]> git.karo-electronics.de Git - karo-tx-linux.git/blob - security/security.c
ath9k_hw: Do fast channel change based on reusable calibration results
[karo-tx-linux.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30         .name   = "default",
31 };
32
33 static inline int __init verify(struct security_operations *ops)
34 {
35         /* verify the security_operations structure exists */
36         if (!ops)
37                 return -EINVAL;
38         security_fixup_ops(ops);
39         return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44         initcall_t *call;
45         call = __security_initcall_start;
46         while (call < __security_initcall_end) {
47                 (*call) ();
48                 call++;
49         }
50 }
51
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59         printk(KERN_INFO "Security Framework initialized\n");
60
61         security_fixup_ops(&default_security_ops);
62         security_ops = &default_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70         security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77         return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *      -The passed LSM is the one chosen by user at boot time,
91  *      -or the passed LSM is configured as the default and the user did not
92  *       choose an alternate LSM at boot time.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97         return !strcmp(ops->name, chosen_lsm);
98 }
99
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int __init register_security(struct security_operations *ops)
113 {
114         if (verify(ops)) {
115                 printk(KERN_DEBUG "%s could not verify "
116                        "security_operations structure.\n", __func__);
117                 return -EINVAL;
118         }
119
120         if (security_ops != &default_security_ops)
121                 return -EAGAIN;
122
123         security_ops = ops;
124
125         return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132         return security_ops->ptrace_access_check(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137         return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141                      kernel_cap_t *effective,
142                      kernel_cap_t *inheritable,
143                      kernel_cap_t *permitted)
144 {
145         return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149                     const kernel_cap_t *effective,
150                     const kernel_cap_t *inheritable,
151                     const kernel_cap_t *permitted)
152 {
153         return security_ops->capset(new, old,
154                                     effective, inheritable, permitted);
155 }
156
157 int security_capable(struct user_namespace *ns, const struct cred *cred,
158                      int cap)
159 {
160         return security_ops->capable(current, cred, ns, cap,
161                                      SECURITY_CAP_AUDIT);
162 }
163
164 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
165                           int cap)
166 {
167         const struct cred *cred;
168         int ret;
169
170         cred = get_task_cred(tsk);
171         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
172         put_cred(cred);
173         return ret;
174 }
175
176 int security_real_capable_noaudit(struct task_struct *tsk,
177                                   struct user_namespace *ns, int cap)
178 {
179         const struct cred *cred;
180         int ret;
181
182         cred = get_task_cred(tsk);
183         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
184         put_cred(cred);
185         return ret;
186 }
187
188 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189 {
190         return security_ops->quotactl(cmds, type, id, sb);
191 }
192
193 int security_quota_on(struct dentry *dentry)
194 {
195         return security_ops->quota_on(dentry);
196 }
197
198 int security_syslog(int type)
199 {
200         return security_ops->syslog(type);
201 }
202
203 int security_settime(const struct timespec *ts, const struct timezone *tz)
204 {
205         return security_ops->settime(ts, tz);
206 }
207
208 int security_vm_enough_memory(long pages)
209 {
210         WARN_ON(current->mm == NULL);
211         return security_ops->vm_enough_memory(current->mm, pages);
212 }
213
214 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
215 {
216         WARN_ON(mm == NULL);
217         return security_ops->vm_enough_memory(mm, pages);
218 }
219
220 int security_vm_enough_memory_kern(long pages)
221 {
222         /* If current->mm is a kernel thread then we will pass NULL,
223            for this specific case that is fine */
224         return security_ops->vm_enough_memory(current->mm, pages);
225 }
226
227 int security_bprm_set_creds(struct linux_binprm *bprm)
228 {
229         return security_ops->bprm_set_creds(bprm);
230 }
231
232 int security_bprm_check(struct linux_binprm *bprm)
233 {
234         int ret;
235
236         ret = security_ops->bprm_check_security(bprm);
237         if (ret)
238                 return ret;
239         return ima_bprm_check(bprm);
240 }
241
242 void security_bprm_committing_creds(struct linux_binprm *bprm)
243 {
244         security_ops->bprm_committing_creds(bprm);
245 }
246
247 void security_bprm_committed_creds(struct linux_binprm *bprm)
248 {
249         security_ops->bprm_committed_creds(bprm);
250 }
251
252 int security_bprm_secureexec(struct linux_binprm *bprm)
253 {
254         return security_ops->bprm_secureexec(bprm);
255 }
256
257 int security_sb_alloc(struct super_block *sb)
258 {
259         return security_ops->sb_alloc_security(sb);
260 }
261
262 void security_sb_free(struct super_block *sb)
263 {
264         security_ops->sb_free_security(sb);
265 }
266
267 int security_sb_copy_data(char *orig, char *copy)
268 {
269         return security_ops->sb_copy_data(orig, copy);
