]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
cfg80211: reg: remove useless non-NULL check
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)                  \
65         printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *      be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *      regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87         REG_REQ_OK,
88         REG_REQ_IGNORE,
89         REG_REQ_INTERSECT,
90         REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94         .initiator = NL80211_REGDOM_SET_BY_CORE,
95         .alpha2[0] = '0',
96         .alpha2[1] = '0',
97         .intersect = false,
98         .processed = true,
99         .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107         (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 /* Max number of consecutive attempts to communicate with CRDA  */
139 #define REG_MAX_CRDA_TIMEOUTS 10
140
141 static u32 reg_crda_timeouts;
142
143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
144 {
145         return rtnl_dereference(cfg80211_regdomain);
146 }
147
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rtnl_dereference(wiphy->regd);
151 }
152
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
154 {
155         switch (dfs_region) {
156         case NL80211_DFS_UNSET:
157                 return "unset";
158         case NL80211_DFS_FCC:
159                 return "FCC";
160         case NL80211_DFS_ETSI:
161                 return "ETSI";
162         case NL80211_DFS_JP:
163                 return "JP";
164         }
165         return "Unknown";
166 }
167
168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
169 {
170         const struct ieee80211_regdomain *regd = NULL;
171         const struct ieee80211_regdomain *wiphy_regd = NULL;
172
173         regd = get_cfg80211_regdom();
174         if (!wiphy)
175                 goto out;
176
177         wiphy_regd = get_wiphy_regdom(wiphy);
178         if (!wiphy_regd)
179                 goto out;
180
181         if (wiphy_regd->dfs_region == regd->dfs_region)
182                 goto out;
183
184         REG_DBG_PRINT("%s: device specific dfs_region "
185                       "(%s) disagrees with cfg80211's "
186                       "central dfs_region (%s)\n",
187                       dev_name(&wiphy->dev),
188                       reg_dfs_region_str(wiphy_regd->dfs_region),
189                       reg_dfs_region_str(regd->dfs_region));
190
191 out:
192         return regd->dfs_region;
193 }
194
195 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
196 {
197         if (!r)
198                 return;
199         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
200 }
201
202 static struct regulatory_request *get_last_request(void)
203 {
204         return rcu_dereference_rtnl(last_request);
205 }
206
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list);
209 static spinlock_t reg_requests_lock;
210
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons);
213 static spinlock_t reg_pending_beacons_lock;
214
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list);
217
218 struct reg_beacon {
219         struct list_head list;
220         struct ieee80211_channel chan;
221 };
222
223 static void reg_check_chans_work(struct work_struct *work);
224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
225
226 static void reg_todo(struct work_struct *work);
227 static DECLARE_WORK(reg_work, reg_todo);
228
229 static void reg_timeout_work(struct work_struct *work);
230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
231
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom = {
234         .n_reg_rules = 8,
235         .alpha2 =  "00",
236         .reg_rules = {
237                 /* IEEE 802.11b/g, channels 1..11 */
238                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239                 /* IEEE 802.11b/g, channels 12..13. */
240                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
241                         NL80211_RRF_NO_IR),
242                 /* IEEE 802.11 channel 14 - Only JP enables
243                  * this and for 802.11b only */
244                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
245                         NL80211_RRF_NO_IR |
246                         NL80211_RRF_NO_OFDM),
247                 /* IEEE 802.11a, channel 36..48 */
248                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR),
250
251                 /* IEEE 802.11a, channel 52..64 - DFS required */
252                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
253                         NL80211_RRF_NO_IR |
254                         NL80211_RRF_DFS),
255
256                 /* IEEE 802.11a, channel 100..144 - DFS required */
257                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_DFS),
260
261                 /* IEEE 802.11a, channel 149..165 */
262                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR),
264
265                 /* IEEE 802.11ad (60GHz), channels 1..3 */
266                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
267         }
268 };
269
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain *cfg80211_world_regdom =
272         &world_regdom;
273
274 static char *ieee80211_regdom = "00";
275 static char user_alpha2[2];
276
277 module_param(ieee80211_regdom, charp, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
279
280 static void reg_free_request(struct regulatory_request *request)
281 {
282         if (request != get_last_request())
283                 kfree(request);
284 }
285
286 static void reg_free_last_request(void)
287 {
288         struct regulatory_request *lr = get_last_request();
289
290         if (lr != &core_request_world && lr)
291                 kfree_rcu(lr, rcu_head);
292 }
293
294 static void reg_update_last_request(struct regulatory_request *request)
295 {
296         struct regulatory_request *lr;
297
298         lr = get_last_request();
299         if (lr == request)
300                 return;
301
302         reg_free_last_request();
303         rcu_assign_pointer(last_request, request);
304 }
305
306 static void reset_regdomains(bool full_reset,
307                              const struct ieee80211_regdomain *new_regdom)
308 {
309         const struct ieee80211_regdomain *r;
310
311         ASSERT_RTNL();
312
313         r = get_cfg80211_regdom();
314
315         /* avoid freeing static information or freeing something twice */
316         if (r == cfg80211_world_regdom)
317                 r = NULL;
318         if (cfg80211_world_regdom == &world_regdom)
319                 cfg80211_world_regdom = NULL;
320         if (r == &world_regdom)
321                 r = NULL;
322
323         rcu_free_regdom(r);
324         rcu_free_regdom(cfg80211_world_regdom);
325
326         cfg80211_world_regdom = &world_regdom;
327         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328
329         if (!full_reset)
330                 return;
331
332         reg_update_last_request(&core_request_world);
333 }
334
335 /*
336  * Dynamic world regulatory domain requested by the wireless
337  * core upon initialization
338  */
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340 {
341         struct regulatory_request *lr;
342
343         lr = get_last_request();
344
345         WARN_ON(!lr);
346
347         reset_regdomains(false, rd);
348
349         cfg80211_world_regdom = rd;
350 }
351
352 bool is_world_regdom(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         return alpha2[0] == '0' && alpha2[1] == '0';
357 }
358
359 static bool is_alpha2_set(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         return alpha2[0] && alpha2[1];
364 }
365
366 static bool is_unknown_alpha2(const char *alpha2)
367 {
368         if (!alpha2)
369                 return false;
370         /*
371          * Special case where regulatory domain was built by driver
372          * but a specific alpha2 cannot be determined
373          */
374         return alpha2[0] == '9' && alpha2[1] == '9';
375 }
376
377 static bool is_intersected_alpha2(const char *alpha2)
378 {
379         if (!alpha2)
380                 return false;
381         /*
382          * Special case where regulatory domain is the
383          * result of an intersection between two regulatory domain
384          * structures
385          */
386         return alpha2[0] == '9' && alpha2[1] == '8';
387 }
388
389 static bool is_an_alpha2(const char *alpha2)
390 {
391         if (!alpha2)
392                 return false;
393         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394 }
395
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397 {
398         if (!alpha2_x || !alpha2_y)
399                 return false;
400         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401 }
402
403 static bool regdom_changes(const char *alpha2)
404 {
405         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406
407         if (!r)
408                 return true;
409         return !alpha2_equal(r->alpha2, alpha2);
410 }
411
412 /*
413  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415  * has ever been issued.
416  */
417 static bool is_user_regdom_saved(void)
418 {
419         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420                 return false;
421
422         /* This would indicate a mistake on the design */
423         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424                  "Unexpected user alpha2: %c%c\n",
425                  user_alpha2[0], user_alpha2[1]))
426                 return false;
427
428         return true;
429 }
430
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433 {
434         struct ieee80211_regdomain *regd;
435         int size_of_regd;
436         unsigned int i;
437
438         size_of_regd =
439                 sizeof(struct ieee80211_regdomain) +
440                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
441
442         regd = kzalloc(size_of_regd, GFP_KERNEL);
443         if (!regd)
444                 return ERR_PTR(-ENOMEM);
445
446         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
447
448         for (i = 0; i < src_regd->n_reg_rules; i++)
449                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450                        sizeof(struct ieee80211_reg_rule));
451
452         return regd;
453 }
454
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_search_request {
457         char alpha2[2];
458         struct list_head list;
459 };
460
461 static LIST_HEAD(reg_regdb_search_list);
462 static DEFINE_MUTEX(reg_regdb_search_mutex);
463
464 static void reg_regdb_search(struct work_struct *work)
465 {
466         struct reg_regdb_search_request *request;
467         const struct ieee80211_regdomain *curdom, *regdom = NULL;
468         int i;
469
470         rtnl_lock();
471
472         mutex_lock(&reg_regdb_search_mutex);
473         while (!list_empty(&reg_regdb_search_list)) {
474                 request = list_first_entry(&reg_regdb_search_list,
475                                            struct reg_regdb_search_request,
476                                            list);
477                 list_del(&request->list);
478
479                 for (i = 0; i < reg_regdb_size; i++) {
480                         curdom = reg_regdb[i];
481
482                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
483                                 regdom = reg_copy_regd(curdom);
484                                 break;
485                         }
486                 }
487
488                 kfree(request);
489         }
490         mutex_unlock(&reg_regdb_search_mutex);
491
492         if (!IS_ERR_OR_NULL(regdom))
493                 set_regdom(regdom, REGD_SOURCE_INTERNAL_DB);
494
495         rtnl_unlock();
496 }
497
498 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
499
500 static void reg_regdb_query(const char *alpha2)
501 {
502         struct reg_regdb_search_request *request;
503
504         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505         if (!request)
506                 return;
507
508         memcpy(request->alpha2, alpha2, 2);
509
510         mutex_lock(&reg_regdb_search_mutex);
511         list_add_tail(&request->list, &reg_regdb_search_list);
512         mutex_unlock(&reg_regdb_search_mutex);
513
514         schedule_work(&reg_regdb_work);
515 }
516
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
521         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527
528 /*
529  * This lets us keep regulatory code which is updated on a regulatory
530  * basis in userspace.
