdom(rd);
2216         if (r) {
2217                 kfree(rd);
2218                 mutex_unlock(&reg_mutex);
2219                 return r;
2220         }
2221
2222         /* This would make this whole thing pointless */
2223         if (!last_request->intersect)
2224                 BUG_ON(rd != cfg80211_regdomain);
2225
2226         /* update all wiphys now with the new established regulatory domain */
2227         update_all_wiphy_regulatory(last_request->initiator);
2228
2229         print_regdomain(cfg80211_regdomain);
2230
2231         nl80211_send_reg_change_event(last_request);
2232
2233         reg_set_request_processed();
2234
2235         mutex_unlock(&reg_mutex);
2236
2237         return r;
2238 }
2239
2240 #ifdef CONFIG_HOTPLUG
2241 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2242 {
2243         if (last_request && !last_request->processed) {
2244                 if (add_uevent_var(env, "COUNTRY=%c%c",
2245                                    last_request->alpha2[0],
2246                                    last_request->alpha2[1]))
2247                         return -ENOMEM;
2248         }
2249
2250         return 0;
2251 }
2252 #else
2253 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2254 {
2255         return -ENODEV;
2256 }
2257 #endif /* CONFIG_HOTPLUG */
2258
2259 /* Caller must hold cfg80211_mutex */
2260 void reg_device_remove(struct wiphy *wiphy)
2261 {
2262         struct wiphy *request_wiphy = NULL;
2263
2264         assert_cfg80211_lock();
2265
2266         mutex_lock(&reg_mutex);
2267
2268         kfree(wiphy->regd);
2269
2270         if (last_request)
2271                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2272
2273         if (!request_wiphy || request_wiphy != wiphy)
2274                 goto out;
2275
2276         last_request->wiphy_idx = WIPHY_IDX_STALE;
2277         last_request->country_ie_env = ENVIRON_ANY;
2278 out:
2279         mutex_unlock(&reg_mutex);
2280 }
2281
2282 static void reg_timeout_work(struct work_struct *work)
2283 {
2284         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2285                       "restoring regulatory settings\n");
2286         restore_regulatory_settings(true);
2287 }
2288
2289 int __init regulatory_init(void)
2290 {
2291         int err = 0;
2292
2293         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2294         if (IS_ERR(reg_pdev))
2295                 return PTR_ERR(reg_pdev);
2296
2297         reg_pdev->dev.type = &reg_device_type;
2298
2299         spin_lock_init(&reg_requests_lock);
2300         spin_lock_init(&reg_pending_beacons_lock);
2301
2302         cfg80211_regdomain = cfg80211_world_regdom;
2303
2304         user_alpha2[0] = '9';
2305         user_alpha2[1] = '7';
2306
2307         /* We always try to get an update for the static regdomain */
2308         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2309         if (err) {
2310                 if (err == -ENOMEM)
2311                         return err;
2312                 /*
2313                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2314                  * memory which is handled and propagated appropriately above
2315                  * but it can also fail during a netlink_broadcast() or during
2316                  * early boot for call_usermodehelper(). For now treat these
2317                  * errors as non-fatal.
2318                  */
2319                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2320 #ifdef CONFIG_CFG80211_REG_DEBUG
2321                 /* We want to find out exactly why when debugging */
2322                 WARN_ON(err);
2323 #endif
2324         }
2325
2326         /*
2327          * Finally, if the user set the module parameter treat it
2328          * as a user hint.
2329          */
2330         if (!is_world_regdom(ieee80211_regdom))
2331                 regulatory_hint_user(ieee80211_regdom);
2332
2333         return 0;
2334 }
2335
2336 void /* __init_or_exit */ regulatory_exit(void)
2337 {
2338         struct regulatory_request *reg_request, *tmp;
2339         struct reg_beacon *reg_beacon, *btmp;
2340
2341         cancel_work_sync(&reg_work);
2342         cancel_delayed_work_sync(&reg_timeout);
2343
2344         mutex_lock(&cfg80211_mutex);
2345         mutex_lock(&reg_mutex);
2346
2347         reset_regdomains(true);
2348
2349         dev_set_uevent_suppress(&reg_pdev->dev, true);
2350
2351         platform_device_unregister(reg_pdev);
2352
2353         spin_lock_bh(&reg_pending_beacons_lock);
2354         if (!list_empty(&reg_pending_beacons)) {
2355                 list_for_each_entry_safe(reg_beacon, btmp,
2356                                          &reg_pending_beacons, list) {
2357                         list_del(&reg_beacon->list);
2358                         kfree(reg_beacon);
2359                 }
2360         }
2361         spin_unlock_bh(&reg_pending_beacons_lock);
2362
2363         if (!list_empty(&reg_beacon_list)) {
2364                 list_for_each_entry_safe(reg_beacon, btmp,
2365                                          &reg_beacon_list, list) {
2366                         list_del(&reg_beacon->list);
2367                         kfree(reg_beacon);
2368                 }
2369         }
2370
2371         spin_lock(&reg_requests_lock);
2372         if (!list_empty(&reg_requests_list)) {
2373                 list_for_each_entry_safe(reg_request, tmp,
2374                                          &reg_requests_list, list) {
2375                         list_del(&reg_request->list);
2376                         kfree(reg_request);
2377                 }
2378         }
2379         spin_unlock(&reg_requests_lock);
2380
2381         mutex_unlock(&reg_mutex);
2382         mutex_unlock(&cfg80211_mutex);
2383 }