]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/wireless/util.c
Merge remote-tracking branch 'rcu/rcu/next'
[karo-tx-linux.git] / net / wireless / util.c
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18
19
20 struct ieee80211_rate *
21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22                             u32 basic_rates, int bitrate)
23 {
24         struct ieee80211_rate *result = &sband->bitrates[0];
25         int i;
26
27         for (i = 0; i < sband->n_bitrates; i++) {
28                 if (!(basic_rates & BIT(i)))
29                         continue;
30                 if (sband->bitrates[i].bitrate > bitrate)
31                         continue;
32                 result = &sband->bitrates[i];
33         }
34
35         return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38
39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40                               enum nl80211_bss_scan_width scan_width)
41 {
42         struct ieee80211_rate *bitrates;
43         u32 mandatory_rates = 0;
44         enum ieee80211_rate_flags mandatory_flag;
45         int i;
46
47         if (WARN_ON(!sband))
48                 return 1;
49
50         if (sband->band == IEEE80211_BAND_2GHZ) {
51                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
53                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54                 else
55                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56         } else {
57                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58         }
59
60         bitrates = sband->bitrates;
61         for (i = 0; i < sband->n_bitrates; i++)
62                 if (bitrates[i].flags & mandatory_flag)
63                         mandatory_rates |= BIT(i);
64         return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67
68 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
69 {
70         /* see 802.11 17.3.8.3.2 and Annex J
71          * there are overlapping channel numbers in 5GHz and 2GHz bands */
72         if (chan <= 0)
73                 return 0; /* not supported */
74         switch (band) {
75         case IEEE80211_BAND_2GHZ:
76                 if (chan == 14)
77                         return 2484;
78                 else if (chan < 14)
79                         return 2407 + chan * 5;
80                 break;
81         case IEEE80211_BAND_5GHZ:
82                 if (chan >= 182 && chan <= 196)
83                         return 4000 + chan * 5;
84                 else
85                         return 5000 + chan * 5;
86                 break;
87         case IEEE80211_BAND_60GHZ:
88                 if (chan < 5)
89                         return 56160 + chan * 2160;
90                 break;
91         default:
92                 ;
93         }
94         return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97
98 int ieee80211_frequency_to_channel(int freq)
99 {
100         /* see 802.11 17.3.8.3.2 and Annex J */
101         if (freq == 2484)
102                 return 14;
103         else if (freq < 2484)
104                 return (freq - 2407) / 5;
105         else if (freq >= 4910 && freq <= 4980)
106                 return (freq - 4000) / 5;
107         else if (freq <= 45000) /* DMG band lower limit */
108                 return (freq - 5000) / 5;
109         else if (freq >= 58320 && freq <= 64800)
110                 return (freq - 56160) / 2160;
111         else
112                 return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117                                                   int freq)
118 {
119         enum ieee80211_band band;
120         struct ieee80211_supported_band *sband;
121         int i;
122
123         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
124                 sband = wiphy->bands[band];
125
126                 if (!sband)
127                         continue;
128
129                 for (i = 0; i < sband->n_channels; i++) {
130                         if (sband->channels[i].center_freq == freq)
131                                 return &sband->channels[i];
132                 }
133         }
134
135         return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140                                      enum ieee80211_band band)
141 {
142         int i, want;
143
144         switch (band) {
145         case IEEE80211_BAND_5GHZ:
146                 want = 3;
147                 for (i = 0; i < sband->n_bitrates; i++) {
148                         if (sband->bitrates[i].bitrate == 60 ||
149                             sband->bitrates[i].bitrate == 120 ||
150                             sband->bitrates[i].bitrate == 240) {
151                                 sband->bitrates[i].flags |=
152                                         IEEE80211_RATE_MANDATORY_A;
153                                 want--;
154                         }
155                 }
156                 WARN_ON(want);
157                 break;
158         case IEEE80211_BAND_2GHZ:
159                 want = 7;
160                 for (i = 0; i < sband->n_bitrates; i++) {
161                         if (sband->bitrates[i].bitrate == 10) {
162                                 sband->bitrates[i].flags |=
163                                         IEEE80211_RATE_MANDATORY_B |
164                                         IEEE80211_RATE_MANDATORY_G;
165                                 want--;
166                         }
167
168                         if (sband->bitrates[i].bitrate == 20 ||
169                             sband->bitrates[i].bitrate == 55 ||
170                             sband->bitrates[i].bitrate == 110 ||
171                             sband->bitrates[i].bitrate == 60 ||
172                             sband->bitrates[i].bitrate == 120 ||
173                             sband->bitrates[i].bitrate == 240) {
174                                 sband->bitrates[i].flags |=
175                                         IEEE80211_RATE_MANDATORY_G;
176                                 want--;
177                         }
178
179                         if (sband->bitrates[i].bitrate != 10 &&
180                             sband->bitrates[i].bitrate != 20 &&
181                             sband->bitrates[i].bitrate != 55 &&
182                             sband->bitrates[i].bitrate != 110)
183                                 sband->bitrates[i].flags |=
184                                         IEEE80211_RATE_ERP_G;
185                 }
186                 WARN_ON(want != 0 && want != 3 && want != 6);
187                 break;
188         case IEEE80211_BAND_60GHZ:
189                 /* check for mandatory HT MCS 1..4 */
190                 WARN_ON(!sband->ht_cap.ht_supported);
191                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192                 break;
193         case IEEE80211_NUM_BANDS:
194                 WARN_ON(1);
195                 break;
196         }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201         enum ieee80211_band band;
202
203         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
204                 if (wiphy->bands[band])
205                         set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210         int i;
211         for (i = 0; i < wiphy->n_cipher_suites; i++)
212                 if (cipher == wiphy->cipher_suites[i])
213                         return true;
214         return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218                                    struct key_params *params, int key_idx,
219                                    bool pairwise, const u8 *mac_addr)
220 {
221         if (key_idx > 5)
222                 return -EINVAL;
223
224         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225                 return -EINVAL;
226
227         if (pairwise && !mac_addr)
228                 return -EINVAL;
229
230         switch (params->cipher) {
231         case WLAN_CIPHER_SUITE_TKIP:
232         case WLAN_CIPHER_SUITE_CCMP:
233         case WLAN_CIPHER_SUITE_CCMP_256:
234         case WLAN_CIPHER_SUITE_GCMP:
235         case WLAN_CIPHER_SUITE_GCMP_256:
236                 /* Disallow pairwise keys with non-zero index unless it's WEP
237                  * or a vendor specific cipher (because current deployments use
238                  * pairwise WEP keys with non-zero indices and for vendor
239                  * specific ciphers this should be validated in the driver or