531  */
532 static int call_crda(const char *alpha2)
533 {
534         char country[12];
535         char *env[] = { country, NULL };
536
537         snprintf(country, sizeof(country), "COUNTRY=%c%c",
538                  alpha2[0], alpha2[1]);
539
540         /* query internal regulatory database (if it exists) */
541         reg_regdb_query(alpha2);
542
543         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
544                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
545                 return -EINVAL;
546         }
547
548         if (!is_world_regdom((char *) alpha2))
549                 pr_debug("Calling CRDA for country: %c%c\n",
550                         alpha2[0], alpha2[1]);
551         else
552                 pr_debug("Calling CRDA to update world regulatory domain\n");
553
554         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
555 }
556
557 static enum reg_request_treatment
558 reg_call_crda(struct regulatory_request *request)
559 {
560         if (call_crda(request->alpha2))
561                 return REG_REQ_IGNORE;
562
563         queue_delayed_work(system_power_efficient_wq,
564                            &reg_timeout, msecs_to_jiffies(3142));
565         return REG_REQ_OK;
566 }
567
568 bool reg_is_valid_request(const char *alpha2)
569 {
570         struct regulatory_request *lr = get_last_request();
571
572         if (!lr || lr->processed)
573                 return false;
574
575         return alpha2_equal(lr->alpha2, alpha2);
576 }
577
578 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
579 {
580         struct regulatory_request *lr = get_last_request();
581
582         /*
583          * Follow the driver's regulatory domain, if present, unless a country
584          * IE has been processed or a user wants to help complaince further
585          */
586         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
587             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
588             wiphy->regd)
589                 return get_wiphy_regdom(wiphy);
590
591         return get_cfg80211_regdom();
592 }
593
594 static unsigned int
595 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
596                                  const struct ieee80211_reg_rule *rule)
597 {
598         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
599         const struct ieee80211_freq_range *freq_range_tmp;
600         const struct ieee80211_reg_rule *tmp;
601         u32 start_freq, end_freq, idx, no;
602
603         for (idx = 0; idx < rd->n_reg_rules; idx++)
604                 if (rule == &rd->reg_rules[idx])
605                         break;
606
607         if (idx == rd->n_reg_rules)
608                 return 0;
609
610         /* get start_freq */
611         no = idx;
612
613         while (no) {
614                 tmp = &rd->reg_rules[--no];
615                 freq_range_tmp = &tmp->freq_range;
616
617                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
618                         break;
619
620                 freq_range = freq_range_tmp;
621         }
622
623         start_freq = freq_range->start_freq_khz;
624
625         /* get end_freq */
626         freq_range = &rule->freq_range;
627         no = idx;
628
629         while (no < rd->n_reg_rules - 1) {
630                 tmp = &rd->reg_rules[++no];
631                 freq_range_tmp = &tmp->freq_range;
632
633                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
634                         break;
635
636                 freq_range = freq_range_tmp;
637         }
638
639         end_freq = freq_range->end_freq_khz;
640
641         return end_freq - start_freq;
642 }
643
644 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
645                                    const struct ieee80211_reg_rule *rule)
646 {
647         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
648
649         if (rule->flags & NL80211_RRF_NO_160MHZ)
650                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
651         if (rule->flags & NL80211_RRF_NO_80MHZ)
652                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
653
654         /*
655          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
656          * are not allowed.
657          */
658         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
659             rule->flags & NL80211_RRF_NO_HT40PLUS)
660                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
661
662         return bw;
663 }
664
665 /* Sanity check on a regulatory rule */
666 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
667 {
668         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
669         u32 freq_diff;
670
671         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
672                 return false;
673
674         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
675                 return false;
676
677         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
678
679         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
680             freq_range->max_bandwidth_khz > freq_diff)
681                 return false;
682
683         return true;
684 }
685
686 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
687 {
688         const struct ieee80211_reg_rule *reg_rule = NULL;
689         unsigned int i;
690
691         if (!rd->n_reg_rules)
692                 return false;
693
694         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
695                 return false;
696
697         for (i = 0; i < rd->n_reg_rules; i++) {
698                 reg_rule = &rd->reg_rules[i];
699                 if (!is_valid_reg_rule(reg_rule))
700                         return false;
701         }
702
703         return true;
704 }
705
706 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
707                             u32 center_freq_khz, u32 bw_khz)
708 {
709         u32 start_freq_khz, end_freq_khz;
710
711         start_freq_khz = center_freq_khz - (bw_khz/2);
712         end_freq_khz = center_freq_khz + (bw_khz/2);
713
714         if (start_freq_khz >= freq_range->start_freq_khz &&
715             end_freq_khz <= freq_range->end_freq_khz)
716                 return true;
717
718         return false;
719 }
720
721 /**
722  * freq_in_rule_band - tells us if a frequency is in a frequency band
723  * @freq_range: frequency rule we want to query
724  * @freq_khz: frequency we are inquiring about
725  *
726  * This lets us know if a specific frequency rule is or is not relevant to
727  * a specific frequency's band. Bands are device specific and artificial
728  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
729  * however it is safe for now to assume that a frequency rule should not be
730  * part of a frequency's band if the start freq or end freq are off by more
731  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
732  * 60 GHz band.
733  * This resolution can be lowered and should be considered as we add
734  * regulatory rule support for other "bands".
735  **/
736 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
737                               u32 freq_khz)
738 {
739 #define ONE_GHZ_IN_KHZ  1000000
740         /*
741          * From 802.11ad: directional multi-gigabit (DMG):
742          * Pertaining to operation in a frequency band containing a channel
743          * with the Channel starting frequency above 45 GHz.
744          */
745         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
746                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
747         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
748                 return true;
749         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
750                 return true;
751         return false;
752 #undef ONE_GHZ_IN_KHZ
753 }
754
755 /*
756  * Later on we can perhaps use the more restrictive DFS
757  * region but we don't have information for that yet so
758  * for now simply disallow conflicts.
759  */
760 static enum nl80211_dfs_regions
761 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
762                          const enum nl80211_dfs_regions dfs_region2)
763 {
764         if (dfs_region1 != dfs_region2)
765                 return NL80211_DFS_UNSET;
766         return dfs_region1;
767 }
768
769 /*
770  * Helper for regdom_intersect(), this does the real
771  * mathematical intersection fun
772  */
773 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
774                                const struct ieee80211_regdomain *rd2,
775                                const struct ieee80211_reg_rule *rule1,
776                                const struct ieee80211_reg_rule *rule2,
777                                struct ieee80211_reg_rule *intersected_rule)
778 {
779         const struct ieee80211_freq_range *freq_range1, *freq_range2;
780         struct ieee80211_freq_range *freq_range;
781         const struct ieee80211_power_rule *power_rule1, *power_rule2;
782         struct ieee80211_power_rule *power_rule;
783         u32 freq_diff, max_bandwidth1, max_bandwidth2;
784
785         freq_range1 = &rule1->freq_range;
786         freq_range2 = &rule2->freq_range;
787         freq_range = &intersected_rule->freq_range;
788
789         power_rule1 = &rule1->power_rule;
790         power_rule2 = &rule2->power_rule;
791         power_rule = &intersected_rule->power_rule;
792
793         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
794                                          freq_range2->start_freq_khz);
795         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
796                                        freq_range2->end_freq_khz);
797
798         max_bandwidth1 = freq_range1->max_bandwidth_khz;
799         max_bandwidth2 = freq_range2->max_bandwidth_khz;
800
801         if (rule1->flags & NL80211_RRF_AUTO_BW)
802                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
803         if (rule2->flags & NL80211_RRF_AUTO_BW)
804                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
805
806         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
807
808         intersected_rule->flags = rule1->flags | rule2->flags;
809
810         /*
811          * In case NL80211_RRF_AUTO_BW requested for both rules
812          * set AUTO_BW in intersected rule also. Next we will
813          * calculate BW correctly in handle_channel function.
814          * In other case remove AUTO_BW flag while we calculate
815          * maximum bandwidth correctly and auto calculation is
816          * not required.
817          */
818         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
819             (rule2->flags & NL80211_RRF_AUTO_BW))
820                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
821         else
822                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
823
824         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
825         if (freq_range->max_bandwidth_khz > freq_diff)
826                 freq_range->max_bandwidth_khz = freq_diff;
827
828         power_rule->max_eirp = min(power_rule1->max_eirp,
829                 power_rule2->max_eirp);
830         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
831                 power_rule2->max_antenna_gain);
832
833         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
834                                            rule2->dfs_cac_ms);
835
836         if (!is_valid_reg_rule(intersected_rule))
837                 return -EINVAL;
838
839         return 0;
840 }
841
842 /* check whether old rule contains new rule */
843 static bool rule_contains(struct ieee80211_reg_rule *r1,
844                           struct ieee80211_reg_rule *r2)
845 {
846         /* for simplicity, currently consider only same flags */
847         if (r1->flags != r2->flags)
848                 return false;
849
850         /* verify r1 is more restrictive */
851         if ((r1->power_rule.max_antenna_gain >
852              r2->power_rule.max_antenna_gain) ||
853             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
854                 return false;
855
856         /* make sure r2's range is contained within r1 */
857         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
858             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
859                 return false;
860
861         /* and finally verify that r1.max_bw >= r2.max_bw */
862         if (r1->freq_range.max_bandwidth_khz <
863             r2->freq_range.max_bandwidth_khz)
864                 return false;
865
866         return true;
867 }
868
869 /* add or extend current rules. do nothing if rule is already contained */
870 static void add_rule(struct ieee80211_reg_rule *rule,
871                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
872 {
873         struct ieee80211_reg_rule *tmp_rule;
874         int i;
875
876         for (i = 0; i < *n_rules; i++) {
877                 tmp_rule = &reg_rules[i];
878                 /* rule is already contained - do nothing */
879                 if (rule_contains(tmp_rule, rule))
880                         return;
881
882                 /* extend rule if possible */
883                 if (rule_contains(rule, tmp_rule)) {
884                         memcpy(tmp_rule, rule, sizeof(*rule));
885                         return;
886                 }
887         }
888
889         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
890         (*n_rules)++;
891 }
892
893 /**
894  * regdom_intersect - do the intersection between two regulatory domains
895  * @rd1: first regulatory domain
896  * @rd2: second regulatory domain
897  *
898  * Use this function to get the intersection between two regulatory domains.
899  * Once completed we will mark the alpha2 for the rd as intersected, "98",
900  * as no one single alpha2 can represent this regulatory domain.
901  *
902  * Returns a pointer to the regulatory domain structure which will hold the
903  * resulting intersection of rules between rd1 and rd2. We will
904  * kzalloc() this structure for you.
905  */
906 static struct ieee80211_regdomain *
907 regdom_intersect(const struct ieee80211_regdomain *rd1,
908                  const struct ieee80211_regdomain *rd2)
909 {
910         int r, size_of_regd;
911         unsigned int x, y;
912         unsigned int num_rules = 0;
913         const struct ieee80211_reg_rule *rule1, *rule2;
914         struct ieee80211_reg_rule intersected_rule;
915         struct ieee80211_regdomain *rd;
916
917         if (!rd1 || !rd2)
918                 return NULL;
919
920         /*
921          * First we get a count of the rules we'll need, then we actually
922          * build them. This is to so we can malloc() and free() a
923          * regdomain once. The reason we use reg_rules_intersect() here
924          * is it will return -EINVAL if the rule computed makes no sense.
925          * All rules that do check out OK are valid.
