]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
cfg80211: reg: remove useless reg_timeout scheduling
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)                  \
65         printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *      be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *      regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87         REG_REQ_OK,
88         REG_REQ_IGNORE,
89         REG_REQ_INTERSECT,
90         REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94         .initiator = NL80211_REGDOM_SET_BY_CORE,
95         .alpha2[0] = '0',
96         .alpha2[1] = '0',
97         .intersect = false,
98         .processed = true,
99         .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107         (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 /* Max number of consecutive attempts to communicate with CRDA  */
139 #define REG_MAX_CRDA_TIMEOUTS 10
140
141 static u32 reg_crda_timeouts;
142
143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
144 {
145         return rtnl_dereference(cfg80211_regdomain);
146 }
147
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rtnl_dereference(wiphy->regd);
151 }
152
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
154 {
155         switch (dfs_region) {
156         case NL80211_DFS_UNSET:
157                 return "unset";
158         case NL80211_DFS_FCC:
159                 return "FCC";
160         case NL80211_DFS_ETSI:
161                 return "ETSI";
162         case NL80211_DFS_JP:
163                 return "JP";
164         }
165         return "Unknown";
166 }
167
168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
169 {
170         const struct ieee80211_regdomain *regd = NULL;
171         const struct ieee80211_regdomain *wiphy_regd = NULL;
172
173         regd = get_cfg80211_regdom();
174         if (!wiphy)
175                 goto out;
176
177         wiphy_regd = get_wiphy_regdom(wiphy);
178         if (!wiphy_regd)
179                 goto out;
180
181         if (wiphy_regd->dfs_region == regd->dfs_region)
182                 goto out;
183
184         REG_DBG_PRINT("%s: device specific dfs_region "
185                       "(%s) disagrees with cfg80211's "
186                       "central dfs_region (%s)\n",
187                       dev_name(&wiphy->dev),
188                       reg_dfs_region_str(wiphy_regd->dfs_region),
189                       reg_dfs_region_str(regd->dfs_region));
190
191 out:
192         return regd->dfs_region;
193 }
194
195 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
196 {
197         if (!r)
198                 return;
199         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
200 }
201
202 static struct regulatory_request *get_last_request(void)
203 {
204         return rcu_dereference_rtnl(last_request);
205 }
206
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list);
209 static spinlock_t reg_requests_lock;
210
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons);
213 static spinlock_t reg_pending_beacons_lock;
214
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list);
217
218 struct reg_beacon {
219         struct list_head list;
220         struct ieee80211_channel chan;
221 };
222
223 static void reg_check_chans_work(struct work_struct *work);
224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
225
226 static void reg_todo(struct work_struct *work);
227 static DECLARE_WORK(reg_work, reg_todo);
228
229 static void reg_timeout_work(struct work_struct *work);
230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
231
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom = {
234         .n_reg_rules = 8,
235         .alpha2 =  "00",
236         .reg_rules = {
237                 /* IEEE 802.11b/g, channels 1..11 */
238                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239                 /* IEEE 802.11b/g, channels 12..13. */
240                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
241                         NL80211_RRF_NO_IR),
242                 /* IEEE 802.11 channel 14 - Only JP enables
243                  * this and for 802.11b only */
244                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
245                         NL80211_RRF_NO_IR |
246                         NL80211_RRF_NO_OFDM),
247                 /* IEEE 802.11a, channel 36..48 */
248                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR),
250
251                 /* IEEE 802.11a, channel 52..64 - DFS required */
252                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
253                         NL80211_RRF_NO_IR |
254                         NL80211_RRF_DFS),
255
256                 /* IEEE 802.11a, channel 100..144 - DFS required */
257                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_DFS),
260
261                 /* IEEE 802.11a, channel 149..165 */
262                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR),
264
265                 /* IEEE 802.11ad (60GHz), channels 1..3 */
266                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
267         }
268 };
269
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain *cfg80211_world_regdom =
272         &world_regdom;
273
274 static char *ieee80211_regdom = "00";
275 static char user_alpha2[2];
276
277 module_param(ieee80211_regdom, charp, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
279
280 static void reg_free_request(struct regulatory_request *request)
281 {
282         if (request != get_last_request())
283                 kfree(request);
284 }
285
286 static void reg_free_last_request(void)
287 {
288         struct regulatory_request *lr = get_last_request();
289
290         if (lr != &core_request_world && lr)
291                 kfree_rcu(lr, rcu_head);
292 }
293
294 static void reg_update_last_request(struct regulatory_request *request)
295 {
296         struct regulatory_request *lr;
297
298         lr = get_last_request();
299         if (lr == request)
300                 return;
301
302         reg_free_last_request();
303         rcu_assign_pointer(last_request, request);
304 }
305
306 static void reset_regdomains(bool full_reset,
307                              const struct ieee80211_regdomain *new_regdom)
308 {
309         const struct ieee80211_regdomain *r;
310
311         ASSERT_RTNL();
312
313         r = get_cfg80211_regdom();
314
315         /* avoid freeing static information or freeing something twice */
316         if (r == cfg80211_world_regdom)
317                 r = NULL;
318         if (cfg80211_world_regdom == &world_regdom)
319                 cfg80211_world_regdom = NULL;
320         if (r == &world_regdom)
321                 r = NULL;
322
323         rcu_free_regdom(r);
324         rcu_free_regdom(cfg80211_world_regdom);
325
326         cfg80211_world_regdom = &world_regdom;
327         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328
329         if (!full_reset)
330                 return;
331
332         reg_update_last_request(&core_request_world);
333 }
334
335 /*
336  * Dynamic world regulatory domain requested by the wireless
337  * core upon initialization
338  */
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340 {
341         struct regulatory_request *lr;
342
343         lr = get_last_request();
344
345         WARN_ON(!lr);
346
347         reset_regdomains(false, rd);
348
349         cfg80211_world_regdom = rd;
350 }
351
352 bool is_world_regdom(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         return alpha2[0] == '0' && alpha2[1] == '0';
357 }
358
359 static bool is_alpha2_set(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         return alpha2[0] && alpha2[1];
364 }
365
366 static bool is_unknown_alpha2(const char *alpha2)
367 {
368         if (!alpha2)
369                 return false;
370         /*
371          * Special case where regulatory domain was built by driver
372          * but a specific alpha2 cannot be determined
373          */
374         return alpha2[0] == '9' && alpha2[1] == '9';
375 }
376
377 static bool is_intersected_alpha2(const char *alpha2)
378 {
379         if (!alpha2)
380                 return false;
381         /*
382          * Special case where regulatory domain is the
383          * result of an intersection between two regulatory domain
384          * structures
385          */
386         return alpha2[0] == '9' && alpha2[1] == '8';
387 }
388
389 static bool is_an_alpha2(const char *alpha2)
390 {
391         if (!alpha2)
392                 return false;
393         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394 }
395
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397 {
398         if (!alpha2_x || !alpha2_y)
399                 return false;
400         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401 }
402
403 static bool regdom_changes(const char *alpha2)
404 {
405         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406
407         if (!r)
408                 return true;
409         return !alpha2_equal(r->alpha2, alpha2);
410 }
411
412 /*
413  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415  * has ever been issued.
416  */
417 static bool is_user_regdom_saved(void)
418 {
419         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420                 return false;
421
422         /* This would indicate a mistake on the design */
423         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424                  "Unexpected user alpha2: %c%c\n",
425                  user_alpha2[0], user_alpha2[1]))
426                 return false;
427
428         return true;
429 }
430
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433 {
434         struct ieee80211_regdomain *regd;
435         int size_of_regd;
436         unsigned int i;
437
438         size_of_regd =
439                 sizeof(struct ieee80211_regdomain) +
440                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
441
442         regd = kzalloc(size_of_regd, GFP_KERNEL);
443         if (!regd)
444                 return ERR_PTR(-ENOMEM);
445
446         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
447
448         for (i = 0; i < src_regd->n_reg_rules; i++)
449                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450                        sizeof(struct ieee80211_reg_rule));
451
452         return regd;
453 }
454
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_apply_request {
457         struct list_head list;
458         const struct ieee80211_regdomain *regdom;
459 };
460
461 static LIST_HEAD(reg_regdb_apply_list);
462 static DEFINE_MUTEX(reg_regdb_apply_mutex);
463
464 static void reg_regdb_apply(struct work_struct *work)
465 {
466         struct reg_regdb_apply_request *request;
467
468         rtnl_lock();
469
470         mutex_lock(&reg_regdb_apply_mutex);
471         while (!list_empty(&reg_regdb_apply_list)) {
472                 request = list_first_entry(&reg_regdb_apply_list,
473                                            struct reg_regdb_apply_request,
474                                            list);
475                 list_del(&request->list);
476
477                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
478                 kfree(request);
479         }
480         mutex_unlock(&reg_regdb_apply_mutex);
481
482         rtnl_unlock();
483 }
484
485 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
486
487 static int reg_regdb_query(const char *alpha2)
488 {
489         const struct ieee80211_regdomain *regdom = NULL;
490         struct reg_regdb_apply_request *request;
491         unsigned int i;
492
493         for (i = 0; i < reg_regdb_size; i++) {
494                 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
495                         regdom = reg_regdb[i];
496                         break;
497                 }
498         }
499
500         if (!regdom)
501                 return -ENODATA;
502
503         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
504         if (!request)
505                 return -ENOMEM;
506
507         request->regdom = reg_copy_regd(regdom);
508         if (IS_ERR_OR_NULL(request->regdom)) {
509                 kfree(request);
510                 return -ENOMEM;
511         }
512
513         mutex_lock(&reg_regdb_apply_mutex);
514         list_add_tail(&request->list, &reg_regdb_apply_list);
515         mutex_unlock(&reg_regdb_apply_mutex);
516
517         schedule_work(&reg_regdb_work);
518
519         return 0;
520 }
521
522 /* Feel free to add any other sanity checks here */
523 static void reg_regdb_size_check(void)
524 {
525         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
526         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
527 }
528 #else
529 static inline void reg_regdb_size_check(void) {}
530 static inline int reg_regdb_query(const char *alpha2)
531 {
532         return -ENODATA;
533 }
534 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
535
536 /*
537  * This lets us keep regulatory code which is updated on a regulatory
538  * basis in userspace.