270 }
271 EXPORT_SYMBOL(security_sb_copy_data);
272
273 int security_sb_remount(struct super_block *sb, void *data)
274 {
275         return security_ops->sb_remount(sb, data);
276 }
277
278 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
279 {
280         return security_ops->sb_kern_mount(sb, flags, data);
281 }
282
283 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
284 {
285         return security_ops->sb_show_options(m, sb);
286 }
287
288 int security_sb_statfs(struct dentry *dentry)
289 {
290         return security_ops->sb_statfs(dentry);
291 }
292
293 int security_sb_mount(char *dev_name, struct path *path,
294                        char *type, unsigned long flags, void *data)
295 {
296         return security_ops->sb_mount(dev_name, path, type, flags, data);
297 }
298
299 int security_sb_umount(struct vfsmount *mnt, int flags)
300 {
301         return security_ops->sb_umount(mnt, flags);
302 }
303
304 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
305 {
306         return security_ops->sb_pivotroot(old_path, new_path);
307 }
308
309 int security_sb_set_mnt_opts(struct super_block *sb,
310                                 struct security_mnt_opts *opts)
311 {
312         return security_ops->sb_set_mnt_opts(sb, opts);
313 }
314 EXPORT_SYMBOL(security_sb_set_mnt_opts);
315
316 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
317                                 struct super_block *newsb)
318 {
319         security_ops->sb_clone_mnt_opts(oldsb, newsb);
320 }
321 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
322
323 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
324 {
325         return security_ops->sb_parse_opts_str(options, opts);
326 }
327 EXPORT_SYMBOL(security_sb_parse_opts_str);
328
329 int security_inode_alloc(struct inode *inode)
330 {
331         inode->i_security = NULL;
332         return security_ops->inode_alloc_security(inode);
333 }
334
335 void security_inode_free(struct inode *inode)
336 {
337         ima_inode_free(inode);
338         security_ops->inode_free_security(inode);
339 }
340
341 int security_inode_init_security(struct inode *inode, struct inode *dir,
342                                  const struct qstr *qstr, char **name,
343                                  void **value, size_t *len)
344 {
345         if (unlikely(IS_PRIVATE(inode)))
346                 return -EOPNOTSUPP;
347         return security_ops->inode_init_security(inode, dir, qstr, name, value,
348                                                  len);
349 }
350 EXPORT_SYMBOL(security_inode_init_security);
351
352 #ifdef CONFIG_SECURITY_PATH
353 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
354                         unsigned int dev)
355 {
356         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
357                 return 0;
358         return security_ops->path_mknod(dir, dentry, mode, dev);
359 }
360 EXPORT_SYMBOL(security_path_mknod);
361
362 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
363 {
364         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
365                 return 0;
366         return security_ops->path_mkdir(dir, dentry, mode);
367 }
368 EXPORT_SYMBOL(security_path_mkdir);
369
370 int security_path_rmdir(struct path *dir, struct dentry *dentry)
371 {
372         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
373                 return 0;
374         return security_ops->path_rmdir(dir, dentry);
375 }
376
377 int security_path_unlink(struct path *dir, struct dentry *dentry)
378 {
379         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380                 return 0;
381         return security_ops->path_unlink(dir, dentry);
382 }
383 EXPORT_SYMBOL(security_path_unlink);
384
385 int security_path_symlink(struct path *dir, struct dentry *dentry,
386                           const char *old_name)
387 {
388         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
389                 return 0;
390         return security_ops->path_symlink(dir, dentry, old_name);
391 }
392
393 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
394                        struct dentry *new_dentry)
395 {
396         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
397                 return 0;
398         return security_ops->path_link(old_dentry, new_dir, new_dentry);
399 }
400
401 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
402                          struct path *new_dir, struct dentry *new_dentry)
403 {
404         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
405                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
406                 return 0;
407         return security_ops->path_rename(old_dir, old_dentry, new_dir,
408                                          new_dentry);
409 }
410 EXPORT_SYMBOL(security_path_rename);
411
412 int security_path_truncate(struct path *path)
413 {
414         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
415                 return 0;
416         return security_ops->path_truncate(path);
417 }
418
419 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
420                         mode_t mode)
421 {
422         if (unlikely(IS_PRIVATE(dentry->d_inode)))
423                 return 0;
424         return security_ops->path_chmod(dentry, mnt, mode);
425 }
426
427 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
428 {
429         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
430                 return 0;
431         return security_ops->path_chown(path, uid, gid);
432 }
433
434 int security_path_chroot(struct path *path)
435 {
436         return security_ops->path_chroot(path);
437 }
438 #endif
439
440 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
441 {
442         if (unlikely(IS_PRIVATE(dir)))
443                 return 0;
444         return security_ops->inode_create(dir, dentry, mode);
445 }
446 EXPORT_SYMBOL_GPL(security_inode_create);