926          */
927
928         for (x = 0; x < rd1->n_reg_rules; x++) {
929                 rule1 = &rd1->reg_rules[x];
930                 for (y = 0; y < rd2->n_reg_rules; y++) {
931                         rule2 = &rd2->reg_rules[y];
932                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
933                                                  &intersected_rule))
934                                 num_rules++;
935                 }
936         }
937
938         if (!num_rules)
939                 return NULL;
940
941         size_of_regd = sizeof(struct ieee80211_regdomain) +
942                        num_rules * sizeof(struct ieee80211_reg_rule);
943
944         rd = kzalloc(size_of_regd, GFP_KERNEL);
945         if (!rd)
946                 return NULL;
947
948         for (x = 0; x < rd1->n_reg_rules; x++) {
949                 rule1 = &rd1->reg_rules[x];
950                 for (y = 0; y < rd2->n_reg_rules; y++) {
951                         rule2 = &rd2->reg_rules[y];
952                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
953                                                 &intersected_rule);
954                         /*
955                          * No need to memset here the intersected rule here as
956                          * we're not using the stack anymore
957                          */
958                         if (r)
959                                 continue;
960
961                         add_rule(&intersected_rule, rd->reg_rules,
962                                  &rd->n_reg_rules);
963                 }
964         }
965
966         rd->alpha2[0] = '9';
967         rd->alpha2[1] = '8';
968         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
969                                                   rd2->dfs_region);
970
971         return rd;
972 }
973
974 /*
975  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
976  * want to just have the channel structure use these
977  */
978 static u32 map_regdom_flags(u32 rd_flags)
979 {
980         u32 channel_flags = 0;
981         if (rd_flags & NL80211_RRF_NO_IR_ALL)
982                 channel_flags |= IEEE80211_CHAN_NO_IR;
983         if (rd_flags & NL80211_RRF_DFS)
984                 channel_flags |= IEEE80211_CHAN_RADAR;
985         if (rd_flags & NL80211_RRF_NO_OFDM)
986                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
987         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
988                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
989         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
990                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
991         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
992                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
993         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
994                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
995         if (rd_flags & NL80211_RRF_NO_80MHZ)
996                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
997         if (rd_flags & NL80211_RRF_NO_160MHZ)
998                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
999         return channel_flags;
1000 }
1001
1002 static const struct ieee80211_reg_rule *
1003 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1004                    const struct ieee80211_regdomain *regd, u32 bw)
1005 {
1006         int i;
1007         bool band_rule_found = false;
1008         bool bw_fits = false;
1009
1010         if (!regd)
1011                 return ERR_PTR(-EINVAL);
1012
1013         for (i = 0; i < regd->n_reg_rules; i++) {
1014                 const struct ieee80211_reg_rule *rr;
1015                 const struct ieee80211_freq_range *fr = NULL;
1016
1017                 rr = &regd->reg_rules[i];
1018                 fr = &rr->freq_range;
1019
1020                 /*
1021                  * We only need to know if one frequency rule was
1022                  * was in center_freq's band, that's enough, so lets
1023                  * not overwrite it once found
1024                  */
1025                 if (!band_rule_found)
1026                         band_rule_found = freq_in_rule_band(fr, center_freq);
1027
1028                 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1029
1030                 if (band_rule_found && bw_fits)
1031                         return rr;
1032         }
1033
1034         if (!band_rule_found)
1035                 return ERR_PTR(-ERANGE);
1036
1037         return ERR_PTR(-EINVAL);
1038 }
1039
1040 static const struct ieee80211_reg_rule *
1041 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1042 {
1043         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1044         const struct ieee80211_reg_rule *reg_rule = NULL;
1045         u32 bw;
1046
1047         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1048                 reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1049                 if (!IS_ERR(reg_rule))
1050                         return reg_rule;
1051         }
1052
1053         return reg_rule;
1054 }
1055
1056 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1057                                                u32 center_freq)
1058 {
1059         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1060 }
1061 EXPORT_SYMBOL(freq_reg_info);
1062
1063 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1064 {
1065         switch (initiator) {
1066         case NL80211_REGDOM_SET_BY_CORE:
1067                 return "core";
1068         case NL80211_REGDOM_SET_BY_USER:
1069                 return "user";
1070         case NL80211_REGDOM_SET_BY_DRIVER:
1071                 return "driver";
1072         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1073                 return "country IE";
1074         default:
1075                 WARN_ON(1);
1076                 return "bug";
1077         }
1078 }
1079 EXPORT_SYMBOL(reg_initiator_name);
1080
1081 #ifdef CONFIG_CFG80211_REG_DEBUG
1082 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1083                                     struct ieee80211_channel *chan,
1084                                     const struct ieee80211_reg_rule *reg_rule)
1085 {
1086         const struct ieee80211_power_rule *power_rule;
1087         const struct ieee80211_freq_range *freq_range;
1088         char max_antenna_gain[32], bw[32];
1089
1090         power_rule = &reg_rule->power_rule;
1091         freq_range = &reg_rule->freq_range;
1092
1093         if (!power_rule->max_antenna_gain)
1094                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1095         else
1096                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1097                          power_rule->max_antenna_gain);
1098
1099         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1100                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1101                          freq_range->max_bandwidth_khz,
1102                          reg_get_max_bandwidth(regd, reg_rule));
1103         else
1104                 snprintf(bw, sizeof(bw), "%d KHz",
1105                          freq_range->max_bandwidth_khz);
1106
1107         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1108                       chan->center_freq);
1109
1110         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1111                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1112                       bw, max_antenna_gain,
1113                       power_rule->max_eirp);
1114 }
1115 #else
1116 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1117                                     struct ieee80211_channel *chan,
1118                                     const struct ieee80211_reg_rule *reg_rule)
1119 {
1120         return;
1121 }
1122 #endif
1123
1124 /*
1125  * Note that right now we assume the desired channel bandwidth
1126  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1127  * per channel, the primary and the extension channel).
1128  */
1129 static void handle_channel(struct wiphy *wiphy,
1130                            enum nl80211_reg_initiator initiator,
1131                            struct ieee80211_channel *chan)
1132 {
1133         u32 flags, bw_flags = 0;
1134         const struct ieee80211_reg_rule *reg_rule = NULL;
1135         const struct ieee80211_power_rule *power_rule = NULL;
1136         const struct ieee80211_freq_range *freq_range = NULL;
1137         struct wiphy *request_wiphy = NULL;
1138         struct regulatory_request *lr = get_last_request();
1139         const struct ieee80211_regdomain *regd;
1140         u32 max_bandwidth_khz;
1141
1142         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1143
1144         flags = chan->orig_flags;
1145
1146         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1147         if (IS_ERR(reg_rule)) {
1148                 /*
1149                  * We will disable all channels that do not match our
1150                  * received regulatory rule unless the hint is coming
1151                  * from a Country IE and the Country IE had no information
1152                  * about a band. The IEEE 802.11 spec allows for an AP
1153                  * to send only a subset of the regulatory rules allowed,
1154                  * so an AP in the US that only supports 2.4 GHz may only send
1155                  * a country IE with information for the 2.4 GHz band
1156                  * while 5 GHz is still supported.
1157                  */
1158                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1159                     PTR_ERR(reg_rule) == -ERANGE)
1160                         return;
1161
1162                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1163                     request_wiphy && request_wiphy == wiphy &&
1164                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1165                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1166                                       chan->center_freq);
1167                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1168                         chan->flags = chan->orig_flags;
1169                 } else {
1170                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1171                                       chan->center_freq);
1172                         chan->flags |= IEEE80211_CHAN_DISABLED;
1173                 }
1174                 return;
1175         }
1176
1177         regd = reg_get_regdomain(wiphy);
1178         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1179
1180         power_rule = &reg_rule->power_rule;
1181         freq_range = &reg_rule->freq_range;
1182
1183         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1184         /* Check if auto calculation requested */
1185         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1186                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1187
1188         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1189         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1190                              MHZ_TO_KHZ(10)))
1191                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1192         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1193                              MHZ_TO_KHZ(20)))
1194                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1195
1196         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1197                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1198         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1199                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1200         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1201                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1202         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1203                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1204         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1205                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1206
1207         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1208             request_wiphy && request_wiphy == wiphy &&
1209             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1210                 /*
1211                  * This guarantees the driver's requested regulatory domain
1212                  * will always be used as a base for further regulatory
1213                  * settings
1214                  */
1215                 chan->flags = chan->orig_flags =
1216                         map_regdom_flags(reg_rule->flags) | bw_flags;
1217                 chan->max_antenna_gain = chan->orig_mag =
1218                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1219                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1220                         (int) MBM_TO_DBM(power_rule->max_eirp);
1221
1222                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1223                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1224                         if (reg_rule->dfs_cac_ms)
1225                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1226                 }
1227
1228                 return;
1229         }
1230
1231         chan->dfs_state = NL80211_DFS_USABLE;
1232         chan->dfs_state_entered = jiffies;
1233
1234         chan->beacon_found = false;
1235         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1236         chan->max_antenna_gain =
1237                 min_t(int, chan->orig_mag,
1238                       MBI_TO_DBI(power_rule->max_antenna_gain));
1239         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1240
1241         if (chan->flags & IEEE80211_CHAN_RADAR) {
1242                 if (reg_rule->dfs_cac_ms)
1243                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1244                 else
1245                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1246         }
1247
1248         if (chan->orig_mpwr) {
1249                 /*
1250                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1251                  * will always follow the passed country IE power settings.
