]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
Merge branch 'linux-3.16' of git://anongit.freedesktop.org/git/nouveau/linux-2.6...
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 /**
69  * enum reg_request_treatment - regulatory request treatment
70  *
71  * @REG_REQ_OK: continue processing the regulatory request
72  * @REG_REQ_IGNORE: ignore the regulatory request
73  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
74  *      be intersected with the current one.
75  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
76  *      regulatory settings, and no further processing is required.
77  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
78  *      further processing is required, i.e., not need to update last_request
79  *      etc. This should be used for user hints that do not provide an alpha2
80  *      but some other type of regulatory hint, i.e., indoor operation.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87         REG_REQ_USER_HINT_HANDLED,
88 };
89
90 static struct regulatory_request core_request_world = {
91         .initiator = NL80211_REGDOM_SET_BY_CORE,
92         .alpha2[0] = '0',
93         .alpha2[1] = '0',
94         .intersect = false,
95         .processed = true,
96         .country_ie_env = ENVIRON_ANY,
97 };
98
99 /*
100  * Receipt of information from last regulatory request,
101  * protected by RTNL (and can be accessed with RCU protection)
102  */
103 static struct regulatory_request __rcu *last_request =
104         (void __rcu *)&core_request_world;
105
106 /* To trigger userspace events */
107 static struct platform_device *reg_pdev;
108
109 /*
110  * Central wireless core regulatory domains, we only need two,
111  * the current one and a world regulatory domain in case we have no
112  * information to give us an alpha2.
113  * (protected by RTNL, can be read under RCU)
114  */
115 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
116
117 /*
118  * Number of devices that registered to the core
119  * that support cellular base station regulatory hints
120  * (protected by RTNL)
121  */
122 static int reg_num_devs_support_basehint;
123
124 /*
125  * State variable indicating if the platform on which the devices
126  * are attached is operating in an indoor environment. The state variable
127  * is relevant for all registered devices.
128  * (protected by RTNL)
129  */
130 static bool reg_is_indoor;
131
132 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
133 {
134         return rtnl_dereference(cfg80211_regdomain);
135 }
136
137 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
138 {
139         return rtnl_dereference(wiphy->regd);
140 }
141
142 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
143 {
144         switch (dfs_region) {
145         case NL80211_DFS_UNSET:
146                 return "unset";
147         case NL80211_DFS_FCC:
148                 return "FCC";
149         case NL80211_DFS_ETSI:
150                 return "ETSI";
151         case NL80211_DFS_JP:
152                 return "JP";
153         }
154         return "Unknown";
155 }
156
157 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
158 {
159         const struct ieee80211_regdomain *regd = NULL;
160         const struct ieee80211_regdomain *wiphy_regd = NULL;
161
162         regd = get_cfg80211_regdom();
163         if (!wiphy)
164                 goto out;
165
166         wiphy_regd = get_wiphy_regdom(wiphy);
167         if (!wiphy_regd)
168                 goto out;
169
170         if (wiphy_regd->dfs_region == regd->dfs_region)
171                 goto out;
172
173         REG_DBG_PRINT("%s: device specific dfs_region "
174                       "(%s) disagrees with cfg80211's "
175                       "central dfs_region (%s)\n",
176                       dev_name(&wiphy->dev),
177                       reg_dfs_region_str(wiphy_regd->dfs_region),
178                       reg_dfs_region_str(regd->dfs_region));
179
180 out:
181         return regd->dfs_region;
182 }
183
184 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
185 {
186         if (!r)
187                 return;
188         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
189 }
190
191 static struct regulatory_request *get_last_request(void)
192 {
193         return rcu_dereference_rtnl(last_request);
194 }
195
196 /* Used to queue up regulatory hints */
197 static LIST_HEAD(reg_requests_list);
198 static spinlock_t reg_requests_lock;
199
200 /* Used to queue up beacon hints for review */
201 static LIST_HEAD(reg_pending_beacons);
202 static spinlock_t reg_pending_beacons_lock;
203
204 /* Used to keep track of processed beacon hints */
205 static LIST_HEAD(reg_beacon_list);
206
207 struct reg_beacon {
208         struct list_head list;
209         struct ieee80211_channel chan;
210 };
211
212 static void reg_todo(struct work_struct *work);
213 static DECLARE_WORK(reg_work, reg_todo);
214
215 static void reg_timeout_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
217
218 /* We keep a static world regulatory domain in case of the absence of CRDA */
219 static const struct ieee80211_regdomain world_regdom = {
220         .n_reg_rules = 6,
221         .alpha2 =  "00",
222         .reg_rules = {
223                 /* IEEE 802.11b/g, channels 1..11 */
224                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
225                 /* IEEE 802.11b/g, channels 12..13. */
226                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
227                         NL80211_RRF_NO_IR),
228                 /* IEEE 802.11 channel 14 - Only JP enables
229                  * this and for 802.11b only */
230                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
231                         NL80211_RRF_NO_IR |
232                         NL80211_RRF_NO_OFDM),
233                 /* IEEE 802.11a, channel 36..48 */
234                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
235                         NL80211_RRF_NO_IR),
236
237                 /* IEEE 802.11a, channel 52..64 - DFS required */
238                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
239                         NL80211_RRF_NO_IR |
240                         NL80211_RRF_DFS),
241
242                 /* IEEE 802.11a, channel 100..144 - DFS required */
243                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
244                         NL80211_RRF_NO_IR |
245                         NL80211_RRF_DFS),
246
247                 /* IEEE 802.11a, channel 149..165 */
248                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
249                         NL80211_RRF_NO_IR),
250
251                 /* IEEE 802.11ad (60gHz), channels 1..3 */
252                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
253         }
254 };
255
256 /* protected by RTNL */
257 static const struct ieee80211_regdomain *cfg80211_world_regdom =
258         &world_regdom;
259
260 static char *ieee80211_regdom = "00";
261 static char user_alpha2[2];
262
263 module_param(ieee80211_regdom, charp, 0444);
264 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
265
266 static void reg_free_request(struct regulatory_request *request)
267 {
268         if (request != get_last_request())
269                 kfree(request);
270 }
271
272 static void reg_free_last_request(void)
273 {
274         struct regulatory_request *lr = get_last_request();
275
276         if (lr != &core_request_world && lr)
277                 kfree_rcu(lr, rcu_head);
278 }
279
280 static void reg_update_last_request(struct regulatory_request *request)
281 {
282         struct regulatory_request *lr;
283
284         lr = get_last_request();
285         if (lr == request)
286                 return;
287
288         reg_free_last_request();
289         rcu_assign_pointer(last_request, request);
290 }
291
292 static void reset_regdomains(bool full_reset,
293                              const struct ieee80211_regdomain *new_regdom)
294 {
295         const struct ieee80211_regdomain *r;
296
297         ASSERT_RTNL();
298
299         r = get_cfg80211_regdom();
300
301         /* avoid freeing static information or freeing something twice */
302         if (r == cfg80211_world_regdom)
303                 r = NULL;
304         if (cfg80211_world_regdom == &world_regdom)
305                 cfg80211_world_regdom = NULL;
306         if (r == &world_regdom)
307                 r = NULL;
308
309         rcu_free_regdom(r);
310         rcu_free_regdom(cfg80211_world_regdom);
311
312         cfg80211_world_regdom = &world_regdom;
313         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
314
315         if (!full_reset)
316                 return;
317
318         reg_update_last_request(&core_request_world);
319 }
320
321 /*
322  * Dynamic world regulatory domain requested by the wireless
323  * core upon initialization
324  */
325 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
326 {
327         struct regulatory_request *lr;
328
329         lr = get_last_request();
330
331         WARN_ON(!lr);
332
333         reset_regdomains(false, rd);
334
335         cfg80211_world_regdom = rd;
336 }
337
338 bool is_world_regdom(const char *alpha2)
339 {
340         if (!alpha2)
341                 return false;
342         return alpha2[0] == '0' && alpha2[1] == '0';
343 }
344
345 static bool is_alpha2_set(const char *alpha2)
346 {
347         if (!alpha2)
348                 return false;
349         return alpha2[0] && alpha2[1];
350 }
351
352 static bool is_unknown_alpha2(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         /*
357          * Special case where regulatory domain was built by driver
358          * but a specific alpha2 cannot be determined
359          */
360         return alpha2[0] == '9' && alpha2[1] == '9';
361 }
362
363 static bool is_intersected_alpha2(const char *alpha2)
364 {
365         if (!alpha2)
366                 return false;
367         /*
368          * Special case where regulatory domain is the
369          * result of an intersection between two regulatory domain
370          * structures
371          */
372         return alpha2[0] == '9' && alpha2[1] == '8';
373 }
374
375 static bool is_an_alpha2(const char *alpha2)
376 {
377         if (!alpha2)
378                 return false;
379         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
380 }
381
382 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
383 {
384         if (!alpha2_x || !alpha2_y)
385                 return false;
386         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
387 }
388
389 static bool regdom_changes(const char *alpha2)
390 {
391         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
392
393         if (!r)
394                 return true;
395         return !alpha2_equal(r->alpha2, alpha2);
396 }
397
398 /*
399  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
400  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
401  * has ever been issued.
