]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/wireless/util.c
ufs_truncate_blocks(): fix the case when size is in the last direct block
[karo-tx-linux.git] / net / wireless / util.c
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include <linux/gcd.h>
17 #include "core.h"
18 #include "rdev-ops.h"
19
20
21 struct ieee80211_rate *
22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
23                             u32 basic_rates, int bitrate)
24 {
25         struct ieee80211_rate *result = &sband->bitrates[0];
26         int i;
27
28         for (i = 0; i < sband->n_bitrates; i++) {
29                 if (!(basic_rates & BIT(i)))
30                         continue;
31                 if (sband->bitrates[i].bitrate > bitrate)
32                         continue;
33                 result = &sband->bitrates[i];
34         }
35
36         return result;
37 }
38 EXPORT_SYMBOL(ieee80211_get_response_rate);
39
40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
41                               enum nl80211_bss_scan_width scan_width)
42 {
43         struct ieee80211_rate *bitrates;
44         u32 mandatory_rates = 0;
45         enum ieee80211_rate_flags mandatory_flag;
46         int i;
47
48         if (WARN_ON(!sband))
49                 return 1;
50
51         if (sband->band == NL80211_BAND_2GHZ) {
52                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
53                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
54                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
55                 else
56                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
57         } else {
58                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
59         }
60
61         bitrates = sband->bitrates;
62         for (i = 0; i < sband->n_bitrates; i++)
63                 if (bitrates[i].flags & mandatory_flag)
64                         mandatory_rates |= BIT(i);
65         return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
70 {
71         /* see 802.11 17.3.8.3.2 and Annex J
72          * there are overlapping channel numbers in 5GHz and 2GHz bands */
73         if (chan <= 0)
74                 return 0; /* not supported */
75         switch (band) {
76         case NL80211_BAND_2GHZ:
77                 if (chan == 14)
78                         return 2484;
79                 else if (chan < 14)
80                         return 2407 + chan * 5;
81                 break;
82         case NL80211_BAND_5GHZ:
83                 if (chan >= 182 && chan <= 196)
84                         return 4000 + chan * 5;
85                 else
86                         return 5000 + chan * 5;
87                 break;
88         case NL80211_BAND_60GHZ:
89                 if (chan < 5)
90                         return 56160 + chan * 2160;
91                 break;
92         default:
93                 ;
94         }
95         return 0; /* not supported */
96 }
97 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98
99 int ieee80211_frequency_to_channel(int freq)
100 {
101         /* see 802.11 17.3.8.3.2 and Annex J */
102         if (freq == 2484)
103                 return 14;
104         else if (freq < 2484)
105                 return (freq - 2407) / 5;
106         else if (freq >= 4910 && freq <= 4980)
107                 return (freq - 4000) / 5;
108         else if (freq <= 45000) /* DMG band lower limit */
109                 return (freq - 5000) / 5;
110         else if (freq >= 58320 && freq <= 64800)
111                 return (freq - 56160) / 2160;
112         else
113                 return 0;
114 }
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116
117 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
118 {
119         enum nl80211_band band;
120         struct ieee80211_supported_band *sband;
121         int i;
122
123         for (band = 0; band < NUM_NL80211_BANDS; band++) {
124                 sband = wiphy->bands[band];
125
126                 if (!sband)
127                         continue;
128
129                 for (i = 0; i < sband->n_channels; i++) {
130                         if (sband->channels[i].center_freq == freq)
131                                 return &sband->channels[i];
132                 }
133         }
134
135         return NULL;
136 }
137 EXPORT_SYMBOL(ieee80211_get_channel);
138
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
140 {
141         int i, want;
142
143         switch (sband->band) {
144         case NL80211_BAND_5GHZ:
145                 want = 3;
146                 for (i = 0; i < sband->n_bitrates; i++) {
147                         if (sband->bitrates[i].bitrate == 60 ||
148                             sband->bitrates[i].bitrate == 120 ||
149                             sband->bitrates[i].bitrate == 240) {
150                                 sband->bitrates[i].flags |=
151                                         IEEE80211_RATE_MANDATORY_A;
152                                 want--;
153                         }
154                 }
155                 WARN_ON(want);
156                 break;
157         case NL80211_BAND_2GHZ:
158                 want = 7;
159                 for (i = 0; i < sband->n_bitrates; i++) {
160                         if (sband->bitrates[i].bitrate == 10) {
161                                 sband->bitrates[i].flags |=
162                                         IEEE80211_RATE_MANDATORY_B |
163                                         IEEE80211_RATE_MANDATORY_G;
164                                 want--;
165                         }
166
167                         if (sband->bitrates[i].bitrate == 20 ||
168                             sband->bitrates[i].bitrate == 55 ||
169                             sband->bitrates[i].bitrate == 110 ||
170                             sband->bitrates[i].bitrate == 60 ||
171                             sband->bitrates[i].bitrate == 120 ||
172                             sband->bitrates[i].bitrate == 240) {
173                                 sband->bitrates[i].flags |=
174                                         IEEE80211_RATE_MANDATORY_G;
175                                 want--;
176                         }
177
178                         if (sband->bitrates[i].bitrate != 10 &&
179                             sband->bitrates[i].bitrate != 20 &&
180                             sband->bitrates[i].bitrate != 55 &&
181                             sband->bitrates[i].bitrate != 110)
182                                 sband->bitrates[i].flags |=
183                                         IEEE80211_RATE_ERP_G;
184                 }
185                 WARN_ON(want != 0 && want != 3 && want != 6);
186                 break;
187         case NL80211_BAND_60GHZ:
188                 /* check for mandatory HT MCS 1..4 */
189                 WARN_ON(!sband->ht_cap.ht_supported);
190                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191                 break;
192         case NUM_NL80211_BANDS:
193         default:
194                 WARN_ON(1);
195                 break;
196         }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201         enum nl80211_band band;
202
203         for (band = 0; band < NUM_NL80211_BANDS; band++)
204                 if (wiphy->bands[band])
205                         set_mandatory_flags_band(wiphy->bands[band]);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210         int i;
211         for (i = 0; i < wiphy->n_cipher_suites; i++)
212                 if (cipher == wiphy->cipher_suites[i])
213                         return true;
214         return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218                                    struct key_params *params, int key_idx,
219                                    bool pairwise, const u8 *mac_addr)
220 {
221         if (key_idx < 0 || key_idx > 5)
222                 return -EINVAL;
223
224         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225                 return -EINVAL;
226
227         if (pairwise && !mac_addr)
228                 return -EINVAL;
229
230         switch (params->cipher) {
231         case WLAN_CIPHER_SUITE_TKIP:
232         case WLAN_CIPHER_SUITE_CCMP:
233         case WLAN_CIPHER_SUITE_CCMP_256:
234         case WLAN_CIPHER_SUITE_GCMP:
235         case WLAN_CIPHER_SUITE_GCMP_256:
236                 /* Disallow pairwise keys with non-zero index unless it's WEP
237                  * or a vendor specific cipher (because current deployments use
238                  * pairwise WEP keys with non-zero indices and for vendor
239                  * specific ciphers this should be validated in the driver or
240                  * hardware level - but 802.11i clearly specifies to use zero)
241                  */
242                 if (pairwise && key_idx)