1252                  */
1253                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1254                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1255                         chan->max_power = chan->max_reg_power;
1256                 else
1257                         chan->max_power = min(chan->orig_mpwr,
1258                                               chan->max_reg_power);
1259         } else
1260                 chan->max_power = chan->max_reg_power;
1261 }
1262
1263 static void handle_band(struct wiphy *wiphy,
1264                         enum nl80211_reg_initiator initiator,
1265                         struct ieee80211_supported_band *sband)
1266 {
1267         unsigned int i;
1268
1269         if (!sband)
1270                 return;
1271
1272         for (i = 0; i < sband->n_channels; i++)
1273                 handle_channel(wiphy, initiator, &sband->channels[i]);
1274 }
1275
1276 static bool reg_request_cell_base(struct regulatory_request *request)
1277 {
1278         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1279                 return false;
1280         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1281 }
1282
1283 bool reg_last_request_cell_base(void)
1284 {
1285         return reg_request_cell_base(get_last_request());
1286 }
1287
1288 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1289 /* Core specific check */
1290 static enum reg_request_treatment
1291 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1292 {
1293         struct regulatory_request *lr = get_last_request();
1294
1295         if (!reg_num_devs_support_basehint)
1296                 return REG_REQ_IGNORE;
1297
1298         if (reg_request_cell_base(lr) &&
1299             !regdom_changes(pending_request->alpha2))
1300                 return REG_REQ_ALREADY_SET;
1301
1302         return REG_REQ_OK;
1303 }
1304
1305 /* Device specific check */
1306 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1307 {
1308         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1309 }
1310 #else
1311 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1312 {
1313         return REG_REQ_IGNORE;
1314 }
1315
1316 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1317 {
1318         return true;
1319 }
1320 #endif
1321
1322 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1323 {
1324         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1325             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1326                 return true;
1327         return false;
1328 }
1329
1330 static bool ignore_reg_update(struct wiphy *wiphy,
1331                               enum nl80211_reg_initiator initiator)
1332 {
1333         struct regulatory_request *lr = get_last_request();
1334
1335         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1336                 return true;
1337
1338         if (!lr) {
1339                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1340                               "since last_request is not set\n",
1341                               reg_initiator_name(initiator));
1342                 return true;
1343         }
1344
1345         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1346             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1347                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1348                               "since the driver uses its own custom "
1349                               "regulatory domain\n",
1350                               reg_initiator_name(initiator));
1351                 return true;
1352         }
1353
1354         /*
1355          * wiphy->regd will be set once the device has its own
1356          * desired regulatory domain set
1357          */
1358         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1359             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1360             !is_world_regdom(lr->alpha2)) {
1361                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1362                               "since the driver requires its own regulatory "
1363                               "domain to be set first\n",
1364                               reg_initiator_name(initiator));
1365                 return true;
1366         }
1367
1368         if (reg_request_cell_base(lr))
1369                 return reg_dev_ignore_cell_hint(wiphy);
1370
1371         return false;
1372 }
1373
1374 static bool reg_is_world_roaming(struct wiphy *wiphy)
1375 {
1376         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1377         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1378         struct regulatory_request *lr = get_last_request();
1379
1380         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1381                 return true;
1382
1383         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1384             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1385                 return true;
1386
1387         return false;
1388 }
1389
1390 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1391                               struct reg_beacon *reg_beacon)
1392 {
1393         struct ieee80211_supported_band *sband;
1394         struct ieee80211_channel *chan;
1395         bool channel_changed = false;
1396         struct ieee80211_channel chan_before;
1397
1398         sband = wiphy->bands[reg_beacon->chan.band];
1399         chan = &sband->channels[chan_idx];
1400
1401         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1402                 return;
1403
1404         if (chan->beacon_found)
1405                 return;
1406
1407         chan->beacon_found = true;
1408
1409         if (!reg_is_world_roaming(wiphy))
1410                 return;
1411
1412         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1413                 return;
1414
1415         chan_before.center_freq = chan->center_freq;
1416         chan_before.flags = chan->flags;
1417
1418         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1419                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1420                 channel_changed = true;
1421         }
1422
1423         if (channel_changed)
1424                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1425 }
1426
1427 /*
1428  * Called when a scan on a wiphy finds a beacon on
1429  * new channel
1430  */
1431 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1432                                     struct reg_beacon *reg_beacon)
1433 {
1434         unsigned int i;
1435         struct ieee80211_supported_band *sband;
1436
1437         if (!wiphy->bands[reg_beacon->chan.band])
1438                 return;
1439
1440         sband = wiphy->bands[reg_beacon->chan.band];
1441
1442         for (i = 0; i < sband->n_channels; i++)
1443                 handle_reg_beacon(wiphy, i, reg_beacon);
1444 }
1445
1446 /*
1447  * Called upon reg changes or a new wiphy is added
1448  */
1449 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1450 {
1451         unsigned int i;
1452         struct ieee80211_supported_band *sband;
1453         struct reg_beacon *reg_beacon;
1454
1455         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1456                 if (!wiphy->bands[reg_beacon->chan.band])
1457                         continue;
1458                 sband = wiphy->bands[reg_beacon->chan.band];
1459                 for (i = 0; i < sband->n_channels; i++)
1460                         handle_reg_beacon(wiphy, i, reg_beacon);
1461         }
1462 }
1463
1464 /* Reap the advantages of previously found beacons */
1465 static void reg_process_beacons(struct wiphy *wiphy)
1466 {
1467         /*
1468          * Means we are just firing up cfg80211, so no beacons would
1469          * have been processed yet.
1470          */
1471         if (!last_request)
1472                 return;
1473         wiphy_update_beacon_reg(wiphy);
1474 }
1475
1476 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1477 {
1478         if (!chan)
1479                 return false;
1480         if (chan->flags & IEEE80211_CHAN_DISABLED)
1481                 return false;
1482         /* This would happen when regulatory rules disallow HT40 completely */
1483         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1484                 return false;
1485         return true;
1486 }
1487
1488 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1489                                          struct ieee80211_channel *channel)
1490 {
1491         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1492         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1493         unsigned int i;
1494
1495         if (!is_ht40_allowed(channel)) {
1496                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1497                 return;
1498         }
1499
1500         /*
1501          * We need to ensure the extension channels exist to
1502          * be able to use HT40- or HT40+, this finds them (or not)
1503          */
1504         for (i = 0; i < sband->n_channels; i++) {
1505                 struct ieee80211_channel *c = &sband->channels[i];
1506
1507                 if (c->center_freq == (channel->center_freq - 20))
1508                         channel_before = c;
1509                 if (c->center_freq == (channel->center_freq + 20))
1510                         channel_after = c;
1511         }
1512
1513         /*
1514          * Please note that this assumes target bandwidth is 20 MHz,
1515          * if that ever changes we also need to change the below logic
1516          * to include that as well.
1517          */
1518         if (!is_ht40_allowed(channel_before))
1519                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1520         else
1521                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1522
1523         if (!is_ht40_allowed(channel_after))
1524                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1525         else
1526                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1527 }
1528
1529 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1530                                       struct ieee80211_supported_band *sband)
1531 {
1532         unsigned int i;
1533
1534         if (!sband)
1535                 return;
1536
1537         for (i = 0; i < sband->n_channels; i++)
1538                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1539 }
1540
1541 static void reg_process_ht_flags(struct wiphy *wiphy)
1542 {
1543         enum ieee80211_band band;
1544
1545         if (!wiphy)
1546                 return;
1547
1548         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1549                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1550 }
1551
1552 static void reg_call_notifier(struct wiphy *wiphy,
1553                               struct regulatory_request *request)
1554 {
1555         if (wiphy->reg_notifier)
1556                 wiphy->reg_notifier(wiphy, request);
1557 }
1558
1559 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1560 {
1561         struct cfg80211_chan_def chandef;
1562         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1563         enum nl80211_iftype iftype;
1564
1565         wdev_lock(wdev);
1566         iftype = wdev->iftype;
1567
1568         /* make sure the interface is active */
1569         if (!wdev->netdev || !netif_running(wdev->netdev))
1570                 goto wdev_inactive_unlock;
1571
1572         switch (iftype) {
1573         case NL80211_IFTYPE_AP:
1574         case NL80211_IFTYPE_P2P_GO:
1575                 if (!wdev->beacon_interval)
1576                         goto wdev_inactive_unlock;
1577                 chandef = wdev->chandef;
1578                 break;
1579         case NL80211_IFTYPE_ADHOC:
1580                 if (!wdev->ssid_len)
1581                         goto wdev_inactive_unlock;
1582                 chandef = wdev->chandef;
1583                 break;
1584         case NL80211_IFTYPE_STATION:
1585         case NL80211_IFTYPE_P2P_CLIENT:
1586                 if (!wdev->current_bss ||
1587                     !wdev->current_bss->pub.channel)
1588                         goto wdev_inactive_unlock;
1589
1590                 if (!rdev->ops->get_channel ||
1591                     rdev_get_channel(rdev, wdev, &chandef))
1592                         cfg80211_chandef_create(&chandef,
1593                                                 wdev->current_bss->pub.channel,
1594                                                 NL80211_CHAN_NO_HT);
1595                 break;
1596         case NL80211_IFTYPE_MONITOR:
1597         case NL80211_IFTYPE_AP_VLAN:
1598         case NL80211_IFTYPE_P2P_DEVICE:
1599                 /* no enforcement required */
1600                 break;
1601         default:
1602                 /* others not implemented for now */
1603                 WARN_ON(1);
1604                 break;
1605         }
1606
1607         wdev_unlock(wdev);
1608
1609         switch (iftype) {
1610         case NL80211_IFTYPE_AP:
1611         case NL80211_IFTYPE_P2P_GO:
1612         case NL80211_IFTYPE_ADHOC:
1613                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1614         case NL80211_IFTYPE_STATION:
1615         case NL80211_IFTYPE_P2P_CLIENT:
1616                 return cfg80211_chandef_usable(wiphy, &chandef,
1617                                                IEEE80211_CHAN_DISABLED);
1618         default:
1619                 break;
1620         }
1621
1622         return true;
1623
1624 wdev_inactive_unlock:
1625         wdev_unlock(wdev);
1626         return true;
1627 }
1628
1629 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1630 {
1631         struct wireless_dev *wdev;
1632         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1633
1634         ASSERT_RTNL();
1635
1636         list_for_each_entry(wdev, &rdev->wdev_list, list)
1637                 if (!reg_wdev_chan_valid(wiphy, wdev))
1638                         cfg80211_leave(rdev, wdev);
1639 }
1640
1641 static void reg_check_chans_work(struct work_struct *work)
1642 {
1643         struct cfg80211_registered_device *rdev;
1644
1645         REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1646         rtnl_lock();
1647
1648         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1649                 if (!(rdev->wiphy.regulatory_flags &
1650                       REGULATORY_IGNORE_STALE_KICKOFF))
1651                         reg_leave_invalid_chans(&rdev->wiphy);
1652
1653         rtnl_unlock();
1654 }
1655
1656 static void reg_check_channels(void)
1657 {
1658         /*
1659          * Give usermode a chance to do something nicer (move to another
1660          * channel, orderly disconnection), before forcing a disconnection.
1661          */
1662         mod_delayed_work(system_power_efficient_wq,
1663                          &reg_check_chans,
1664                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1665 }
1666
1667 static void wiphy_update_regulatory(struct wiphy *wiphy,
1668                                     enum nl80211_reg_initiator initiator)
1669 {
1670         enum ieee80211_band band;
1671         struct regulatory_request *lr = get_last_request();
1672
1673         if (ignore_reg_update(wiphy, initiator)) {
1674                 /*
1675                  * Regulatory updates set by CORE are ignored for custom
1676                  * regulatory cards. Let us notify the changes to the driver,
1677                  * as some drivers used this to restore its orig_* reg domain.
1678                  */
1679                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1680                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1681                         reg_call_notifier(wiphy, lr);
1682                 return;
1683         }
1684
1685         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1686
1687         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1688                 handle_band(wiphy, initiator, wiphy->bands[band]);
1689
1690         reg_process_beacons(wiphy);
1691         reg_process_ht_flags(wiphy);
1692         reg_call_notifier(wiphy, lr);
1693 }
1694
1695 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1696 {
1697         struct cfg80211_registered_device *rdev;
1698         struct wiphy *wiphy;
1699
1700         ASSERT_RTNL();
1701
1702         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1703                 wiphy = &rdev->wiphy;
1704                 wiphy_update_regulatory(wiphy, initiator);
1705         }
1706
1707         reg_check_channels();
1708 }
1709
1710 static void handle_channel_custom(struct wiphy *wiphy,
1711                                   struct ieee80211_channel *chan,
1712                                   const struct ieee80211_regdomain *regd)
1713 {
1714         u32 bw_flags = 0;
1715         const struct ieee80211_reg_rule *reg_rule = NULL;
1716         const struct ieee80211_power_rule *power_rule = NULL;
1717         const struct ieee80211_freq_range *freq_range = NULL;
1718         u32 max_bandwidth_khz;
1719         u32 bw;
1720
1721         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1722                 reg_rule = freq_reg_info_regd(wiphy,
1723                                               MHZ_TO_KHZ(chan->center_freq),
1724                                               regd, bw);
1725                 if (!IS_ERR(reg_rule))
1726                         break;
1727         }
1728
1729         if (IS_ERR(reg_rule)) {
1730                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1731                               chan->center_freq);
1732                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1733                         chan->flags |= IEEE80211_CHAN_DISABLED;
1734                 } else {
1735                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1736                         chan->flags = chan->orig_flags;
1737                 }
1738                 return;
1739         }
1740
1741         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1742
1743         power_rule = &reg_rule->power_rule;
1744         freq_range = &reg_rule->freq_range;
1745
1746         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1747         /* Check if auto calculation requested */
1748         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1749                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1750
1751         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1752         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1753                              MHZ_TO_KHZ(10)))
1754                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1755         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1756                              MHZ_TO_KHZ(20)))
1757                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1758
1759         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1760                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1761         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1762                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1763         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1764                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1765         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1766                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1767         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1768                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1769
1770         chan->dfs_state_entered = jiffies;
1771         chan->dfs_state = NL80211_DFS_USABLE;
1772
1773         chan->beacon_found = false;
1774
1775         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1776                 chan->flags = chan->orig_flags | bw_flags |
1777                               map_regdom_flags(reg_rule->flags);
1778         else
1779                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1780
1781         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1782         chan->max_reg_power = chan->max_power =
1783                 (int) MBM_TO_DBM(power_rule->max_eirp);
1784
1785         if (chan->flags & IEEE80211_CHAN_RADAR) {
1786                 if (reg_rule->dfs_cac_ms)
1787                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1788                 else
1789                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1790         }
1791
1792         chan->max_power = chan->max_reg_power;
1793 }
1794
1795 static void handle_band_custom(struct wiphy *wiphy,
1796                                struct ieee80211_supported_band *sband,
1797                                const struct ieee80211_regdomain *regd)
1798 {
1799         unsigned int i;
1800
1801         if (!sband)
1802                 return;
1803
1804         for (i = 0; i < sband->n_channels; i++)
1805                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1806 }
1807
1808 /* Used by drivers prior to wiphy registration */
1809 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1810                                    const struct ieee80211_regdomain *regd)
1811 {
1812         enum ieee80211_band band;
1813         unsigned int bands_set = 0;
1814
1815         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1816              "wiphy should have REGULATORY_CUSTOM_REG\n");
1817         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1818
1819         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1820                 if (!wiphy->bands[band])
1821                         continue;
1822                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1823                 bands_set++;
1824         }
1825
1826         /*
1827          * no point in calling this if it won't have any effect
1828          * on your device's supported bands.