402  */
403 static bool is_user_regdom_saved(void)
404 {
405         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
406                 return false;
407
408         /* This would indicate a mistake on the design */
409         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
410                  "Unexpected user alpha2: %c%c\n",
411                  user_alpha2[0], user_alpha2[1]))
412                 return false;
413
414         return true;
415 }
416
417 static const struct ieee80211_regdomain *
418 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
419 {
420         struct ieee80211_regdomain *regd;
421         int size_of_regd;
422         unsigned int i;
423
424         size_of_regd =
425                 sizeof(struct ieee80211_regdomain) +
426                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
427
428         regd = kzalloc(size_of_regd, GFP_KERNEL);
429         if (!regd)
430                 return ERR_PTR(-ENOMEM);
431
432         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
433
434         for (i = 0; i < src_regd->n_reg_rules; i++)
435                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
436                        sizeof(struct ieee80211_reg_rule));
437
438         return regd;
439 }
440
441 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
442 struct reg_regdb_search_request {
443         char alpha2[2];
444         struct list_head list;
445 };
446
447 static LIST_HEAD(reg_regdb_search_list);
448 static DEFINE_MUTEX(reg_regdb_search_mutex);
449
450 static void reg_regdb_search(struct work_struct *work)
451 {
452         struct reg_regdb_search_request *request;
453         const struct ieee80211_regdomain *curdom, *regdom = NULL;
454         int i;
455
456         rtnl_lock();
457
458         mutex_lock(&reg_regdb_search_mutex);
459         while (!list_empty(&reg_regdb_search_list)) {
460                 request = list_first_entry(&reg_regdb_search_list,
461                                            struct reg_regdb_search_request,
462                                            list);
463                 list_del(&request->list);
464
465                 for (i = 0; i < reg_regdb_size; i++) {
466                         curdom = reg_regdb[i];
467
468                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
469                                 regdom = reg_copy_regd(curdom);
470                                 break;
471                         }
472                 }
473
474                 kfree(request);
475         }
476         mutex_unlock(&reg_regdb_search_mutex);
477
478         if (!IS_ERR_OR_NULL(regdom))
479                 set_regdom(regdom);
480
481         rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
485
486 static void reg_regdb_query(const char *alpha2)
487 {
488         struct reg_regdb_search_request *request;
489
490         if (!alpha2)
491                 return;
492
493         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
494         if (!request)
495                 return;
496
497         memcpy(request->alpha2, alpha2, 2);
498
499         mutex_lock(&reg_regdb_search_mutex);
500         list_add_tail(&request->list, &reg_regdb_search_list);
501         mutex_unlock(&reg_regdb_search_mutex);
502
503         schedule_work(&reg_regdb_work);
504 }
505
506 /* Feel free to add any other sanity checks here */
507 static void reg_regdb_size_check(void)
508 {
509         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
510         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
511 }
512 #else
513 static inline void reg_regdb_size_check(void) {}
514 static inline void reg_regdb_query(const char *alpha2) {}
515 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
516
517 /*
518  * This lets us keep regulatory code which is updated on a regulatory
519  * basis in userspace.
520  */
521 static int call_crda(const char *alpha2)
522 {
523         char country[12];
524         char *env[] = { country, NULL };
525
526         snprintf(country, sizeof(country), "COUNTRY=%c%c",
527                  alpha2[0], alpha2[1]);
528
529         if (!is_world_regdom((char *) alpha2))
530                 pr_info("Calling CRDA for country: %c%c\n",
531                         alpha2[0], alpha2[1]);
532         else
533                 pr_info("Calling CRDA to update world regulatory domain\n");
534
535         /* query internal regulatory database (if it exists) */
536         reg_regdb_query(alpha2);
537
538         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
539 }
540
541 static enum reg_request_treatment
542 reg_call_crda(struct regulatory_request *request)
543 {
544         if (call_crda(request->alpha2))
545                 return REG_REQ_IGNORE;
546         return REG_REQ_OK;
547 }
548
549 bool reg_is_valid_request(const char *alpha2)
550 {
551         struct regulatory_request *lr = get_last_request();
552
553         if (!lr || lr->processed)
554                 return false;
555
556         return alpha2_equal(lr->alpha2, alpha2);
557 }
558
559 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
560 {
561         struct regulatory_request *lr = get_last_request();
562
563         /*
564          * Follow the driver's regulatory domain, if present, unless a country
565          * IE has been processed or a user wants to help complaince further
566          */
567         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
568             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
569             wiphy->regd)
570                 return get_wiphy_regdom(wiphy);
571
572         return get_cfg80211_regdom();
573 }
574
575 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
576                                    const struct ieee80211_reg_rule *rule)
577 {
578         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
579         const struct ieee80211_freq_range *freq_range_tmp;
580         const struct ieee80211_reg_rule *tmp;
581         u32 start_freq, end_freq, idx, no;
582
583         for (idx = 0; idx < rd->n_reg_rules; idx++)
584                 if (rule == &rd->reg_rules[idx])
585                         break;
586
587         if (idx == rd->n_reg_rules)
588                 return 0;
589
590         /* get start_freq */
591         no = idx;
592
593         while (no) {
594                 tmp = &rd->reg_rules[--no];
595                 freq_range_tmp = &tmp->freq_range;
596
597                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
598                         break;
599
600                 freq_range = freq_range_tmp;
601         }
602
603         start_freq = freq_range->start_freq_khz;
604
605         /* get end_freq */
606         freq_range = &rule->freq_range;
607         no = idx;
608
609         while (no < rd->n_reg_rules - 1) {
610                 tmp = &rd->reg_rules[++no];
611                 freq_range_tmp = &tmp->freq_range;
612
613                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
614                         break;
615
616                 freq_range = freq_range_tmp;
617         }
618
619         end_freq = freq_range->end_freq_khz;
620
621         return end_freq - start_freq;
622 }
623
624 /* Sanity check on a regulatory rule */
625 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
626 {
627         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
628         u32 freq_diff;
629
630         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
631                 return false;
632
633         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
634                 return false;
635
636         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
637
638         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
639             freq_range->max_bandwidth_khz > freq_diff)
640                 return false;
641
642         return true;
643 }
644
645 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
646 {
647         const struct ieee80211_reg_rule *reg_rule = NULL;
648         unsigned int i;
649
650         if (!rd->n_reg_rules)
651                 return false;
652
653         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
654                 return false;
655
656         for (i = 0; i < rd->n_reg_rules; i++) {
657                 reg_rule = &rd->reg_rules[i];
658                 if (!is_valid_reg_rule(reg_rule))
659                         return false;
660         }
661
662         return true;
663 }
664
665 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
666                             u32 center_freq_khz, u32 bw_khz)
667 {
668         u32 start_freq_khz, end_freq_khz;
669
670         start_freq_khz = center_freq_khz - (bw_khz/2);
671         end_freq_khz = center_freq_khz + (bw_khz/2);
672
673         if (start_freq_khz >= freq_range->start_freq_khz &&
674             end_freq_khz <= freq_range->end_freq_khz)
675                 return true;
676
677         return false;
678 }
679
680 /**
681  * freq_in_rule_band - tells us if a frequency is in a frequency band
682  * @freq_range: frequency rule we want to query
683  * @freq_khz: frequency we are inquiring about
684  *
685  * This lets us know if a specific frequency rule is or is not relevant to
686  * a specific frequency's band. Bands are device specific and artificial
687  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
688  * however it is safe for now to assume that a frequency rule should not be
689  * part of a frequency's band if the start freq or end freq are off by more
690  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
691  * 60 GHz band.
692  * This resolution can be lowered and should be considered as we add
693  * regulatory rule support for other "bands".
694  **/
695 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
696                               u32 freq_khz)
697 {
698 #define ONE_GHZ_IN_KHZ  1000000
699         /*
700          * From 802.11ad: directional multi-gigabit (DMG):
701          * Pertaining to operation in a frequency band containing a channel
702          * with the Channel starting frequency above 45 GHz.
703          */
704         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
705                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
706         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
707                 return true;
708         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
709                 return true;
710         return false;
711 #undef ONE_GHZ_IN_KHZ
712 }
713
714 /*
715  * Later on we can perhaps use the more restrictive DFS
716  * region but we don't have information for that yet so
717  * for now simply disallow conflicts.
718  */
719 static enum nl80211_dfs_regions
720 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
721                          const enum nl80211_dfs_regions dfs_region2)
722 {
723         if (dfs_region1 != dfs_region2)
724                 return NL80211_DFS_UNSET;
725         return dfs_region1;
726 }
727
728 /*
729  * Helper for regdom_intersect(), this does the real
730  * mathematical intersection fun
731  */
732 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
733                                const struct ieee80211_regdomain *rd2,
734                                const struct ieee80211_reg_rule *rule1,
735                                const struct ieee80211_reg_rule *rule2,
736                                struct ieee80211_reg_rule *intersected_rule)
737 {
738         const struct ieee80211_freq_range *freq_range1, *freq_range2;
739         struct ieee80211_freq_range *freq_range;
740         const struct ieee80211_power_rule *power_rule1, *power_rule2;
741         struct ieee80211_power_rule *power_rule;
742         u32 freq_diff, max_bandwidth1, max_bandwidth2;
743
744         freq_range1 = &rule1->freq_range;
745         freq_range2 = &rule2->freq_range;
746         freq_range = &intersected_rule->freq_range;
747
748         power_rule1 = &rule1->power_rule;
749         power_rule2 = &rule2->power_rule;
750         power_rule = &intersected_rule->power_rule;
751
752         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
753                                          freq_range2->start_freq_khz);
754         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
755                                        freq_range2->end_freq_khz);
756
757         max_bandwidth1 = freq_range1->max_bandwidth_khz;
758         max_bandwidth2 = freq_range2->max_bandwidth_khz;
759
760         if (rule1->flags & NL80211_RRF_AUTO_BW)
761                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
762         if (rule2->flags & NL80211_RRF_AUTO_BW)
763                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
764
765         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
766
767         intersected_rule->flags = rule1->flags | rule2->flags;
768
769         /*
770          * In case NL80211_RRF_AUTO_BW requested for both rules
771          * set AUTO_BW in intersected rule also. Next we will
772          * calculate BW correctly in handle_channel function.
773          * In other case remove AUTO_BW flag while we calculate
774          * maximum bandwidth correctly and auto calculation is
775          * not required.