539  */
540 static int call_crda(const char *alpha2)
541 {
542         char country[12];
543         char *env[] = { country, NULL };
544         int ret;
545
546         snprintf(country, sizeof(country), "COUNTRY=%c%c",
547                  alpha2[0], alpha2[1]);
548
549         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
550                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
551                 return -EINVAL;
552         }
553
554         if (!is_world_regdom((char *) alpha2))
555                 pr_debug("Calling CRDA for country: %c%c\n",
556                         alpha2[0], alpha2[1]);
557         else
558                 pr_debug("Calling CRDA to update world regulatory domain\n");
559
560         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
561         if (ret)
562                 return ret;
563
564         queue_delayed_work(system_power_efficient_wq,
565                            &reg_timeout, msecs_to_jiffies(3142));
566         return 0;
567 }
568
569 static bool reg_query_database(struct regulatory_request *request)
570 {
571         /* query internal regulatory database (if it exists) */
572         if (reg_regdb_query(request->alpha2) == 0)
573                 return true;
574
575         if (call_crda(request->alpha2) == 0)
576                 return true;
577
578         return false;
579 }
580
581 bool reg_is_valid_request(const char *alpha2)
582 {
583         struct regulatory_request *lr = get_last_request();
584
585         if (!lr || lr->processed)
586                 return false;
587
588         return alpha2_equal(lr->alpha2, alpha2);
589 }
590
591 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
592 {
593         struct regulatory_request *lr = get_last_request();
594
595         /*
596          * Follow the driver's regulatory domain, if present, unless a country
597          * IE has been processed or a user wants to help complaince further
598          */
599         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
600             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
601             wiphy->regd)
602                 return get_wiphy_regdom(wiphy);
603
604         return get_cfg80211_regdom();
605 }
606
607 static unsigned int
608 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
609                                  const struct ieee80211_reg_rule *rule)
610 {
611         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
612         const struct ieee80211_freq_range *freq_range_tmp;
613         const struct ieee80211_reg_rule *tmp;
614         u32 start_freq, end_freq, idx, no;
615
616         for (idx = 0; idx < rd->n_reg_rules; idx++)
617                 if (rule == &rd->reg_rules[idx])
618                         break;
619
620         if (idx == rd->n_reg_rules)
621                 return 0;
622
623         /* get start_freq */
624         no = idx;
625
626         while (no) {
627                 tmp = &rd->reg_rules[--no];
628                 freq_range_tmp = &tmp->freq_range;
629
630                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
631                         break;
632
633                 freq_range = freq_range_tmp;
634         }
635
636         start_freq = freq_range->start_freq_khz;
637
638         /* get end_freq */
639         freq_range = &rule->freq_range;
640         no = idx;
641
642         while (no < rd->n_reg_rules - 1) {
643                 tmp = &rd->reg_rules[++no];
644                 freq_range_tmp = &tmp->freq_range;
645
646                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
647                         break;
648
649                 freq_range = freq_range_tmp;
650         }
651
652         end_freq = freq_range->end_freq_khz;
653
654         return end_freq - start_freq;
655 }
656
657 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
658                                    const struct ieee80211_reg_rule *rule)
659 {
660         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
661
662         if (rule->flags & NL80211_RRF_NO_160MHZ)
663                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
664         if (rule->flags & NL80211_RRF_NO_80MHZ)
665                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
666
667         /*
668          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
669          * are not allowed.
670          */
671         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
672             rule->flags & NL80211_RRF_NO_HT40PLUS)
673                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
674
675         return bw;
676 }
677
678 /* Sanity check on a regulatory rule */
679 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
680 {
681         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
682         u32 freq_diff;
683
684         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
685                 return false;
686
687         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
688                 return false;
689
690         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
691
692         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
693             freq_range->max_bandwidth_khz > freq_diff)
694                 return false;
695
696         return true;
697 }
698
699 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
700 {
701         const struct ieee80211_reg_rule *reg_rule = NULL;
702         unsigned int i;
703
704         if (!rd->n_reg_rules)
705                 return false;
706
707         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
708                 return false;
709
710         for (i = 0; i < rd->n_reg_rules; i++) {
711                 reg_rule = &rd->reg_rules[i];
712                 if (!is_valid_reg_rule(reg_rule))
713                         return false;
714         }
715
716         return true;
717 }
718
719 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
720                             u32 center_freq_khz, u32 bw_khz)
721 {
722         u32 start_freq_khz, end_freq_khz;
723
724         start_freq_khz = center_freq_khz - (bw_khz/2);
725         end_freq_khz = center_freq_khz + (bw_khz/2);
726
727         if (start_freq_khz >= freq_range->start_freq_khz &&
728             end_freq_khz <= freq_range->end_freq_khz)
729                 return true;
730
731         return false;
732 }
733
734 /**
735  * freq_in_rule_band - tells us if a frequency is in a frequency band
736  * @freq_range: frequency rule we want to query
737  * @freq_khz: frequency we are inquiring about
738  *
739  * This lets us know if a specific frequency rule is or is not relevant to
740  * a specific frequency's band. Bands are device specific and artificial
741  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
742  * however it is safe for now to assume that a frequency rule should not be
743  * part of a frequency's band if the start freq or end freq are off by more
744  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
745  * 60 GHz band.
746  * This resolution can be lowered and should be considered as we add
747  * regulatory rule support for other "bands".
748  **/
749 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
750                               u32 freq_khz)
751 {
752 #define ONE_GHZ_IN_KHZ  1000000
753         /*
754          * From 802.11ad: directional multi-gigabit (DMG):
755          * Pertaining to operation in a frequency band containing a channel
756          * with the Channel starting frequency above 45 GHz.
757          */
758         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
759                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
760         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
761                 return true;
762         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
763                 return true;
764         return false;
765 #undef ONE_GHZ_IN_KHZ
766 }
767
768 /*
769  * Later on we can perhaps use the more restrictive DFS
770  * region but we don't have information for that yet so
771  * for now simply disallow conflicts.
772  */
773 static enum nl80211_dfs_regions
774 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
775                          const enum nl80211_dfs_regions dfs_region2)
776 {
777         if (dfs_region1 != dfs_region2)
778                 return NL80211_DFS_UNSET;
779         return dfs_region1;
780 }
781
782 /*
783  * Helper for regdom_intersect(), this does the real
784  * mathematical intersection fun
785  */
786 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
787                                const struct ieee80211_regdomain *rd2,
788                                const struct ieee80211_reg_rule *rule1,
789                                const struct ieee80211_reg_rule *rule2,
790                                struct ieee80211_reg_rule *intersected_rule)
791 {
792         const struct ieee80211_freq_range *freq_range1, *freq_range2;
793         struct ieee80211_freq_range *freq_range;
794         const struct ieee80211_power_rule *power_rule1, *power_rule2;
795         struct ieee80211_power_rule *power_rule;
796         u32 freq_diff, max_bandwidth1, max_bandwidth2;
797
798         freq_range1 = &rule1->freq_range;
799         freq_range2 = &rule2->freq_range;
800         freq_range = &intersected_rule->freq_range;
801
802         power_rule1 = &rule1->power_rule;
803         power_rule2 = &rule2->power_rule;
804         power_rule = &intersected_rule->power_rule;
805
806         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
807                                          freq_range2->start_freq_khz);
808         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
809                                        freq_range2->end_freq_khz);
810
811         max_bandwidth1 = freq_range1->max_bandwidth_khz;
812         max_bandwidth2 = freq_range2->max_bandwidth_khz;
813
814         if (rule1->flags & NL80211_RRF_AUTO_BW)
815                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
816         if (rule2->flags & NL80211_RRF_AUTO_BW)
817                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
818
819         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
820
821         intersected_rule->flags = rule1->flags | rule2->flags;
822
823         /*
824          * In case NL80211_RRF_AUTO_BW requested for both rules
825          * set AUTO_BW in intersected rule also. Next we will
826          * calculate BW correctly in handle_channel function.
827          * In other case remove AUTO_BW flag while we calculate
828          * maximum bandwidth correctly and auto calculation is
829          * not required.
830          */
831         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
832             (rule2->flags & NL80211_RRF_AUTO_BW))
833                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
834         else
835                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
836
837         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
838         if (freq_range->max_bandwidth_khz > freq_diff)
839                 freq_range->max_bandwidth_khz = freq_diff;
840
841         power_rule->max_eirp = min(power_rule1->max_eirp,
842                 power_rule2->max_eirp);
843         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
844                 power_rule2->max_antenna_gain);
845
846         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
847                                            rule2->dfs_cac_ms);
848
849         if (!is_valid_reg_rule(intersected_rule))
850                 return -EINVAL;
851
852         return 0;
853 }
854
855 /* check whether old rule contains new rule */
856 static bool rule_contains(struct ieee80211_reg_rule *r1,
857                           struct ieee80211_reg_rule *r2)
858 {
859         /* for simplicity, currently consider only same flags */
860         if (r1->flags != r2->flags)
861                 return false;
862
863         /* verify r1 is more restrictive */
864         if ((r1->power_rule.max_antenna_gain >
865              r2->power_rule.max_antenna_gain) ||
866             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
867                 return false;
868
869         /* make sure r2's range is contained within r1 */
870         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
871             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
872                 return false;
873
874         /* and finally verify that r1.max_bw >= r2.max_bw */
875         if (r1->freq_range.max_bandwidth_khz <
876             r2->freq_range.max_bandwidth_khz)
877                 return false;
878
879         return true;
880 }
881
882 /* add or extend current rules. do nothing if rule is already contained */
883 static void add_rule(struct ieee80211_reg_rule *rule,
884                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
885 {
886         struct ieee80211_reg_rule *tmp_rule;
887         int i;
888
889         for (i = 0; i < *n_rules; i++) {
890                 tmp_rule = &reg_rules[i];
891                 /* rule is already contained - do nothing */
892                 if (rule_contains(tmp_rule, rule))
893                         return;
894
895                 /* extend rule if possible */
896                 if (rule_contains(rule, tmp_rule)) {
897                         memcpy(tmp_rule, rule, sizeof(*rule));
898                         return;
899                 }
900         }
901
902         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
903         (*n_rules)++;
904 }
905
906 /**
907  * regdom_intersect - do the intersection between two regulatory domains
908  * @rd1: first regulatory domain
909  * @rd2: second regulatory domain
910  *
911  * Use this function to get the intersection between two regulatory domains.
912  * Once completed we will mark the alpha2 for the rd as intersected, "98",
913  * as no one single alpha2 can represent this regulatory domain.
914  *
915  * Returns a pointer to the regulatory domain structure which will hold the
916  * resulting intersection of rules between rd1 and rd2. We will
917  * kzalloc() this structure for you.
918  */
919 static struct ieee80211_regdomain *
920 regdom_intersect(const struct ieee80211_regdomain *rd1,
921                  const struct ieee80211_regdomain *rd2)
922 {
923         int r, size_of_regd;
924         unsigned int x, y;
925         unsigned int num_rules = 0;
926         const struct ieee80211_reg_rule *rule1, *rule2;
927         struct ieee80211_reg_rule intersected_rule;
928         struct ieee80211_regdomain *rd;
929
930         if (!rd1 || !rd2)
931                 return NULL;
932
933         /*
934          * First we get a count of the rules we'll need, then we actually
935          * build them. This is to so we can malloc() and free() a
936          * regdomain once. The reason we use reg_rules_intersect() here
937          * is it will return -EINVAL if the rule computed makes no sense.
938          * All rules that do check out OK are valid.