240                  * hardware level - but 802.11i clearly specifies to use zero)
241                  */
242                 if (pairwise && key_idx)
243                         return -EINVAL;
244                 break;
245         case WLAN_CIPHER_SUITE_AES_CMAC:
246         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249                 /* Disallow BIP (group-only) cipher as pairwise cipher */
250                 if (pairwise)
251                         return -EINVAL;
252                 break;
253         default:
254                 break;
255         }
256
257         switch (params->cipher) {
258         case WLAN_CIPHER_SUITE_WEP40:
259                 if (params->key_len != WLAN_KEY_LEN_WEP40)
260                         return -EINVAL;
261                 break;
262         case WLAN_CIPHER_SUITE_TKIP:
263                 if (params->key_len != WLAN_KEY_LEN_TKIP)
264                         return -EINVAL;
265                 break;
266         case WLAN_CIPHER_SUITE_CCMP:
267                 if (params->key_len != WLAN_KEY_LEN_CCMP)
268                         return -EINVAL;
269                 break;
270         case WLAN_CIPHER_SUITE_CCMP_256:
271                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
272                         return -EINVAL;
273                 break;
274         case WLAN_CIPHER_SUITE_GCMP:
275                 if (params->key_len != WLAN_KEY_LEN_GCMP)
276                         return -EINVAL;
277                 break;
278         case WLAN_CIPHER_SUITE_GCMP_256:
279                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
280                         return -EINVAL;
281                 break;
282         case WLAN_CIPHER_SUITE_WEP104:
283                 if (params->key_len != WLAN_KEY_LEN_WEP104)
284                         return -EINVAL;
285                 break;
286         case WLAN_CIPHER_SUITE_AES_CMAC:
287                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
288                         return -EINVAL;
289                 break;
290         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
291                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
292                         return -EINVAL;
293                 break;
294         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
295                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
296                         return -EINVAL;
297                 break;
298         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
299                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
300                         return -EINVAL;
301                 break;
302         default:
303                 /*
304                  * We don't know anything about this algorithm,
305                  * allow using it -- but the driver must check
306                  * all parameters! We still check below whether
307                  * or not the driver supports this algorithm,
308                  * of course.
309                  */
310                 break;
311         }
312
313         if (params->seq) {
314                 switch (params->cipher) {
315                 case WLAN_CIPHER_SUITE_WEP40:
316                 case WLAN_CIPHER_SUITE_WEP104:
317                         /* These ciphers do not use key sequence */
318                         return -EINVAL;
319                 case WLAN_CIPHER_SUITE_TKIP:
320                 case WLAN_CIPHER_SUITE_CCMP:
321                 case WLAN_CIPHER_SUITE_CCMP_256:
322                 case WLAN_CIPHER_SUITE_GCMP:
323                 case WLAN_CIPHER_SUITE_GCMP_256:
324                 case WLAN_CIPHER_SUITE_AES_CMAC:
325                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
326                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
327                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
328                         if (params->seq_len != 6)
329                                 return -EINVAL;
330                         break;
331                 }
332         }
333
334         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
335                 return -EINVAL;
336
337         return 0;
338 }
339
340 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
341 {
342         unsigned int hdrlen = 24;
343
344         if (ieee80211_is_data(fc)) {
345                 if (ieee80211_has_a4(fc))
346                         hdrlen = 30;
347                 if (ieee80211_is_data_qos(fc)) {
348                         hdrlen += IEEE80211_QOS_CTL_LEN;
349                         if (ieee80211_has_order(fc))
350                                 hdrlen += IEEE80211_HT_CTL_LEN;
351                 }
352                 goto out;
353         }
354
355         if (ieee80211_is_mgmt(fc)) {
356                 if (ieee80211_has_order(fc))
357                         hdrlen += IEEE80211_HT_CTL_LEN;
358                 goto out;
359         }
360
361         if (ieee80211_is_ctl(fc)) {
362                 /*
363                  * ACK and CTS are 10 bytes, all others 16. To see how
364                  * to get this condition consider
365                  *   subtype mask:   0b0000000011110000 (0x00F0)
366                  *   ACK subtype:    0b0000000011010000 (0x00D0)
367                  *   CTS subtype:    0b0000000011000000 (0x00C0)
368                  *   bits that matter:         ^^^      (0x00E0)
369                  *   value of those: 0b0000000011000000 (0x00C0)
370                  */
371                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
372                         hdrlen = 10;
373                 else
374                         hdrlen = 16;
375         }
376 out:
377         return hdrlen;
378 }
379 EXPORT_SYMBOL(ieee80211_hdrlen);
380
381 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
382 {
383         const struct ieee80211_hdr *hdr =
384                         (const struct ieee80211_hdr *)skb->data;
385         unsigned int hdrlen;
386
387         if (unlikely(skb->len < 10))
388                 return 0;
389         hdrlen = ieee80211_hdrlen(hdr->frame_control);
390         if (unlikely(hdrlen > skb->len))
391                 return 0;
392         return hdrlen;
393 }
394 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
395
396 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
397 {
398         int ae = flags & MESH_FLAGS_AE;
399         /* 802.11-2012, 8.2.4.7.3 */
400         switch (ae) {
401         default:
402         case 0:
403                 return 6;
404         case MESH_FLAGS_AE_A4:
405                 return 12;
406         case MESH_FLAGS_AE_A5_A6:
407                 return 18;
408         }
409 }
410
411 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
412 {
413         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
414 }
415 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
416
417 static int __ieee80211_data_to_8023(struct sk_buff *skb, struct ethhdr *ehdr,
418                                     const u8 *addr, enum nl80211_iftype iftype)
419 {
420         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
421         struct {
422                 u8 hdr[ETH_ALEN] __aligned(2);
423                 __be16 proto;
424         } payload;
425         struct ethhdr tmp;
426         u16 hdrlen;
427         u8 mesh_flags = 0;
428
429         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
430                 return -1;
431
432         hdrlen = ieee80211_hdrlen(hdr->frame_control);
433         if (skb->len < hdrlen + 8)
434                 return -1;
435
436         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
437          * header
438          * IEEE 802.11 address fields:
439          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
440          *   0     0   DA    SA    BSSID n/a
441          *   0     1   DA    BSSID SA    n/a
442          *   1     0   BSSID SA    DA    n/a
443          *   1     1   RA    TA    DA    SA
444          */
445         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
446         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
447
448         if (iftype == NL80211_IFTYPE_MESH_POINT)
449                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
450
451         switch (hdr->frame_control &
452                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