776          */
777         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
778             (rule2->flags & NL80211_RRF_AUTO_BW))
779                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
780         else
781                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
782
783         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
784         if (freq_range->max_bandwidth_khz > freq_diff)
785                 freq_range->max_bandwidth_khz = freq_diff;
786
787         power_rule->max_eirp = min(power_rule1->max_eirp,
788                 power_rule2->max_eirp);
789         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
790                 power_rule2->max_antenna_gain);
791
792         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
793                                            rule2->dfs_cac_ms);
794
795         if (!is_valid_reg_rule(intersected_rule))
796                 return -EINVAL;
797
798         return 0;
799 }
800
801 /**
802  * regdom_intersect - do the intersection between two regulatory domains
803  * @rd1: first regulatory domain
804  * @rd2: second regulatory domain
805  *
806  * Use this function to get the intersection between two regulatory domains.
807  * Once completed we will mark the alpha2 for the rd as intersected, "98",
808  * as no one single alpha2 can represent this regulatory domain.
809  *
810  * Returns a pointer to the regulatory domain structure which will hold the
811  * resulting intersection of rules between rd1 and rd2. We will
812  * kzalloc() this structure for you.
813  */
814 static struct ieee80211_regdomain *
815 regdom_intersect(const struct ieee80211_regdomain *rd1,
816                  const struct ieee80211_regdomain *rd2)
817 {
818         int r, size_of_regd;
819         unsigned int x, y;
820         unsigned int num_rules = 0, rule_idx = 0;
821         const struct ieee80211_reg_rule *rule1, *rule2;
822         struct ieee80211_reg_rule *intersected_rule;
823         struct ieee80211_regdomain *rd;
824         /* This is just a dummy holder to help us count */
825         struct ieee80211_reg_rule dummy_rule;
826
827         if (!rd1 || !rd2)
828                 return NULL;
829
830         /*
831          * First we get a count of the rules we'll need, then we actually
832          * build them. This is to so we can malloc() and free() a
833          * regdomain once. The reason we use reg_rules_intersect() here
834          * is it will return -EINVAL if the rule computed makes no sense.
835          * All rules that do check out OK are valid.
836          */
837
838         for (x = 0; x < rd1->n_reg_rules; x++) {
839                 rule1 = &rd1->reg_rules[x];
840                 for (y = 0; y < rd2->n_reg_rules; y++) {
841                         rule2 = &rd2->reg_rules[y];
842                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
843                                                  &dummy_rule))
844                                 num_rules++;
845                 }
846         }
847
848         if (!num_rules)
849                 return NULL;
850
851         size_of_regd = sizeof(struct ieee80211_regdomain) +
852                        num_rules * sizeof(struct ieee80211_reg_rule);
853
854         rd = kzalloc(size_of_regd, GFP_KERNEL);
855         if (!rd)
856                 return NULL;
857
858         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
859                 rule1 = &rd1->reg_rules[x];
860                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
861                         rule2 = &rd2->reg_rules[y];
862                         /*
863                          * This time around instead of using the stack lets
864                          * write to the target rule directly saving ourselves
865                          * a memcpy()
866                          */
867                         intersected_rule = &rd->reg_rules[rule_idx];
868                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
869                                                 intersected_rule);
870                         /*
871                          * No need to memset here the intersected rule here as
872                          * we're not using the stack anymore
873                          */
874                         if (r)
875                                 continue;
876                         rule_idx++;
877                 }
878         }
879
880         if (rule_idx != num_rules) {
881                 kfree(rd);
882                 return NULL;
883         }
884
885         rd->n_reg_rules = num_rules;
886         rd->alpha2[0] = '9';
887         rd->alpha2[1] = '8';
888         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
889                                                   rd2->dfs_region);
890
891         return rd;
892 }
893
894 /*
895  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
896  * want to just have the channel structure use these
897  */
898 static u32 map_regdom_flags(u32 rd_flags)
899 {
900         u32 channel_flags = 0;
901         if (rd_flags & NL80211_RRF_NO_IR_ALL)
902                 channel_flags |= IEEE80211_CHAN_NO_IR;
903         if (rd_flags & NL80211_RRF_DFS)
904                 channel_flags |= IEEE80211_CHAN_RADAR;
905         if (rd_flags & NL80211_RRF_NO_OFDM)
906                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
907         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
908                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
909         return channel_flags;
910 }
911
912 static const struct ieee80211_reg_rule *
913 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
914                    const struct ieee80211_regdomain *regd)
915 {
916         int i;
917         bool band_rule_found = false;
918         bool bw_fits = false;
919
920         if (!regd)
921                 return ERR_PTR(-EINVAL);
922
923         for (i = 0; i < regd->n_reg_rules; i++) {
924                 const struct ieee80211_reg_rule *rr;
925                 const struct ieee80211_freq_range *fr = NULL;
926
927                 rr = &regd->reg_rules[i];
928                 fr = &rr->freq_range;
929
930                 /*
931                  * We only need to know if one frequency rule was
932                  * was in center_freq's band, that's enough, so lets
933                  * not overwrite it once found
934                  */
935                 if (!band_rule_found)
936                         band_rule_found = freq_in_rule_band(fr, center_freq);
937
938                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(5));
939
940                 if (band_rule_found && bw_fits)
941                         return rr;
942         }
943
944         if (!band_rule_found)
945                 return ERR_PTR(-ERANGE);
946
947         return ERR_PTR(-EINVAL);
948 }
949
950 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
951                                                u32 center_freq)
952 {
953         const struct ieee80211_regdomain *regd;
954
955         regd = reg_get_regdomain(wiphy);
956
957         return freq_reg_info_regd(wiphy, center_freq, regd);
958 }
959 EXPORT_SYMBOL(freq_reg_info);
960
961 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
962 {
963         switch (initiator) {
964         case NL80211_REGDOM_SET_BY_CORE:
965                 return "core";
966         case NL80211_REGDOM_SET_BY_USER:
967                 return "user";
968         case NL80211_REGDOM_SET_BY_DRIVER:
969                 return "driver";
970         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
971                 return "country IE";
972         default:
973                 WARN_ON(1);
974                 return "bug";
975         }
976 }
977 EXPORT_SYMBOL(reg_initiator_name);
978
979 #ifdef CONFIG_CFG80211_REG_DEBUG
980 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
981                                     struct ieee80211_channel *chan,
982                                     const struct ieee80211_reg_rule *reg_rule)
983 {
984         const struct ieee80211_power_rule *power_rule;
985         const struct ieee80211_freq_range *freq_range;
986         char max_antenna_gain[32], bw[32];
987
988         power_rule = &reg_rule->power_rule;
989         freq_range = &reg_rule->freq_range;
990
991         if (!power_rule->max_antenna_gain)
992                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
993         else
994                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
995                          power_rule->max_antenna_gain);
996
997         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
998                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
999                          freq_range->max_bandwidth_khz,
1000                          reg_get_max_bandwidth(regd, reg_rule));
1001         else
1002                 snprintf(bw, sizeof(bw), "%d KHz",
1003                          freq_range->max_bandwidth_khz);
1004
1005         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1006                       chan->center_freq);
1007
1008         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1009                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1010                       bw, max_antenna_gain,
1011                       power_rule->max_eirp);
1012 }
1013 #else
1014 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1015                                     struct ieee80211_channel *chan,
1016                                     const struct ieee80211_reg_rule *reg_rule)
1017 {
1018         return;
1019 }
1020 #endif
1021
1022 /* Find an ieee80211_reg_rule such that a 5MHz channel with frequency
1023  * chan->center_freq fits there.
1024  * If there is no such reg_rule, disable the channel, otherwise set the
1025  * flags corresponding to the bandwidths allowed in the particular reg_rule
1026  */
1027 static void handle_channel(struct wiphy *wiphy,
1028                            enum nl80211_reg_initiator initiator,
1029                            struct ieee80211_channel *chan)
1030 {
1031         u32 flags, bw_flags = 0;
1032         const struct ieee80211_reg_rule *reg_rule = NULL;
1033         const struct ieee80211_power_rule *power_rule = NULL;
1034         const struct ieee80211_freq_range *freq_range = NULL;
1035         struct wiphy *request_wiphy = NULL;
1036         struct regulatory_request *lr = get_last_request();
1037         const struct ieee80211_regdomain *regd;
1038         u32 max_bandwidth_khz;
1039
1040         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1041
1042         flags = chan->orig_flags;
1043
1044         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1045         if (IS_ERR(reg_rule)) {
1046                 /*
1047                  * We will disable all channels that do not match our
1048                  * received regulatory rule unless the hint is coming
1049                  * from a Country IE and the Country IE had no information
1050                  * about a band. The IEEE 802.11 spec allows for an AP
1051                  * to send only a subset of the regulatory rules allowed,
1052                  * so an AP in the US that only supports 2.4 GHz may only send
1053                  * a country IE with information for the 2.4 GHz band
1054                  * while 5 GHz is still supported.
1055                  */
1056                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1057                     PTR_ERR(reg_rule) == -ERANGE)
1058                         return;
1059
1060                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1061                     request_wiphy && request_wiphy == wiphy &&
1062                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1063                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1064                                       chan->center_freq);
1065                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1066                         chan->flags = chan->orig_flags;
1067                 } else {
1068                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1069                                       chan->center_freq);
1070                         chan->flags |= IEEE80211_CHAN_DISABLED;
1071                 }
1072                 return;
1073         }
1074
1075         regd = reg_get_regdomain(wiphy);
1076         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1077
1078         power_rule = &reg_rule->power_rule;
1079         freq_range = &reg_rule->freq_range;
1080
1081         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1082         /* Check if auto calculation requested */
1083         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1084                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1085
1086         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1087                 bw_flags = IEEE80211_CHAN_NO_10MHZ;
1088         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1089                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1090         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1091                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1092         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1093                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1094         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1095                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1096
1097         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1098             request_wiphy && request_wiphy == wiphy &&
1099             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1100                 /*
1101                  * This guarantees the driver's requested regulatory domain
1102                  * will always be used as a base for further regulatory
1103                  * settings
1104                  */
1105                 chan->flags = chan->orig_flags =
1106                         map_regdom_flags(reg_rule->flags) | bw_flags;
1107                 chan->max_antenna_gain = chan->orig_mag =
1108                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1109                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1110                         (int) MBM_TO_DBM(power_rule->max_eirp);
1111
1112                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1113                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1114                         if (reg_rule->dfs_cac_ms)
1115                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1116                 }
1117
1118                 return;
1119         }
1120
1121         chan->dfs_state = NL80211_DFS_USABLE;
1122         chan->dfs_state_entered = jiffies;
1123
1124         chan->beacon_found = false;
1125         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1126         chan->max_antenna_gain =
1127                 min_t(int, chan->orig_mag,
1128                       MBI_TO_DBI(power_rule->max_antenna_gain));
1129         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1130
1131         if (chan->flags & IEEE80211_CHAN_RADAR) {
1132                 if (reg_rule->dfs_cac_ms)
1133                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1134                 else
1135                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1136         }
1137
1138         if (chan->orig_mpwr) {
1139                 /*
1140                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1141                  * will always follow the passed country IE power settings.