243                         return -EINVAL;
244                 break;
245         case WLAN_CIPHER_SUITE_AES_CMAC:
246         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249                 /* Disallow BIP (group-only) cipher as pairwise cipher */
250                 if (pairwise)
251                         return -EINVAL;
252                 if (key_idx < 4)
253                         return -EINVAL;
254                 break;
255         case WLAN_CIPHER_SUITE_WEP40:
256         case WLAN_CIPHER_SUITE_WEP104:
257                 if (key_idx > 3)
258                         return -EINVAL;
259         default:
260                 break;
261         }
262
263         switch (params->cipher) {
264         case WLAN_CIPHER_SUITE_WEP40:
265                 if (params->key_len != WLAN_KEY_LEN_WEP40)
266                         return -EINVAL;
267                 break;
268         case WLAN_CIPHER_SUITE_TKIP:
269                 if (params->key_len != WLAN_KEY_LEN_TKIP)
270                         return -EINVAL;
271                 break;
272         case WLAN_CIPHER_SUITE_CCMP:
273                 if (params->key_len != WLAN_KEY_LEN_CCMP)
274                         return -EINVAL;
275                 break;
276         case WLAN_CIPHER_SUITE_CCMP_256:
277                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278                         return -EINVAL;
279                 break;
280         case WLAN_CIPHER_SUITE_GCMP:
281                 if (params->key_len != WLAN_KEY_LEN_GCMP)
282                         return -EINVAL;
283                 break;
284         case WLAN_CIPHER_SUITE_GCMP_256:
285                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286                         return -EINVAL;
287                 break;
288         case WLAN_CIPHER_SUITE_WEP104:
289                 if (params->key_len != WLAN_KEY_LEN_WEP104)
290                         return -EINVAL;
291                 break;
292         case WLAN_CIPHER_SUITE_AES_CMAC:
293                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294                         return -EINVAL;
295                 break;
296         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298                         return -EINVAL;
299                 break;
300         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302                         return -EINVAL;
303                 break;
304         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306                         return -EINVAL;
307                 break;
308         default:
309                 /*
310                  * We don't know anything about this algorithm,
311                  * allow using it -- but the driver must check
312                  * all parameters! We still check below whether
313                  * or not the driver supports this algorithm,
314                  * of course.
315                  */
316                 break;
317         }
318
319         if (params->seq) {
320                 switch (params->cipher) {
321                 case WLAN_CIPHER_SUITE_WEP40:
322                 case WLAN_CIPHER_SUITE_WEP104:
323                         /* These ciphers do not use key sequence */
324                         return -EINVAL;
325                 case WLAN_CIPHER_SUITE_TKIP:
326                 case WLAN_CIPHER_SUITE_CCMP:
327                 case WLAN_CIPHER_SUITE_CCMP_256:
328                 case WLAN_CIPHER_SUITE_GCMP:
329                 case WLAN_CIPHER_SUITE_GCMP_256:
330                 case WLAN_CIPHER_SUITE_AES_CMAC:
331                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334                         if (params->seq_len != 6)
335                                 return -EINVAL;
336                         break;
337                 }
338         }
339
340         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341                 return -EINVAL;
342
343         return 0;
344 }
345
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348         unsigned int hdrlen = 24;
349
350         if (ieee80211_is_data(fc)) {
351                 if (ieee80211_has_a4(fc))
352                         hdrlen = 30;
353                 if (ieee80211_is_data_qos(fc)) {
354                         hdrlen += IEEE80211_QOS_CTL_LEN;
355                         if (ieee80211_has_order(fc))
356                                 hdrlen += IEEE80211_HT_CTL_LEN;
357                 }
358                 goto out;
359         }
360
361         if (ieee80211_is_mgmt(fc)) {
362                 if (ieee80211_has_order(fc))
363                         hdrlen += IEEE80211_HT_CTL_LEN;
364                 goto out;
365         }
366
367         if (ieee80211_is_ctl(fc)) {
368                 /*
369                  * ACK and CTS are 10 bytes, all others 16. To see how
370                  * to get this condition consider
371                  *   subtype mask:   0b0000000011110000 (0x00F0)
372                  *   ACK subtype:    0b0000000011010000 (0x00D0)
373                  *   CTS subtype:    0b0000000011000000 (0x00C0)
374                  *   bits that matter:         ^^^      (0x00E0)
375                  *   value of those: 0b0000000011000000 (0x00C0)
376                  */
377                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378                         hdrlen = 10;
379                 else
380                         hdrlen = 16;
381         }
382 out:
383         return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389         const struct ieee80211_hdr *hdr =
390                         (const struct ieee80211_hdr *)skb->data;
391         unsigned int hdrlen;
392
393         if (unlikely(skb->len < 10))
394                 return 0;
395         hdrlen = ieee80211_hdrlen(hdr->frame_control);
396         if (unlikely(hdrlen > skb->len))
397                 return 0;
398         return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404         int ae = flags & MESH_FLAGS_AE;
405         /* 802.11-2012, 8.2.4.7.3 */
406         switch (ae) {
407         default:
408         case 0:
409                 return 6;
410         case MESH_FLAGS_AE_A4:
411                 return 12;
412         case MESH_FLAGS_AE_A5_A6:
413                 return 18;
414         }
415 }
416
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424                                   const u8 *addr, enum nl80211_iftype iftype)
425 {
426         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427         struct {
428                 u8 hdr[ETH_ALEN] __aligned(2);
429                 __be16 proto;
430         } payload;
431         struct ethhdr tmp;
432         u16 hdrlen;
433         u8 mesh_flags = 0;
434
435         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436                 return -1;
437
438         hdrlen = ieee80211_hdrlen(hdr->frame_control);
439         if (skb->len < hdrlen + 8)
440                 return -1;
441
442         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
443          * header
444          * IEEE 802.11 address fields:
445          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446          *   0     0   DA    SA    BSSID n/a
447          *   0     1   DA    BSSID SA    n/a
448          *   1     0   BSSID SA    DA    n/a
449          *   1     1   RA    TA    DA    SA
450          */
451         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453
454         if (iftype == NL80211_IFTYPE_MESH_POINT)
455                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456
457         switch (hdr->frame_control &
458                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459         case cpu_to_le16(IEEE80211_FCTL_TODS):
460                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
461                              iftype != NL80211_IFTYPE_AP_VLAN &&
462                              iftype != NL80211_IFTYPE_P2P_GO))
463                         return -1;
464                 break;
465         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467                              iftype != NL80211_IFTYPE_MESH_POINT &&
468                              iftype != NL80211_IFTYPE_AP_VLAN &&
469                              iftype != NL80211_IFTYPE_STATION))
470                         return -1;
471                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
472                         if (mesh_flags & MESH_FLAGS_AE_A4)
473                                 return -1;
474                         if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
475                                 skb_copy_bits(skb, hdrlen +
476                                         offsetof(struct ieee80211s_hdr, eaddr1),
477                                         tmp.h_dest, 2 * ETH_ALEN);
478                         }