453         case cpu_to_le16(IEEE80211_FCTL_TODS):
454                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
455                              iftype != NL80211_IFTYPE_AP_VLAN &&
456                              iftype != NL80211_IFTYPE_P2P_GO))
457                         return -1;
458                 break;
459         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
460                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
461                              iftype != NL80211_IFTYPE_MESH_POINT &&
462                              iftype != NL80211_IFTYPE_AP_VLAN &&
463                              iftype != NL80211_IFTYPE_STATION))
464                         return -1;
465                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
466                         if (mesh_flags & MESH_FLAGS_AE_A4)
467                                 return -1;
468                         if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
469                                 skb_copy_bits(skb, hdrlen +
470                                         offsetof(struct ieee80211s_hdr, eaddr1),
471                                         tmp.h_dest, 2 * ETH_ALEN);
472                         }
473                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
474                 }
475                 break;
476         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
477                 if ((iftype != NL80211_IFTYPE_STATION &&
478                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
479                      iftype != NL80211_IFTYPE_MESH_POINT) ||
480                     (is_multicast_ether_addr(tmp.h_dest) &&
481                      ether_addr_equal(tmp.h_source, addr)))
482                         return -1;
483                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
484                         if (mesh_flags & MESH_FLAGS_AE_A5_A6)
485                                 return -1;
486                         if (mesh_flags & MESH_FLAGS_AE_A4)
487                                 skb_copy_bits(skb, hdrlen +
488                                         offsetof(struct ieee80211s_hdr, eaddr1),
489                                         tmp.h_source, ETH_ALEN);
490                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
491                 }
492                 break;
493         case cpu_to_le16(0):
494                 if (iftype != NL80211_IFTYPE_ADHOC &&
495                     iftype != NL80211_IFTYPE_STATION &&
496                     iftype != NL80211_IFTYPE_OCB)
497                                 return -1;
498                 break;
499         }
500
501         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
502         tmp.h_proto = payload.proto;
503
504         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
505                     tmp.h_proto != htons(ETH_P_AARP) &&
506                     tmp.h_proto != htons(ETH_P_IPX)) ||
507                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
508                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
509                  * replace EtherType */
510                 hdrlen += ETH_ALEN + 2;
511         else
512                 tmp.h_proto = htons(skb->len);
513
514         pskb_pull(skb, hdrlen);
515
516         if (!ehdr)
517                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
518         memcpy(ehdr, &tmp, sizeof(tmp));
519
520         return 0;
521 }
522
523 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
524                            enum nl80211_iftype iftype)
525 {
526         return __ieee80211_data_to_8023(skb, NULL, addr, iftype);
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023);
529
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531                              enum nl80211_iftype iftype,
532                              const u8 *bssid, bool qos)
533 {
534         struct ieee80211_hdr hdr;
535         u16 hdrlen, ethertype;
536         __le16 fc;
537         const u8 *encaps_data;
538         int encaps_len, skip_header_bytes;
539         int nh_pos, h_pos;
540         int head_need;
541
542         if (unlikely(skb->len < ETH_HLEN))
543                 return -EINVAL;
544
545         nh_pos = skb_network_header(skb) - skb->data;
546         h_pos = skb_transport_header(skb) - skb->data;
547
548         /* convert Ethernet header to proper 802.11 header (based on
549          * operation mode) */
550         ethertype = (skb->data[12] << 8) | skb->data[13];
551         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552
553         switch (iftype) {
554         case NL80211_IFTYPE_AP:
555         case NL80211_IFTYPE_AP_VLAN:
556         case NL80211_IFTYPE_P2P_GO:
557                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558                 /* DA BSSID SA */
559                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560                 memcpy(hdr.addr2, addr, ETH_ALEN);
561                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562                 hdrlen = 24;
563                 break;
564         case NL80211_IFTYPE_STATION:
565         case NL80211_IFTYPE_P2P_CLIENT:
566                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567                 /* BSSID SA DA */
568                 memcpy(hdr.addr1, bssid, ETH_ALEN);
569                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571                 hdrlen = 24;
572                 break;
573         case NL80211_IFTYPE_OCB:
574         case NL80211_IFTYPE_ADHOC:
575                 /* DA SA BSSID */
576                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578                 memcpy(hdr.addr3, bssid, ETH_ALEN);
579                 hdrlen = 24;
580                 break;
581         default:
582                 return -EOPNOTSUPP;
583         }
584
585         if (qos) {
586                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587                 hdrlen += 2;
588         }
589
590         hdr.frame_control = fc;
591         hdr.duration_id = 0;
592         hdr.seq_ctrl = 0;
593
594         skip_header_bytes = ETH_HLEN;
595         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596                 encaps_data = bridge_tunnel_header;
597                 encaps_len = sizeof(bridge_tunnel_header);
598                 skip_header_bytes -= 2;
599         } else if (ethertype >= ETH_P_802_3_MIN) {
600                 encaps_data = rfc1042_header;
601                 encaps_len = sizeof(rfc1042_header);
602                 skip_header_bytes -= 2;
603         } else {
604                 encaps_data = NULL;
605                 encaps_len = 0;
606         }
607
608         skb_pull(skb, skip_header_bytes);
609         nh_pos -= skip_header_bytes;
610         h_pos -= skip_header_bytes;
611
612         head_need = hdrlen + encaps_len - skb_headroom(skb);
613
614         if (head_need > 0 || skb_cloned(skb)) {
615                 head_need = max(head_need, 0);
616                 if (head_need)
617                         skb_orphan(skb);
618
619                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620                         return -ENOMEM;
621
622                 skb->truesize += head_need;
623         }
624
625         if (encaps_data) {
626                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627                 nh_pos += encaps_len;
628                 h_pos += encaps_len;
629         }
630
631         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632
633         nh_pos += hdrlen;
634         h_pos += hdrlen;
635
636         /* Update skb pointers to various headers since this modified frame
637          * is going to go through Linux networking code that may potentially
638          * need things like pointer to IP header. */
639         skb_set_mac_header(skb, 0);
640         skb_set_network_header(skb, nh_pos);
641         skb_set_transport_header(skb, h_pos);
642
643         return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646
647 static struct sk_buff *
648 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
649                        int offset, int len)
650 {
651         struct sk_buff *frame;
652
653         if (skb->len - offset < len)
654                 return NULL;
655
656         /*
657          * Allocate and reserve two bytes more for payload
658          * alignment since sizeof(struct ethhdr) is 14.