1142                  */
1143                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1144                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1145                         chan->max_power = chan->max_reg_power;
1146                 else
1147                         chan->max_power = min(chan->orig_mpwr,
1148                                               chan->max_reg_power);
1149         } else
1150                 chan->max_power = chan->max_reg_power;
1151 }
1152
1153 static void handle_band(struct wiphy *wiphy,
1154                         enum nl80211_reg_initiator initiator,
1155                         struct ieee80211_supported_band *sband)
1156 {
1157         unsigned int i;
1158
1159         if (!sband)
1160                 return;
1161
1162         for (i = 0; i < sband->n_channels; i++)
1163                 handle_channel(wiphy, initiator, &sband->channels[i]);
1164 }
1165
1166 static bool reg_request_cell_base(struct regulatory_request *request)
1167 {
1168         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1169                 return false;
1170         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1171 }
1172
1173 static bool reg_request_indoor(struct regulatory_request *request)
1174 {
1175         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1176                 return false;
1177         return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1178 }
1179
1180 bool reg_last_request_cell_base(void)
1181 {
1182         return reg_request_cell_base(get_last_request());
1183 }
1184
1185 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1186 /* Core specific check */
1187 static enum reg_request_treatment
1188 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1189 {
1190         struct regulatory_request *lr = get_last_request();
1191
1192         if (!reg_num_devs_support_basehint)
1193                 return REG_REQ_IGNORE;
1194
1195         if (reg_request_cell_base(lr) &&
1196             !regdom_changes(pending_request->alpha2))
1197                 return REG_REQ_ALREADY_SET;
1198
1199         return REG_REQ_OK;
1200 }
1201
1202 /* Device specific check */
1203 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1204 {
1205         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1206 }
1207 #else
1208 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1209 {
1210         return REG_REQ_IGNORE;
1211 }
1212
1213 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1214 {
1215         return true;
1216 }
1217 #endif
1218
1219 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1220 {
1221         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1222             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1223                 return true;
1224         return false;
1225 }
1226
1227 static bool ignore_reg_update(struct wiphy *wiphy,
1228                               enum nl80211_reg_initiator initiator)
1229 {
1230         struct regulatory_request *lr = get_last_request();
1231
1232         if (!lr) {
1233                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1234                               "since last_request is not set\n",
1235                               reg_initiator_name(initiator));
1236                 return true;
1237         }
1238
1239         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1240             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1241                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1242                               "since the driver uses its own custom "
1243                               "regulatory domain\n",
1244                               reg_initiator_name(initiator));
1245                 return true;
1246         }
1247
1248         /*
1249          * wiphy->regd will be set once the device has its own
1250          * desired regulatory domain set
1251          */
1252         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1253             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1254             !is_world_regdom(lr->alpha2)) {
1255                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1256                               "since the driver requires its own regulatory "
1257                               "domain to be set first\n",
1258                               reg_initiator_name(initiator));
1259                 return true;
1260         }
1261
1262         if (reg_request_cell_base(lr))
1263                 return reg_dev_ignore_cell_hint(wiphy);
1264
1265         return false;
1266 }
1267
1268 static bool reg_is_world_roaming(struct wiphy *wiphy)
1269 {
1270         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1271         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1272         struct regulatory_request *lr = get_last_request();
1273
1274         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1275                 return true;
1276
1277         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1278             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1279                 return true;
1280
1281         return false;
1282 }
1283
1284 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1285                               struct reg_beacon *reg_beacon)
1286 {
1287         struct ieee80211_supported_band *sband;
1288         struct ieee80211_channel *chan;
1289         bool channel_changed = false;
1290         struct ieee80211_channel chan_before;
1291
1292         sband = wiphy->bands[reg_beacon->chan.band];
1293         chan = &sband->channels[chan_idx];
1294
1295         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1296                 return;
1297
1298         if (chan->beacon_found)
1299                 return;
1300
1301         chan->beacon_found = true;
1302
1303         if (!reg_is_world_roaming(wiphy))
1304                 return;
1305
1306         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1307                 return;
1308
1309         chan_before.center_freq = chan->center_freq;
1310         chan_before.flags = chan->flags;
1311
1312         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1313                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1314                 channel_changed = true;
1315         }
1316
1317         if (channel_changed)
1318                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1319 }
1320
1321 /*
1322  * Called when a scan on a wiphy finds a beacon on
1323  * new channel
1324  */
1325 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1326                                     struct reg_beacon *reg_beacon)
1327 {
1328         unsigned int i;
1329         struct ieee80211_supported_band *sband;
1330
1331         if (!wiphy->bands[reg_beacon->chan.band])
1332                 return;
1333
1334         sband = wiphy->bands[reg_beacon->chan.band];
1335
1336         for (i = 0; i < sband->n_channels; i++)
1337                 handle_reg_beacon(wiphy, i, reg_beacon);
1338 }
1339
1340 /*
1341  * Called upon reg changes or a new wiphy is added
1342  */
1343 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1344 {
1345         unsigned int i;
1346         struct ieee80211_supported_band *sband;
1347         struct reg_beacon *reg_beacon;
1348
1349         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1350                 if (!wiphy->bands[reg_beacon->chan.band])
1351                         continue;
1352                 sband = wiphy->bands[reg_beacon->chan.band];
1353                 for (i = 0; i < sband->n_channels; i++)
1354                         handle_reg_beacon(wiphy, i, reg_beacon);
1355         }
1356 }
1357
1358 /* Reap the advantages of previously found beacons */
1359 static void reg_process_beacons(struct wiphy *wiphy)
1360 {
1361         /*
1362          * Means we are just firing up cfg80211, so no beacons would
1363          * have been processed yet.
1364          */
1365         if (!last_request)
1366                 return;
1367         wiphy_update_beacon_reg(wiphy);
1368 }
1369
1370 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1371 {
1372         if (!chan)
1373                 return false;
1374         if (chan->flags & IEEE80211_CHAN_DISABLED)
1375                 return false;
1376         /* This would happen when regulatory rules disallow HT40 completely */
1377         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1378                 return false;
1379         return true;
1380 }
1381
1382 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1383                                          struct ieee80211_channel *channel)
1384 {
1385         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1386         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1387         unsigned int i;
1388
1389         if (!is_ht40_allowed(channel)) {
1390                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1391                 return;
1392         }
1393
1394         /*
1395          * We need to ensure the extension channels exist to
1396          * be able to use HT40- or HT40+, this finds them (or not)
1397          */
1398         for (i = 0; i < sband->n_channels; i++) {
1399                 struct ieee80211_channel *c = &sband->channels[i];
1400
1401                 if (c->center_freq == (channel->center_freq - 20))
1402                         channel_before = c;
1403                 if (c->center_freq == (channel->center_freq + 20))
1404                         channel_after = c;
1405         }
1406
1407         /*
1408          * Please note that this assumes target bandwidth is 20 MHz,
1409          * if that ever changes we also need to change the below logic
1410          * to include that as well.
1411          */
1412         if (!is_ht40_allowed(channel_before))
1413                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1414         else
1415                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1416
1417         if (!is_ht40_allowed(channel_after))
1418                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1419         else
1420                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1421 }
1422
1423 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1424                                       struct ieee80211_supported_band *sband)
1425 {
1426         unsigned int i;
1427
1428         if (!sband)
1429                 return;
1430
1431         for (i = 0; i < sband->n_channels; i++)
1432                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1433 }
1434
1435 static void reg_process_ht_flags(struct wiphy *wiphy)
1436 {
1437         enum ieee80211_band band;
1438
1439         if (!wiphy)
1440                 return;
1441
1442         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1443                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1444 }
1445
1446 static void reg_call_notifier(struct wiphy *wiphy,
1447                               struct regulatory_request *request)
1448 {
1449         if (wiphy->reg_notifier)
1450                 wiphy->reg_notifier(wiphy, request);
1451 }
1452
1453 static void wiphy_update_regulatory(struct wiphy *wiphy,
1454                                     enum nl80211_reg_initiator initiator)
1455 {
1456         enum ieee80211_band band;
1457         struct regulatory_request *lr = get_last_request();
1458
1459         if (ignore_reg_update(wiphy, initiator)) {
1460                 /*
1461                  * Regulatory updates set by CORE are ignored for custom
1462                  * regulatory cards. Let us notify the changes to the driver,
1463                  * as some drivers used this to restore its orig_* reg domain.