479                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480                 }
481                 break;
482         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483                 if ((iftype != NL80211_IFTYPE_STATION &&
484                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
485                      iftype != NL80211_IFTYPE_MESH_POINT) ||
486                     (is_multicast_ether_addr(tmp.h_dest) &&
487                      ether_addr_equal(tmp.h_source, addr)))
488                         return -1;
489                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
490                         if (mesh_flags & MESH_FLAGS_AE_A5_A6)
491                                 return -1;
492                         if (mesh_flags & MESH_FLAGS_AE_A4)
493                                 skb_copy_bits(skb, hdrlen +
494                                         offsetof(struct ieee80211s_hdr, eaddr1),
495                                         tmp.h_source, ETH_ALEN);
496                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497                 }
498                 break;
499         case cpu_to_le16(0):
500                 if (iftype != NL80211_IFTYPE_ADHOC &&
501                     iftype != NL80211_IFTYPE_STATION &&
502                     iftype != NL80211_IFTYPE_OCB)
503                                 return -1;
504                 break;
505         }
506
507         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508         tmp.h_proto = payload.proto;
509
510         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511                     tmp.h_proto != htons(ETH_P_AARP) &&
512                     tmp.h_proto != htons(ETH_P_IPX)) ||
513                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
515                  * replace EtherType */
516                 hdrlen += ETH_ALEN + 2;
517         else
518                 tmp.h_proto = htons(skb->len - hdrlen);
519
520         pskb_pull(skb, hdrlen);
521
522         if (!ehdr)
523                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
524         memcpy(ehdr, &tmp, sizeof(tmp));
525
526         return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
529
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531                              enum nl80211_iftype iftype,
532                              const u8 *bssid, bool qos)
533 {
534         struct ieee80211_hdr hdr;
535         u16 hdrlen, ethertype;
536         __le16 fc;
537         const u8 *encaps_data;
538         int encaps_len, skip_header_bytes;
539         int nh_pos, h_pos;
540         int head_need;
541
542         if (unlikely(skb->len < ETH_HLEN))
543                 return -EINVAL;
544
545         nh_pos = skb_network_header(skb) - skb->data;
546         h_pos = skb_transport_header(skb) - skb->data;
547
548         /* convert Ethernet header to proper 802.11 header (based on
549          * operation mode) */
550         ethertype = (skb->data[12] << 8) | skb->data[13];
551         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552
553         switch (iftype) {
554         case NL80211_IFTYPE_AP:
555         case NL80211_IFTYPE_AP_VLAN:
556         case NL80211_IFTYPE_P2P_GO:
557                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558                 /* DA BSSID SA */
559                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560                 memcpy(hdr.addr2, addr, ETH_ALEN);
561                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562                 hdrlen = 24;
563                 break;
564         case NL80211_IFTYPE_STATION:
565         case NL80211_IFTYPE_P2P_CLIENT:
566                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567                 /* BSSID SA DA */
568                 memcpy(hdr.addr1, bssid, ETH_ALEN);
569                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571                 hdrlen = 24;
572                 break;
573         case NL80211_IFTYPE_OCB:
574         case NL80211_IFTYPE_ADHOC:
575                 /* DA SA BSSID */
576                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578                 memcpy(hdr.addr3, bssid, ETH_ALEN);
579                 hdrlen = 24;
580                 break;
581         default:
582                 return -EOPNOTSUPP;
583         }
584
585         if (qos) {
586                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587                 hdrlen += 2;
588         }
589
590         hdr.frame_control = fc;
591         hdr.duration_id = 0;
592         hdr.seq_ctrl = 0;
593
594         skip_header_bytes = ETH_HLEN;
595         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596                 encaps_data = bridge_tunnel_header;
597                 encaps_len = sizeof(bridge_tunnel_header);
598                 skip_header_bytes -= 2;
599         } else if (ethertype >= ETH_P_802_3_MIN) {
600                 encaps_data = rfc1042_header;
601                 encaps_len = sizeof(rfc1042_header);
602                 skip_header_bytes -= 2;
603         } else {
604                 encaps_data = NULL;
605                 encaps_len = 0;
606         }
607
608         skb_pull(skb, skip_header_bytes);
609         nh_pos -= skip_header_bytes;
610         h_pos -= skip_header_bytes;
611
612         head_need = hdrlen + encaps_len - skb_headroom(skb);
613
614         if (head_need > 0 || skb_cloned(skb)) {
615                 head_need = max(head_need, 0);
616                 if (head_need)
617                         skb_orphan(skb);
618
619                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620                         return -ENOMEM;
621         }
622
623         if (encaps_data) {
624                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
625                 nh_pos += encaps_len;
626                 h_pos += encaps_len;
627         }
628
629         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
630
631         nh_pos += hdrlen;
632         h_pos += hdrlen;
633
634         /* Update skb pointers to various headers since this modified frame
635          * is going to go through Linux networking code that may potentially
636          * need things like pointer to IP header. */
637         skb_reset_mac_header(skb);
638         skb_set_network_header(skb, nh_pos);
639         skb_set_transport_header(skb, h_pos);
640
641         return 0;
642 }
643 EXPORT_SYMBOL(ieee80211_data_from_8023);
644
645 static void
646 __frame_add_frag(struct sk_buff *skb, struct page *page,
647                  void *ptr, int len, int size)
648 {
649         struct skb_shared_info *sh = skb_shinfo(skb);
650         int page_offset;
651
652         page_ref_inc(page);
653         page_offset = ptr - page_address(page);
654         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
655 }
656
657 static void
658 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
659                             int offset, int len)
660 {
661         struct skb_shared_info *sh = skb_shinfo(skb);
662         const skb_frag_t *frag = &sh->frags[0];
663         struct page *frag_page;
664         void *frag_ptr;
665         int frag_len, frag_size;
666         int head_size = skb->len - skb->data_len;
667         int cur_len;
668
669         frag_page = virt_to_head_page(skb->head);
670         frag_ptr = skb->data;
671         frag_size = head_size;
672
673         while (offset >= frag_size) {
674                 offset -= frag_size;
675                 frag_page = skb_frag_page(frag);
676                 frag_ptr = skb_frag_address(frag);
677                 frag_size = skb_frag_size(frag);
678                 frag++;
679         }
680
681         frag_ptr += offset;
682         frag_len = frag_size - offset;
683
684         cur_len = min(len, frag_len);
685
686         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
687         len -= cur_len;
688
689         while (len > 0) {
690                 frag_len = skb_frag_size(frag);
691                 cur_len = min(len, frag_len);
692                 __frame_add_frag(frame, skb_frag_page(frag),
693                                  skb_frag_address(frag), cur_len, frag_len);
694                 len -= cur_len;
695                 frag++;
696         }
697 }
698
699 static struct sk_buff *
700 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
701                        int offset, int len, bool reuse_frag)
702 {
703         struct sk_buff *frame;
704         int cur_len = len;
705
706         if (skb->len - offset < len)
707                 return NULL;
708
709         /*
710          * When reusing framents, copy some data to the head to simplify
711          * ethernet header handling and speed up protocol header processing
712          * in the stack later.