939          */
940
941         for (x = 0; x < rd1->n_reg_rules; x++) {
942                 rule1 = &rd1->reg_rules[x];
943                 for (y = 0; y < rd2->n_reg_rules; y++) {
944                         rule2 = &rd2->reg_rules[y];
945                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
946                                                  &intersected_rule))
947                                 num_rules++;
948                 }
949         }
950
951         if (!num_rules)
952                 return NULL;
953
954         size_of_regd = sizeof(struct ieee80211_regdomain) +
955                        num_rules * sizeof(struct ieee80211_reg_rule);
956
957         rd = kzalloc(size_of_regd, GFP_KERNEL);
958         if (!rd)
959                 return NULL;
960
961         for (x = 0; x < rd1->n_reg_rules; x++) {
962                 rule1 = &rd1->reg_rules[x];
963                 for (y = 0; y < rd2->n_reg_rules; y++) {
964                         rule2 = &rd2->reg_rules[y];
965                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
966                                                 &intersected_rule);
967                         /*
968                          * No need to memset here the intersected rule here as
969                          * we're not using the stack anymore
970                          */
971                         if (r)
972                                 continue;
973
974                         add_rule(&intersected_rule, rd->reg_rules,
975                                  &rd->n_reg_rules);
976                 }
977         }
978
979         rd->alpha2[0] = '9';
980         rd->alpha2[1] = '8';
981         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
982                                                   rd2->dfs_region);
983
984         return rd;
985 }
986
987 /*
988  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
989  * want to just have the channel structure use these
990  */
991 static u32 map_regdom_flags(u32 rd_flags)
992 {
993         u32 channel_flags = 0;
994         if (rd_flags & NL80211_RRF_NO_IR_ALL)
995                 channel_flags |= IEEE80211_CHAN_NO_IR;
996         if (rd_flags & NL80211_RRF_DFS)
997                 channel_flags |= IEEE80211_CHAN_RADAR;
998         if (rd_flags & NL80211_RRF_NO_OFDM)
999                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1000         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1001                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1002         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1003                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1004         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1005                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1006         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1007                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1008         if (rd_flags & NL80211_RRF_NO_80MHZ)
1009                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1010         if (rd_flags & NL80211_RRF_NO_160MHZ)
1011                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1012         return channel_flags;
1013 }
1014
1015 static const struct ieee80211_reg_rule *
1016 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1017                    const struct ieee80211_regdomain *regd, u32 bw)
1018 {
1019         int i;
1020         bool band_rule_found = false;
1021         bool bw_fits = false;
1022
1023         if (!regd)
1024                 return ERR_PTR(-EINVAL);
1025
1026         for (i = 0; i < regd->n_reg_rules; i++) {
1027                 const struct ieee80211_reg_rule *rr;
1028                 const struct ieee80211_freq_range *fr = NULL;
1029
1030                 rr = &regd->reg_rules[i];
1031                 fr = &rr->freq_range;
1032
1033                 /*
1034                  * We only need to know if one frequency rule was
1035                  * was in center_freq's band, that's enough, so lets
1036                  * not overwrite it once found
1037                  */
1038                 if (!band_rule_found)
1039                         band_rule_found = freq_in_rule_band(fr, center_freq);
1040
1041                 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1042
1043                 if (band_rule_found && bw_fits)
1044                         return rr;
1045         }
1046
1047         if (!band_rule_found)
1048                 return ERR_PTR(-ERANGE);
1049
1050         return ERR_PTR(-EINVAL);
1051 }
1052
1053 static const struct ieee80211_reg_rule *
1054 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1055 {
1056         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1057         const struct ieee80211_reg_rule *reg_rule = NULL;
1058         u32 bw;
1059
1060         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1061                 reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1062                 if (!IS_ERR(reg_rule))
1063                         return reg_rule;
1064         }
1065
1066         return reg_rule;
1067 }
1068
1069 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1070                                                u32 center_freq)
1071 {
1072         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1073 }
1074 EXPORT_SYMBOL(freq_reg_info);
1075
1076 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1077 {
1078         switch (initiator) {
1079         case NL80211_REGDOM_SET_BY_CORE:
1080                 return "core";
1081         case NL80211_REGDOM_SET_BY_USER:
1082                 return "user";
1083         case NL80211_REGDOM_SET_BY_DRIVER:
1084                 return "driver";
1085         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1086                 return "country IE";
1087         default:
1088                 WARN_ON(1);
1089                 return "bug";
1090         }
1091 }
1092 EXPORT_SYMBOL(reg_initiator_name);
1093
1094 #ifdef CONFIG_CFG80211_REG_DEBUG
1095 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1096                                     struct ieee80211_channel *chan,
1097                                     const struct ieee80211_reg_rule *reg_rule)
1098 {
1099         const struct ieee80211_power_rule *power_rule;
1100         const struct ieee80211_freq_range *freq_range;
1101         char max_antenna_gain[32], bw[32];
1102
1103         power_rule = &reg_rule->power_rule;
1104         freq_range = &reg_rule->freq_range;
1105
1106         if (!power_rule->max_antenna_gain)
1107                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1108         else
1109                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1110                          power_rule->max_antenna_gain);
1111
1112         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1113                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1114                          freq_range->max_bandwidth_khz,
1115                          reg_get_max_bandwidth(regd, reg_rule));
1116         else
1117                 snprintf(bw, sizeof(bw), "%d KHz",
1118                          freq_range->max_bandwidth_khz);
1119
1120         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1121                       chan->center_freq);
1122
1123         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1124                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1125                       bw, max_antenna_gain,
1126                       power_rule->max_eirp);
1127 }
1128 #else
1129 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1130                                     struct ieee80211_channel *chan,
1131                                     const struct ieee80211_reg_rule *reg_rule)
1132 {
1133         return;
1134 }
1135 #endif
1136
1137 /*
1138  * Note that right now we assume the desired channel bandwidth
1139  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1140  * per channel, the primary and the extension channel).
1141  */
1142 static void handle_channel(struct wiphy *wiphy,
1143                            enum nl80211_reg_initiator initiator,
1144                            struct ieee80211_channel *chan)
1145 {
1146         u32 flags, bw_flags = 0;
1147         const struct ieee80211_reg_rule *reg_rule = NULL;
1148         const struct ieee80211_power_rule *power_rule = NULL;
1149         const struct ieee80211_freq_range *freq_range = NULL;
1150         struct wiphy *request_wiphy = NULL;
1151         struct regulatory_request *lr = get_last_request();
1152         const struct ieee80211_regdomain *regd;
1153         u32 max_bandwidth_khz;
1154
1155         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1156
1157         flags = chan->orig_flags;
1158
1159         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1160         if (IS_ERR(reg_rule)) {
1161                 /*
1162                  * We will disable all channels that do not match our
1163                  * received regulatory rule unless the hint is coming
1164                  * from a Country IE and the Country IE had no information
1165                  * about a band. The IEEE 802.11 spec allows for an AP
1166                  * to send only a subset of the regulatory rules allowed,
1167                  * so an AP in the US that only supports 2.4 GHz may only send
1168                  * a country IE with information for the 2.4 GHz band
1169                  * while 5 GHz is still supported.
1170                  */
1171                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1172                     PTR_ERR(reg_rule) == -ERANGE)
1173                         return;
1174
1175                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176                     request_wiphy && request_wiphy == wiphy &&
1177                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1179                                       chan->center_freq);
1180                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1181                         chan->flags = chan->orig_flags;
1182                 } else {
1183                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1184                                       chan->center_freq);
1185                         chan->flags |= IEEE80211_CHAN_DISABLED;
1186                 }
1187                 return;
1188         }
1189
1190         regd = reg_get_regdomain(wiphy);
1191         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1192
1193         power_rule = &reg_rule->power_rule;
1194         freq_range = &reg_rule->freq_range;
1195
1196         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1197         /* Check if auto calculation requested */
1198         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1199                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1200
1201         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1202         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1203                              MHZ_TO_KHZ(10)))
1204                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1205         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1206                              MHZ_TO_KHZ(20)))
1207                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1208
1209         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1210                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1211         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1212                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1213         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1214                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1215         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1216                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1217         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1218                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1219
1220         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1221             request_wiphy && request_wiphy == wiphy &&
1222             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1223                 /*
1224                  * This guarantees the driver's requested regulatory domain
1225                  * will always be used as a base for further regulatory
1226                  * settings
1227                  */
1228                 chan->flags = chan->orig_flags =
1229                         map_regdom_flags(reg_rule->flags) | bw_flags;
1230                 chan->max_antenna_gain = chan->orig_mag =
1231                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1232                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1233                         (int) MBM_TO_DBM(power_rule->max_eirp);
1234
1235                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1236                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1237                         if (reg_rule->dfs_cac_ms)
1238                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1239                 }
1240
1241                 return;
1242         }
1243
1244         chan->dfs_state = NL80211_DFS_USABLE;
1245         chan->dfs_state_entered = jiffies;
1246
1247         chan->beacon_found = false;
1248         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1249         chan->max_antenna_gain =
1250                 min_t(int, chan->orig_mag,
1251                       MBI_TO_DBI(power_rule->max_antenna_gain));
1252         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1253
1254         if (chan->flags & IEEE80211_CHAN_RADAR) {
1255                 if (reg_rule->dfs_cac_ms)
1256                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1257                 else
1258                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1259         }
1260
1261         if (chan->orig_mpwr) {
1262                 /*
1263                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1264                  * will always follow the passed country IE power settings.