1829          */
1830         WARN_ON(!bands_set);
1831 }
1832 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1833
1834 static void reg_set_request_processed(void)
1835 {
1836         bool need_more_processing = false;
1837         struct regulatory_request *lr = get_last_request();
1838
1839         lr->processed = true;
1840
1841         spin_lock(&reg_requests_lock);
1842         if (!list_empty(&reg_requests_list))
1843                 need_more_processing = true;
1844         spin_unlock(&reg_requests_lock);
1845
1846         cancel_delayed_work(&reg_timeout);
1847
1848         if (need_more_processing)
1849                 schedule_work(&reg_work);
1850 }
1851
1852 /**
1853  * reg_process_hint_core - process core regulatory requests
1854  * @pending_request: a pending core regulatory request
1855  *
1856  * The wireless subsystem can use this function to process
1857  * a regulatory request issued by the regulatory core.
1858  *
1859  * Returns one of the different reg request treatment values.
1860  */
1861 static enum reg_request_treatment
1862 reg_process_hint_core(struct regulatory_request *core_request)
1863 {
1864
1865         core_request->intersect = false;
1866         core_request->processed = false;
1867
1868         reg_update_last_request(core_request);
1869
1870         return reg_call_crda(core_request);
1871 }
1872
1873 static enum reg_request_treatment
1874 __reg_process_hint_user(struct regulatory_request *user_request)
1875 {
1876         struct regulatory_request *lr = get_last_request();
1877
1878         if (reg_request_cell_base(user_request))
1879                 return reg_ignore_cell_hint(user_request);
1880
1881         if (reg_request_cell_base(lr))
1882                 return REG_REQ_IGNORE;
1883
1884         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1885                 return REG_REQ_INTERSECT;
1886         /*
1887          * If the user knows better the user should set the regdom
1888          * to their country before the IE is picked up
1889          */
1890         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1891             lr->intersect)
1892                 return REG_REQ_IGNORE;
1893         /*
1894          * Process user requests only after previous user/driver/core
1895          * requests have been processed
1896          */
1897         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1898              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1899              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1900             regdom_changes(lr->alpha2))
1901                 return REG_REQ_IGNORE;
1902
1903         if (!regdom_changes(user_request->alpha2))
1904                 return REG_REQ_ALREADY_SET;
1905
1906         return REG_REQ_OK;
1907 }
1908
1909 /**
1910  * reg_process_hint_user - process user regulatory requests
1911  * @user_request: a pending user regulatory request
1912  *
1913  * The wireless subsystem can use this function to process
1914  * a regulatory request initiated by userspace.
1915  *
1916  * Returns one of the different reg request treatment values.
1917  */
1918 static enum reg_request_treatment
1919 reg_process_hint_user(struct regulatory_request *user_request)
1920 {
1921         enum reg_request_treatment treatment;
1922
1923         treatment = __reg_process_hint_user(user_request);
1924         if (treatment == REG_REQ_IGNORE ||
1925             treatment == REG_REQ_ALREADY_SET) {
1926                 reg_free_request(user_request);
1927                 return treatment;
1928         }
1929
1930         user_request->intersect = treatment == REG_REQ_INTERSECT;
1931         user_request->processed = false;
1932
1933         reg_update_last_request(user_request);
1934
1935         user_alpha2[0] = user_request->alpha2[0];
1936         user_alpha2[1] = user_request->alpha2[1];
1937
1938         return reg_call_crda(user_request);
1939 }
1940
1941 static enum reg_request_treatment
1942 __reg_process_hint_driver(struct regulatory_request *driver_request)
1943 {
1944         struct regulatory_request *lr = get_last_request();
1945
1946         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1947                 if (regdom_changes(driver_request->alpha2))
1948                         return REG_REQ_OK;
1949                 return REG_REQ_ALREADY_SET;
1950         }
1951
1952         /*
1953          * This would happen if you unplug and plug your card
1954          * back in or if you add a new device for which the previously
1955          * loaded card also agrees on the regulatory domain.
1956          */
1957         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1958             !regdom_changes(driver_request->alpha2))
1959                 return REG_REQ_ALREADY_SET;
1960
1961         return REG_REQ_INTERSECT;
1962 }
1963
1964 /**
1965  * reg_process_hint_driver - process driver regulatory requests
1966  * @driver_request: a pending driver regulatory request
1967  *
1968  * The wireless subsystem can use this function to process
1969  * a regulatory request issued by an 802.11 driver.
1970  *
1971  * Returns one of the different reg request treatment values.
1972  */
1973 static enum reg_request_treatment
1974 reg_process_hint_driver(struct wiphy *wiphy,
1975                         struct regulatory_request *driver_request)
1976 {
1977         const struct ieee80211_regdomain *regd, *tmp;
1978         enum reg_request_treatment treatment;
1979
1980         treatment = __reg_process_hint_driver(driver_request);
1981
1982         switch (treatment) {
1983         case REG_REQ_OK:
1984                 break;
1985         case REG_REQ_IGNORE:
1986                 reg_free_request(driver_request);
1987                 return treatment;
1988         case REG_REQ_INTERSECT:
1989                 /* fall through */
1990         case REG_REQ_ALREADY_SET:
1991                 regd = reg_copy_regd(get_cfg80211_regdom());
1992                 if (IS_ERR(regd)) {
1993                         reg_free_request(driver_request);
1994                         return REG_REQ_IGNORE;
1995                 }
1996
1997                 tmp = get_wiphy_regdom(wiphy);
1998                 rcu_assign_pointer(wiphy->regd, regd);
1999                 rcu_free_regdom(tmp);
2000         }
2001
2002
2003         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2004         driver_request->processed = false;
2005
2006         reg_update_last_request(driver_request);
2007
2008         /*
2009          * Since CRDA will not be called in this case as we already
2010          * have applied the requested regulatory domain before we just
2011          * inform userspace we have processed the request
2012          */
2013         if (treatment == REG_REQ_ALREADY_SET) {
2014                 nl80211_send_reg_change_event(driver_request);
2015                 reg_set_request_processed();
2016                 return treatment;
2017         }
2018
2019         return reg_call_crda(driver_request);
2020 }
2021
2022 static enum reg_request_treatment
2023 __reg_process_hint_country_ie(struct wiphy *wiphy,
2024                               struct regulatory_request *country_ie_request)
2025 {
2026         struct wiphy *last_wiphy = NULL;
2027         struct regulatory_request *lr = get_last_request();
2028
2029         if (reg_request_cell_base(lr)) {
2030                 /* Trust a Cell base station over the AP's country IE */
2031                 if (regdom_changes(country_ie_request->alpha2))
2032                         return REG_REQ_IGNORE;
2033                 return REG_REQ_ALREADY_SET;
2034         } else {
2035                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2036                         return REG_REQ_IGNORE;
2037         }
2038
2039         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2040                 return -EINVAL;
2041
2042         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2043                 return REG_REQ_OK;
2044
2045         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2046
2047         if (last_wiphy != wiphy) {
2048                 /*
2049                  * Two cards with two APs claiming different
2050                  * Country IE alpha2s. We could
2051                  * intersect them, but that seems unlikely
2052                  * to be correct. Reject second one for now.
2053                  */
2054                 if (regdom_changes(country_ie_request->alpha2))
2055                         return REG_REQ_IGNORE;
2056                 return REG_REQ_ALREADY_SET;
2057         }
2058
2059         if (regdom_changes(country_ie_request->alpha2))
2060                 return REG_REQ_OK;
2061         return REG_REQ_ALREADY_SET;
2062 }
2063
2064 /**
2065  * reg_process_hint_country_ie - process regulatory requests from country IEs
2066  * @country_ie_request: a regulatory request from a country IE
2067  *
2068  * The wireless subsystem can use this function to process
2069  * a regulatory request issued by a country Information Element.
2070  *
2071  * Returns one of the different reg request treatment values.
2072  */
2073 static enum reg_request_treatment
2074 reg_process_hint_country_ie(struct wiphy *wiphy,
2075                             struct regulatory_request *country_ie_request)
2076 {
2077         enum reg_request_treatment treatment;
2078
2079         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2080
2081         switch (treatment) {
2082         case REG_REQ_OK:
2083                 break;
2084         case REG_REQ_IGNORE:
2085                 /* fall through */
2086         case REG_REQ_ALREADY_SET:
2087                 reg_free_request(country_ie_request);
2088                 return treatment;
2089         case REG_REQ_INTERSECT:
2090                 reg_free_request(country_ie_request);
2091                 /*
2092                  * This doesn't happen yet, not sure we
2093                  * ever want to support it for this case.