713          */
714         if (reuse_frag)
715                 cur_len = min_t(int, len, 32);
716
717         /*
718          * Allocate and reserve two bytes more for payload
719          * alignment since sizeof(struct ethhdr) is 14.
720          */
721         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
722         if (!frame)
723                 return NULL;
724
725         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
726         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
727
728         len -= cur_len;
729         if (!len)
730                 return frame;
731
732         offset += cur_len;
733         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
734
735         return frame;
736 }
737
738 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
739                               const u8 *addr, enum nl80211_iftype iftype,
740                               const unsigned int extra_headroom,
741                               const u8 *check_da, const u8 *check_sa)
742 {
743         unsigned int hlen = ALIGN(extra_headroom, 4);
744         struct sk_buff *frame = NULL;
745         u16 ethertype;
746         u8 *payload;
747         int offset = 0, remaining;
748         struct ethhdr eth;
749         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
750         bool reuse_skb = false;
751         bool last = false;
752
753         while (!last) {
754                 unsigned int subframe_len;
755                 int len;
756                 u8 padding;
757
758                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
759                 len = ntohs(eth.h_proto);
760                 subframe_len = sizeof(struct ethhdr) + len;
761                 padding = (4 - subframe_len) & 0x3;
762
763                 /* the last MSDU has no padding */
764                 remaining = skb->len - offset;
765                 if (subframe_len > remaining)
766                         goto purge;
767
768                 offset += sizeof(struct ethhdr);
769                 last = remaining <= subframe_len + padding;
770
771                 /* FIXME: should we really accept multicast DA? */
772                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
773                      !ether_addr_equal(check_da, eth.h_dest)) ||
774                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
775                         offset += len + padding;
776                         continue;
777                 }
778
779                 /* reuse skb for the last subframe */
780                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
781                         skb_pull(skb, offset);
782                         frame = skb;
783                         reuse_skb = true;
784                 } else {
785                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
786                                                        reuse_frag);
787                         if (!frame)
788                                 goto purge;
789
790                         offset += len + padding;
791                 }
792
793                 skb_reset_network_header(frame);
794                 frame->dev = skb->dev;
795                 frame->priority = skb->priority;
796
797                 payload = frame->data;
798                 ethertype = (payload[6] << 8) | payload[7];
799                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
800                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
801                            ether_addr_equal(payload, bridge_tunnel_header))) {
802                         eth.h_proto = htons(ethertype);
803                         skb_pull(frame, ETH_ALEN + 2);
804                 }
805
806                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
807                 __skb_queue_tail(list, frame);
808         }
809
810         if (!reuse_skb)
811                 dev_kfree_skb(skb);
812
813         return;
814
815  purge:
816         __skb_queue_purge(list);
817         dev_kfree_skb(skb);
818 }
819 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
820
821 /* Given a data frame determine the 802.1p/1d tag to use. */
822 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
823                                     struct cfg80211_qos_map *qos_map)
824 {
825         unsigned int dscp;
826         unsigned char vlan_priority;
827
828         /* skb->priority values from 256->263 are magic values to
829          * directly indicate a specific 802.1d priority.  This is used
830          * to allow 802.1d priority to be passed directly in from VLAN
831          * tags, etc.
832          */
833         if (skb->priority >= 256 && skb->priority <= 263)
834                 return skb->priority - 256;
835
836         if (skb_vlan_tag_present(skb)) {
837                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
838                         >> VLAN_PRIO_SHIFT;
839                 if (vlan_priority > 0)
840                         return vlan_priority;
841         }
842
843         switch (skb->protocol) {
844         case htons(ETH_P_IP):
845                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
846                 break;
847         case htons(ETH_P_IPV6):
848                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
849                 break;
850         case htons(ETH_P_MPLS_UC):
851         case htons(ETH_P_MPLS_MC): {
852                 struct mpls_label mpls_tmp, *mpls;
853
854                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
855                                           sizeof(*mpls), &mpls_tmp);
856                 if (!mpls)
857                         return 0;
858
859                 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
860                         >> MPLS_LS_TC_SHIFT;
861         }
862         case htons(ETH_P_80221):
863                 /* 802.21 is always network control traffic */
864                 return 7;
865         default:
866                 return 0;
867         }
868
869         if (qos_map) {
870                 unsigned int i, tmp_dscp = dscp >> 2;
871
872                 for (i = 0; i < qos_map->num_des; i++) {
873                         if (tmp_dscp == qos_map->dscp_exception[i].dscp)
874                                 return qos_map->dscp_exception[i].up;
875                 }
876
877                 for (i = 0; i < 8; i++) {
878                         if (tmp_dscp >= qos_map->up[i].low &&
879                             tmp_dscp <= qos_map->up[i].high)
880                                 return i;
881                 }
882         }
883
884         return dscp >> 5;
885 }
886 EXPORT_SYMBOL(cfg80211_classify8021d);
887
888 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
889 {
890         const struct cfg80211_bss_ies *ies;
891
892         ies = rcu_dereference(bss->ies);
893         if (!ies)
894                 return NULL;
895
896         return cfg80211_find_ie(ie, ies->data, ies->len);
897 }
898 EXPORT_SYMBOL(ieee80211_bss_get_ie);
899
900 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
901 {
902         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
903         struct net_device *dev = wdev->netdev;
904         int i;
905
906         if (!wdev->connect_keys)
907                 return;
908
909         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
910                 if (!wdev->connect_keys->params[i].cipher)
911                         continue;
912                 if (rdev_add_key(rdev, dev, i, false, NULL,
913                                  &wdev->connect_keys->params[i])) {
914                         netdev_err(dev, "failed to set key %d\n", i);
915                         continue;
916                 }
917                 if (wdev->connect_keys->def == i &&
918                     rdev_set_default_key(rdev, dev, i, true, true)) {
919                         netdev_err(dev, "failed to set defkey %d\n", i);
920                         continue;
921                 }
922         }
923
924         kzfree(wdev->connect_keys);
925         wdev->connect_keys = NULL;
926 }
927
928 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
929 {
930         struct cfg80211_event *ev;
931         unsigned long flags;
932
933         spin_lock_irqsave(&wdev->event_lock, flags);
934         while (!list_empty(&wdev->event_list)) {
935                 ev = list_first_entry(&wdev->event_list,
936                                       struct cfg80211_event, list);
937                 list_del(&ev->list);
938                 spin_unlock_irqrestore(&wdev->event_lock, flags);
939
940                 wdev_lock(wdev);
941                 switch (ev->type) {
942                 case EVENT_CONNECT_RESULT:
943                         __cfg80211_connect_result(
944                                 wdev->netdev,
945                                 &ev->cr,
946                                 ev->cr.status == WLAN_STATUS_SUCCESS);
947                         break;
948                 case EVENT_ROAMED:
949                         __cfg80211_roamed(wdev, &ev->rm);
950                         break;
951                 case EVENT_DISCONNECTED:
952                         __cfg80211_disconnected(wdev->netdev,
953                                                 ev->dc.ie, ev->dc.ie_len,
954                                                 ev->dc.reason,
955                                                 !ev->dc.locally_generated);
956                         break;
957                 case EVENT_IBSS_JOINED:
958                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
959                                                ev->ij.channel);
960                         break;
961                 case EVENT_STOPPED:
962                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
963                         break;
964                 }
965                 wdev_unlock(wdev);
966
967                 kfree(ev);
968
969                 spin_lock_irqsave(&wdev->event_lock, flags);
970         }
971         spin_unlock_irqrestore(&wdev->event_lock, flags);
972 }
973
974 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
975 {
976         struct wireless_dev *wdev;
977
978         ASSERT_RTNL();
979
980         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
981                 cfg80211_process_wdev_events(wdev);
982 }
983
984 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
985                           struct net_device *dev, enum nl80211_iftype ntype,
986                           struct vif_params *params)
987 {
988         int err;
989         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
990
991         ASSERT_RTNL();
992
993         /* don't support changing VLANs, you just re-create them */
994         if (otype == NL80211_IFTYPE_AP_VLAN)
995                 return -EOPNOTSUPP;
996
997         /* cannot change into P2P device or NAN */
998         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
999             ntype == NL80211_IFTYPE_NAN)
1000                 return -EOPNOTSUPP;
1001
1002         if (!rdev->ops->change_virtual_intf ||
1003             !(rdev->wiphy.interface_modes & (1 << ntype)))
1004                 return -EOPNOTSUPP;
1005
1006         /* if it's part of a bridge, reject changing type to station/ibss */
1007         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1008             (ntype == NL80211_IFTYPE_ADHOC ||
1009              ntype == NL80211_IFTYPE_STATION ||
1010              ntype == NL80211_IFTYPE_P2P_CLIENT))
1011                 return -EBUSY;
1012
1013         if (ntype != otype) {
1014                 dev->ieee80211_ptr->use_4addr = false;
1015                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1016                 wdev_lock(dev->ieee80211_ptr);
1017                 rdev_set_qos_map(rdev, dev, NULL);
1018                 wdev_unlock(dev->ieee80211_ptr);
1019
1020                 switch (otype) {
1021                 case NL80211_IFTYPE_AP:
1022                         cfg80211_stop_ap(rdev, dev, true);
1023                         break;
1024                 case NL80211_IFTYPE_ADHOC:
1025                         cfg80211_leave_ibss(rdev, dev, false);
1026                         break;
1027                 case NL80211_IFTYPE_STATION:
1028                 case NL80211_IFTYPE_P2P_CLIENT:
1029                         wdev_lock(dev->ieee80211_ptr);
1030                         cfg80211_disconnect(rdev, dev,
1031                                             WLAN_REASON_DEAUTH_LEAVING, true);
1032                         wdev_unlock(dev->ieee80211_ptr);
1033                         break;
1034                 case NL80211_IFTYPE_MESH_POINT:
1035                         /* mesh should be handled? */
1036                         break;
1037                 default:
1038                         break;
1039                 }
1040
1041                 cfg80211_process_rdev_events(rdev);
1042         }
1043
1044         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1045
1046         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1047
1048         if (!err && params && params->use_4addr != -1)
1049                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1050
1051         if (!err) {
1052                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1053                 switch (ntype) {
1054                 case NL80211_IFTYPE_STATION:
1055                         if (dev->ieee80211_ptr->use_4addr)
1056                                 break;
1057                         /* fall through */
1058                 case NL80211_IFTYPE_OCB:
1059                 case NL80211_IFTYPE_P2P_CLIENT:
1060                 case NL80211_IFTYPE_ADHOC:
1061                         dev->priv_flags |= IFF_DONT_BRIDGE;
1062                         break;
1063                 case NL80211_IFTYPE_P2P_GO:
1064                 case NL80211_IFTYPE_AP:
1065                 case NL80211_IFTYPE_AP_VLAN:
1066                 case NL80211_IFTYPE_WDS:
1067                 case NL80211_IFTYPE_MESH_POINT:
1068                         /* bridging OK */
1069                         break;
1070                 case NL80211_IFTYPE_MONITOR:
1071                         /* monitor can't bridge anyway */
1072                         break;
1073                 case NL80211_IFTYPE_UNSPECIFIED:
1074                 case NUM_NL80211_IFTYPES:
1075                         /* not happening */
1076                         break;
1077                 case NL80211_IFTYPE_P2P_DEVICE:
1078                 case NL80211_IFTYPE_NAN:
1079                         WARN_ON(1);
1080                         break;
1081                 }
1082         }
1083
1084         if (!err && ntype != otype && netif_running(dev)) {
1085                 cfg80211_update_iface_num(rdev, ntype, 1);
1086                 cfg80211_update_iface_num(rdev, otype, -1);
1087         }
1088
1089         return err;
1090 }
1091
1092 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1093 {
1094         int modulation, streams, bitrate;
1095
1096         /* the formula below does only work for MCS values smaller than 32 */
1097         if (WARN_ON_ONCE(rate->mcs >= 32))
1098                 return 0;
1099
1100         modulation = rate->mcs & 7;
1101         streams = (rate->mcs >> 3) + 1;
1102
1103         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1104
1105         if (modulation < 4)
1106                 bitrate *= (modulation + 1);
1107         else if (modulation == 4)
1108                 bitrate *= (modulation + 2);
1109         else
1110                 bitrate *= (modulation + 3);
1111
1112         bitrate *= streams;
1113
1114         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1115                 bitrate = (bitrate / 9) * 10;
1116
1117         /* do NOT round down here */
1118         return (bitrate + 50000) / 100000;
1119 }
1120
1121 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1122 {
1123         static const u32 __mcs2bitrate[] = {
1124                 /* control PHY */
1125                 [0] =   275,
1126                 /* SC PHY */
1127                 [1] =  3850,
1128                 [2] =  7700,
1129                 [3] =  9625,
1130                 [4] = 11550,
1131                 [5] = 12512, /* 1251.25 mbps */
1132                 [6] = 15400,
1133                 [7] = 19250,
1134                 [8] = 23100,
1135                 [9] = 25025,
1136                 [10] = 30800,
1137                 [11] = 38500,
1138                 [12] = 46200,
1139                 /* OFDM PHY */
1140                 [13] =  6930,
1141                 [14] =  8662, /* 866.25 mbps */
1142                 [15] = 13860,
1143                 [16] = 17325,
1144                 [17] = 20790,
1145                 [18] = 27720,
1146                 [19] = 34650,
1147                 [20] = 41580,
1148                 [21] = 45045,
1149                 [22] = 51975,
1150                 [23] = 62370,
1151                 [24] = 67568, /* 6756.75 mbps */
1152                 /* LP-SC PHY */
1153                 [25] =  6260,
1154                 [26] =  8340,
1155                 [27] = 11120,
1156                 [28] = 12510,
1157                 [29] = 16680,
1158                 [30] = 22240,
1159                 [31] = 25030,
1160         };
1161
1162         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1163                 return 0;
1164