1265                  */
1266                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1267                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1268                         chan->max_power = chan->max_reg_power;
1269                 else
1270                         chan->max_power = min(chan->orig_mpwr,
1271                                               chan->max_reg_power);
1272         } else
1273                 chan->max_power = chan->max_reg_power;
1274 }
1275
1276 static void handle_band(struct wiphy *wiphy,
1277                         enum nl80211_reg_initiator initiator,
1278                         struct ieee80211_supported_band *sband)
1279 {
1280         unsigned int i;
1281
1282         if (!sband)
1283                 return;
1284
1285         for (i = 0; i < sband->n_channels; i++)
1286                 handle_channel(wiphy, initiator, &sband->channels[i]);
1287 }
1288
1289 static bool reg_request_cell_base(struct regulatory_request *request)
1290 {
1291         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1292                 return false;
1293         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1294 }
1295
1296 bool reg_last_request_cell_base(void)
1297 {
1298         return reg_request_cell_base(get_last_request());
1299 }
1300
1301 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1302 /* Core specific check */
1303 static enum reg_request_treatment
1304 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1305 {
1306         struct regulatory_request *lr = get_last_request();
1307
1308         if (!reg_num_devs_support_basehint)
1309                 return REG_REQ_IGNORE;
1310
1311         if (reg_request_cell_base(lr) &&
1312             !regdom_changes(pending_request->alpha2))
1313                 return REG_REQ_ALREADY_SET;
1314
1315         return REG_REQ_OK;
1316 }
1317
1318 /* Device specific check */
1319 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1320 {
1321         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1322 }
1323 #else
1324 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1325 {
1326         return REG_REQ_IGNORE;
1327 }
1328
1329 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1330 {
1331         return true;
1332 }
1333 #endif
1334
1335 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1336 {
1337         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1338             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1339                 return true;
1340         return false;
1341 }
1342
1343 static bool ignore_reg_update(struct wiphy *wiphy,
1344                               enum nl80211_reg_initiator initiator)
1345 {
1346         struct regulatory_request *lr = get_last_request();
1347
1348         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1349                 return true;
1350
1351         if (!lr) {
1352                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1353                               "since last_request is not set\n",
1354                               reg_initiator_name(initiator));
1355                 return true;
1356         }
1357
1358         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1359             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1360                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1361                               "since the driver uses its own custom "
1362                               "regulatory domain\n",
1363                               reg_initiator_name(initiator));
1364                 return true;
1365         }
1366
1367         /*
1368          * wiphy->regd will be set once the device has its own
1369          * desired regulatory domain set
1370          */
1371         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1372             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1373             !is_world_regdom(lr->alpha2)) {
1374                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1375                               "since the driver requires its own regulatory "
1376                               "domain to be set first\n",
1377                               reg_initiator_name(initiator));
1378                 return true;
1379         }
1380
1381         if (reg_request_cell_base(lr))
1382                 return reg_dev_ignore_cell_hint(wiphy);
1383
1384         return false;
1385 }
1386
1387 static bool reg_is_world_roaming(struct wiphy *wiphy)
1388 {
1389         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1390         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1391         struct regulatory_request *lr = get_last_request();
1392
1393         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1394                 return true;
1395
1396         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1397             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1398                 return true;
1399
1400         return false;
1401 }
1402
1403 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1404                               struct reg_beacon *reg_beacon)
1405 {
1406         struct ieee80211_supported_band *sband;
1407         struct ieee80211_channel *chan;
1408         bool channel_changed = false;
1409         struct ieee80211_channel chan_before;
1410
1411         sband = wiphy->bands[reg_beacon->chan.band];
1412         chan = &sband->channels[chan_idx];
1413
1414         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1415                 return;
1416
1417         if (chan->beacon_found)
1418                 return;
1419
1420         chan->beacon_found = true;
1421
1422         if (!reg_is_world_roaming(wiphy))
1423                 return;
1424
1425         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1426                 return;
1427
1428         chan_before.center_freq = chan->center_freq;
1429         chan_before.flags = chan->flags;
1430
1431         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1432                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1433                 channel_changed = true;
1434         }
1435
1436         if (channel_changed)
1437                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1438 }
1439
1440 /*
1441  * Called when a scan on a wiphy finds a beacon on
1442  * new channel
1443  */
1444 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1445                                     struct reg_beacon *reg_beacon)
1446 {
1447         unsigned int i;
1448         struct ieee80211_supported_band *sband;
1449
1450         if (!wiphy->bands[reg_beacon->chan.band])
1451                 return;
1452
1453         sband = wiphy->bands[reg_beacon->chan.band];
1454
1455         for (i = 0; i < sband->n_channels; i++)
1456                 handle_reg_beacon(wiphy, i, reg_beacon);
1457 }
1458
1459 /*
1460  * Called upon reg changes or a new wiphy is added
1461  */
1462 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1463 {
1464         unsigned int i;
1465         struct ieee80211_supported_band *sband;
1466         struct reg_beacon *reg_beacon;
1467
1468         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1469                 if (!wiphy->bands[reg_beacon->chan.band])
1470                         continue;
1471                 sband = wiphy->bands[reg_beacon->chan.band];
1472                 for (i = 0; i < sband->n_channels; i++)
1473                         handle_reg_beacon(wiphy, i, reg_beacon);
1474         }
1475 }
1476
1477 /* Reap the advantages of previously found beacons */
1478 static void reg_process_beacons(struct wiphy *wiphy)
1479 {
1480         /*
1481          * Means we are just firing up cfg80211, so no beacons would
1482          * have been processed yet.
1483          */
1484         if (!last_request)
1485                 return;
1486         wiphy_update_beacon_reg(wiphy);
1487 }
1488
1489 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1490 {
1491         if (!chan)
1492                 return false;
1493         if (chan->flags & IEEE80211_CHAN_DISABLED)
1494                 return false;
1495         /* This would happen when regulatory rules disallow HT40 completely */
1496         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1497                 return false;
1498         return true;
1499 }
1500
1501 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1502                                          struct ieee80211_channel *channel)
1503 {
1504         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1505         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1506         unsigned int i;
1507
1508         if (!is_ht40_allowed(channel)) {
1509                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1510                 return;
1511         }
1512
1513         /*
1514          * We need to ensure the extension channels exist to
1515          * be able to use HT40- or HT40+, this finds them (or not)
1516          */
1517         for (i = 0; i < sband->n_channels; i++) {
1518                 struct ieee80211_channel *c = &sband->channels[i];
1519
1520                 if (c->center_freq == (channel->center_freq - 20))
1521                         channel_before = c;
1522                 if (c->center_freq == (channel->center_freq + 20))
1523                         channel_after = c;
1524         }
1525
1526         /*
1527          * Please note that this assumes target bandwidth is 20 MHz,
1528          * if that ever changes we also need to change the below logic
1529          * to include that as well.
1530          */
1531         if (!is_ht40_allowed(channel_before))
1532                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1533         else
1534                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1535
1536         if (!is_ht40_allowed(channel_after))
1537                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1538         else
1539                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1540 }
1541
1542 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1543                                       struct ieee80211_supported_band *sband)
1544 {
1545         unsigned int i;
1546
1547         if (!sband)
1548                 return;
1549
1550         for (i = 0; i < sband->n_channels; i++)
1551                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1552 }
1553
1554 static void reg_process_ht_flags(struct wiphy *wiphy)
1555 {
1556         enum ieee80211_band band;
1557
1558         if (!wiphy)
1559                 return;
1560
1561         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1562                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1563 }
1564
1565 static void reg_call_notifier(struct wiphy *wiphy,
1566                               struct regulatory_request *request)
1567 {
1568         if (wiphy->reg_notifier)
1569                 wiphy->reg_notifier(wiphy, request);
1570 }
1571
1572 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1573 {
1574         struct cfg80211_chan_def chandef;
1575         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1576         enum nl80211_iftype iftype;
1577
1578         wdev_lock(wdev);
1579         iftype = wdev->iftype;
1580
1581         /* make sure the interface is active */
1582         if (!wdev->netdev || !netif_running(wdev->netdev))
1583                 goto wdev_inactive_unlock;
1584
1585         switch (iftype) {
1586         case NL80211_IFTYPE_AP:
1587         case NL80211_IFTYPE_P2P_GO:
1588                 if (!wdev->beacon_interval)
1589                         goto wdev_inactive_unlock;
1590                 chandef = wdev->chandef;
1591                 break;
1592         case NL80211_IFTYPE_ADHOC:
1593                 if (!wdev->ssid_len)
1594                         goto wdev_inactive_unlock;
1595                 chandef = wdev->chandef;
1596                 break;
1597         case NL80211_IFTYPE_STATION:
1598         case NL80211_IFTYPE_P2P_CLIENT:
1599                 if (!wdev->current_bss ||
1600                     !wdev->current_bss->pub.channel)
1601                         goto wdev_inactive_unlock;
1602
1603                 if (!rdev->ops->get_channel ||
1604                     rdev_get_channel(rdev, wdev, &chandef))
1605                         cfg80211_chandef_create(&chandef,
1606                                                 wdev->current_bss->pub.channel,
1607                                                 NL80211_CHAN_NO_HT);
1608                 break;
1609         case NL80211_IFTYPE_MONITOR:
1610         case NL80211_IFTYPE_AP_VLAN:
1611         case NL80211_IFTYPE_P2P_DEVICE:
1612                 /* no enforcement required */
1613                 break;
1614         default:
1615                 /* others not implemented for now */
1616                 WARN_ON(1);
1617                 break;
1618         }
1619
1620         wdev_unlock(wdev);
1621
1622         switch (iftype) {
1623         case NL80211_IFTYPE_AP:
1624         case NL80211_IFTYPE_P2P_GO:
1625         case NL80211_IFTYPE_ADHOC:
1626                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1627         case NL80211_IFTYPE_STATION:
1628         case NL80211_IFTYPE_P2P_CLIENT:
1629                 return cfg80211_chandef_usable(wiphy, &chandef,
1630                                                IEEE80211_CHAN_DISABLED);
1631         default:
1632                 break;
1633         }
1634
1635         return true;
1636
1637 wdev_inactive_unlock:
1638         wdev_unlock(wdev);
1639         return true;
1640 }
1641
1642 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1643 {
1644         struct wireless_dev *wdev;
1645         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1646
1647         ASSERT_RTNL();
1648
1649         list_for_each_entry(wdev, &rdev->wdev_list, list)
1650                 if (!reg_wdev_chan_valid(wiphy, wdev))
1651                         cfg80211_leave(rdev, wdev);
1652 }
1653
1654 static void reg_check_chans_work(struct work_struct *work)
1655 {
1656         struct cfg80211_registered_device *rdev;
1657
1658         REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1659         rtnl_lock();
1660
1661         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1662                 if (!(rdev->wiphy.regulatory_flags &
1663                       REGULATORY_IGNORE_STALE_KICKOFF))
1664                         reg_leave_invalid_chans(&rdev->wiphy);
1665
1666         rtnl_unlock();
1667 }
1668
1669 static void reg_check_channels(void)
1670 {
1671         /*
1672          * Give usermode a chance to do something nicer (move to another
1673          * channel, orderly disconnection), before forcing a disconnection.
1674          */
1675         mod_delayed_work(system_power_efficient_wq,
1676                          &reg_check_chans,
1677                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1678 }
1679
1680 static void wiphy_update_regulatory(struct wiphy *wiphy,
1681                                     enum nl80211_reg_initiator initiator)
1682 {
1683         enum ieee80211_band band;
1684         struct regulatory_request *lr = get_last_request();
1685
1686         if (ignore_reg_update(wiphy, initiator)) {
1687                 /*
1688                  * Regulatory updates set by CORE are ignored for custom
1689                  * regulatory cards. Let us notify the changes to the driver,
1690                  * as some drivers used this to restore its orig_* reg domain.