2094                  */
2095                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2096                 return REG_REQ_IGNORE;
2097         }
2098
2099         country_ie_request->intersect = false;
2100         country_ie_request->processed = false;
2101
2102         reg_update_last_request(country_ie_request);
2103
2104         return reg_call_crda(country_ie_request);
2105 }
2106
2107 /* This processes *all* regulatory hints */
2108 static void reg_process_hint(struct regulatory_request *reg_request)
2109 {
2110         struct wiphy *wiphy = NULL;
2111         enum reg_request_treatment treatment;
2112
2113         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2114                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2115
2116         switch (reg_request->initiator) {
2117         case NL80211_REGDOM_SET_BY_CORE:
2118                 reg_process_hint_core(reg_request);
2119                 return;
2120         case NL80211_REGDOM_SET_BY_USER:
2121                 reg_process_hint_user(reg_request);
2122                 return;
2123         case NL80211_REGDOM_SET_BY_DRIVER:
2124                 if (!wiphy)
2125                         goto out_free;
2126                 treatment = reg_process_hint_driver(wiphy, reg_request);
2127                 break;
2128         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2129                 if (!wiphy)
2130                         goto out_free;
2131                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2132                 break;
2133         default:
2134                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2135                 goto out_free;
2136         }
2137
2138         /* This is required so that the orig_* parameters are saved.
2139          * NOTE: treatment must be set for any case that reaches here!
2140          */
2141         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2142             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2143                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2144                 reg_check_channels();
2145         }
2146
2147         return;
2148
2149 out_free:
2150         reg_free_request(reg_request);
2151 }
2152
2153 static bool reg_only_self_managed_wiphys(void)
2154 {
2155         struct cfg80211_registered_device *rdev;
2156         struct wiphy *wiphy;
2157         bool self_managed_found = false;
2158
2159         ASSERT_RTNL();
2160
2161         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2162                 wiphy = &rdev->wiphy;
2163                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2164                         self_managed_found = true;
2165                 else
2166                         return false;
2167         }
2168
2169         /* make sure at least one self-managed wiphy exists */
2170         return self_managed_found;
2171 }
2172
2173 /*
2174  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2175  * Regulatory hints come on a first come first serve basis and we
2176  * must process each one atomically.
2177  */
2178 static void reg_process_pending_hints(void)
2179 {
2180         struct regulatory_request *reg_request, *lr;
2181
2182         lr = get_last_request();
2183
2184         /* When last_request->processed becomes true this will be rescheduled */
2185         if (lr && !lr->processed) {
2186                 reg_process_hint(lr);
2187                 return;
2188         }
2189
2190         spin_lock(&reg_requests_lock);
2191
2192         if (list_empty(&reg_requests_list)) {
2193                 spin_unlock(&reg_requests_lock);
2194                 return;
2195         }
2196
2197         reg_request = list_first_entry(&reg_requests_list,
2198                                        struct regulatory_request,
2199                                        list);
2200         list_del_init(&reg_request->list);
2201
2202         spin_unlock(&reg_requests_lock);
2203
2204         if (reg_only_self_managed_wiphys()) {
2205                 reg_free_request(reg_request);
2206                 return;
2207         }
2208
2209         reg_process_hint(reg_request);
2210
2211         lr = get_last_request();
2212
2213         spin_lock(&reg_requests_lock);
2214         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2215                 schedule_work(&reg_work);
2216         spin_unlock(&reg_requests_lock);
2217 }
2218
2219 /* Processes beacon hints -- this has nothing to do with country IEs */
2220 static void reg_process_pending_beacon_hints(void)
2221 {
2222         struct cfg80211_registered_device *rdev;
2223         struct reg_beacon *pending_beacon, *tmp;
2224
2225         /* This goes through the _pending_ beacon list */
2226         spin_lock_bh(&reg_pending_beacons_lock);
2227
2228         list_for_each_entry_safe(pending_beacon, tmp,
2229                                  &reg_pending_beacons, list) {
2230                 list_del_init(&pending_beacon->list);
2231
2232                 /* Applies the beacon hint to current wiphys */
2233                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2234                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2235
2236                 /* Remembers the beacon hint for new wiphys or reg changes */
2237                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2238         }
2239
2240         spin_unlock_bh(&reg_pending_beacons_lock);
2241 }
2242
2243 static void reg_process_self_managed_hints(void)
2244 {
2245         struct cfg80211_registered_device *rdev;
2246         struct wiphy *wiphy;
2247         const struct ieee80211_regdomain *tmp;
2248         const struct ieee80211_regdomain *regd;
2249         enum ieee80211_band band;
2250         struct regulatory_request request = {};
2251
2252         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2253                 wiphy = &rdev->wiphy;
2254
2255                 spin_lock(&reg_requests_lock);
2256                 regd = rdev->requested_regd;
2257                 rdev->requested_regd = NULL;
2258                 spin_unlock(&reg_requests_lock);
2259
2260                 if (regd == NULL)
2261                         continue;
2262
2263                 tmp = get_wiphy_regdom(wiphy);
2264                 rcu_assign_pointer(wiphy->regd, regd);
2265                 rcu_free_regdom(tmp);
2266
2267                 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2268                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2269
2270                 reg_process_ht_flags(wiphy);
2271
2272                 request.wiphy_idx = get_wiphy_idx(wiphy);
2273                 request.alpha2[0] = regd->alpha2[0];
2274                 request.alpha2[1] = regd->alpha2[1];
2275                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2276
2277                 nl80211_send_wiphy_reg_change_event(&request);
2278         }
2279
2280         reg_check_channels();
2281 }
2282
2283 static void reg_todo(struct work_struct *work)
2284 {
2285         rtnl_lock();
2286         reg_process_pending_hints();
2287         reg_process_pending_beacon_hints();
2288         reg_process_self_managed_hints();
2289         rtnl_unlock();
2290 }
2291
2292 static void queue_regulatory_request(struct regulatory_request *request)
2293 {
2294         request->alpha2[0] = toupper(request->alpha2[0]);
2295         request->alpha2[1] = toupper(request->alpha2[1]);
2296
2297         spin_lock(&reg_requests_lock);
2298         list_add_tail(&request->list, &reg_requests_list);
2299         spin_unlock(&reg_requests_lock);
2300
2301         schedule_work(&reg_work);
2302 }
2303
2304 /*
2305  * Core regulatory hint -- happens during cfg80211_init()
2306  * and when we restore regulatory settings.
2307  */
2308 static int regulatory_hint_core(const char *alpha2)
2309 {
2310         struct regulatory_request *request;
2311
2312         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2313         if (!request)
2314                 return -ENOMEM;
2315
2316         request->alpha2[0] = alpha2[0];
2317         request->alpha2[1] = alpha2[1];
2318         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2319
2320         queue_regulatory_request(request);
2321
2322         return 0;
2323 }
2324
2325 /* User hints */
2326 int regulatory_hint_user(const char *alpha2,
2327                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2328 {
2329         struct regulatory_request *request;
2330
2331         if (WARN_ON(!alpha2))
2332                 return -EINVAL;
2333
2334         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2335         if (!request)
2336                 return -ENOMEM;
2337
2338         request->wiphy_idx = WIPHY_IDX_INVALID;
2339         request->alpha2[0] = alpha2[0];
2340         request->alpha2[1] = alpha2[1];
2341         request->initiator = NL80211_REGDOM_SET_BY_USER;
2342         request->user_reg_hint_type = user_reg_hint_type;
2343
2344         /* Allow calling CRDA again */
2345         reg_crda_timeouts = 0;
2346
2347         queue_regulatory_request(request);
2348
2349         return 0;
2350 }
2351
2352 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2353 {
2354         spin_lock(&reg_indoor_lock);
2355
2356         /* It is possible that more than one user space process is trying to
2357          * configure the indoor setting. To handle such cases, clear the indoor
2358          * setting in case that some process does not think that the device
2359          * is operating in an indoor environment. In addition, if a user space
2360          * process indicates that it is controlling the indoor setting, save its
2361          * portid, i.e., make it the owner.
2362          */
2363         reg_is_indoor = is_indoor;
2364         if (reg_is_indoor) {
2365                 if (!reg_is_indoor_portid)
2366                         reg_is_indoor_portid = portid;
2367         } else {
2368                 reg_is_indoor_portid = 0;
2369         }
2370
2371         spin_unlock(&reg_indoor_lock);
2372
2373         if (!is_indoor)
2374                 reg_check_channels();
2375
2376         return 0;
2377 }
2378
2379 void regulatory_netlink_notify(u32 portid)
2380 {
2381         spin_lock(&reg_indoor_lock);
2382
2383         if (reg_is_indoor_portid != portid) {
2384                 spin_unlock(&reg_indoor_lock);
2385                 return;
2386         }
2387
2388         reg_is_indoor = false;
2389         reg_is_indoor_portid = 0;
2390
2391         spin_unlock(&reg_indoor_lock);
2392
2393         reg_check_channels();
2394 }
2395
2396 /* Driver hints */
2397 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2398 {
2399         struct regulatory_request *request;
2400
2401         if (WARN_ON(!alpha2 || !wiphy))
2402                 return -EINVAL;
2403
2404         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2405
2406         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2407         if (!request)
2408                 return -ENOMEM;
2409
2410         request->wiphy_idx = get_wiphy_idx(wiphy);
2411
2412         request->alpha2[0] = alpha2[0];
2413         request->alpha2[1] = alpha2[1];
2414         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2415
2416         /* Allow calling CRDA again */
2417         reg_crda_timeouts = 0;
2418
2419         queue_regulatory_request(request);
2420
2421         return 0;
2422 }
2423 EXPORT_SYMBOL(regulatory_hint);
2424
2425 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2426                                 const u8 *country_ie, u8 country_ie_len)
2427 {
2428         char alpha2[2];
2429         enum environment_cap env = ENVIRON_ANY;
2430         struct regulatory_request *request = NULL, *lr;
2431
2432         /* IE len must be evenly divisible by 2 */
2433         if (country_ie_len & 0x01)
2434                 return;
2435
2436         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2437                 return;
2438
2439         request = kzalloc(sizeof(*request), GFP_KERNEL);
2440         if (!request)
2441                 return;
2442
2443         alpha2[0] = country_ie[0];
2444         alpha2[1] = country_ie[1];
2445
2446         if (country_ie[2] == 'I')
2447                 env = ENVIRON_INDOOR;
2448         else if (country_ie[2] == 'O')
2449                 env = ENVIRON_OUTDOOR;
2450
2451         rcu_read_lock();
2452         lr = get_last_request();
2453
2454         if (unlikely(!lr))
2455                 goto out;
2456
2457         /*
2458          * We will run this only upon a successful connection on cfg80211.
2459          * We leave conflict resolution to the workqueue, where can hold
2460          * the RTNL.
2461          */
2462         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2463             lr->wiphy_idx != WIPHY_IDX_INVALID)
2464                 goto out;
2465
2466         request->wiphy_idx = get_wiphy_idx(wiphy);
2467         request->alpha2[0] = alpha2[0];
2468         request->alpha2[1] = alpha2[1];
2469         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2470         request->country_ie_env = env;
2471
2472         /* Allow calling CRDA again */
2473         reg_crda_timeouts = 0;
2474
2475         queue_regulatory_request(request);
2476         request = NULL;
2477 out:
2478         kfree(request);
2479         rcu_read_unlock();
2480 }
2481
2482 static void restore_alpha2(char *alpha2, bool reset_user)
2483 {
2484         /* indicates there is no alpha2 to consider for restoration */
2485         alpha2[0] = '9';
2486         alpha2[1] = '7';
2487
2488         /* The user setting has precedence over the module parameter */
2489         if (is_user_regdom_saved()) {
2490                 /* Unless we're asked to ignore it and reset it */
2491                 if (reset_user) {
2492                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2493                         user_alpha2[0] = '9';
2494                         user_alpha2[1] = '7';
2495
2496                         /*
2497                          * If we're ignoring user settings, we still need to
2498                          * check the module parameter to ensure we put things
2499                          * back as they were for a full restore.