1165         return __mcs2bitrate[rate->mcs];
1166 }
1167
1168 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1169 {
1170         static const u32 base[4][10] = {
1171                 {   6500000,
1172                    13000000,
1173                    19500000,
1174                    26000000,
1175                    39000000,
1176                    52000000,
1177                    58500000,
1178                    65000000,
1179                    78000000,
1180                 /* not in the spec, but some devices use this: */
1181                    86500000,
1182                 },
1183                 {  13500000,
1184                    27000000,
1185                    40500000,
1186                    54000000,
1187                    81000000,
1188                   108000000,
1189                   121500000,
1190                   135000000,
1191                   162000000,
1192                   180000000,
1193                 },
1194                 {  29300000,
1195                    58500000,
1196                    87800000,
1197                   117000000,
1198                   175500000,
1199                   234000000,
1200                   263300000,
1201                   292500000,
1202                   351000000,
1203                   390000000,
1204                 },
1205                 {  58500000,
1206                   117000000,
1207                   175500000,
1208                   234000000,
1209                   351000000,
1210                   468000000,
1211                   526500000,
1212                   585000000,
1213                   702000000,
1214                   780000000,
1215                 },
1216         };
1217         u32 bitrate;
1218         int idx;
1219
1220         if (WARN_ON_ONCE(rate->mcs > 9))
1221                 return 0;
1222
1223         switch (rate->bw) {
1224         case RATE_INFO_BW_160:
1225                 idx = 3;
1226                 break;
1227         case RATE_INFO_BW_80:
1228                 idx = 2;
1229                 break;
1230         case RATE_INFO_BW_40:
1231                 idx = 1;
1232                 break;
1233         case RATE_INFO_BW_5:
1234         case RATE_INFO_BW_10:
1235         default:
1236                 WARN_ON(1);
1237                 /* fall through */
1238         case RATE_INFO_BW_20:
1239                 idx = 0;
1240         }
1241
1242         bitrate = base[idx][rate->mcs];
1243         bitrate *= rate->nss;
1244
1245         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1246                 bitrate = (bitrate / 9) * 10;
1247
1248         /* do NOT round down here */
1249         return (bitrate + 50000) / 100000;
1250 }
1251
1252 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1253 {
1254         if (rate->flags & RATE_INFO_FLAGS_MCS)
1255                 return cfg80211_calculate_bitrate_ht(rate);
1256         if (rate->flags & RATE_INFO_FLAGS_60G)
1257                 return cfg80211_calculate_bitrate_60g(rate);
1258         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1259                 return cfg80211_calculate_bitrate_vht(rate);
1260
1261         return rate->legacy;
1262 }
1263 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1264
1265 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1266                           enum ieee80211_p2p_attr_id attr,
1267                           u8 *buf, unsigned int bufsize)
1268 {
1269         u8 *out = buf;
1270         u16 attr_remaining = 0;
1271         bool desired_attr = false;
1272         u16 desired_len = 0;
1273
1274         while (len > 0) {
1275                 unsigned int iedatalen;
1276                 unsigned int copy;
1277                 const u8 *iedata;
1278
1279                 if (len < 2)
1280                         return -EILSEQ;
1281                 iedatalen = ies[1];
1282                 if (iedatalen + 2 > len)
1283                         return -EILSEQ;
1284
1285                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1286                         goto cont;
1287
1288                 if (iedatalen < 4)
1289                         goto cont;
1290
1291                 iedata = ies + 2;
1292
1293                 /* check WFA OUI, P2P subtype */
1294                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1295                     iedata[2] != 0x9a || iedata[3] != 0x09)
1296                         goto cont;
1297
1298                 iedatalen -= 4;
1299                 iedata += 4;
1300
1301                 /* check attribute continuation into this IE */
1302                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1303                 if (copy && desired_attr) {
1304                         desired_len += copy;
1305                         if (out) {
1306                                 memcpy(out, iedata, min(bufsize, copy));
1307                                 out += min(bufsize, copy);
1308                                 bufsize -= min(bufsize, copy);
1309                         }
1310
1311
1312                         if (copy == attr_remaining)
1313                                 return desired_len;
1314                 }
1315
1316                 attr_remaining -= copy;
1317                 if (attr_remaining)
1318                         goto cont;
1319
1320                 iedatalen -= copy;
1321                 iedata += copy;
1322
1323                 while (iedatalen > 0) {
1324                         u16 attr_len;
1325
1326                         /* P2P attribute ID & size must fit */
1327                         if (iedatalen < 3)
1328                                 return -EILSEQ;
1329                         desired_attr = iedata[0] == attr;
1330                         attr_len = get_unaligned_le16(iedata + 1);
1331                         iedatalen -= 3;
1332                         iedata += 3;
1333
1334                         copy = min_t(unsigned int, attr_len, iedatalen);
1335
1336                         if (desired_attr) {
1337                                 desired_len += copy;
1338                                 if (out) {
1339                                         memcpy(out, iedata, min(bufsize, copy));
1340                                         out += min(bufsize, copy);
1341                                         bufsize -= min(bufsize, copy);
1342                                 }
1343
1344                                 if (copy == attr_len)
1345                                         return desired_len;
1346                         }
1347
1348                         iedata += copy;
1349                         iedatalen -= copy;
1350                         attr_remaining = attr_len - copy;
1351                 }
1352
1353  cont:
1354                 len -= ies[1] + 2;
1355                 ies += ies[1] + 2;
1356         }
1357
1358         if (attr_remaining && desired_attr)
1359                 return -EILSEQ;
1360
1361         return -ENOENT;
1362 }
1363 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1364
1365 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1366 {
1367         int i;
1368
1369         for (i = 0; i < n_ids; i++)
1370                 if (ids[i] == id)
1371                         return true;
1372         return false;
1373 }
1374
1375 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1376 {
1377         /* we assume a validly formed IEs buffer */
1378         u8 len = ies[pos + 1];
1379
1380         pos += 2 + len;
1381
1382         /* the IE itself must have 255 bytes for fragments to follow */
1383         if (len < 255)
1384                 return pos;
1385
1386         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1387                 len = ies[pos + 1];
1388                 pos += 2 + len;
1389         }
1390
1391         return pos;
1392 }
1393
1394 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1395                               const u8 *ids, int n_ids,
1396                               const u8 *after_ric, int n_after_ric,
1397                               size_t offset)
1398 {
1399         size_t pos = offset;
1400
1401         while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1402                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1403                         pos = skip_ie(ies, ielen, pos);
1404
1405                         while (pos < ielen &&
1406                                !ieee80211_id_in_list(after_ric, n_after_ric,
1407                                                      ies[pos]))
1408                                 pos = skip_ie(ies, ielen, pos);
1409                 } else {
1410                         pos = skip_ie(ies, ielen, pos);
1411                 }
1412         }
1413
1414         return pos;