1691                  */
1692                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1693                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1694                         reg_call_notifier(wiphy, lr);
1695                 return;
1696         }
1697
1698         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1699
1700         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1701                 handle_band(wiphy, initiator, wiphy->bands[band]);
1702
1703         reg_process_beacons(wiphy);
1704         reg_process_ht_flags(wiphy);
1705         reg_call_notifier(wiphy, lr);
1706 }
1707
1708 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1709 {
1710         struct cfg80211_registered_device *rdev;
1711         struct wiphy *wiphy;
1712
1713         ASSERT_RTNL();
1714
1715         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1716                 wiphy = &rdev->wiphy;
1717                 wiphy_update_regulatory(wiphy, initiator);
1718         }
1719
1720         reg_check_channels();
1721 }
1722
1723 static void handle_channel_custom(struct wiphy *wiphy,
1724                                   struct ieee80211_channel *chan,
1725                                   const struct ieee80211_regdomain *regd)
1726 {
1727         u32 bw_flags = 0;
1728         const struct ieee80211_reg_rule *reg_rule = NULL;
1729         const struct ieee80211_power_rule *power_rule = NULL;
1730         const struct ieee80211_freq_range *freq_range = NULL;
1731         u32 max_bandwidth_khz;
1732         u32 bw;
1733
1734         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1735                 reg_rule = freq_reg_info_regd(wiphy,
1736                                               MHZ_TO_KHZ(chan->center_freq),
1737                                               regd, bw);
1738                 if (!IS_ERR(reg_rule))
1739                         break;
1740         }
1741
1742         if (IS_ERR(reg_rule)) {
1743                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1744                               chan->center_freq);
1745                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1746                         chan->flags |= IEEE80211_CHAN_DISABLED;
1747                 } else {
1748                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1749                         chan->flags = chan->orig_flags;
1750                 }
1751                 return;
1752         }
1753
1754         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1755
1756         power_rule = &reg_rule->power_rule;
1757         freq_range = &reg_rule->freq_range;
1758
1759         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1760         /* Check if auto calculation requested */
1761         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1762                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1763
1764         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1765         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1766                              MHZ_TO_KHZ(10)))
1767                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1768         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1769                              MHZ_TO_KHZ(20)))
1770                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1771
1772         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1773                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1774         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1775                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1776         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1777                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1778         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1779                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1780         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1781                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1782
1783         chan->dfs_state_entered = jiffies;
1784         chan->dfs_state = NL80211_DFS_USABLE;
1785
1786         chan->beacon_found = false;
1787
1788         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1789                 chan->flags = chan->orig_flags | bw_flags |
1790                               map_regdom_flags(reg_rule->flags);
1791         else
1792                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1793
1794         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1795         chan->max_reg_power = chan->max_power =
1796                 (int) MBM_TO_DBM(power_rule->max_eirp);
1797
1798         if (chan->flags & IEEE80211_CHAN_RADAR) {
1799                 if (reg_rule->dfs_cac_ms)
1800                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1801                 else
1802                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1803         }
1804
1805         chan->max_power = chan->max_reg_power;
1806 }
1807
1808 static void handle_band_custom(struct wiphy *wiphy,
1809                                struct ieee80211_supported_band *sband,
1810                                const struct ieee80211_regdomain *regd)
1811 {
1812         unsigned int i;
1813
1814         if (!sband)
1815                 return;
1816
1817         for (i = 0; i < sband->n_channels; i++)
1818                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1819 }
1820
1821 /* Used by drivers prior to wiphy registration */
1822 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1823                                    const struct ieee80211_regdomain *regd)
1824 {
1825         enum ieee80211_band band;
1826         unsigned int bands_set = 0;
1827
1828         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1829              "wiphy should have REGULATORY_CUSTOM_REG\n");
1830         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1831
1832         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1833                 if (!wiphy->bands[band])
1834                         continue;
1835                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1836                 bands_set++;
1837         }
1838
1839         /*
1840          * no point in calling this if it won't have any effect
1841          * on your device's supported bands.
1842          */
1843         WARN_ON(!bands_set);
1844 }
1845 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1846
1847 static void reg_set_request_processed(void)
1848 {
1849         bool need_more_processing = false;
1850         struct regulatory_request *lr = get_last_request();
1851
1852         lr->processed = true;
1853
1854         spin_lock(&reg_requests_lock);
1855         if (!list_empty(&reg_requests_list))
1856                 need_more_processing = true;
1857         spin_unlock(&reg_requests_lock);
1858
1859         cancel_delayed_work(&reg_timeout);
1860
1861         if (need_more_processing)
1862                 schedule_work(&reg_work);
1863 }
1864
1865 /**
1866  * reg_process_hint_core - process core regulatory requests
1867  * @pending_request: a pending core regulatory request
1868  *
1869  * The wireless subsystem can use this function to process
1870  * a regulatory request issued by the regulatory core.
1871  */
1872 static void reg_process_hint_core(struct regulatory_request *core_request)
1873 {
1874         if (reg_query_database(core_request)) {
1875                 core_request->intersect = false;
1876                 core_request->processed = false;
1877                 reg_update_last_request(core_request);
1878         }
1879 }
1880
1881 static enum reg_request_treatment
1882 __reg_process_hint_user(struct regulatory_request *user_request)
1883 {
1884         struct regulatory_request *lr = get_last_request();
1885
1886         if (reg_request_cell_base(user_request))
1887                 return reg_ignore_cell_hint(user_request);
1888
1889         if (reg_request_cell_base(lr))
1890                 return REG_REQ_IGNORE;
1891
1892         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1893                 return REG_REQ_INTERSECT;
1894         /*
1895          * If the user knows better the user should set the regdom
1896          * to their country before the IE is picked up
1897          */
1898         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1899             lr->intersect)
1900                 return REG_REQ_IGNORE;
1901         /*
1902          * Process user requests only after previous user/driver/core
1903          * requests have been processed
1904          */
1905         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1906              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1907              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1908             regdom_changes(lr->alpha2))
1909                 return REG_REQ_IGNORE;
1910
1911         if (!regdom_changes(user_request->alpha2))
1912                 return REG_REQ_ALREADY_SET;
1913
1914         return REG_REQ_OK;
1915 }
1916
1917 /**
1918  * reg_process_hint_user - process user regulatory requests
1919  * @user_request: a pending user regulatory request
1920  *
1921  * The wireless subsystem can use this function to process
1922  * a regulatory request initiated by userspace.
1923  */
1924 static void reg_process_hint_user(struct regulatory_request *user_request)
1925 {
1926         enum reg_request_treatment treatment;
1927
1928         treatment = __reg_process_hint_user(user_request);
1929         if (treatment == REG_REQ_IGNORE ||
1930             treatment == REG_REQ_ALREADY_SET) {
1931                 reg_free_request(user_request);
1932                 return;
1933         }
1934
1935         user_request->intersect = treatment == REG_REQ_INTERSECT;
1936         user_request->processed = false;
1937
1938         if (reg_query_database(user_request)) {
1939                 reg_update_last_request(user_request);
1940                 user_alpha2[0] = user_request->alpha2[0];
1941                 user_alpha2[1] = user_request->alpha2[1];
1942         } else {
1943                 reg_free_request(user_request);
1944         }
1945 }
1946
1947 static enum reg_request_treatment
1948 __reg_process_hint_driver(struct regulatory_request *driver_request)
1949 {
1950         struct regulatory_request *lr = get_last_request();
1951
1952         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1953                 if (regdom_changes(driver_request->alpha2))
1954                         return REG_REQ_OK;
1955                 return REG_REQ_ALREADY_SET;
1956         }
1957
1958         /*
1959          * This would happen if you unplug and plug your card
1960          * back in or if you add a new device for which the previously
1961          * loaded card also agrees on the regulatory domain.
1962          */
1963         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1964             !regdom_changes(driver_request->alpha2))
1965                 return REG_REQ_ALREADY_SET;
1966
1967         return REG_REQ_INTERSECT;
1968 }
1969
1970 /**
1971  * reg_process_hint_driver - process driver regulatory requests
1972  * @driver_request: a pending driver regulatory request
1973  *
1974  * The wireless subsystem can use this function to process
1975  * a regulatory request issued by an 802.11 driver.
1976  *
1977  * Returns one of the different reg request treatment values.
1978  */
1979 static enum reg_request_treatment
1980 reg_process_hint_driver(struct wiphy *wiphy,
1981                         struct regulatory_request *driver_request)
1982 {
1983         const struct ieee80211_regdomain *regd, *tmp;
1984         enum reg_request_treatment treatment;
1985
1986         treatment = __reg_process_hint_driver(driver_request);
1987
1988         switch (treatment) {
1989         case REG_REQ_OK:
1990                 break;
1991         case REG_REQ_IGNORE:
1992                 reg_free_request(driver_request);
1993                 return treatment;
1994         case REG_REQ_INTERSECT:
1995                 /* fall through */
1996         case REG_REQ_ALREADY_SET:
1997                 regd = reg_copy_regd(get_cfg80211_regdom());
1998                 if (IS_ERR(regd)) {
1999                         reg_free_request(driver_request);
2000                         return REG_REQ_IGNORE;
2001                 }
2002
2003                 tmp = get_wiphy_regdom(wiphy);
2004                 rcu_assign_pointer(wiphy->regd, regd);
2005                 rcu_free_regdom(tmp);
2006         }
2007
2008
2009         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2010         driver_request->processed = false;
2011
2012         /*
2013          * Since CRDA will not be called in this case as we already
2014          * have applied the requested regulatory domain before we just
2015          * inform userspace we have processed the request
2016          */
2017         if (treatment == REG_REQ_ALREADY_SET) {
2018                 nl80211_send_reg_change_event(driver_request);
2019                 reg_update_last_request(driver_request);
2020                 reg_set_request_processed();
2021                 return treatment;
2022         }
2023
2024         if (reg_query_database(driver_request))
2025                 reg_update_last_request(driver_request);
2026         else
2027                 reg_free_request(driver_request);
2028
2029         return REG_REQ_OK;
2030 }
2031
2032 static enum reg_request_treatment
2033 __reg_process_hint_country_ie(struct wiphy *wiphy,
2034                               struct regulatory_request *country_ie_request)
2035 {
2036         struct wiphy *last_wiphy = NULL;
2037         struct regulatory_request *lr = get_last_request();
2038
2039         if (reg_request_cell_base(lr)) {
2040                 /* Trust a Cell base station over the AP's country IE */
2041                 if (regdom_changes(country_ie_request->alpha2))
2042                         return REG_REQ_IGNORE;
2043                 return REG_REQ_ALREADY_SET;
2044         } else {
2045                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2046                         return REG_REQ_IGNORE;
2047         }
2048
2049         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2050                 return -EINVAL;
2051
2052         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2053                 return REG_REQ_OK;
2054
2055         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2056
2057         if (last_wiphy != wiphy) {
2058                 /*
2059                  * Two cards with two APs claiming different
2060                  * Country IE alpha2s. We could
2061                  * intersect them, but that seems unlikely
2062                  * to be correct. Reject second one for now.
2063                  */
2064                 if (regdom_changes(country_ie_request->alpha2))
2065                         return REG_REQ_IGNORE;
2066                 return REG_REQ_ALREADY_SET;
2067         }
2068
2069         if (regdom_changes(country_ie_request->alpha2))
2070                 return REG_REQ_OK;
2071         return REG_REQ_ALREADY_SET;
2072 }
2073
2074 /**
2075  * reg_process_hint_country_ie - process regulatory requests from country IEs
2076  * @country_ie_request: a regulatory request from a country IE
2077  *
2078  * The wireless subsystem can use this function to process
2079  * a regulatory request issued by a country Information Element.
2080  *
2081  * Returns one of the different reg request treatment values.
2082  */
2083 static enum reg_request_treatment
2084 reg_process_hint_country_ie(struct wiphy *wiphy,
2085                             struct regulatory_request *country_ie_request)
2086 {
2087         enum reg_request_treatment treatment;
2088
2089         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2090
2091         switch (treatment) {
2092         case REG_REQ_OK:
2093                 break;
2094         case REG_REQ_IGNORE:
2095                 /* fall through */
2096         case REG_REQ_ALREADY_SET:
2097                 reg_free_request(country_ie_request);
2098                 return treatment;
2099         case REG_REQ_INTERSECT:
2100                 reg_free_request(country_ie_request);
2101                 /*
2102                  * This doesn't happen yet, not sure we
2103                  * ever want to support it for this case.