1464                  */
1465                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1466                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1467                         reg_call_notifier(wiphy, lr);
1468                 return;
1469         }
1470
1471         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1472
1473         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1474                 handle_band(wiphy, initiator, wiphy->bands[band]);
1475
1476         reg_process_beacons(wiphy);
1477         reg_process_ht_flags(wiphy);
1478         reg_call_notifier(wiphy, lr);
1479 }
1480
1481 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1482 {
1483         struct cfg80211_registered_device *rdev;
1484         struct wiphy *wiphy;
1485
1486         ASSERT_RTNL();
1487
1488         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1489                 wiphy = &rdev->wiphy;
1490                 wiphy_update_regulatory(wiphy, initiator);
1491         }
1492 }
1493
1494 static void handle_channel_custom(struct wiphy *wiphy,
1495                                   struct ieee80211_channel *chan,
1496                                   const struct ieee80211_regdomain *regd)
1497 {
1498         u32 bw_flags = 0;
1499         const struct ieee80211_reg_rule *reg_rule = NULL;
1500         const struct ieee80211_power_rule *power_rule = NULL;
1501         const struct ieee80211_freq_range *freq_range = NULL;
1502         u32 max_bandwidth_khz;
1503
1504         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1505                                       regd);
1506
1507         if (IS_ERR(reg_rule)) {
1508                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1509                               chan->center_freq);
1510                 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1511                 chan->flags = chan->orig_flags;
1512                 return;
1513         }
1514
1515         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1516
1517         power_rule = &reg_rule->power_rule;
1518         freq_range = &reg_rule->freq_range;
1519
1520         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1521         /* Check if auto calculation requested */
1522         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1523                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1524
1525         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1526                 bw_flags = IEEE80211_CHAN_NO_10MHZ;
1527         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1528                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1529         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1530                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1531         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1532                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1533         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1534                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1535
1536         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1537         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1538         chan->max_reg_power = chan->max_power =
1539                 (int) MBM_TO_DBM(power_rule->max_eirp);
1540 }
1541
1542 static void handle_band_custom(struct wiphy *wiphy,
1543                                struct ieee80211_supported_band *sband,
1544                                const struct ieee80211_regdomain *regd)
1545 {
1546         unsigned int i;
1547
1548         if (!sband)
1549                 return;
1550
1551         for (i = 0; i < sband->n_channels; i++)
1552                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1553 }
1554
1555 /* Used by drivers prior to wiphy registration */
1556 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1557                                    const struct ieee80211_regdomain *regd)
1558 {
1559         enum ieee80211_band band;
1560         unsigned int bands_set = 0;
1561
1562         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1563              "wiphy should have REGULATORY_CUSTOM_REG\n");
1564         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1565
1566         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1567                 if (!wiphy->bands[band])
1568                         continue;
1569                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1570                 bands_set++;
1571         }
1572
1573         /*
1574          * no point in calling this if it won't have any effect
1575          * on your device's supported bands.
1576          */
1577         WARN_ON(!bands_set);
1578 }
1579 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1580
1581 static void reg_set_request_processed(void)
1582 {
1583         bool need_more_processing = false;
1584         struct regulatory_request *lr = get_last_request();
1585
1586         lr->processed = true;
1587
1588         spin_lock(&reg_requests_lock);
1589         if (!list_empty(&reg_requests_list))
1590                 need_more_processing = true;
1591         spin_unlock(&reg_requests_lock);
1592
1593         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1594                 cancel_delayed_work(&reg_timeout);
1595
1596         if (need_more_processing)
1597                 schedule_work(&reg_work);
1598 }
1599
1600 /**
1601  * reg_process_hint_core - process core regulatory requests
1602  * @pending_request: a pending core regulatory request
1603  *
1604  * The wireless subsystem can use this function to process
1605  * a regulatory request issued by the regulatory core.
1606  *
1607  * Returns one of the different reg request treatment values.
1608  */
1609 static enum reg_request_treatment
1610 reg_process_hint_core(struct regulatory_request *core_request)
1611 {
1612
1613         core_request->intersect = false;
1614         core_request->processed = false;
1615
1616         reg_update_last_request(core_request);
1617
1618         return reg_call_crda(core_request);
1619 }
1620
1621 static enum reg_request_treatment
1622 __reg_process_hint_user(struct regulatory_request *user_request)
1623 {
1624         struct regulatory_request *lr = get_last_request();
1625
1626         if (reg_request_indoor(user_request)) {
1627                 reg_is_indoor = true;
1628                 return REG_REQ_USER_HINT_HANDLED;
1629         }
1630
1631         if (reg_request_cell_base(user_request))
1632                 return reg_ignore_cell_hint(user_request);
1633
1634         if (reg_request_cell_base(lr))
1635                 return REG_REQ_IGNORE;
1636
1637         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1638                 return REG_REQ_INTERSECT;
1639         /*
1640          * If the user knows better the user should set the regdom
1641          * to their country before the IE is picked up
1642          */
1643         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1644             lr->intersect)
1645                 return REG_REQ_IGNORE;
1646         /*
1647          * Process user requests only after previous user/driver/core
1648          * requests have been processed
1649          */
1650         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1651              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1652              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1653             regdom_changes(lr->alpha2))
1654                 return REG_REQ_IGNORE;
1655
1656         if (!regdom_changes(user_request->alpha2))
1657                 return REG_REQ_ALREADY_SET;
1658
1659         return REG_REQ_OK;
1660 }
1661
1662 /**
1663  * reg_process_hint_user - process user regulatory requests
1664  * @user_request: a pending user regulatory request
1665  *
1666  * The wireless subsystem can use this function to process
1667  * a regulatory request initiated by userspace.
1668  *
1669  * Returns one of the different reg request treatment values.
1670  */
1671 static enum reg_request_treatment
1672 reg_process_hint_user(struct regulatory_request *user_request)
1673 {
1674         enum reg_request_treatment treatment;
1675
1676         treatment = __reg_process_hint_user(user_request);
1677         if (treatment == REG_REQ_IGNORE ||
1678             treatment == REG_REQ_ALREADY_SET ||
1679             treatment == REG_REQ_USER_HINT_HANDLED) {
1680                 reg_free_request(user_request);
1681                 return treatment;
1682         }
1683
1684         user_request->intersect = treatment == REG_REQ_INTERSECT;
1685         user_request->processed = false;
1686
1687         reg_update_last_request(user_request);
1688
1689         user_alpha2[0] = user_request->alpha2[0];
1690         user_alpha2[1] = user_request->alpha2[1];
1691
1692         return reg_call_crda(user_request);
1693 }
1694
1695 static enum reg_request_treatment
1696 __reg_process_hint_driver(struct regulatory_request *driver_request)
1697 {
1698         struct regulatory_request *lr = get_last_request();
1699
1700         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1701                 if (regdom_changes(driver_request->alpha2))
1702                         return REG_REQ_OK;
1703                 return REG_REQ_ALREADY_SET;
1704         }
1705
1706         /*
1707          * This would happen if you unplug and plug your card
1708          * back in or if you add a new device for which the previously
1709          * loaded card also agrees on the regulatory domain.
1710          */
1711         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1712             !regdom_changes(driver_request->alpha2))
1713                 return REG_REQ_ALREADY_SET;
1714
1715         return REG_REQ_INTERSECT;
1716 }
1717
1718 /**
1719  * reg_process_hint_driver - process driver regulatory requests
1720  * @driver_request: a pending driver regulatory request
1721  *
1722  * The wireless subsystem can use this function to process
1723  * a regulatory request issued by an 802.11 driver.
1724  *
1725  * Returns one of the different reg request treatment values.
1726  */
1727 static enum reg_request_treatment
1728 reg_process_hint_driver(struct wiphy *wiphy,
1729                         struct regulatory_request *driver_request)
1730 {
1731         const struct ieee80211_regdomain *regd;
1732         enum reg_request_treatment treatment;
1733
1734         treatment = __reg_process_hint_driver(driver_request);
1735
1736         switch (treatment) {
1737         case REG_REQ_OK:
1738                 break;
1739         case REG_REQ_IGNORE:
1740         case REG_REQ_USER_HINT_HANDLED:
1741                 reg_free_request(driver_request);
1742                 return treatment;
1743         case REG_REQ_INTERSECT:
1744                 /* fall through */
1745         case REG_REQ_ALREADY_SET:
1746                 regd = reg_copy_regd(get_cfg80211_regdom());
1747                 if (IS_ERR(regd)) {
1748                         reg_free_request(driver_request);
1749                         return REG_REQ_IGNORE;
1750                 }
1751                 rcu_assign_pointer(wiphy->regd, regd);
1752         }
1753
1754
1755         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1756         driver_request->processed = false;
1757
1758         reg_update_last_request(driver_request);
1759
1760         /*
1761          * Since CRDA will not be called in this case as we already
1762          * have applied the requested regulatory domain before we just
1763          * inform userspace we have processed the request
1764          */
1765         if (treatment == REG_REQ_ALREADY_SET) {
1766                 nl80211_send_reg_change_event(driver_request);
1767                 reg_set_request_processed();
1768                 return treatment;
1769         }
1770
1771         return reg_call_crda(driver_request);
1772 }
1773
1774 static enum reg_request_treatment
1775 __reg_process_hint_country_ie(struct wiphy *wiphy,
1776                               struct regulatory_request *country_ie_request)
1777 {
1778         struct wiphy *last_wiphy = NULL;
1779         struct regulatory_request *lr = get_last_request();
1780
1781         if (reg_request_cell_base(lr)) {
1782                 /* Trust a Cell base station over the AP's country IE */
1783                 if (regdom_changes(country_ie_request->alpha2))
1784                         return REG_REQ_IGNORE;
1785                 return REG_REQ_ALREADY_SET;
1786         } else {
1787                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1788                         return REG_REQ_IGNORE;
1789         }
1790
1791         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1792                 return -EINVAL;
1793
1794         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1795                 return REG_REQ_OK;
1796
1797         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1798
1799         if (last_wiphy != wiphy) {
1800                 /*
1801                  * Two cards with two APs claiming different
1802                  * Country IE alpha2s. We could
1803                  * intersect them, but that seems unlikely
1804                  * to be correct. Reject second one for now.
1805                  */
1806                 if (regdom_changes(country_ie_request->alpha2))
1807                         return REG_REQ_IGNORE;
1808                 return REG_REQ_ALREADY_SET;
1809         }
1810         /*
1811          * Two consecutive Country IE hints on the same wiphy.