2500                          */
2501                         if (!is_world_regdom(ieee80211_regdom)) {
2502                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2503                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2504                                 alpha2[0] = ieee80211_regdom[0];
2505                                 alpha2[1] = ieee80211_regdom[1];
2506                         }
2507                 } else {
2508                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2509                                       user_alpha2[0], user_alpha2[1]);
2510                         alpha2[0] = user_alpha2[0];
2511                         alpha2[1] = user_alpha2[1];
2512                 }
2513         } else if (!is_world_regdom(ieee80211_regdom)) {
2514                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2515                               ieee80211_regdom[0], ieee80211_regdom[1]);
2516                 alpha2[0] = ieee80211_regdom[0];
2517                 alpha2[1] = ieee80211_regdom[1];
2518         } else
2519                 REG_DBG_PRINT("Restoring regulatory settings\n");
2520 }
2521
2522 static void restore_custom_reg_settings(struct wiphy *wiphy)
2523 {
2524         struct ieee80211_supported_band *sband;
2525         enum ieee80211_band band;
2526         struct ieee80211_channel *chan;
2527         int i;
2528
2529         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2530                 sband = wiphy->bands[band];
2531                 if (!sband)
2532                         continue;
2533                 for (i = 0; i < sband->n_channels; i++) {
2534                         chan = &sband->channels[i];
2535                         chan->flags = chan->orig_flags;
2536                         chan->max_antenna_gain = chan->orig_mag;
2537                         chan->max_power = chan->orig_mpwr;
2538                         chan->beacon_found = false;
2539                 }
2540         }
2541 }
2542
2543 /*
2544  * Restoring regulatory settings involves ingoring any
2545  * possibly stale country IE information and user regulatory
2546  * settings if so desired, this includes any beacon hints
2547  * learned as we could have traveled outside to another country
2548  * after disconnection. To restore regulatory settings we do
2549  * exactly what we did at bootup:
2550  *
2551  *   - send a core regulatory hint
2552  *   - send a user regulatory hint if applicable
2553  *
2554  * Device drivers that send a regulatory hint for a specific country
2555  * keep their own regulatory domain on wiphy->regd so that does does
2556  * not need to be remembered.
2557  */
2558 static void restore_regulatory_settings(bool reset_user)
2559 {
2560         char alpha2[2];
2561         char world_alpha2[2];
2562         struct reg_beacon *reg_beacon, *btmp;
2563         LIST_HEAD(tmp_reg_req_list);
2564         struct cfg80211_registered_device *rdev;
2565
2566         ASSERT_RTNL();
2567
2568         /*
2569          * Clear the indoor setting in case that it is not controlled by user
2570          * space, as otherwise there is no guarantee that the device is still
2571          * operating in an indoor environment.
2572          */
2573         spin_lock(&reg_indoor_lock);
2574         if (reg_is_indoor && !reg_is_indoor_portid) {
2575                 reg_is_indoor = false;
2576                 reg_check_channels();
2577         }
2578         spin_unlock(&reg_indoor_lock);
2579
2580         reset_regdomains(true, &world_regdom);
2581         restore_alpha2(alpha2, reset_user);
2582
2583         /*
2584          * If there's any pending requests we simply
2585          * stash them to a temporary pending queue and
2586          * add then after we've restored regulatory
2587          * settings.
2588          */
2589         spin_lock(&reg_requests_lock);
2590         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2591         spin_unlock(&reg_requests_lock);
2592
2593         /* Clear beacon hints */
2594         spin_lock_bh(&reg_pending_beacons_lock);
2595         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2596                 list_del(&reg_beacon->list);
2597                 kfree(reg_beacon);
2598         }
2599         spin_unlock_bh(&reg_pending_beacons_lock);
2600
2601         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2602                 list_del(&reg_beacon->list);
2603                 kfree(reg_beacon);
2604         }
2605
2606         /* First restore to the basic regulatory settings */
2607         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2608         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2609
2610         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2611                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2612                         continue;
2613                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2614                         restore_custom_reg_settings(&rdev->wiphy);
2615         }
2616
2617         regulatory_hint_core(world_alpha2);
2618
2619         /*
2620          * This restores the ieee80211_regdom module parameter
2621          * preference or the last user requested regulatory
2622          * settings, user regulatory settings takes precedence.
2623          */
2624         if (is_an_alpha2(alpha2))
2625                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2626
2627         spin_lock(&reg_requests_lock);
2628         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2629         spin_unlock(&reg_requests_lock);
2630
2631         REG_DBG_PRINT("Kicking the queue\n");
2632
2633         schedule_work(&reg_work);
2634 }
2635
2636 void regulatory_hint_disconnect(void)
2637 {
2638         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2639         restore_regulatory_settings(false);
2640 }
2641
2642 static bool freq_is_chan_12_13_14(u16 freq)
2643 {
2644         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2645             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2646             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2647                 return true;
2648         return false;
2649 }
2650
2651 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2652 {
2653         struct reg_beacon *pending_beacon;
2654
2655         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2656                 if (beacon_chan->center_freq ==
2657                     pending_beacon->chan.center_freq)
2658                         return true;
2659         return false;
2660 }
2661
2662 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2663                                  struct ieee80211_channel *beacon_chan,
2664                                  gfp_t gfp)
2665 {
2666         struct reg_beacon *reg_beacon;
2667         bool processing;
2668
2669         if (beacon_chan->beacon_found ||
2670             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2671             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2672              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2673                 return 0;
2674
2675         spin_lock_bh(&reg_pending_beacons_lock);
2676         processing = pending_reg_beacon(beacon_chan);
2677         spin_unlock_bh(&reg_pending_beacons_lock);
2678
2679         if (processing)
2680                 return 0;
2681
2682         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2683         if (!reg_beacon)
2684                 return -ENOMEM;
2685
2686         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2687                       beacon_chan->center_freq,
2688                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2689                       wiphy_name(wiphy));
2690
2691         memcpy(&reg_beacon->chan, beacon_chan,
2692                sizeof(struct ieee80211_channel));
2693
2694         /*
2695          * Since we can be called from BH or and non-BH context
2696          * we must use spin_lock_bh()
2697          */
2698         spin_lock_bh(&reg_pending_beacons_lock);
2699         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2700         spin_unlock_bh(&reg_pending_beacons_lock);
2701
2702         schedule_work(&reg_work);
2703
2704         return 0;
2705 }
2706
2707 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2708 {
2709         unsigned int i;
2710         const struct ieee80211_reg_rule *reg_rule = NULL;
2711         const struct ieee80211_freq_range *freq_range = NULL;
2712         const struct ieee80211_power_rule *power_rule = NULL;
2713         char bw[32], cac_time[32];
2714
2715         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2716
2717         for (i = 0; i < rd->n_reg_rules; i++) {
2718                 reg_rule = &rd->reg_rules[i];
2719                 freq_range = &reg_rule->freq_range;
2720                 power_rule = &reg_rule->power_rule;
2721
2722                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2723                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2724                                  freq_range->max_bandwidth_khz,
2725                                  reg_get_max_bandwidth(rd, reg_rule));
2726                 else
2727                         snprintf(bw, sizeof(bw), "%d KHz",
2728                                  freq_range->max_bandwidth_khz);
2729
2730                 if (reg_rule->flags & NL80211_RRF_DFS)
2731                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2732                                   reg_rule->dfs_cac_ms/1000);
2733                 else
2734                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2735
2736
2737                 /*
2738                  * There may not be documentation for max antenna gain
2739                  * in certain regions
2740                  */
2741                 if (power_rule->max_antenna_gain)
2742                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2743                                 freq_range->start_freq_khz,
2744                                 freq_range->end_freq_khz,
2745                                 bw,
2746                                 power_rule->max_antenna_gain,
2747                                 power_rule->max_eirp,
2748                                 cac_time);
2749                 else
2750                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2751                                 freq_range->start_freq_khz,
2752                                 freq_range->end_freq_khz,
2753                                 bw,
2754                                 power_rule->max_eirp,
2755                                 cac_time);
2756         }
2757 }
2758
2759 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2760 {
2761         switch (dfs_region) {
2762         case NL80211_DFS_UNSET:
2763         case NL80211_DFS_FCC:
2764         case NL80211_DFS_ETSI:
2765         case NL80211_DFS_JP:
2766                 return true;
2767         default:
2768                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2769                               dfs_region);
2770                 return false;
2771         }
2772 }
2773
2774 static void print_regdomain(const struct ieee80211_regdomain *rd)
2775 {
2776         struct regulatory_request *lr = get_last_request();
2777
2778         if (is_intersected_alpha2(rd->alpha2)) {
2779                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2780                         struct cfg80211_registered_device *rdev;
2781                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2782                         if (rdev) {
2783                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2784                                         rdev->country_ie_alpha2[0],
2785                                         rdev->country_ie_alpha2[1]);
2786                         } else
2787                                 pr_info("Current regulatory domain intersected:\n");
2788                 } else
2789                         pr_info("Current regulatory domain intersected:\n");
2790         } else if (is_world_regdom(rd->alpha2)) {
2791                 pr_info("World regulatory domain updated:\n");
2792         } else {
2793                 if (is_unknown_alpha2(rd->alpha2))
2794                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2795                 else {
2796                         if (reg_request_cell_base(lr))
2797                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2798                                         rd->alpha2[0], rd->alpha2[1]);
2799                         else
2800                                 pr_info("Regulatory domain changed to country: %c%c\n",
2801                                         rd->alpha2[0], rd->alpha2[1]);
2802                 }
2803         }
2804
2805         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2806         print_rd_rules(rd);
2807 }
2808
2809 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2810 {
2811         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2812         print_rd_rules(rd);
2813 }
2814
2815 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2816 {
2817         if (!is_world_regdom(rd->alpha2))
2818                 return -EINVAL;
2819         update_world_regdomain(rd);
2820         return 0;
2821 }
2822
2823 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2824                            struct regulatory_request *user_request)
2825 {
2826         const struct ieee80211_regdomain *intersected_rd = NULL;
2827
2828         if (!regdom_changes(rd->alpha2))
2829                 return -EALREADY;
2830
2831         if (!is_valid_rd(rd)) {
2832                 pr_err("Invalid regulatory domain detected:\n");
2833                 print_regdomain_info(rd);
2834                 return -EINVAL;
2835         }
2836
2837         if (!user_request->intersect) {
2838                 reset_regdomains(false, rd);
2839                 return 0;
2840         }
2841
2842         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2843         if (!intersected_rd)
2844                 return -EINVAL;
2845
2846         kfree(rd);
2847         rd = NULL;
2848         reset_regdomains(false, intersected_rd);
2849
2850         return 0;
2851 }
2852
2853 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2854                              struct regulatory_request *driver_request)
2855 {
2856         const struct ieee80211_regdomain *regd;
2857         const struct ieee80211_regdomain *intersected_rd = NULL;
2858         const struct ieee80211_regdomain *tmp;
2859         struct wiphy *request_wiphy;
2860
2861         if (is_world_regdom(rd->alpha2))
2862                 return -EINVAL;
2863
2864         if (!regdom_changes(rd->alpha2))
2865                 return -EALREADY;
2866
2867         if (!is_valid_rd(rd)) {
2868                 pr_err("Invalid regulatory domain detected:\n");
2869                 print_regdomain_info(rd);
2870                 return -EINVAL;
2871         }
2872
2873         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2874         if (!request_wiphy) {
2875                 queue_delayed_work(system_power_efficient_wq,
2876                                    &reg_timeout, 0);
2877                 return -ENODEV;
2878         }
2879
2880         if (!driver_request->intersect) {
2881                 if (request_wiphy->regd)
2882                         return -EALREADY;
2883
2884                 regd = reg_copy_regd(rd);
2885                 if (IS_ERR(regd))
2886                         return PTR_ERR(regd);
2887
2888                 rcu_assign_pointer(request_wiphy->regd, regd);
2889                 reset_regdomains(false, rd);
2890                 return 0;
2891         }
2892
2893         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2894         if (!intersected_rd)
2895                 return -EINVAL;
2896
2897         /*
2898          * We can trash what CRDA provided now.