2104                  */
2105                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2106                 return REG_REQ_IGNORE;
2107         }
2108
2109         country_ie_request->intersect = false;
2110         country_ie_request->processed = false;
2111
2112         if (reg_query_database(country_ie_request))
2113                 reg_update_last_request(country_ie_request);
2114         else
2115                 reg_free_request(country_ie_request);
2116
2117         return REG_REQ_OK;
2118 }
2119
2120 /* This processes *all* regulatory hints */
2121 static void reg_process_hint(struct regulatory_request *reg_request)
2122 {
2123         struct wiphy *wiphy = NULL;
2124         enum reg_request_treatment treatment;
2125
2126         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2127                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2128
2129         switch (reg_request->initiator) {
2130         case NL80211_REGDOM_SET_BY_CORE:
2131                 reg_process_hint_core(reg_request);
2132                 return;
2133         case NL80211_REGDOM_SET_BY_USER:
2134                 reg_process_hint_user(reg_request);
2135                 return;
2136         case NL80211_REGDOM_SET_BY_DRIVER:
2137                 if (!wiphy)
2138                         goto out_free;
2139                 treatment = reg_process_hint_driver(wiphy, reg_request);
2140                 break;
2141         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2142                 if (!wiphy)
2143                         goto out_free;
2144                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2145                 break;
2146         default:
2147                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2148                 goto out_free;
2149         }
2150
2151         /* This is required so that the orig_* parameters are saved.
2152          * NOTE: treatment must be set for any case that reaches here!
2153          */
2154         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2155             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2156                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2157                 reg_check_channels();
2158         }
2159
2160         return;
2161
2162 out_free:
2163         reg_free_request(reg_request);
2164 }
2165
2166 static bool reg_only_self_managed_wiphys(void)
2167 {
2168         struct cfg80211_registered_device *rdev;
2169         struct wiphy *wiphy;
2170         bool self_managed_found = false;
2171
2172         ASSERT_RTNL();
2173
2174         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2175                 wiphy = &rdev->wiphy;
2176                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2177                         self_managed_found = true;
2178                 else
2179                         return false;
2180         }
2181
2182         /* make sure at least one self-managed wiphy exists */
2183         return self_managed_found;
2184 }
2185
2186 /*
2187  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2188  * Regulatory hints come on a first come first serve basis and we
2189  * must process each one atomically.
2190  */
2191 static void reg_process_pending_hints(void)
2192 {
2193         struct regulatory_request *reg_request, *lr;
2194
2195         lr = get_last_request();
2196
2197         /* When last_request->processed becomes true this will be rescheduled */
2198         if (lr && !lr->processed) {
2199                 reg_process_hint(lr);
2200                 return;
2201         }
2202
2203         spin_lock(&reg_requests_lock);
2204
2205         if (list_empty(&reg_requests_list)) {
2206                 spin_unlock(&reg_requests_lock);
2207                 return;
2208         }
2209
2210         reg_request = list_first_entry(&reg_requests_list,
2211                                        struct regulatory_request,
2212                                        list);
2213         list_del_init(&reg_request->list);
2214
2215         spin_unlock(&reg_requests_lock);
2216
2217         if (reg_only_self_managed_wiphys()) {
2218                 reg_free_request(reg_request);
2219                 return;
2220         }
2221
2222         reg_process_hint(reg_request);
2223
2224         lr = get_last_request();
2225
2226         spin_lock(&reg_requests_lock);
2227         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2228                 schedule_work(&reg_work);
2229         spin_unlock(&reg_requests_lock);
2230 }
2231
2232 /* Processes beacon hints -- this has nothing to do with country IEs */
2233 static void reg_process_pending_beacon_hints(void)
2234 {
2235         struct cfg80211_registered_device *rdev;
2236         struct reg_beacon *pending_beacon, *tmp;
2237
2238         /* This goes through the _pending_ beacon list */
2239         spin_lock_bh(&reg_pending_beacons_lock);
2240
2241         list_for_each_entry_safe(pending_beacon, tmp,
2242                                  &reg_pending_beacons, list) {
2243                 list_del_init(&pending_beacon->list);
2244
2245                 /* Applies the beacon hint to current wiphys */
2246                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2247                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2248
2249                 /* Remembers the beacon hint for new wiphys or reg changes */
2250                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2251         }
2252
2253         spin_unlock_bh(&reg_pending_beacons_lock);
2254 }
2255
2256 static void reg_process_self_managed_hints(void)
2257 {
2258         struct cfg80211_registered_device *rdev;
2259         struct wiphy *wiphy;
2260         const struct ieee80211_regdomain *tmp;
2261         const struct ieee80211_regdomain *regd;
2262         enum ieee80211_band band;
2263         struct regulatory_request request = {};
2264
2265         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2266                 wiphy = &rdev->wiphy;
2267
2268                 spin_lock(&reg_requests_lock);
2269                 regd = rdev->requested_regd;
2270                 rdev->requested_regd = NULL;
2271                 spin_unlock(&reg_requests_lock);
2272
2273                 if (regd == NULL)
2274                         continue;
2275
2276                 tmp = get_wiphy_regdom(wiphy);
2277                 rcu_assign_pointer(wiphy->regd, regd);
2278                 rcu_free_regdom(tmp);
2279
2280                 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2281                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2282
2283                 reg_process_ht_flags(wiphy);
2284
2285                 request.wiphy_idx = get_wiphy_idx(wiphy);
2286                 request.alpha2[0] = regd->alpha2[0];
2287                 request.alpha2[1] = regd->alpha2[1];
2288                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2289
2290                 nl80211_send_wiphy_reg_change_event(&request);
2291         }
2292
2293         reg_check_channels();
2294 }
2295
2296 static void reg_todo(struct work_struct *work)
2297 {
2298         rtnl_lock();
2299         reg_process_pending_hints();
2300         reg_process_pending_beacon_hints();
2301         reg_process_self_managed_hints();
2302         rtnl_unlock();
2303 }
2304
2305 static void queue_regulatory_request(struct regulatory_request *request)
2306 {
2307         request->alpha2[0] = toupper(request->alpha2[0]);
2308         request->alpha2[1] = toupper(request->alpha2[1]);
2309
2310         spin_lock(&reg_requests_lock);
2311         list_add_tail(&request->list, &reg_requests_list);
2312         spin_unlock(&reg_requests_lock);
2313
2314         schedule_work(&reg_work);
2315 }
2316
2317 /*
2318  * Core regulatory hint -- happens during cfg80211_init()
2319  * and when we restore regulatory settings.
2320  */
2321 static int regulatory_hint_core(const char *alpha2)
2322 {
2323         struct regulatory_request *request;
2324
2325         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2326         if (!request)
2327                 return -ENOMEM;
2328
2329         request->alpha2[0] = alpha2[0];
2330         request->alpha2[1] = alpha2[1];
2331         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2332
2333         queue_regulatory_request(request);
2334
2335         return 0;
2336 }
2337
2338 /* User hints */
2339 int regulatory_hint_user(const char *alpha2,
2340                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2341 {
2342         struct regulatory_request *request;
2343
2344         if (WARN_ON(!alpha2))
2345                 return -EINVAL;
2346
2347         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2348         if (!request)
2349                 return -ENOMEM;
2350
2351         request->wiphy_idx = WIPHY_IDX_INVALID;
2352         request->alpha2[0] = alpha2[0];
2353         request->alpha2[1] = alpha2[1];
2354         request->initiator = NL80211_REGDOM_SET_BY_USER;
2355         request->user_reg_hint_type = user_reg_hint_type;
2356
2357         /* Allow calling CRDA again */
2358         reg_crda_timeouts = 0;
2359
2360         queue_regulatory_request(request);
2361
2362         return 0;
2363 }
2364
2365 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2366 {
2367         spin_lock(&reg_indoor_lock);
2368
2369         /* It is possible that more than one user space process is trying to
2370          * configure the indoor setting. To handle such cases, clear the indoor
2371          * setting in case that some process does not think that the device
2372          * is operating in an indoor environment. In addition, if a user space
2373          * process indicates that it is controlling the indoor setting, save its
2374          * portid, i.e., make it the owner.
2375          */
2376         reg_is_indoor = is_indoor;
2377         if (reg_is_indoor) {
2378                 if (!reg_is_indoor_portid)
2379                         reg_is_indoor_portid = portid;
2380         } else {
2381                 reg_is_indoor_portid = 0;
2382         }
2383
2384         spin_unlock(&reg_indoor_lock);
2385
2386         if (!is_indoor)
2387                 reg_check_channels();
2388
2389         return 0;
2390 }
2391
2392 void regulatory_netlink_notify(u32 portid)
2393 {
2394         spin_lock(&reg_indoor_lock);
2395
2396         if (reg_is_indoor_portid != portid) {
2397                 spin_unlock(&reg_indoor_lock);
2398                 return;
2399         }
2400
2401         reg_is_indoor = false;
2402         reg_is_indoor_portid = 0;
2403
2404         spin_unlock(&reg_indoor_lock);
2405
2406         reg_check_channels();
2407 }
2408
2409 /* Driver hints */
2410 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2411 {
2412         struct regulatory_request *request;
2413
2414         if (WARN_ON(!alpha2 || !wiphy))
2415                 return -EINVAL;
2416
2417         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2418
2419         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2420         if (!request)
2421                 return -ENOMEM;
2422
2423         request->wiphy_idx = get_wiphy_idx(wiphy);
2424
2425         request->alpha2[0] = alpha2[0];
2426         request->alpha2[1] = alpha2[1];
2427         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2428
2429         /* Allow calling CRDA again */
2430         reg_crda_timeouts = 0;
2431
2432         queue_regulatory_request(request);
2433
2434         return 0;
2435 }
2436 EXPORT_SYMBOL(regulatory_hint);
2437
2438 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2439                                 const u8 *country_ie, u8 country_ie_len)
2440 {
2441         char alpha2[2];
2442         enum environment_cap env = ENVIRON_ANY;
2443         struct regulatory_request *request = NULL, *lr;
2444
2445         /* IE len must be evenly divisible by 2 */
2446         if (country_ie_len & 0x01)
2447                 return;
2448
2449         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2450                 return;
2451
2452         request = kzalloc(sizeof(*request), GFP_KERNEL);
2453         if (!request)
2454                 return;
2455
2456         alpha2[0] = country_ie[0];
2457         alpha2[1] = country_ie[1];
2458
2459         if (country_ie[2] == 'I')
2460                 env = ENVIRON_INDOOR;
2461         else if (country_ie[2] == 'O')
2462                 env = ENVIRON_OUTDOOR;
2463
2464         rcu_read_lock();
2465         lr = get_last_request();
2466
2467         if (unlikely(!lr))
2468                 goto out;
2469
2470         /*
2471          * We will run this only upon a successful connection on cfg80211.
2472          * We leave conflict resolution to the workqueue, where can hold
2473          * the RTNL.
2474          */
2475         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2476             lr->wiphy_idx != WIPHY_IDX_INVALID)
2477                 goto out;
2478
2479         request->wiphy_idx = get_wiphy_idx(wiphy);
2480         request->alpha2[0] = alpha2[0];
2481         request->alpha2[1] = alpha2[1];
2482         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2483         request->country_ie_env = env;
2484
2485         /* Allow calling CRDA again */
2486         reg_crda_timeouts = 0;
2487
2488         queue_regulatory_request(request);
2489         request = NULL;
2490 out:
2491         kfree(request);
2492         rcu_read_unlock();
2493 }
2494
2495 static void restore_alpha2(char *alpha2, bool reset_user)
2496 {
2497         /* indicates there is no alpha2 to consider for restoration */
2498         alpha2[0] = '9';
2499         alpha2[1] = '7';
2500
2501         /* The user setting has precedence over the module parameter */
2502         if (is_user_regdom_saved()) {
2503                 /* Unless we're asked to ignore it and reset it */
2504                 if (reset_user) {
2505                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2506                         user_alpha2[0] = '9';
2507                         user_alpha2[1] = '7';
2508
2509                         /*
2510                          * If we're ignoring user settings, we still need to
2511                          * check the module parameter to ensure we put things
2512                          * back as they were for a full restore.