1415 }
1416 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1417
1418 bool ieee80211_operating_class_to_band(u8 operating_class,
1419                                        enum nl80211_band *band)
1420 {
1421         switch (operating_class) {
1422         case 112:
1423         case 115 ... 127:
1424         case 128 ... 130:
1425                 *band = NL80211_BAND_5GHZ;
1426                 return true;
1427         case 81:
1428         case 82:
1429         case 83:
1430         case 84:
1431                 *band = NL80211_BAND_2GHZ;
1432                 return true;
1433         case 180:
1434                 *band = NL80211_BAND_60GHZ;
1435                 return true;
1436         }
1437
1438         return false;
1439 }
1440 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1441
1442 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1443                                           u8 *op_class)
1444 {
1445         u8 vht_opclass;
1446         u16 freq = chandef->center_freq1;
1447
1448         if (freq >= 2412 && freq <= 2472) {
1449                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1450                         return false;
1451
1452                 /* 2.407 GHz, channels 1..13 */
1453                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1454                         if (freq > chandef->chan->center_freq)
1455                                 *op_class = 83; /* HT40+ */
1456                         else
1457                                 *op_class = 84; /* HT40- */
1458                 } else {
1459                         *op_class = 81;
1460                 }
1461
1462                 return true;
1463         }
1464
1465         if (freq == 2484) {
1466                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1467                         return false;
1468
1469                 *op_class = 82; /* channel 14 */
1470                 return true;
1471         }
1472
1473         switch (chandef->width) {
1474         case NL80211_CHAN_WIDTH_80:
1475                 vht_opclass = 128;
1476                 break;
1477         case NL80211_CHAN_WIDTH_160:
1478                 vht_opclass = 129;
1479                 break;
1480         case NL80211_CHAN_WIDTH_80P80:
1481                 vht_opclass = 130;
1482                 break;
1483         case NL80211_CHAN_WIDTH_10:
1484         case NL80211_CHAN_WIDTH_5:
1485                 return false; /* unsupported for now */
1486         default:
1487                 vht_opclass = 0;
1488                 break;
1489         }
1490
1491         /* 5 GHz, channels 36..48 */
1492         if (freq >= 5180 && freq <= 5240) {
1493                 if (vht_opclass) {
1494                         *op_class = vht_opclass;
1495                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1496                         if (freq > chandef->chan->center_freq)
1497                                 *op_class = 116;
1498                         else
1499                                 *op_class = 117;
1500                 } else {
1501                         *op_class = 115;
1502                 }
1503
1504                 return true;
1505         }
1506
1507         /* 5 GHz, channels 52..64 */
1508         if (freq >= 5260 && freq <= 5320) {
1509                 if (vht_opclass) {
1510                         *op_class = vht_opclass;
1511                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1512                         if (freq > chandef->chan->center_freq)
1513                                 *op_class = 119;
1514                         else
1515                                 *op_class = 120;
1516                 } else {
1517                         *op_class = 118;
1518                 }
1519
1520                 return true;
1521         }
1522
1523         /* 5 GHz, channels 100..144 */
1524         if (freq >= 5500 && freq <= 5720) {
1525                 if (vht_opclass) {
1526                         *op_class = vht_opclass;
1527                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1528                         if (freq > chandef->chan->center_freq)
1529                                 *op_class = 122;
1530                         else
1531                                 *op_class = 123;
1532                 } else {
1533                         *op_class = 121;
1534                 }
1535
1536                 return true;
1537         }
1538
1539         /* 5 GHz, channels 149..169 */
1540         if (freq >= 5745 && freq <= 5845) {
1541                 if (vht_opclass) {
1542                         *op_class = vht_opclass;
1543                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1544                         if (freq > chandef->chan->center_freq)
1545                                 *op_class = 126;
1546                         else
1547                                 *op_class = 127;
1548                 } else if (freq <= 5805) {
1549                         *op_class = 124;
1550                 } else {
1551                         *op_class = 125;
1552                 }
1553
1554                 return true;
1555         }
1556
1557         /* 56.16 GHz, channel 1..4 */
1558         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1559                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1560                         return false;
1561
1562                 *op_class = 180;
1563                 return true;
1564         }
1565
1566         /* not supported yet */
1567         return false;
1568 }
1569 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1570
1571 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1572                                        u32 *beacon_int_gcd,
1573                                        bool *beacon_int_different)
1574 {
1575         struct wireless_dev *wdev;
1576
1577         *beacon_int_gcd = 0;
1578         *beacon_int_different = false;
1579
1580         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1581                 if (!wdev->beacon_interval)
1582                         continue;
1583
1584                 if (!*beacon_int_gcd) {
1585                         *beacon_int_gcd = wdev->beacon_interval;
1586                         continue;
1587                 }
1588
1589                 if (wdev->beacon_interval == *beacon_int_gcd)
1590                         continue;
1591
1592                 *beacon_int_different = true;
1593                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1594         }
1595
1596         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1597                 if (*beacon_int_gcd)
1598                         *beacon_int_different = true;
1599                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1600         }
1601 }
1602
1603 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1604                                  enum nl80211_iftype iftype, u32 beacon_int)
1605 {
1606         /*
1607          * This is just a basic pre-condition check; if interface combinations
1608          * are possible the driver must already be checking those with a call
1609          * to cfg80211_check_combinations(), in which case we'll validate more
1610          * through the cfg80211_calculate_bi_data() call and code in
1611          * cfg80211_iter_combinations().
1612          */
1613
1614         if (beacon_int < 10 || beacon_int > 10000)
1615                 return -EINVAL;
1616
1617         return 0;
1618 }
1619
1620 int cfg80211_iter_combinations(struct wiphy *wiphy,
1621                                struct iface_combination_params *params,
1622                                void (*iter)(const struct ieee80211_iface_combination *c,
1623                                             void *data),
1624                                void *data)
1625 {
1626         const struct ieee80211_regdomain *regdom;
1627         enum nl80211_dfs_regions region = 0;
1628         int i, j, iftype;
1629         int num_interfaces = 0;
1630         u32 used_iftypes = 0;
1631         u32 beacon_int_gcd;
1632         bool beacon_int_different;
1633
1634         /*
1635          * This is a bit strange, since the iteration used to rely only on
1636          * the data given by the driver, but here it now relies on context,
1637          * in form of the currently operating interfaces.
1638          * This is OK for all current users, and saves us from having to
1639          * push the GCD calculations into all the drivers.
1640          * In the future, this should probably rely more on data that's in
1641          * cfg80211 already - the only thing not would appear to be any new
1642          * interfaces (while being brought up) and channel/radar data.