659          */
660         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + len);
661
662         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
663         skb_copy_bits(skb, offset, skb_put(frame, len), len);
664
665         return frame;
666 }
667
668 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
669                               const u8 *addr, enum nl80211_iftype iftype,
670                               const unsigned int extra_headroom,
671                               bool has_80211_header)
672 {
673         unsigned int hlen = ALIGN(extra_headroom, 4);
674         struct sk_buff *frame = NULL;
675         u16 ethertype;
676         u8 *payload;
677         int offset = 0, remaining, err;
678         struct ethhdr eth;
679         bool reuse_skb = true;
680         bool last = false;
681
682         if (has_80211_header) {
683                 err = __ieee80211_data_to_8023(skb, &eth, addr, iftype);
684                 if (err)
685                         goto out;
686         }
687
688         while (!last) {
689                 unsigned int subframe_len;
690                 int len;
691                 u8 padding;
692
693                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
694                 len = ntohs(eth.h_proto);
695                 subframe_len = sizeof(struct ethhdr) + len;
696                 padding = (4 - subframe_len) & 0x3;
697
698                 /* the last MSDU has no padding */
699                 remaining = skb->len - offset;
700                 if (subframe_len > remaining)
701                         goto purge;
702
703                 offset += sizeof(struct ethhdr);
704                 /* reuse skb for the last subframe */
705                 last = remaining <= subframe_len + padding;
706                 if (!skb_is_nonlinear(skb) && last) {
707                         skb_pull(skb, offset);
708                         frame = skb;
709                         reuse_skb = true;
710                 } else {
711                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len);
712                         if (!frame)
713                                 goto purge;
714
715                         offset += len + padding;
716                 }
717
718                 skb_reset_network_header(frame);
719                 frame->dev = skb->dev;
720                 frame->priority = skb->priority;
721
722                 payload = frame->data;
723                 ethertype = (payload[6] << 8) | payload[7];
724                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
725                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
726                            ether_addr_equal(payload, bridge_tunnel_header))) {
727                         eth.h_proto = htons(ethertype);
728                         skb_pull(frame, ETH_ALEN + 2);
729                 }
730
731                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
732                 __skb_queue_tail(list, frame);
733         }
734
735         if (!reuse_skb)
736                 dev_kfree_skb(skb);
737
738         return;
739
740  purge:
741         __skb_queue_purge(list);
742  out:
743         dev_kfree_skb(skb);
744 }
745 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
746
747 /* Given a data frame determine the 802.1p/1d tag to use. */
748 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
749                                     struct cfg80211_qos_map *qos_map)
750 {
751         unsigned int dscp;
752         unsigned char vlan_priority;
753
754         /* skb->priority values from 256->263 are magic values to
755          * directly indicate a specific 802.1d priority.  This is used
756          * to allow 802.1d priority to be passed directly in from VLAN
757          * tags, etc.
758          */
759         if (skb->priority >= 256 && skb->priority <= 263)
760                 return skb->priority - 256;
761
762         if (skb_vlan_tag_present(skb)) {
763                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
764                         >> VLAN_PRIO_SHIFT;
765                 if (vlan_priority > 0)
766                         return vlan_priority;
767         }
768
769         switch (skb->protocol) {
770         case htons(ETH_P_IP):
771                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
772                 break;
773         case htons(ETH_P_IPV6):
774                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
775                 break;
776         case htons(ETH_P_MPLS_UC):
777         case htons(ETH_P_MPLS_MC): {
778                 struct mpls_label mpls_tmp, *mpls;
779
780                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
781                                           sizeof(*mpls), &mpls_tmp);
782                 if (!mpls)
783                         return 0;
784
785                 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
786                         >> MPLS_LS_TC_SHIFT;
787         }
788         case htons(ETH_P_80221):
789                 /* 802.21 is always network control traffic */
790                 return 7;
791         default:
792                 return 0;
793         }
794
795         if (qos_map) {
796                 unsigned int i, tmp_dscp = dscp >> 2;
797
798                 for (i = 0; i < qos_map->num_des; i++) {
799                         if (tmp_dscp == qos_map->dscp_exception[i].dscp)
800                                 return qos_map->dscp_exception[i].up;
801                 }
802
803                 for (i = 0; i < 8; i++) {
804                         if (tmp_dscp >= qos_map->up[i].low &&
805                             tmp_dscp <= qos_map->up[i].high)
806                                 return i;
807                 }
808         }
809
810         return dscp >> 5;
811 }
812 EXPORT_SYMBOL(cfg80211_classify8021d);
813
814 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
815 {
816         const struct cfg80211_bss_ies *ies;
817
818         ies = rcu_dereference(bss->ies);
819         if (!ies)
820                 return NULL;
821
822         return cfg80211_find_ie(ie, ies->data, ies->len);
823 }
824 EXPORT_SYMBOL(ieee80211_bss_get_ie);
825
826 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
827 {
828         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
829         struct net_device *dev = wdev->netdev;
830         int i;
831
832         if (!wdev->connect_keys)
833                 return;
834
835         for (i = 0; i < 6; i++) {
836                 if (!wdev->connect_keys->params[i].cipher)
837                         continue;
838                 if (rdev_add_key(rdev, dev, i, false, NULL,
839                                  &wdev->connect_keys->params[i])) {
840                         netdev_err(dev, "failed to set key %d\n", i);
841                         continue;
842                 }
843                 if (wdev->connect_keys->def == i)
844                         if (rdev_set_default_key(rdev, dev, i, true, true)) {
845                                 netdev_err(dev, "failed to set defkey %d\n", i);
846                                 continue;
847                         }
848                 if (wdev->connect_keys->defmgmt == i)
849                         if (rdev_set_default_mgmt_key(rdev, dev, i))
850                                 netdev_err(dev, "failed to set mgtdef %d\n", i);
851         }
852
853         kzfree(wdev->connect_keys);
854         wdev->connect_keys = NULL;
855 }
856
857 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
858 {
859         struct cfg80211_event *ev;
860         unsigned long flags;
861         const u8 *bssid = NULL;
862
863         spin_lock_irqsave(&wdev->event_lock, flags);
864         while (!list_empty(&wdev->event_list)) {