2513                          */
2514                         if (!is_world_regdom(ieee80211_regdom)) {
2515                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2516                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2517                                 alpha2[0] = ieee80211_regdom[0];
2518                                 alpha2[1] = ieee80211_regdom[1];
2519                         }
2520                 } else {
2521                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2522                                       user_alpha2[0], user_alpha2[1]);
2523                         alpha2[0] = user_alpha2[0];
2524                         alpha2[1] = user_alpha2[1];
2525                 }
2526         } else if (!is_world_regdom(ieee80211_regdom)) {
2527                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2528                               ieee80211_regdom[0], ieee80211_regdom[1]);
2529                 alpha2[0] = ieee80211_regdom[0];
2530                 alpha2[1] = ieee80211_regdom[1];
2531         } else
2532                 REG_DBG_PRINT("Restoring regulatory settings\n");
2533 }
2534
2535 static void restore_custom_reg_settings(struct wiphy *wiphy)
2536 {
2537         struct ieee80211_supported_band *sband;
2538         enum ieee80211_band band;
2539         struct ieee80211_channel *chan;
2540         int i;
2541
2542         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2543                 sband = wiphy->bands[band];
2544                 if (!sband)
2545                         continue;
2546                 for (i = 0; i < sband->n_channels; i++) {
2547                         chan = &sband->channels[i];
2548                         chan->flags = chan->orig_flags;
2549                         chan->max_antenna_gain = chan->orig_mag;
2550                         chan->max_power = chan->orig_mpwr;
2551                         chan->beacon_found = false;
2552                 }
2553         }
2554 }
2555
2556 /*
2557  * Restoring regulatory settings involves ingoring any
2558  * possibly stale country IE information and user regulatory
2559  * settings if so desired, this includes any beacon hints
2560  * learned as we could have traveled outside to another country
2561  * after disconnection. To restore regulatory settings we do
2562  * exactly what we did at bootup:
2563  *
2564  *   - send a core regulatory hint
2565  *   - send a user regulatory hint if applicable
2566  *
2567  * Device drivers that send a regulatory hint for a specific country
2568  * keep their own regulatory domain on wiphy->regd so that does does
2569  * not need to be remembered.
2570  */
2571 static void restore_regulatory_settings(bool reset_user)
2572 {
2573         char alpha2[2];
2574         char world_alpha2[2];
2575         struct reg_beacon *reg_beacon, *btmp;
2576         LIST_HEAD(tmp_reg_req_list);
2577         struct cfg80211_registered_device *rdev;
2578
2579         ASSERT_RTNL();
2580
2581         /*
2582          * Clear the indoor setting in case that it is not controlled by user
2583          * space, as otherwise there is no guarantee that the device is still
2584          * operating in an indoor environment.
2585          */
2586         spin_lock(&reg_indoor_lock);
2587         if (reg_is_indoor && !reg_is_indoor_portid) {
2588                 reg_is_indoor = false;
2589                 reg_check_channels();
2590         }
2591         spin_unlock(&reg_indoor_lock);
2592
2593         reset_regdomains(true, &world_regdom);
2594         restore_alpha2(alpha2, reset_user);
2595
2596         /*
2597          * If there's any pending requests we simply
2598          * stash them to a temporary pending queue and
2599          * add then after we've restored regulatory
2600          * settings.
2601          */
2602         spin_lock(&reg_requests_lock);
2603         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2604         spin_unlock(&reg_requests_lock);
2605
2606         /* Clear beacon hints */
2607         spin_lock_bh(&reg_pending_beacons_lock);
2608         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2609                 list_del(&reg_beacon->list);
2610                 kfree(reg_beacon);
2611         }
2612         spin_unlock_bh(&reg_pending_beacons_lock);
2613
2614         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2615                 list_del(&reg_beacon->list);
2616                 kfree(reg_beacon);
2617         }
2618
2619         /* First restore to the basic regulatory settings */
2620         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2621         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2622
2623         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2624                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2625                         continue;
2626                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2627                         restore_custom_reg_settings(&rdev->wiphy);
2628         }
2629
2630         regulatory_hint_core(world_alpha2);
2631
2632         /*
2633          * This restores the ieee80211_regdom module parameter
2634          * preference or the last user requested regulatory
2635          * settings, user regulatory settings takes precedence.
2636          */
2637         if (is_an_alpha2(alpha2))
2638                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2639
2640         spin_lock(&reg_requests_lock);
2641         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2642         spin_unlock(&reg_requests_lock);
2643
2644         REG_DBG_PRINT("Kicking the queue\n");
2645
2646         schedule_work(&reg_work);
2647 }
2648
2649 void regulatory_hint_disconnect(void)
2650 {
2651         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2652         restore_regulatory_settings(false);
2653 }
2654
2655 static bool freq_is_chan_12_13_14(u16 freq)
2656 {
2657         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2658             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2659             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2660                 return true;
2661         return false;
2662 }
2663
2664 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2665 {
2666         struct reg_beacon *pending_beacon;
2667
2668         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2669                 if (beacon_chan->center_freq ==
2670                     pending_beacon->chan.center_freq)
2671                         return true;
2672         return false;
2673 }
2674
2675 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2676                                  struct ieee80211_channel *beacon_chan,
2677                                  gfp_t gfp)
2678 {
2679         struct reg_beacon *reg_beacon;
2680         bool processing;
2681
2682         if (beacon_chan->beacon_found ||
2683             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2684             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2685              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2686                 return 0;
2687
2688         spin_lock_bh(&reg_pending_beacons_lock);
2689         processing = pending_reg_beacon(beacon_chan);
2690         spin_unlock_bh(&reg_pending_beacons_lock);
2691
2692         if (processing)
2693                 return 0;
2694
2695         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2696         if (!reg_beacon)
2697                 return -ENOMEM;
2698
2699         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2700                       beacon_chan->center_freq,
2701                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2702                       wiphy_name(wiphy));
2703
2704         memcpy(&reg_beacon->chan, beacon_chan,
2705                sizeof(struct ieee80211_channel));
2706
2707         /*
2708          * Since we can be called from BH or and non-BH context
2709          * we must use spin_lock_bh()
2710          */
2711         spin_lock_bh(&reg_pending_beacons_lock);
2712         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2713         spin_unlock_bh(&reg_pending_beacons_lock);
2714
2715         schedule_work(&reg_work);
2716
2717         return 0;
2718 }
2719
2720 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2721 {
2722         unsigned int i;
2723         const struct ieee80211_reg_rule *reg_rule = NULL;
2724         const struct ieee80211_freq_range *freq_range = NULL;
2725         const struct ieee80211_power_rule *power_rule = NULL;
2726         char bw[32], cac_time[32];
2727
2728         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2729
2730         for (i = 0; i < rd->n_reg_rules; i++) {
2731                 reg_rule = &rd->reg_rules[i];
2732                 freq_range = &reg_rule->freq_range;
2733                 power_rule = &reg_rule->power_rule;
2734
2735                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2736                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2737                                  freq_range->max_bandwidth_khz,
2738                                  reg_get_max_bandwidth(rd, reg_rule));
2739                 else
2740                         snprintf(bw, sizeof(bw), "%d KHz",
2741                                  freq_range->max_bandwidth_khz);
2742
2743                 if (reg_rule->flags & NL80211_RRF_DFS)
2744                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2745                                   reg_rule->dfs_cac_ms/1000);
2746                 else
2747                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2748
2749
2750                 /*
2751                  * There may not be documentation for max antenna gain
2752                  * in certain regions
2753                  */
2754                 if (power_rule->max_antenna_gain)
2755                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2756                                 freq_range->start_freq_khz,
2757                                 freq_range->end_freq_khz,
2758                                 bw,
2759                                 power_rule->max_antenna_gain,
2760                                 power_rule->max_eirp,
2761                                 cac_time);
2762                 else
2763                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2764                                 freq_range->start_freq_khz,
2765                                 freq_range->end_freq_khz,
2766                                 bw,
2767                                 power_rule->max_eirp,
2768                                 cac_time);
2769         }
2770 }
2771
2772 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2773 {
2774         switch (dfs_region) {
2775         case NL80211_DFS_UNSET:
2776         case NL80211_DFS_FCC:
2777         case NL80211_DFS_ETSI:
2778         case NL80211_DFS_JP:
2779                 return true;
2780         default:
2781                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2782                               dfs_region);
2783                 return false;
2784         }
2785 }
2786
2787 static void print_regdomain(const struct ieee80211_regdomain *rd)
2788 {
2789         struct regulatory_request *lr = get_last_request();
2790
2791         if (is_intersected_alpha2(rd->alpha2)) {
2792                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2793                         struct cfg80211_registered_device *rdev;
2794                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2795                         if (rdev) {
2796                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2797                                         rdev->country_ie_alpha2[0],
2798                                         rdev->country_ie_alpha2[1]);
2799                         } else
2800                                 pr_info("Current regulatory domain intersected:\n");
2801                 } else
2802                         pr_info("Current regulatory domain intersected:\n");
2803         } else if (is_world_regdom(rd->alpha2)) {
2804                 pr_info("World regulatory domain updated:\n");
2805         } else {
2806                 if (is_unknown_alpha2(rd->alpha2))
2807                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2808                 else {
2809                         if (reg_request_cell_base(lr))
2810                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2811                                         rd->alpha2[0], rd->alpha2[1]);
2812                         else
2813                                 pr_info("Regulatory domain changed to country: %c%c\n",
2814                                         rd->alpha2[0], rd->alpha2[1]);
2815                 }
2816         }
2817
2818         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2819         print_rd_rules(rd);
2820 }
2821
2822 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2823 {
2824         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2825         print_rd_rules(rd);
2826 }
2827
2828 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2829 {
2830         if (!is_world_regdom(rd->alpha2))
2831                 return -EINVAL;
2832         update_world_regdomain(rd);
2833         return 0;
2834 }
2835
2836 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2837                            struct regulatory_request *user_request)
2838 {
2839         const struct ieee80211_regdomain *intersected_rd = NULL;
2840
2841         if (!regdom_changes(rd->alpha2))
2842                 return -EALREADY;
2843
2844         if (!is_valid_rd(rd)) {
2845                 pr_err("Invalid regulatory domain detected:\n");
2846                 print_regdomain_info(rd);
2847                 return -EINVAL;
2848         }
2849
2850         if (!user_request->intersect) {
2851                 reset_regdomains(false, rd);
2852                 return 0;
2853         }
2854
2855         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2856         if (!intersected_rd)
2857                 return -EINVAL;
2858
2859         kfree(rd);
2860         rd = NULL;
2861         reset_regdomains(false, intersected_rd);
2862
2863         return 0;
2864 }
2865
2866 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2867                              struct regulatory_request *driver_request)
2868 {
2869         const struct ieee80211_regdomain *regd;
2870         const struct ieee80211_regdomain *intersected_rd = NULL;
2871         const struct ieee80211_regdomain *tmp;
2872         struct wiphy *request_wiphy;
2873
2874         if (is_world_regdom(rd->alpha2))
2875                 return -EINVAL;
2876
2877         if (!regdom_changes(rd->alpha2))
2878                 return -EALREADY;
2879
2880         if (!is_valid_rd(rd)) {
2881                 pr_err("Invalid regulatory domain detected:\n");
2882                 print_regdomain_info(rd);
2883                 return -EINVAL;
2884         }
2885
2886         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2887         if (!request_wiphy)
2888                 return -ENODEV;
2889
2890         if (!driver_request->intersect) {
2891                 if (request_wiphy->regd)
2892                         return -EALREADY;
2893
2894                 regd = reg_copy_regd(rd);
2895                 if (IS_ERR(regd))
2896                         return PTR_ERR(regd);
2897
2898                 rcu_assign_pointer(request_wiphy->regd, regd);
2899                 reset_regdomains(false, rd);
2900                 return 0;
2901         }
2902
2903         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2904         if (!intersected_rd)
2905                 return -EINVAL;
2906
2907         /*
2908          * We can trash what CRDA provided now.