1812          * This should be picked up early by the driver/stack
1813          */
1814         if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1815                 return REG_REQ_OK;
1816         return REG_REQ_ALREADY_SET;
1817 }
1818
1819 /**
1820  * reg_process_hint_country_ie - process regulatory requests from country IEs
1821  * @country_ie_request: a regulatory request from a country IE
1822  *
1823  * The wireless subsystem can use this function to process
1824  * a regulatory request issued by a country Information Element.
1825  *
1826  * Returns one of the different reg request treatment values.
1827  */
1828 static enum reg_request_treatment
1829 reg_process_hint_country_ie(struct wiphy *wiphy,
1830                             struct regulatory_request *country_ie_request)
1831 {
1832         enum reg_request_treatment treatment;
1833
1834         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1835
1836         switch (treatment) {
1837         case REG_REQ_OK:
1838                 break;
1839         case REG_REQ_IGNORE:
1840         case REG_REQ_USER_HINT_HANDLED:
1841                 /* fall through */
1842         case REG_REQ_ALREADY_SET:
1843                 reg_free_request(country_ie_request);
1844                 return treatment;
1845         case REG_REQ_INTERSECT:
1846                 reg_free_request(country_ie_request);
1847                 /*
1848                  * This doesn't happen yet, not sure we
1849                  * ever want to support it for this case.
1850                  */
1851                 WARN_ONCE(1, "Unexpected intersection for country IEs");
1852                 return REG_REQ_IGNORE;
1853         }
1854
1855         country_ie_request->intersect = false;
1856         country_ie_request->processed = false;
1857
1858         reg_update_last_request(country_ie_request);
1859
1860         return reg_call_crda(country_ie_request);
1861 }
1862
1863 /* This processes *all* regulatory hints */
1864 static void reg_process_hint(struct regulatory_request *reg_request)
1865 {
1866         struct wiphy *wiphy = NULL;
1867         enum reg_request_treatment treatment;
1868
1869         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1870                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1871
1872         switch (reg_request->initiator) {
1873         case NL80211_REGDOM_SET_BY_CORE:
1874                 reg_process_hint_core(reg_request);
1875                 return;
1876         case NL80211_REGDOM_SET_BY_USER:
1877                 treatment = reg_process_hint_user(reg_request);
1878                 if (treatment == REG_REQ_IGNORE ||
1879                     treatment == REG_REQ_ALREADY_SET ||
1880                     treatment == REG_REQ_USER_HINT_HANDLED)
1881                         return;
1882                 queue_delayed_work(system_power_efficient_wq,
1883                                    &reg_timeout, msecs_to_jiffies(3142));
1884                 return;
1885         case NL80211_REGDOM_SET_BY_DRIVER:
1886                 if (!wiphy)
1887                         goto out_free;
1888                 treatment = reg_process_hint_driver(wiphy, reg_request);
1889                 break;
1890         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1891                 if (!wiphy)
1892                         goto out_free;
1893                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1894                 break;
1895         default:
1896                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1897                 goto out_free;
1898         }
1899
1900         /* This is required so that the orig_* parameters are saved */
1901         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1902             wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1903                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1904
1905         return;
1906
1907 out_free:
1908         reg_free_request(reg_request);
1909 }
1910
1911 /*
1912  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1913  * Regulatory hints come on a first come first serve basis and we
1914  * must process each one atomically.
1915  */
1916 static void reg_process_pending_hints(void)
1917 {
1918         struct regulatory_request *reg_request, *lr;
1919
1920         lr = get_last_request();
1921
1922         /* When last_request->processed becomes true this will be rescheduled */
1923         if (lr && !lr->processed) {
1924                 reg_process_hint(lr);
1925                 return;
1926         }
1927
1928         spin_lock(&reg_requests_lock);
1929
1930         if (list_empty(&reg_requests_list)) {
1931                 spin_unlock(&reg_requests_lock);
1932                 return;
1933         }
1934
1935         reg_request = list_first_entry(&reg_requests_list,
1936                                        struct regulatory_request,
1937                                        list);
1938         list_del_init(&reg_request->list);
1939
1940         spin_unlock(&reg_requests_lock);
1941
1942         reg_process_hint(reg_request);
1943 }
1944
1945 /* Processes beacon hints -- this has nothing to do with country IEs */
1946 static void reg_process_pending_beacon_hints(void)
1947 {
1948         struct cfg80211_registered_device *rdev;
1949         struct reg_beacon *pending_beacon, *tmp;
1950
1951         /* This goes through the _pending_ beacon list */
1952         spin_lock_bh(&reg_pending_beacons_lock);
1953
1954         list_for_each_entry_safe(pending_beacon, tmp,
1955                                  &reg_pending_beacons, list) {
1956                 list_del_init(&pending_beacon->list);
1957
1958                 /* Applies the beacon hint to current wiphys */
1959                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1960                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1961
1962                 /* Remembers the beacon hint for new wiphys or reg changes */
1963                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1964         }
1965
1966         spin_unlock_bh(&reg_pending_beacons_lock);
1967 }
1968
1969 static void reg_todo(struct work_struct *work)
1970 {
1971         rtnl_lock();
1972         reg_process_pending_hints();
1973         reg_process_pending_beacon_hints();
1974         rtnl_unlock();
1975 }
1976
1977 static void queue_regulatory_request(struct regulatory_request *request)
1978 {
1979         request->alpha2[0] = toupper(request->alpha2[0]);
1980         request->alpha2[1] = toupper(request->alpha2[1]);
1981
1982         spin_lock(&reg_requests_lock);
1983         list_add_tail(&request->list, &reg_requests_list);
1984         spin_unlock(&reg_requests_lock);
1985
1986         schedule_work(&reg_work);
1987 }
1988
1989 /*
1990  * Core regulatory hint -- happens during cfg80211_init()
1991  * and when we restore regulatory settings.
1992  */
1993 static int regulatory_hint_core(const char *alpha2)
1994 {
1995         struct regulatory_request *request;
1996
1997         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1998         if (!request)
1999                 return -ENOMEM;
2000
2001         request->alpha2[0] = alpha2[0];
2002         request->alpha2[1] = alpha2[1];
2003         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2004
2005         queue_regulatory_request(request);
2006
2007         return 0;
2008 }
2009
2010 /* User hints */
2011 int regulatory_hint_user(const char *alpha2,
2012                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2013 {
2014         struct regulatory_request *request;
2015
2016         if (WARN_ON(!alpha2))
2017                 return -EINVAL;
2018
2019         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2020         if (!request)
2021                 return -ENOMEM;
2022
2023         request->wiphy_idx = WIPHY_IDX_INVALID;
2024         request->alpha2[0] = alpha2[0];
2025         request->alpha2[1] = alpha2[1];
2026         request->initiator = NL80211_REGDOM_SET_BY_USER;
2027         request->user_reg_hint_type = user_reg_hint_type;
2028
2029         queue_regulatory_request(request);
2030
2031         return 0;
2032 }
2033
2034 int regulatory_hint_indoor_user(void)
2035 {
2036         struct regulatory_request *request;
2037
2038         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2039         if (!request)
2040                 return -ENOMEM;
2041
2042         request->wiphy_idx = WIPHY_IDX_INVALID;
2043         request->initiator = NL80211_REGDOM_SET_BY_USER;
2044         request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2045         queue_regulatory_request(request);
2046
2047         return 0;
2048 }
2049
2050 /* Driver hints */
2051 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2052 {
2053         struct regulatory_request *request;
2054
2055         if (WARN_ON(!alpha2 || !wiphy))
2056                 return -EINVAL;
2057
2058         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2059
2060         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2061         if (!request)
2062                 return -ENOMEM;
2063
2064         request->wiphy_idx = get_wiphy_idx(wiphy);
2065
2066         request->alpha2[0] = alpha2[0];
2067         request->alpha2[1] = alpha2[1];
2068         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2069
2070         queue_regulatory_request(request);
2071
2072         return 0;
2073 }
2074 EXPORT_SYMBOL(regulatory_hint);
2075
2076 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2077                                 const u8 *country_ie, u8 country_ie_len)
2078 {
2079         char alpha2[2];
2080         enum environment_cap env = ENVIRON_ANY;
2081         struct regulatory_request *request = NULL, *lr;
2082
2083         /* IE len must be evenly divisible by 2 */
2084         if (country_ie_len & 0x01)
2085                 return;
2086
2087         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2088                 return;
2089
2090         request = kzalloc(sizeof(*request), GFP_KERNEL);
2091         if (!request)
2092                 return;
2093
2094         alpha2[0] = country_ie[0];
2095         alpha2[1] = country_ie[1];
2096
2097         if (country_ie[2] == 'I')
2098                 env = ENVIRON_INDOOR;
2099         else if (country_ie[2] == 'O')
2100                 env = ENVIRON_OUTDOOR;
2101
2102         rcu_read_lock();
2103         lr = get_last_request();
2104
2105         if (unlikely(!lr))
2106                 goto out;
2107
2108         /*
2109          * We will run this only upon a successful connection on cfg80211.
2110          * We leave conflict resolution to the workqueue, where can hold
2111          * the RTNL.
2112          */
2113         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2114             lr->wiphy_idx != WIPHY_IDX_INVALID)
2115                 goto out;
2116
2117         request->wiphy_idx = get_wiphy_idx(wiphy);
2118         request->alpha2[0] = alpha2[0];
2119         request->alpha2[1] = alpha2[1];
2120         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2121         request->country_ie_env = env;
2122
2123         queue_regulatory_request(request);
2124         request = NULL;
2125 out:
2126         kfree(request);
2127         rcu_read_unlock();
2128 }
2129
2130 static void restore_alpha2(char *alpha2, bool reset_user)
2131 {
2132         /* indicates there is no alpha2 to consider for restoration */
2133         alpha2[0] = '9';
2134         alpha2[1] = '7';
2135
2136         /* The user setting has precedence over the module parameter */
2137         if (is_user_regdom_saved()) {
2138                 /* Unless we're asked to ignore it and reset it */
2139                 if (reset_user) {
2140                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2141                         user_alpha2[0] = '9';
2142                         user_alpha2[1] = '7';
2143
2144                         /*
2145                          * If we're ignoring user settings, we still need to
2146                          * check the module parameter to ensure we put things
2147                          * back as they were for a full restore.