865                 ev = list_first_entry(&wdev->event_list,
866                                       struct cfg80211_event, list);
867                 list_del(&ev->list);
868                 spin_unlock_irqrestore(&wdev->event_lock, flags);
869
870                 wdev_lock(wdev);
871                 switch (ev->type) {
872                 case EVENT_CONNECT_RESULT:
873                         if (!is_zero_ether_addr(ev->cr.bssid))
874                                 bssid = ev->cr.bssid;
875                         __cfg80211_connect_result(
876                                 wdev->netdev, bssid,
877                                 ev->cr.req_ie, ev->cr.req_ie_len,
878                                 ev->cr.resp_ie, ev->cr.resp_ie_len,
879                                 ev->cr.status,
880                                 ev->cr.status == WLAN_STATUS_SUCCESS,
881                                 NULL);
882                         break;
883                 case EVENT_ROAMED:
884                         __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
885                                           ev->rm.req_ie_len, ev->rm.resp_ie,
886                                           ev->rm.resp_ie_len);
887                         break;
888                 case EVENT_DISCONNECTED:
889                         __cfg80211_disconnected(wdev->netdev,
890                                                 ev->dc.ie, ev->dc.ie_len,
891                                                 ev->dc.reason,
892                                                 !ev->dc.locally_generated);
893                         break;
894                 case EVENT_IBSS_JOINED:
895                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
896                                                ev->ij.channel);
897                         break;
898                 case EVENT_STOPPED:
899                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
900                         break;
901                 }
902                 wdev_unlock(wdev);
903
904                 kfree(ev);
905
906                 spin_lock_irqsave(&wdev->event_lock, flags);
907         }
908         spin_unlock_irqrestore(&wdev->event_lock, flags);
909 }
910
911 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
912 {
913         struct wireless_dev *wdev;
914
915         ASSERT_RTNL();
916
917         list_for_each_entry(wdev, &rdev->wdev_list, list)
918                 cfg80211_process_wdev_events(wdev);
919 }
920
921 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
922                           struct net_device *dev, enum nl80211_iftype ntype,
923                           u32 *flags, struct vif_params *params)
924 {
925         int err;
926         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
927
928         ASSERT_RTNL();
929
930         /* don't support changing VLANs, you just re-create them */
931         if (otype == NL80211_IFTYPE_AP_VLAN)
932                 return -EOPNOTSUPP;
933
934         /* cannot change into P2P device type */
935         if (ntype == NL80211_IFTYPE_P2P_DEVICE)
936                 return -EOPNOTSUPP;
937
938         if (!rdev->ops->change_virtual_intf ||
939             !(rdev->wiphy.interface_modes & (1 << ntype)))
940                 return -EOPNOTSUPP;
941
942         /* if it's part of a bridge, reject changing type to station/ibss */
943         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
944             (ntype == NL80211_IFTYPE_ADHOC ||
945              ntype == NL80211_IFTYPE_STATION ||
946              ntype == NL80211_IFTYPE_P2P_CLIENT))
947                 return -EBUSY;
948
949         if (ntype != otype) {
950                 dev->ieee80211_ptr->use_4addr = false;
951                 dev->ieee80211_ptr->mesh_id_up_len = 0;
952                 wdev_lock(dev->ieee80211_ptr);
953                 rdev_set_qos_map(rdev, dev, NULL);
954                 wdev_unlock(dev->ieee80211_ptr);
955
956                 switch (otype) {
957                 case NL80211_IFTYPE_AP:
958                         cfg80211_stop_ap(rdev, dev, true);
959                         break;
960                 case NL80211_IFTYPE_ADHOC:
961                         cfg80211_leave_ibss(rdev, dev, false);
962                         break;
963                 case NL80211_IFTYPE_STATION:
964                 case NL80211_IFTYPE_P2P_CLIENT:
965                         wdev_lock(dev->ieee80211_ptr);
966                         cfg80211_disconnect(rdev, dev,
967                                             WLAN_REASON_DEAUTH_LEAVING, true);
968                         wdev_unlock(dev->ieee80211_ptr);
969                         break;
970                 case NL80211_IFTYPE_MESH_POINT:
971                         /* mesh should be handled? */
972                         break;
973                 default:
974                         break;
975                 }
976
977                 cfg80211_process_rdev_events(rdev);
978         }
979
980         err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
981
982         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
983
984         if (!err && params && params->use_4addr != -1)
985                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
986
987         if (!err) {
988                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
989                 switch (ntype) {
990                 case NL80211_IFTYPE_STATION:
991                         if (dev->ieee80211_ptr->use_4addr)
992                                 break;
993                         /* fall through */
994                 case NL80211_IFTYPE_OCB:
995                 case NL80211_IFTYPE_P2P_CLIENT:
996                 case NL80211_IFTYPE_ADHOC:
997                         dev->priv_flags |= IFF_DONT_BRIDGE;
998                         break;
999                 case NL80211_IFTYPE_P2P_GO:
1000                 case NL80211_IFTYPE_AP:
1001                 case NL80211_IFTYPE_AP_VLAN:
1002                 case NL80211_IFTYPE_WDS:
1003                 case NL80211_IFTYPE_MESH_POINT:
1004                         /* bridging OK */
1005                         break;
1006                 case NL80211_IFTYPE_MONITOR:
1007                         /* monitor can't bridge anyway */
1008                         break;
1009                 case NL80211_IFTYPE_UNSPECIFIED:
1010                 case NUM_NL80211_IFTYPES:
1011                         /* not happening */
1012                         break;
1013                 case NL80211_IFTYPE_P2P_DEVICE:
1014                         WARN_ON(1);
1015                         break;
1016                 }
1017         }
1018
1019         if (!err && ntype != otype && netif_running(dev)) {
1020                 cfg80211_update_iface_num(rdev, ntype, 1);
1021                 cfg80211_update_iface_num(rdev, otype, -1);
1022         }
1023
1024         return err;
1025 }
1026
1027 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1028 {
1029         static const u32 __mcs2bitrate[] = {
1030                 /* control PHY */
1031                 [0] =   275,
1032                 /* SC PHY */
1033                 [1] =  3850,
1034                 [2] =  7700,
1035                 [3] =  9625,
1036                 [4] = 11550,
1037                 [5] = 12512, /* 1251.25 mbps */
1038                 [6] = 15400,
1039                 [7] = 19250,
1040                 [8] = 23100,
1041                 [9] = 25025,
1042                 [10] = 30800,
1043                 [11] = 38500,
1044                 [12] = 46200,
1045                 /* OFDM PHY */
1046                 [13] =  6930,
1047                 [14] =  8662, /* 866.25 mbps */
1048                 [15] = 13860,
1049                 [16] = 17325,
1050                 [17] = 20790,
1051                 [18] = 27720,