2909          * However if a driver requested this specific regulatory
2910          * domain we keep it for its private use
2911          */
2912         tmp = get_wiphy_regdom(request_wiphy);
2913         rcu_assign_pointer(request_wiphy->regd, rd);
2914         rcu_free_regdom(tmp);
2915
2916         rd = NULL;
2917
2918         reset_regdomains(false, intersected_rd);
2919
2920         return 0;
2921 }
2922
2923 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2924                                  struct regulatory_request *country_ie_request)
2925 {
2926         struct wiphy *request_wiphy;
2927
2928         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2929             !is_unknown_alpha2(rd->alpha2))
2930                 return -EINVAL;
2931
2932         /*
2933          * Lets only bother proceeding on the same alpha2 if the current
2934          * rd is non static (it means CRDA was present and was used last)
2935          * and the pending request came in from a country IE
2936          */
2937
2938         if (!is_valid_rd(rd)) {
2939                 pr_err("Invalid regulatory domain detected:\n");
2940                 print_regdomain_info(rd);
2941                 return -EINVAL;
2942         }
2943
2944         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2945         if (!request_wiphy)
2946                 return -ENODEV;
2947
2948         if (country_ie_request->intersect)
2949                 return -EINVAL;
2950
2951         reset_regdomains(false, rd);
2952         return 0;
2953 }
2954
2955 /*
2956  * Use this call to set the current regulatory domain. Conflicts with
2957  * multiple drivers can be ironed out later. Caller must've already
2958  * kmalloc'd the rd structure.
2959  */
2960 int set_regdom(const struct ieee80211_regdomain *rd,
2961                enum ieee80211_regd_source regd_src)
2962 {
2963         struct regulatory_request *lr;
2964         bool user_reset = false;
2965         int r;
2966
2967         if (!reg_is_valid_request(rd->alpha2)) {
2968                 kfree(rd);
2969                 return -EINVAL;
2970         }
2971
2972         if (regd_src == REGD_SOURCE_CRDA)
2973                 reg_crda_timeouts = 0;
2974
2975         lr = get_last_request();
2976
2977         /* Note that this doesn't update the wiphys, this is done below */
2978         switch (lr->initiator) {
2979         case NL80211_REGDOM_SET_BY_CORE:
2980                 r = reg_set_rd_core(rd);
2981                 break;
2982         case NL80211_REGDOM_SET_BY_USER:
2983                 r = reg_set_rd_user(rd, lr);
2984                 user_reset = true;
2985                 break;
2986         case NL80211_REGDOM_SET_BY_DRIVER:
2987                 r = reg_set_rd_driver(rd, lr);
2988                 break;
2989         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2990                 r = reg_set_rd_country_ie(rd, lr);
2991                 break;
2992         default:
2993                 WARN(1, "invalid initiator %d\n", lr->initiator);
2994                 return -EINVAL;
2995         }
2996
2997         if (r) {
2998                 switch (r) {
2999                 case -EALREADY:
3000                         reg_set_request_processed();
3001                         break;
3002                 default:
3003                         /* Back to world regulatory in case of errors */
3004                         restore_regulatory_settings(user_reset);
3005                 }
3006
3007                 kfree(rd);
3008                 return r;
3009         }
3010
3011         /* This would make this whole thing pointless */
3012         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3013                 return -EINVAL;
3014
3015         /* update all wiphys now with the new established regulatory domain */
3016         update_all_wiphy_regulatory(lr->initiator);
3017
3018         print_regdomain(get_cfg80211_regdom());
3019
3020         nl80211_send_reg_change_event(lr);
3021
3022         reg_set_request_processed();
3023
3024         return 0;
3025 }
3026
3027 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3028                                        struct ieee80211_regdomain *rd)
3029 {
3030         const struct ieee80211_regdomain *regd;
3031         const struct ieee80211_regdomain *prev_regd;
3032         struct cfg80211_registered_device *rdev;
3033
3034         if (WARN_ON(!wiphy || !rd))
3035                 return -EINVAL;
3036
3037         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3038                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3039                 return -EPERM;
3040
3041         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3042                 print_regdomain_info(rd);
3043                 return -EINVAL;
3044         }
3045
3046         regd = reg_copy_regd(rd);
3047         if (IS_ERR(regd))
3048                 return PTR_ERR(regd);
3049
3050         rdev = wiphy_to_rdev(wiphy);
3051
3052         spin_lock(&reg_requests_lock);
3053         prev_regd = rdev->requested_regd;
3054         rdev->requested_regd = regd;
3055         spin_unlock(&reg_requests_lock);
3056
3057         kfree(prev_regd);
3058         return 0;
3059 }
3060
3061 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3062                               struct ieee80211_regdomain *rd)
3063 {
3064         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3065
3066         if (ret)
3067                 return ret;
3068
3069         schedule_work(&reg_work);
3070         return 0;
3071 }
3072 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3073
3074 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3075                                         struct ieee80211_regdomain *rd)
3076 {
3077         int ret;
3078
3079         ASSERT_RTNL();
3080
3081         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3082         if (ret)
3083                 return ret;
3084
3085         /* process the request immediately */
3086         reg_process_self_managed_hints();
3087         return 0;
3088 }
3089 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3090
3091 void wiphy_regulatory_register(struct wiphy *wiphy)
3092 {
3093         struct regulatory_request *lr;
3094
3095         /* self-managed devices ignore external hints */
3096         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3097                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3098                                            REGULATORY_COUNTRY_IE_IGNORE;
3099
3100         if (!reg_dev_ignore_cell_hint(wiphy))
3101                 reg_num_devs_support_basehint++;
3102
3103         lr = get_last_request();
3104         wiphy_update_regulatory(wiphy, lr->initiator);
3105 }
3106
3107 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3108 {
3109         struct wiphy *request_wiphy = NULL;
3110         struct regulatory_request *lr;
3111
3112         lr = get_last_request();
3113
3114         if (!reg_dev_ignore_cell_hint(wiphy))
3115                 reg_num_devs_support_basehint--;
3116
3117         rcu_free_regdom(get_wiphy_regdom(wiphy));
3118         RCU_INIT_POINTER(wiphy->regd, NULL);
3119
3120         if (lr)
3121                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3122
3123         if (!request_wiphy || request_wiphy != wiphy)
3124                 return;
3125
3126         lr->wiphy_idx = WIPHY_IDX_INVALID;
3127         lr->country_ie_env = ENVIRON_ANY;
3128 }
3129
3130 static void reg_timeout_work(struct work_struct *work)
3131 {
3132         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3133         rtnl_lock();
3134         reg_crda_timeouts++;
3135         restore_regulatory_settings(true);
3136         rtnl_unlock();
3137 }
3138
3139 /*
3140  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3141  * UNII band definitions
3142  */
3143 int cfg80211_get_unii(int freq)
3144 {
3145         /* UNII-1 */
3146         if (freq >= 5150 && freq <= 5250)
3147                 return 0;
3148
3149         /* UNII-2A */
3150         if (freq > 5250 && freq <= 5350)
3151                 return 1;
3152
3153         /* UNII-2B */
3154         if (freq > 5350 && freq <= 5470)
3155                 return 2;
3156
3157         /* UNII-2C */
3158         if (freq > 5470 && freq <= 5725)
3159                 return 3;
3160
3161         /* UNII-3 */
3162         if (freq > 5725 && freq <= 5825)
3163                 return 4;
3164
3165         return -EINVAL;
3166 }
3167
3168 bool regulatory_indoor_allowed(void)
3169 {
3170         return reg_is_indoor;
3171 }
3172
3173 int __init regulatory_init(void)
3174 {
3175         int err = 0;
3176
3177         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3178         if (IS_ERR(reg_pdev))
3179                 return PTR_ERR(reg_pdev);
3180
3181         spin_lock_init(&reg_requests_lock);
3182         spin_lock_init(&reg_pending_beacons_lock);
3183         spin_lock_init(&reg_indoor_lock);
3184
3185         reg_regdb_size_check();
3186
3187         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3188
3189         user_alpha2[0] = '9';
3190         user_alpha2[1] = '7';
3191
3192         /* We always try to get an update for the static regdomain */
3193         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3194         if (err) {
3195                 if (err == -ENOMEM)
3196                         return err;
3197                 /*
3198                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3199                  * memory which is handled and propagated appropriately above
3200                  * but it can also fail during a netlink_broadcast() or during
3201                  * early boot for call_usermodehelper(). For now treat these
3202                  * errors as non-fatal.
3203                  */
3204                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3205         }
3206
3207         /*
3208          * Finally, if the user set the module parameter treat it
3209          * as a user hint.
3210          */
3211         if (!is_world_regdom(ieee80211_regdom))
3212                 regulatory_hint_user(ieee80211_regdom,
3213                                      NL80211_USER_REG_HINT_USER);
3214
3215         return 0;
3216 }
3217
3218 void regulatory_exit(void)
3219 {
3220         struct regulatory_request *reg_request, *tmp;
3221         struct reg_beacon *reg_beacon, *btmp;
3222
3223         cancel_work_sync(&reg_work);
3224         cancel_delayed_work_sync(&reg_timeout);
3225         cancel_delayed_work_sync(&reg_check_chans);
3226
3227         /* Lock to suppress warnings */
3228         rtnl_lock();
3229         reset_regdomains(true, NULL);
3230         rtnl_unlock();
3231
3232         dev_set_uevent_suppress(&reg_pdev->dev, true);
3233
3234         platform_device_unregister(reg_pdev);
3235
3236         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3237                 list_del(&reg_beacon->list);
3238                 kfree(reg_beacon);
3239         }
3240
3241         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3242                 list_del(&reg_beacon->list);
3243                 kfree(reg_beacon);
3244         }
3245
3246         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3247                 list_del(&reg_request->list);
3248                 kfree(reg_request);
3249         }
3250 }