2148                          */
2149                         if (!is_world_regdom(ieee80211_regdom)) {
2150                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2151                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2152                                 alpha2[0] = ieee80211_regdom[0];
2153                                 alpha2[1] = ieee80211_regdom[1];
2154                         }
2155                 } else {
2156                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2157                                       user_alpha2[0], user_alpha2[1]);
2158                         alpha2[0] = user_alpha2[0];
2159                         alpha2[1] = user_alpha2[1];
2160                 }
2161         } else if (!is_world_regdom(ieee80211_regdom)) {
2162                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2163                               ieee80211_regdom[0], ieee80211_regdom[1]);
2164                 alpha2[0] = ieee80211_regdom[0];
2165                 alpha2[1] = ieee80211_regdom[1];
2166         } else
2167                 REG_DBG_PRINT("Restoring regulatory settings\n");
2168 }
2169
2170 static void restore_custom_reg_settings(struct wiphy *wiphy)
2171 {
2172         struct ieee80211_supported_band *sband;
2173         enum ieee80211_band band;
2174         struct ieee80211_channel *chan;
2175         int i;
2176
2177         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2178                 sband = wiphy->bands[band];
2179                 if (!sband)
2180                         continue;
2181                 for (i = 0; i < sband->n_channels; i++) {
2182                         chan = &sband->channels[i];
2183                         chan->flags = chan->orig_flags;
2184                         chan->max_antenna_gain = chan->orig_mag;
2185                         chan->max_power = chan->orig_mpwr;
2186                         chan->beacon_found = false;
2187                 }
2188         }
2189 }
2190
2191 /*
2192  * Restoring regulatory settings involves ingoring any
2193  * possibly stale country IE information and user regulatory
2194  * settings if so desired, this includes any beacon hints
2195  * learned as we could have traveled outside to another country
2196  * after disconnection. To restore regulatory settings we do
2197  * exactly what we did at bootup:
2198  *
2199  *   - send a core regulatory hint
2200  *   - send a user regulatory hint if applicable
2201  *
2202  * Device drivers that send a regulatory hint for a specific country
2203  * keep their own regulatory domain on wiphy->regd so that does does
2204  * not need to be remembered.
2205  */
2206 static void restore_regulatory_settings(bool reset_user)
2207 {
2208         char alpha2[2];
2209         char world_alpha2[2];
2210         struct reg_beacon *reg_beacon, *btmp;
2211         struct regulatory_request *reg_request, *tmp;
2212         LIST_HEAD(tmp_reg_req_list);
2213         struct cfg80211_registered_device *rdev;
2214
2215         ASSERT_RTNL();
2216
2217         reg_is_indoor = false;
2218
2219         reset_regdomains(true, &world_regdom);
2220         restore_alpha2(alpha2, reset_user);
2221
2222         /*
2223          * If there's any pending requests we simply
2224          * stash them to a temporary pending queue and
2225          * add then after we've restored regulatory
2226          * settings.
2227          */
2228         spin_lock(&reg_requests_lock);
2229         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2230                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2231                         continue;
2232                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2233         }
2234         spin_unlock(&reg_requests_lock);
2235
2236         /* Clear beacon hints */
2237         spin_lock_bh(&reg_pending_beacons_lock);
2238         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2239                 list_del(&reg_beacon->list);
2240                 kfree(reg_beacon);
2241         }
2242         spin_unlock_bh(&reg_pending_beacons_lock);
2243
2244         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2245                 list_del(&reg_beacon->list);
2246                 kfree(reg_beacon);
2247         }
2248
2249         /* First restore to the basic regulatory settings */
2250         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2251         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2252
2253         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2254                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2255                         restore_custom_reg_settings(&rdev->wiphy);
2256         }
2257
2258         regulatory_hint_core(world_alpha2);
2259
2260         /*
2261          * This restores the ieee80211_regdom module parameter
2262          * preference or the last user requested regulatory
2263          * settings, user regulatory settings takes precedence.
2264          */
2265         if (is_an_alpha2(alpha2))
2266                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2267
2268         spin_lock(&reg_requests_lock);
2269         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2270         spin_unlock(&reg_requests_lock);
2271
2272         REG_DBG_PRINT("Kicking the queue\n");
2273
2274         schedule_work(&reg_work);
2275 }
2276
2277 void regulatory_hint_disconnect(void)
2278 {
2279         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2280         restore_regulatory_settings(false);
2281 }
2282
2283 static bool freq_is_chan_12_13_14(u16 freq)
2284 {
2285         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2286             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2287             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2288                 return true;
2289         return false;
2290 }
2291
2292 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2293 {
2294         struct reg_beacon *pending_beacon;
2295
2296         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2297                 if (beacon_chan->center_freq ==
2298                     pending_beacon->chan.center_freq)
2299                         return true;
2300         return false;
2301 }
2302
2303 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2304                                  struct ieee80211_channel *beacon_chan,
2305                                  gfp_t gfp)
2306 {
2307         struct reg_beacon *reg_beacon;
2308         bool processing;
2309
2310         if (beacon_chan->beacon_found ||
2311             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2312             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2313              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2314                 return 0;
2315
2316         spin_lock_bh(&reg_pending_beacons_lock);
2317         processing = pending_reg_beacon(beacon_chan);
2318         spin_unlock_bh(&reg_pending_beacons_lock);
2319
2320         if (processing)
2321                 return 0;
2322
2323         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2324         if (!reg_beacon)
2325                 return -ENOMEM;
2326
2327         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2328                       beacon_chan->center_freq,
2329                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2330                       wiphy_name(wiphy));
2331
2332         memcpy(&reg_beacon->chan, beacon_chan,
2333                sizeof(struct ieee80211_channel));
2334
2335         /*
2336          * Since we can be called from BH or and non-BH context
2337          * we must use spin_lock_bh()
2338          */
2339         spin_lock_bh(&reg_pending_beacons_lock);
2340         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2341         spin_unlock_bh(&reg_pending_beacons_lock);
2342
2343         schedule_work(&reg_work);
2344
2345         return 0;
2346 }
2347
2348 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2349 {
2350         unsigned int i;
2351         const struct ieee80211_reg_rule *reg_rule = NULL;
2352         const struct ieee80211_freq_range *freq_range = NULL;
2353         const struct ieee80211_power_rule *power_rule = NULL;
2354         char bw[32], cac_time[32];
2355
2356         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2357
2358         for (i = 0; i < rd->n_reg_rules; i++) {
2359                 reg_rule = &rd->reg_rules[i];
2360                 freq_range = &reg_rule->freq_range;
2361                 power_rule = &reg_rule->power_rule;
2362
2363                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2364                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2365                                  freq_range->max_bandwidth_khz,
2366                                  reg_get_max_bandwidth(rd, reg_rule));
2367                 else
2368                         snprintf(bw, sizeof(bw), "%d KHz",
2369                                  freq_range->max_bandwidth_khz);
2370
2371                 if (reg_rule->flags & NL80211_RRF_DFS)
2372                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2373                                   reg_rule->dfs_cac_ms/1000);
2374                 else
2375                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2376
2377
2378                 /*
2379                  * There may not be documentation for max antenna gain
2380                  * in certain regions
2381                  */
2382                 if (power_rule->max_antenna_gain)
2383                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2384                                 freq_range->start_freq_khz,
2385                                 freq_range->end_freq_khz,
2386                                 bw,
2387                                 power_rule->max_antenna_gain,
2388                                 power_rule->max_eirp,
2389                                 cac_time);
2390                 else
2391                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2392                                 freq_range->start_freq_khz,
2393                                 freq_range->end_freq_khz,
2394                                 bw,
2395                                 power_rule->max_eirp,
2396                                 cac_time);
2397         }
2398 }
2399
2400 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2401 {
2402         switch (dfs_region) {
2403         case NL80211_DFS_UNSET:
2404         case NL80211_DFS_FCC:
2405         case NL80211_DFS_ETSI:
2406         case NL80211_DFS_JP:
2407                 return true;
2408         default:
2409                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2410                               dfs_region);
2411                 return false;
2412         }
2413 }
2414
2415 static void print_regdomain(const struct ieee80211_regdomain *rd)
2416 {
2417         struct regulatory_request *lr = get_last_request();
2418
2419         if (is_intersected_alpha2(rd->alpha2)) {
2420                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2421                         struct cfg80211_registered_device *rdev;
2422                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2423                         if (rdev) {
2424                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2425                                         rdev->country_ie_alpha2[0],
2426                                         rdev->country_ie_alpha2[1]);
2427                         } else
2428                                 pr_info("Current regulatory domain intersected:\n");
2429                 } else
2430                         pr_info("Current regulatory domain intersected:\n");
2431         } else if (is_world_regdom(rd->alpha2)) {
2432                 pr_info("World regulatory domain updated:\n");
2433         } else {
2434                 if (is_unknown_alpha2(rd->alpha2))
2435                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2436                 else {
2437                         if (reg_request_cell_base(lr))
2438                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2439                                         rd->alpha2[0], rd->alpha2[1]);
2440                         else
2441                                 pr_info("Regulatory domain changed to country: %c%c\n",
2442                                         rd->alpha2[0], rd->alpha2[1]);
2443                 }
2444         }
2445
2446         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2447         print_rd_rules(rd);
2448 }
2449
2450 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2451 {
2452         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2453         print_rd_rules(rd);
2454 }
2455
2456 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2457 {
2458         if (!is_world_regdom(rd->alpha2))
2459                 return -EINVAL;
2460         update_world_regdomain(rd);
2461         return 0;
2462 }
2463
2464 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2465                            struct regulatory_request *user_request)
2466 {
2467         const struct ieee80211_regdomain *intersected_rd = NULL;
2468
2469         if (!regdom_changes(rd->alpha2))
2470                 return -EALREADY;
2471
2472         if (!is_valid_rd(rd)) {
2473                 pr_err("Invalid regulatory domain detected:\n");
2474                 print_regdomain_info(rd);
2475                 return -EINVAL;
2476         }
2477
2478         if (!user_request->intersect) {
2479                 reset_regdomains(false, rd);
2480                 return 0;
2481         }
2482
2483         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2484         if (!intersected_rd)
2485                 return -EINVAL;
2486
2487         kfree(rd);
2488         rd = NULL;
2489         reset_regdomains(false, intersected_rd);
2490
2491         return 0;
2492 }
2493
2494 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2495                              struct regulatory_request *driver_request)
2496 {
2497         const struct ieee80211_regdomain *regd;
2498         const struct ieee80211_regdomain *intersected_rd = NULL;
2499         const struct ieee80211_regdomain *tmp;
2500         struct wiphy *request_wiphy;
2501
2502         if (is_world_regdom(rd->alpha2))
2503                 return -EINVAL;
2504
2505         if (!regdom_changes(rd->alpha2))
2506                 return -EALREADY;
2507
2508         if (!is_valid_rd(rd)) {
2509                 pr_err("Invalid regulatory domain detected:\n");
2510                 print_regdomain_info(rd);
2511                 return -EINVAL;
2512         }
2513
2514         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2515         if (!request_wiphy) {
2516                 queue_delayed_work(system_power_efficient_wq,
2517                                    &reg_timeout, 0);
2518                 return -ENODEV;
2519         }
2520
2521         if (!driver_request->intersect) {
2522                 if (request_wiphy->regd)
2523                         return -EALREADY;
2524
2525                 regd = reg_copy_regd(rd);
2526                 if (IS_ERR(regd))
2527                         return PTR_ERR(regd);
2528
2529                 rcu_assign_pointer(request_wiphy->regd, regd);
2530                 reset_regdomains(false, rd);
2531                 return 0;
2532         }
2533
2534         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2535         if (!intersected_rd)
2536                 return -EINVAL;
2537
2538         /*
2539          * We can trash what CRDA provided now.