1052                 [19] = 34650,
1053                 [20] = 41580,
1054                 [21] = 45045,
1055                 [22] = 51975,
1056                 [23] = 62370,
1057                 [24] = 67568, /* 6756.75 mbps */
1058                 /* LP-SC PHY */
1059                 [25] =  6260,
1060                 [26] =  8340,
1061                 [27] = 11120,
1062                 [28] = 12510,
1063                 [29] = 16680,
1064                 [30] = 22240,
1065                 [31] = 25030,
1066         };
1067
1068         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1069                 return 0;
1070
1071         return __mcs2bitrate[rate->mcs];
1072 }
1073
1074 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1075 {
1076         static const u32 base[4][10] = {
1077                 {   6500000,
1078                    13000000,
1079                    19500000,
1080                    26000000,
1081                    39000000,
1082                    52000000,
1083                    58500000,
1084                    65000000,
1085                    78000000,
1086                    0,
1087                 },
1088                 {  13500000,
1089                    27000000,
1090                    40500000,
1091                    54000000,
1092                    81000000,
1093                   108000000,
1094                   121500000,
1095                   135000000,
1096                   162000000,
1097                   180000000,
1098                 },
1099                 {  29300000,
1100                    58500000,
1101                    87800000,
1102                   117000000,
1103                   175500000,
1104                   234000000,
1105                   263300000,
1106                   292500000,
1107                   351000000,
1108                   390000000,
1109                 },
1110                 {  58500000,
1111                   117000000,
1112                   175500000,
1113                   234000000,
1114                   351000000,
1115                   468000000,
1116                   526500000,
1117                   585000000,
1118                   702000000,
1119                   780000000,
1120                 },
1121         };
1122         u32 bitrate;
1123         int idx;
1124
1125         if (WARN_ON_ONCE(rate->mcs > 9))
1126                 return 0;
1127
1128         switch (rate->bw) {
1129         case RATE_INFO_BW_160:
1130                 idx = 3;
1131                 break;
1132         case RATE_INFO_BW_80:
1133                 idx = 2;
1134                 break;
1135         case RATE_INFO_BW_40:
1136                 idx = 1;
1137                 break;
1138         case RATE_INFO_BW_5:
1139         case RATE_INFO_BW_10:
1140         default:
1141                 WARN_ON(1);
1142                 /* fall through */
1143         case RATE_INFO_BW_20:
1144                 idx = 0;
1145         }
1146
1147         bitrate = base[idx][rate->mcs];
1148         bitrate *= rate->nss;
1149
1150         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1151                 bitrate = (bitrate / 9) * 10;
1152
1153         /* do NOT round down here */
1154         return (bitrate + 50000) / 100000;
1155 }
1156
1157 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1158 {
1159         int modulation, streams, bitrate;
1160
1161         if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1162             !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1163                 return rate->legacy;
1164         if (rate->flags & RATE_INFO_FLAGS_60G)
1165                 return cfg80211_calculate_bitrate_60g(rate);
1166         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1167                 return cfg80211_calculate_bitrate_vht(rate);
1168
1169         /* the formula below does only work for MCS values smaller than 32 */
1170         if (WARN_ON_ONCE(rate->mcs >= 32))
1171                 return 0;
1172
1173         modulation = rate->mcs & 7;
1174         streams = (rate->mcs >> 3) + 1;
1175
1176         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1177
1178         if (modulation < 4)
1179                 bitrate *= (modulation + 1);
1180         else if (modulation == 4)
1181                 bitrate *= (modulation + 2);
1182         else
1183                 bitrate *= (modulation + 3);
1184
1185         bitrate *= streams;
1186
1187         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1188                 bitrate = (bitrate / 9) * 10;
1189
1190         /* do NOT round down here */
1191         return (bitrate + 50000) / 100000;
1192 }
1193 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1194
1195 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1196                           enum ieee80211_p2p_attr_id attr,
1197                           u8 *buf, unsigned int bufsize)
1198 {
1199         u8 *out = buf;
1200         u16 attr_remaining = 0;
1201         bool desired_attr = false;
1202         u16 desired_len = 0;
1203
1204         while (len > 0) {
1205                 unsigned int iedatalen;
1206                 unsigned int copy;
1207                 const u8 *iedata;
1208
1209                 if (len < 2)
1210                         return -EILSEQ;
1211                 iedatalen = ies[1];
1212                 if (iedatalen + 2 > len)
1213                         return -EILSEQ;
1214
1215                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1216                         goto cont;
1217
1218                 if (iedatalen < 4)
1219                         goto cont;
1220
1221                 iedata = ies + 2;
1222
1223                 /* check WFA OUI, P2P subtype */
1224                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1225                     iedata[2] != 0x9a || iedata[3] != 0x09)
1226                         goto cont;
1227
1228                 iedatalen -= 4;
1229                 iedata += 4;
1230
1231                 /* check attribute continuation into this IE */
1232                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1233                 if (copy && desired_attr) {
1234                         desired_len += copy;
1235                         if (out) {
1236                                 memcpy(out, iedata, min(bufsize, copy));
1237                                 out += min(bufsize, copy);
1238                                 bufsize -= min(bufsize, copy);
1239                         }
1240
1241
1242                         if (copy == attr_remaining)
1243                                 return desired_len;
1244                 }
1245
1246                 attr_remaining -= copy;
1247                 if (attr_remaining)
1248                         goto cont;
1249
1250                 iedatalen -= copy;
1251                 iedata += copy;
1252
1253                 while (iedatalen > 0) {
1254                         u16 attr_len;
1255
1256                         /* P2P attribute ID & size must fit */
1257                         if (iedatalen < 3)
1258                                 return -EILSEQ;
1259                         desired_attr = iedata[0] == attr;
1260                         attr_len = get_unaligned_le16(iedata + 1);
1261                         iedatalen -= 3;
1262                         iedata += 3;
1263
1264                         copy = min_t(unsigned int, attr_len, iedatalen);
1265
1266                         if (desired_attr) {
1267                                 desired_len += copy;
1268                                 if (out) {
1269                                         memcpy(out, iedata, min(bufsize, copy));
1270                                         out += min(bufsize, copy);
1271                                         bufsize -= min(bufsize, copy);