1643          */
1644         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1645                                    &beacon_int_gcd, &beacon_int_different);
1646
1647         if (params->radar_detect) {
1648                 rcu_read_lock();
1649                 regdom = rcu_dereference(cfg80211_regdomain);
1650                 if (regdom)
1651                         region = regdom->dfs_region;
1652                 rcu_read_unlock();
1653         }
1654
1655         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1656                 num_interfaces += params->iftype_num[iftype];
1657                 if (params->iftype_num[iftype] > 0 &&
1658                     !(wiphy->software_iftypes & BIT(iftype)))
1659                         used_iftypes |= BIT(iftype);
1660         }
1661
1662         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1663                 const struct ieee80211_iface_combination *c;
1664                 struct ieee80211_iface_limit *limits;
1665                 u32 all_iftypes = 0;
1666
1667                 c = &wiphy->iface_combinations[i];
1668
1669                 if (num_interfaces > c->max_interfaces)
1670                         continue;
1671                 if (params->num_different_channels > c->num_different_channels)
1672                         continue;
1673
1674                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1675                                  GFP_KERNEL);
1676                 if (!limits)
1677                         return -ENOMEM;
1678
1679                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1680                         if (wiphy->software_iftypes & BIT(iftype))
1681                                 continue;
1682                         for (j = 0; j < c->n_limits; j++) {
1683                                 all_iftypes |= limits[j].types;
1684                                 if (!(limits[j].types & BIT(iftype)))
1685                                         continue;
1686                                 if (limits[j].max < params->iftype_num[iftype])
1687                                         goto cont;
1688                                 limits[j].max -= params->iftype_num[iftype];
1689                         }
1690                 }
1691
1692                 if (params->radar_detect !=
1693                         (c->radar_detect_widths & params->radar_detect))
1694                         goto cont;
1695
1696                 if (params->radar_detect && c->radar_detect_regions &&
1697                     !(c->radar_detect_regions & BIT(region)))
1698                         goto cont;
1699
1700                 /* Finally check that all iftypes that we're currently
1701                  * using are actually part of this combination. If they
1702                  * aren't then we can't use this combination and have
1703                  * to continue to the next.
1704                  */
1705                 if ((all_iftypes & used_iftypes) != used_iftypes)
1706                         goto cont;
1707
1708                 if (beacon_int_gcd) {
1709                         if (c->beacon_int_min_gcd &&
1710                             beacon_int_gcd < c->beacon_int_min_gcd)
1711                                 goto cont;
1712                         if (!c->beacon_int_min_gcd && beacon_int_different)
1713                                 goto cont;
1714                 }
1715
1716                 /* This combination covered all interface types and
1717                  * supported the requested numbers, so we're good.
1718                  */
1719
1720                 (*iter)(c, data);
1721  cont:
1722                 kfree(limits);
1723         }
1724
1725         return 0;
1726 }
1727 EXPORT_SYMBOL(cfg80211_iter_combinations);
1728
1729 static void
1730 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1731                           void *data)
1732 {
1733         int *num = data;
1734         (*num)++;
1735 }
1736
1737 int cfg80211_check_combinations(struct wiphy *wiphy,
1738                                 struct iface_combination_params *params)
1739 {
1740         int err, num = 0;
1741
1742         err = cfg80211_iter_combinations(wiphy, params,
1743                                          cfg80211_iter_sum_ifcombs, &num);
1744         if (err)
1745                 return err;
1746         if (num == 0)
1747                 return -EBUSY;
1748
1749         return 0;
1750 }
1751 EXPORT_SYMBOL(cfg80211_check_combinations);
1752
1753 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1754                            const u8 *rates, unsigned int n_rates,
1755                            u32 *mask)
1756 {
1757         int i, j;
1758
1759         if (!sband)
1760                 return -EINVAL;
1761
1762         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1763                 return -EINVAL;
1764
1765         *mask = 0;
1766
1767         for (i = 0; i < n_rates; i++) {
1768                 int rate = (rates[i] & 0x7f) * 5;
1769                 bool found = false;
1770
1771                 for (j = 0; j < sband->n_bitrates; j++) {
1772                         if (sband->bitrates[j].bitrate == rate) {
1773                                 found = true;
1774                                 *mask |= BIT(j);
1775                                 break;
1776                         }
1777                 }
1778                 if (!found)
1779                         return -EINVAL;
1780         }
1781
1782         /*
1783          * mask must have at least one bit set here since we
1784          * didn't accept a 0-length rates array nor allowed
1785          * entries in the array that didn't exist
1786          */
1787
1788         return 0;
1789 }
1790
1791 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1792 {
1793         enum nl80211_band band;
1794         unsigned int n_channels = 0;
1795
1796         for (band = 0; band < NUM_NL80211_BANDS; band++)
1797                 if (wiphy->bands[band])
1798                         n_channels += wiphy->bands[band]->n_channels;
1799
1800         return n_channels;
1801 }
1802 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1803
1804 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1805                          struct station_info *sinfo)
1806 {
1807         struct cfg80211_registered_device *rdev;
1808         struct wireless_dev *wdev;
1809
1810         wdev = dev->ieee80211_ptr;
1811         if (!wdev)
1812                 return -EOPNOTSUPP;
1813
1814         rdev = wiphy_to_rdev(wdev->wiphy);
1815         if (!rdev->ops->get_station)
1816                 return -EOPNOTSUPP;
1817
1818         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1819 }
1820 EXPORT_SYMBOL(cfg80211_get_station);
1821
1822 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1823 {
1824         int i;
1825
1826         if (!f)
1827                 return;
1828
1829         kfree(f->serv_spec_info);
1830         kfree(f->srf_bf);
1831         kfree(f->srf_macs);
1832         for (i = 0; i < f->num_rx_filters; i++)
1833                 kfree(f->rx_filters[i].filter);
1834
1835         for (i = 0; i < f->num_tx_filters; i++)
1836                 kfree(f->tx_filters[i].filter);
1837
1838         kfree(f->rx_filters);
1839         kfree(f->tx_filters);
1840         kfree(f);
1841 }
1842 EXPORT_SYMBOL(cfg80211_free_nan_func);
1843
1844 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1845                                 u32 center_freq_khz, u32 bw_khz)
1846 {
1847         u32 start_freq_khz, end_freq_khz;
1848
1849         start_freq_khz = center_freq_khz - (bw_khz / 2);
1850         end_freq_khz = center_freq_khz + (bw_khz / 2);
1851
1852         if (start_freq_khz >= freq_range->start_freq_khz &&
1853             end_freq_khz <= freq_range->end_freq_khz)
1854                 return true;
1855
1856         return false;
1857 }
1858
1859 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1860 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1861 const unsigned char rfc1042_header[] __aligned(2) =
1862         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1863 EXPORT_SYMBOL(rfc1042_header);
1864
1865 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1866 const unsigned char bridge_tunnel_header[] __aligned(2) =
1867         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1868 EXPORT_SYMBOL(bridge_tunnel_header);