2899          * However if a driver requested this specific regulatory
2900          * domain we keep it for its private use
2901          */
2902         tmp = get_wiphy_regdom(request_wiphy);
2903         rcu_assign_pointer(request_wiphy->regd, rd);
2904         rcu_free_regdom(tmp);
2905
2906         rd = NULL;
2907
2908         reset_regdomains(false, intersected_rd);
2909
2910         return 0;
2911 }
2912
2913 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2914                                  struct regulatory_request *country_ie_request)
2915 {
2916         struct wiphy *request_wiphy;
2917
2918         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2919             !is_unknown_alpha2(rd->alpha2))
2920                 return -EINVAL;
2921
2922         /*
2923          * Lets only bother proceeding on the same alpha2 if the current
2924          * rd is non static (it means CRDA was present and was used last)
2925          * and the pending request came in from a country IE
2926          */
2927
2928         if (!is_valid_rd(rd)) {
2929                 pr_err("Invalid regulatory domain detected:\n");
2930                 print_regdomain_info(rd);
2931                 return -EINVAL;
2932         }
2933
2934         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2935         if (!request_wiphy) {
2936                 queue_delayed_work(system_power_efficient_wq,
2937                                    &reg_timeout, 0);
2938                 return -ENODEV;
2939         }
2940
2941         if (country_ie_request->intersect)
2942                 return -EINVAL;
2943
2944         reset_regdomains(false, rd);
2945         return 0;
2946 }
2947
2948 /*
2949  * Use this call to set the current regulatory domain. Conflicts with
2950  * multiple drivers can be ironed out later. Caller must've already
2951  * kmalloc'd the rd structure.
2952  */
2953 int set_regdom(const struct ieee80211_regdomain *rd,
2954                enum ieee80211_regd_source regd_src)
2955 {
2956         struct regulatory_request *lr;
2957         bool user_reset = false;
2958         int r;
2959
2960         if (!reg_is_valid_request(rd->alpha2)) {
2961                 kfree(rd);
2962                 return -EINVAL;
2963         }
2964
2965         if (regd_src == REGD_SOURCE_CRDA)
2966                 reg_crda_timeouts = 0;
2967
2968         lr = get_last_request();
2969
2970         /* Note that this doesn't update the wiphys, this is done below */
2971         switch (lr->initiator) {
2972         case NL80211_REGDOM_SET_BY_CORE:
2973                 r = reg_set_rd_core(rd);
2974                 break;
2975         case NL80211_REGDOM_SET_BY_USER:
2976                 r = reg_set_rd_user(rd, lr);
2977                 user_reset = true;
2978                 break;
2979         case NL80211_REGDOM_SET_BY_DRIVER:
2980                 r = reg_set_rd_driver(rd, lr);
2981                 break;
2982         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2983                 r = reg_set_rd_country_ie(rd, lr);
2984                 break;
2985         default:
2986                 WARN(1, "invalid initiator %d\n", lr->initiator);
2987                 return -EINVAL;
2988         }
2989
2990         if (r) {
2991                 switch (r) {
2992                 case -EALREADY:
2993                         reg_set_request_processed();
2994                         break;
2995                 default:
2996                         /* Back to world regulatory in case of errors */
2997                         restore_regulatory_settings(user_reset);
2998                 }
2999
3000                 kfree(rd);
3001                 return r;
3002         }
3003
3004         /* This would make this whole thing pointless */
3005         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3006                 return -EINVAL;
3007
3008         /* update all wiphys now with the new established regulatory domain */
3009         update_all_wiphy_regulatory(lr->initiator);
3010
3011         print_regdomain(get_cfg80211_regdom());
3012
3013         nl80211_send_reg_change_event(lr);
3014
3015         reg_set_request_processed();
3016
3017         return 0;
3018 }
3019
3020 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3021                                        struct ieee80211_regdomain *rd)
3022 {
3023         const struct ieee80211_regdomain *regd;
3024         const struct ieee80211_regdomain *prev_regd;
3025         struct cfg80211_registered_device *rdev;
3026
3027         if (WARN_ON(!wiphy || !rd))
3028                 return -EINVAL;
3029
3030         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3031                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3032                 return -EPERM;
3033
3034         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3035                 print_regdomain_info(rd);
3036                 return -EINVAL;
3037         }
3038
3039         regd = reg_copy_regd(rd);
3040         if (IS_ERR(regd))
3041                 return PTR_ERR(regd);
3042
3043         rdev = wiphy_to_rdev(wiphy);
3044
3045         spin_lock(&reg_requests_lock);
3046         prev_regd = rdev->requested_regd;
3047         rdev->requested_regd = regd;
3048         spin_unlock(&reg_requests_lock);
3049
3050         kfree(prev_regd);
3051         return 0;
3052 }
3053
3054 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3055                               struct ieee80211_regdomain *rd)
3056 {
3057         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3058
3059         if (ret)
3060                 return ret;
3061
3062         schedule_work(&reg_work);
3063         return 0;
3064 }
3065 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3066
3067 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3068                                         struct ieee80211_regdomain *rd)
3069 {
3070         int ret;
3071
3072         ASSERT_RTNL();
3073
3074         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3075         if (ret)
3076                 return ret;
3077
3078         /* process the request immediately */
3079         reg_process_self_managed_hints();
3080         return 0;
3081 }
3082 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3083
3084 void wiphy_regulatory_register(struct wiphy *wiphy)
3085 {
3086         struct regulatory_request *lr;
3087
3088         /* self-managed devices ignore external hints */
3089         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3090                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3091                                            REGULATORY_COUNTRY_IE_IGNORE;
3092
3093         if (!reg_dev_ignore_cell_hint(wiphy))
3094                 reg_num_devs_support_basehint++;
3095
3096         lr = get_last_request();
3097         wiphy_update_regulatory(wiphy, lr->initiator);
3098 }
3099
3100 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3101 {
3102         struct wiphy *request_wiphy = NULL;
3103         struct regulatory_request *lr;
3104
3105         lr = get_last_request();
3106
3107         if (!reg_dev_ignore_cell_hint(wiphy))
3108                 reg_num_devs_support_basehint--;
3109
3110         rcu_free_regdom(get_wiphy_regdom(wiphy));
3111         RCU_INIT_POINTER(wiphy->regd, NULL);
3112
3113         if (lr)
3114                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3115
3116         if (!request_wiphy || request_wiphy != wiphy)
3117                 return;
3118
3119         lr->wiphy_idx = WIPHY_IDX_INVALID;
3120         lr->country_ie_env = ENVIRON_ANY;
3121 }
3122
3123 static void reg_timeout_work(struct work_struct *work)
3124 {
3125         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3126         rtnl_lock();
3127         reg_crda_timeouts++;
3128         restore_regulatory_settings(true);
3129         rtnl_unlock();
3130 }
3131
3132 /*
3133  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3134  * UNII band definitions
3135  */
3136 int cfg80211_get_unii(int freq)
3137 {
3138         /* UNII-1 */
3139         if (freq >= 5150 && freq <= 5250)
3140                 return 0;
3141
3142         /* UNII-2A */
3143         if (freq > 5250 && freq <= 5350)
3144                 return 1;
3145
3146         /* UNII-2B */
3147         if (freq > 5350 && freq <= 5470)
3148                 return 2;
3149
3150         /* UNII-2C */
3151         if (freq > 5470 && freq <= 5725)
3152                 return 3;
3153
3154         /* UNII-3 */
3155         if (freq > 5725 && freq <= 5825)
3156                 return 4;
3157
3158         return -EINVAL;
3159 }
3160
3161 bool regulatory_indoor_allowed(void)
3162 {
3163         return reg_is_indoor;
3164 }
3165
3166 int __init regulatory_init(void)
3167 {
3168         int err = 0;
3169
3170         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3171         if (IS_ERR(reg_pdev))
3172                 return PTR_ERR(reg_pdev);
3173
3174         spin_lock_init(&reg_requests_lock);
3175         spin_lock_init(&reg_pending_beacons_lock);
3176         spin_lock_init(&reg_indoor_lock);
3177
3178         reg_regdb_size_check();
3179
3180         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3181
3182         user_alpha2[0] = '9';
3183         user_alpha2[1] = '7';
3184
3185         /* We always try to get an update for the static regdomain */
3186         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3187         if (err) {
3188                 if (err == -ENOMEM)
3189                         return err;
3190                 /*
3191                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3192                  * memory which is handled and propagated appropriately above
3193                  * but it can also fail during a netlink_broadcast() or during
3194                  * early boot for call_usermodehelper(). For now treat these
3195                  * errors as non-fatal.
3196                  */
3197                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3198         }
3199
3200         /*
3201          * Finally, if the user set the module parameter treat it
3202          * as a user hint.
3203          */
3204         if (!is_world_regdom(ieee80211_regdom))
3205                 regulatory_hint_user(ieee80211_regdom,
3206                                      NL80211_USER_REG_HINT_USER);
3207
3208         return 0;
3209 }
3210
3211 void regulatory_exit(void)
3212 {
3213         struct regulatory_request *reg_request, *tmp;
3214         struct reg_beacon *reg_beacon, *btmp;
3215
3216         cancel_work_sync(&reg_work);
3217         cancel_delayed_work_sync(&reg_timeout);
3218         cancel_delayed_work_sync(&reg_check_chans);
3219
3220         /* Lock to suppress warnings */
3221         rtnl_lock();
3222         reset_regdomains(true, NULL);
3223         rtnl_unlock();
3224
3225         dev_set_uevent_suppress(&reg_pdev->dev, true);
3226
3227         platform_device_unregister(reg_pdev);
3228
3229         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3230                 list_del(&reg_beacon->list);
3231                 kfree(reg_beacon);
3232         }
3233
3234         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3235                 list_del(&reg_beacon->list);
3236                 kfree(reg_beacon);
3237         }
3238
3239         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3240                 list_del(&reg_request->list);
3241                 kfree(reg_request);
3242         }
3243 }