1272                                 }
1273
1274                                 if (copy == attr_len)
1275                                         return desired_len;
1276                         }
1277
1278                         iedata += copy;
1279                         iedatalen -= copy;
1280                         attr_remaining = attr_len - copy;
1281                 }
1282
1283  cont:
1284                 len -= ies[1] + 2;
1285                 ies += ies[1] + 2;
1286         }
1287
1288         if (attr_remaining && desired_attr)
1289                 return -EILSEQ;
1290
1291         return -ENOENT;
1292 }
1293 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1294
1295 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1296 {
1297         int i;
1298
1299         for (i = 0; i < n_ids; i++)
1300                 if (ids[i] == id)
1301                         return true;
1302         return false;
1303 }
1304
1305 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1306                               const u8 *ids, int n_ids,
1307                               const u8 *after_ric, int n_after_ric,
1308                               size_t offset)
1309 {
1310         size_t pos = offset;
1311
1312         while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1313                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1314                         pos += 2 + ies[pos + 1];
1315
1316                         while (pos < ielen &&
1317                                !ieee80211_id_in_list(after_ric, n_after_ric,
1318                                                      ies[pos]))
1319                                 pos += 2 + ies[pos + 1];
1320                 } else {
1321                         pos += 2 + ies[pos + 1];
1322                 }
1323         }
1324
1325         return pos;
1326 }
1327 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1328
1329 bool ieee80211_operating_class_to_band(u8 operating_class,
1330                                        enum ieee80211_band *band)
1331 {
1332         switch (operating_class) {
1333         case 112:
1334         case 115 ... 127:
1335         case 128 ... 130:
1336                 *band = IEEE80211_BAND_5GHZ;
1337                 return true;
1338         case 81:
1339         case 82:
1340         case 83:
1341         case 84:
1342                 *band = IEEE80211_BAND_2GHZ;
1343                 return true;
1344         case 180:
1345                 *band = IEEE80211_BAND_60GHZ;
1346                 return true;
1347         }
1348
1349         return false;
1350 }
1351 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1352
1353 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1354                                           u8 *op_class)
1355 {
1356         u8 vht_opclass;
1357         u16 freq = chandef->center_freq1;
1358
1359         if (freq >= 2412 && freq <= 2472) {
1360                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1361                         return false;
1362
1363                 /* 2.407 GHz, channels 1..13 */
1364                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1365                         if (freq > chandef->chan->center_freq)
1366                                 *op_class = 83; /* HT40+ */
1367                         else
1368                                 *op_class = 84; /* HT40- */
1369                 } else {
1370                         *op_class = 81;
1371                 }
1372
1373                 return true;
1374         }
1375
1376         if (freq == 2484) {
1377                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1378                         return false;
1379
1380                 *op_class = 82; /* channel 14 */
1381                 return true;
1382         }
1383
1384         switch (chandef->width) {
1385         case NL80211_CHAN_WIDTH_80:
1386                 vht_opclass = 128;
1387                 break;
1388         case NL80211_CHAN_WIDTH_160:
1389                 vht_opclass = 129;
1390                 break;
1391         case NL80211_CHAN_WIDTH_80P80:
1392                 vht_opclass = 130;
1393                 break;
1394         case NL80211_CHAN_WIDTH_10:
1395         case NL80211_CHAN_WIDTH_5:
1396                 return false; /* unsupported for now */
1397         default:
1398                 vht_opclass = 0;
1399                 break;
1400         }
1401
1402         /* 5 GHz, channels 36..48 */
1403         if (freq >= 5180 && freq <= 5240) {
1404                 if (vht_opclass) {
1405                         *op_class = vht_opclass;
1406                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1407                         if (freq > chandef->chan->center_freq)
1408                                 *op_class = 116;
1409                         else
1410                                 *op_class = 117;
1411                 } else {
1412                         *op_class = 115;
1413                 }
1414
1415                 return true;
1416         }
1417
1418         /* 5 GHz, channels 52..64 */
1419         if (freq >= 5260 && freq <= 5320) {
1420                 if (vht_opclass) {
1421                         *op_class = vht_opclass;
1422                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1423                         if (freq > chandef->chan->center_freq)
1424                                 *op_class = 119;
1425                         else
1426                                 *op_class = 120;
1427                 } else {
1428                         *op_class = 118;
1429                 }
1430
1431                 return true;
1432         }
1433
1434         /* 5 GHz, channels 100..144 */
1435         if (freq >= 5500 && freq <= 5720) {
1436                 if (vht_opclass) {
1437                         *op_class = vht_opclass;
1438                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1439                         if (freq > chandef->chan->center_freq)
1440                                 *op_class = 122;
1441                         else
1442                                 *op_class = 123;
1443                 } else {
1444                         *op_class = 121;
1445                 }
1446
1447                 return true;
1448         }
1449
1450         /* 5 GHz, channels 149..169 */
1451         if (freq >= 5745 && freq <= 5845) {
1452                 if (vht_opclass) {
1453                         *op_class = vht_opclass;
1454                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1455                         if (freq > chandef->chan->center_freq)
1456                                 *op_class = 126;
1457                         else
1458                                 *op_class = 127;
1459                 } else if (freq <= 5805) {
1460                         *op_class = 124;
1461                 } else {
1462                         *op_class = 125;
1463                 }
1464
1465                 return true;
1466         }
1467
1468         /* 56.16 GHz, channel 1..4 */
1469         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1470                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1471                         return false;
1472
1473                 *op_class = 180;
1474                 return true;
1475         }
1476
1477         /* not supported yet */
1478         return false;
1479 }
1480 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1481
1482 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1483                                  u32 beacon_int)
1484 {
1485         struct wireless_dev *wdev;
1486         int res = 0;
1487
1488         if (!beacon_int)
1489                 return -EINVAL;
1490
1491         list_for_each_entry(wdev, &rdev->wdev_list, list) {
1492                 if (!wdev->beacon_interval)