2540          * However if a driver requested this specific regulatory
2541          * domain we keep it for its private use
2542          */
2543         tmp = get_wiphy_regdom(request_wiphy);
2544         rcu_assign_pointer(request_wiphy->regd, rd);
2545         rcu_free_regdom(tmp);
2546
2547         rd = NULL;
2548
2549         reset_regdomains(false, intersected_rd);
2550
2551         return 0;
2552 }
2553
2554 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2555                                  struct regulatory_request *country_ie_request)
2556 {
2557         struct wiphy *request_wiphy;
2558
2559         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2560             !is_unknown_alpha2(rd->alpha2))
2561                 return -EINVAL;
2562
2563         /*
2564          * Lets only bother proceeding on the same alpha2 if the current
2565          * rd is non static (it means CRDA was present and was used last)
2566          * and the pending request came in from a country IE
2567          */
2568
2569         if (!is_valid_rd(rd)) {
2570                 pr_err("Invalid regulatory domain detected:\n");
2571                 print_regdomain_info(rd);
2572                 return -EINVAL;
2573         }
2574
2575         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2576         if (!request_wiphy) {
2577                 queue_delayed_work(system_power_efficient_wq,
2578                                    &reg_timeout, 0);
2579                 return -ENODEV;
2580         }
2581
2582         if (country_ie_request->intersect)
2583                 return -EINVAL;
2584
2585         reset_regdomains(false, rd);
2586         return 0;
2587 }
2588
2589 /*
2590  * Use this call to set the current regulatory domain. Conflicts with
2591  * multiple drivers can be ironed out later. Caller must've already
2592  * kmalloc'd the rd structure.
2593  */
2594 int set_regdom(const struct ieee80211_regdomain *rd)
2595 {
2596         struct regulatory_request *lr;
2597         bool user_reset = false;
2598         int r;
2599
2600         if (!reg_is_valid_request(rd->alpha2)) {
2601                 kfree(rd);
2602                 return -EINVAL;
2603         }
2604
2605         lr = get_last_request();
2606
2607         /* Note that this doesn't update the wiphys, this is done below */
2608         switch (lr->initiator) {
2609         case NL80211_REGDOM_SET_BY_CORE:
2610                 r = reg_set_rd_core(rd);
2611                 break;
2612         case NL80211_REGDOM_SET_BY_USER:
2613                 r = reg_set_rd_user(rd, lr);
2614                 user_reset = true;
2615                 break;
2616         case NL80211_REGDOM_SET_BY_DRIVER:
2617                 r = reg_set_rd_driver(rd, lr);
2618                 break;
2619         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2620                 r = reg_set_rd_country_ie(rd, lr);
2621                 break;
2622         default:
2623                 WARN(1, "invalid initiator %d\n", lr->initiator);
2624                 return -EINVAL;
2625         }
2626
2627         if (r) {
2628                 switch (r) {
2629                 case -EALREADY:
2630                         reg_set_request_processed();
2631                         break;
2632                 default:
2633                         /* Back to world regulatory in case of errors */
2634                         restore_regulatory_settings(user_reset);
2635                 }
2636
2637                 kfree(rd);
2638                 return r;
2639         }
2640
2641         /* This would make this whole thing pointless */
2642         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2643                 return -EINVAL;
2644
2645         /* update all wiphys now with the new established regulatory domain */
2646         update_all_wiphy_regulatory(lr->initiator);
2647
2648         print_regdomain(get_cfg80211_regdom());
2649
2650         nl80211_send_reg_change_event(lr);
2651
2652         reg_set_request_processed();
2653
2654         return 0;
2655 }
2656
2657 void wiphy_regulatory_register(struct wiphy *wiphy)
2658 {
2659         struct regulatory_request *lr;
2660
2661         if (!reg_dev_ignore_cell_hint(wiphy))
2662                 reg_num_devs_support_basehint++;
2663
2664         lr = get_last_request();
2665         wiphy_update_regulatory(wiphy, lr->initiator);
2666 }
2667
2668 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2669 {
2670         struct wiphy *request_wiphy = NULL;
2671         struct regulatory_request *lr;
2672
2673         lr = get_last_request();
2674
2675         if (!reg_dev_ignore_cell_hint(wiphy))
2676                 reg_num_devs_support_basehint--;
2677
2678         rcu_free_regdom(get_wiphy_regdom(wiphy));
2679         RCU_INIT_POINTER(wiphy->regd, NULL);
2680
2681         if (lr)
2682                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2683
2684         if (!request_wiphy || request_wiphy != wiphy)
2685                 return;
2686
2687         lr->wiphy_idx = WIPHY_IDX_INVALID;
2688         lr->country_ie_env = ENVIRON_ANY;
2689 }
2690
2691 static void reg_timeout_work(struct work_struct *work)
2692 {
2693         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2694         rtnl_lock();
2695         restore_regulatory_settings(true);
2696         rtnl_unlock();
2697 }
2698
2699 /*
2700  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2701  * UNII band definitions
2702  */
2703 int cfg80211_get_unii(int freq)
2704 {
2705         /* UNII-1 */
2706         if (freq >= 5150 && freq <= 5250)
2707                 return 0;
2708
2709         /* UNII-2A */
2710         if (freq > 5250 && freq <= 5350)
2711                 return 1;
2712
2713         /* UNII-2B */
2714         if (freq > 5350 && freq <= 5470)
2715                 return 2;
2716
2717         /* UNII-2C */
2718         if (freq > 5470 && freq <= 5725)
2719                 return 3;
2720
2721         /* UNII-3 */
2722         if (freq > 5725 && freq <= 5825)
2723                 return 4;
2724
2725         return -EINVAL;
2726 }
2727
2728 bool regulatory_indoor_allowed(void)
2729 {
2730         return reg_is_indoor;
2731 }
2732
2733 int __init regulatory_init(void)
2734 {
2735         int err = 0;
2736
2737         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2738         if (IS_ERR(reg_pdev))
2739                 return PTR_ERR(reg_pdev);
2740
2741         spin_lock_init(&reg_requests_lock);
2742         spin_lock_init(&reg_pending_beacons_lock);
2743
2744         reg_regdb_size_check();
2745
2746         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2747
2748         user_alpha2[0] = '9';
2749         user_alpha2[1] = '7';
2750
2751         /* We always try to get an update for the static regdomain */
2752         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2753         if (err) {
2754                 if (err == -ENOMEM)
2755                         return err;
2756                 /*
2757                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2758                  * memory which is handled and propagated appropriately above
2759                  * but it can also fail during a netlink_broadcast() or during
2760                  * early boot for call_usermodehelper(). For now treat these
2761                  * errors as non-fatal.
2762                  */
2763                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2764         }
2765
2766         /*
2767          * Finally, if the user set the module parameter treat it
2768          * as a user hint.
2769          */
2770         if (!is_world_regdom(ieee80211_regdom))
2771                 regulatory_hint_user(ieee80211_regdom,
2772                                      NL80211_USER_REG_HINT_USER);
2773
2774         return 0;
2775 }
2776
2777 void regulatory_exit(void)
2778 {
2779         struct regulatory_request *reg_request, *tmp;
2780         struct reg_beacon *reg_beacon, *btmp;
2781
2782         cancel_work_sync(&reg_work);
2783         cancel_delayed_work_sync(&reg_timeout);
2784
2785         /* Lock to suppress warnings */
2786         rtnl_lock();
2787         reset_regdomains(true, NULL);
2788         rtnl_unlock();
2789
2790         dev_set_uevent_suppress(&reg_pdev->dev, true);
2791
2792         platform_device_unregister(reg_pdev);
2793
2794         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2795                 list_del(&reg_beacon->list);
2796                 kfree(reg_beacon);
2797         }
2798
2799         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2800                 list_del(&reg_beacon->list);
2801                 kfree(reg_beacon);
2802         }
2803
2804         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2805                 list_del(&reg_request->list);
2806                 kfree(reg_request);
2807         }
2808 }