1493                         continue;
1494                 if (wdev->beacon_interval != beacon_int) {
1495                         res = -EINVAL;
1496                         break;
1497                 }
1498         }
1499
1500         return res;
1501 }
1502
1503 int cfg80211_iter_combinations(struct wiphy *wiphy,
1504                                const int num_different_channels,
1505                                const u8 radar_detect,
1506                                const int iftype_num[NUM_NL80211_IFTYPES],
1507                                void (*iter)(const struct ieee80211_iface_combination *c,
1508                                             void *data),
1509                                void *data)
1510 {
1511         const struct ieee80211_regdomain *regdom;
1512         enum nl80211_dfs_regions region = 0;
1513         int i, j, iftype;
1514         int num_interfaces = 0;
1515         u32 used_iftypes = 0;
1516
1517         if (radar_detect) {
1518                 rcu_read_lock();
1519                 regdom = rcu_dereference(cfg80211_regdomain);
1520                 if (regdom)
1521                         region = regdom->dfs_region;
1522                 rcu_read_unlock();
1523         }
1524
1525         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1526                 num_interfaces += iftype_num[iftype];
1527                 if (iftype_num[iftype] > 0 &&
1528                     !(wiphy->software_iftypes & BIT(iftype)))
1529                         used_iftypes |= BIT(iftype);
1530         }
1531
1532         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1533                 const struct ieee80211_iface_combination *c;
1534                 struct ieee80211_iface_limit *limits;
1535                 u32 all_iftypes = 0;
1536
1537                 c = &wiphy->iface_combinations[i];
1538
1539                 if (num_interfaces > c->max_interfaces)
1540                         continue;
1541                 if (num_different_channels > c->num_different_channels)
1542                         continue;
1543
1544                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1545                                  GFP_KERNEL);
1546                 if (!limits)
1547                         return -ENOMEM;
1548
1549                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1550                         if (wiphy->software_iftypes & BIT(iftype))
1551                                 continue;
1552                         for (j = 0; j < c->n_limits; j++) {
1553                                 all_iftypes |= limits[j].types;
1554                                 if (!(limits[j].types & BIT(iftype)))
1555                                         continue;
1556                                 if (limits[j].max < iftype_num[iftype])
1557                                         goto cont;
1558                                 limits[j].max -= iftype_num[iftype];
1559                         }
1560                 }
1561
1562                 if (radar_detect != (c->radar_detect_widths & radar_detect))
1563                         goto cont;
1564
1565                 if (radar_detect && c->radar_detect_regions &&
1566                     !(c->radar_detect_regions & BIT(region)))
1567                         goto cont;
1568
1569                 /* Finally check that all iftypes that we're currently
1570                  * using are actually part of this combination. If they
1571                  * aren't then we can't use this combination and have
1572                  * to continue to the next.
1573                  */
1574                 if ((all_iftypes & used_iftypes) != used_iftypes)
1575                         goto cont;
1576
1577                 /* This combination covered all interface types and
1578                  * supported the requested numbers, so we're good.
1579                  */
1580
1581                 (*iter)(c, data);
1582  cont:
1583                 kfree(limits);
1584         }
1585
1586         return 0;
1587 }
1588 EXPORT_SYMBOL(cfg80211_iter_combinations);
1589
1590 static void
1591 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1592                           void *data)
1593 {
1594         int *num = data;
1595         (*num)++;
1596 }
1597
1598 int cfg80211_check_combinations(struct wiphy *wiphy,
1599                                 const int num_different_channels,
1600                                 const u8 radar_detect,
1601                                 const int iftype_num[NUM_NL80211_IFTYPES])
1602 {
1603         int err, num = 0;
1604
1605         err = cfg80211_iter_combinations(wiphy, num_different_channels,
1606                                          radar_detect, iftype_num,
1607                                          cfg80211_iter_sum_ifcombs, &num);
1608         if (err)
1609                 return err;
1610         if (num == 0)
1611                 return -EBUSY;
1612
1613         return 0;
1614 }
1615 EXPORT_SYMBOL(cfg80211_check_combinations);
1616
1617 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1618                            const u8 *rates, unsigned int n_rates,
1619                            u32 *mask)
1620 {
1621         int i, j;
1622
1623         if (!sband)
1624                 return -EINVAL;
1625
1626         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1627                 return -EINVAL;
1628
1629         *mask = 0;
1630
1631         for (i = 0; i < n_rates; i++) {
1632                 int rate = (rates[i] & 0x7f) * 5;
1633                 bool found = false;
1634
1635                 for (j = 0; j < sband->n_bitrates; j++) {
1636                         if (sband->bitrates[j].bitrate == rate) {
1637                                 found = true;
1638                                 *mask |= BIT(j);
1639                                 break;
1640                         }
1641                 }
1642                 if (!found)
1643                         return -EINVAL;
1644         }
1645
1646         /*
1647          * mask must have at least one bit set here since we
1648          * didn't accept a 0-length rates array nor allowed
1649          * entries in the array that didn't exist
1650          */
1651
1652         return 0;
1653 }
1654
1655 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1656 {
1657         enum ieee80211_band band;
1658         unsigned int n_channels = 0;
1659
1660         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1661                 if (wiphy->bands[band])
1662                         n_channels += wiphy->bands[band]->n_channels;
1663
1664         return n_channels;
1665 }
1666 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1667
1668 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1669                          struct station_info *sinfo)
1670 {
1671         struct cfg80211_registered_device *rdev;
1672         struct wireless_dev *wdev;
1673
1674         wdev = dev->ieee80211_ptr;
1675         if (!wdev)
1676                 return -EOPNOTSUPP;
1677
1678         rdev = wiphy_to_rdev(wdev->wiphy);
1679         if (!rdev->ops->get_station)
1680                 return -EOPNOTSUPP;
1681
1682         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1683 }
1684 EXPORT_SYMBOL(cfg80211_get_station);
1685
1686 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1687 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1688 const unsigned char rfc1042_header[] __aligned(2) =
1689         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1690 EXPORT_SYMBOL(rfc1042_header);
1691
1692 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1693 const unsigned char bridge_tunnel_header[] __aligned(2) =
1694         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1695 EXPORT_SYMBOL(bridge_tunnel_header);