447
448 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
449                          struct dentry *new_dentry)
450 {
451         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
452                 return 0;
453         return security_ops->inode_link(old_dentry, dir, new_dentry);
454 }
455
456 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
457 {
458         if (unlikely(IS_PRIVATE(dentry->d_inode)))
459                 return 0;
460         return security_ops->inode_unlink(dir, dentry);
461 }
462
463 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
464                             const char *old_name)
465 {
466         if (unlikely(IS_PRIVATE(dir)))
467                 return 0;
468         return security_ops->inode_symlink(dir, dentry, old_name);
469 }
470
471 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
472 {
473         if (unlikely(IS_PRIVATE(dir)))
474                 return 0;
475         return security_ops->inode_mkdir(dir, dentry, mode);
476 }
477 EXPORT_SYMBOL_GPL(security_inode_mkdir);
478
479 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
480 {
481         if (unlikely(IS_PRIVATE(dentry->d_inode)))
482                 return 0;
483         return security_ops->inode_rmdir(dir, dentry);
484 }
485
486 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
487 {
488         if (unlikely(IS_PRIVATE(dir)))
489                 return 0;
490         return security_ops->inode_mknod(dir, dentry, mode, dev);
491 }
492
493 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
494                            struct inode *new_dir, struct dentry *new_dentry)
495 {
496         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
497             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
498                 return 0;
499         return security_ops->inode_rename(old_dir, old_dentry,
500                                            new_dir, new_dentry);
501 }
502
503 int security_inode_readlink(struct dentry *dentry)
504 {
505         if (unlikely(IS_PRIVATE(dentry->d_inode)))
506                 return 0;
507         return security_ops->inode_readlink(dentry);
508 }
509
510 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
511 {
512         if (unlikely(IS_PRIVATE(dentry->d_inode)))
513                 return 0;
514         return security_ops->inode_follow_link(dentry, nd);
515 }
516
517 int security_inode_permission(struct inode *inode, int mask)
518 {
519         if (unlikely(IS_PRIVATE(inode)))
520                 return 0;
521         return security_ops->inode_permission(inode, mask);
522 }
523
524 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
525 {
526         if (unlikely(IS_PRIVATE(dentry->d_inode)))
527                 return 0;
528         return security_ops->inode_setattr(dentry, attr);
529 }
530 EXPORT_SYMBOL_GPL(security_inode_setattr);
531
532 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
533 {
534         if (unlikely(IS_PRIVATE(dentry->d_inode)))
535                 return 0;
536         return security_ops->inode_getattr(mnt, dentry);
537 }
538
539 int security_inode_setxattr(struct dentry *dentry, const char *name,
540                             const void *value, size_t size, int flags)
541 {
542         if (unlikely(IS_PRIVATE(dentry->d_inode)))
543                 return 0;
544         return security_ops->inode_setxattr(dentry, name, value, size, flags);
545 }
546
547 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
548                                   const void *value, size_t size, int flags)
549 {
550         if (unlikely(IS_PRIVATE(dentry->d_inode)))
551                 return;
552         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
553 }
554
555 int security_inode_getxattr(struct dentry *dentry, const char *name)
556 {
557         if (unlikely(IS_PRIVATE(dentry->d_inode)))
558                 return 0;
559         return security_ops->inode_getxattr(dentry, name);
560 }
561
562 int security_inode_listxattr(struct dentry *dentry)
563 {
564         if (unlikely(IS_PRIVATE(dentry->d_inode)))
565                 return 0;
566         return security_ops->inode_listxattr(dentry);
567 }
568
569 int security_inode_removexattr(struct dentry *dentry, const char *name)
570 {
571         if (unlikely(IS_PRIVATE(dentry->d_inode)))
572                 return 0;
573         return security_ops->inode_removexattr(dentry, name);
574 }
575
576 int security_inode_need_killpriv(struct dentry *dentry)
577 {
578         return security_ops->inode_need_killpriv(dentry);
579 }
580
581 int security_inode_killpriv(struct dentry *dentry)
582 {
583         return security_ops->inode_killpriv(dentry);
584 }
585
586 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
587 {
588         if (unlikely(IS_PRIVATE(inode)))
589                 return -EOPNOTSUPP;
590         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
591 }
592
593 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
594 {
595         if (unlikely(IS_PRIVATE(inode)))
596                 return -EOPNOTSUPP;
597         return security_ops->inode_setsecurity(inode, name, value, size, flags);
598 }
599
600 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
601 {
602         if (unlikely(IS_PRIVATE(inode)))
603                 return 0;
604         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
605 }
606
607 void security_inode_getsecid(const struct inode *inode, u32 *secid)
608 {
609         security_ops->inode_getsecid(inode, secid);
610 }
611
612 int security_file_permission(struct file *file, int mask)
613 {
614         int ret;
615
616         ret = security_ops->file_permission(file, mask);
617         if (ret)
618                 return ret;
619
620         return fsnotify_perm(file, mask);
621 }
622
623 int security_file_alloc(struct file *file)
624 {
625         return security_ops->file_alloc_security(file);
626 }
627
628 void security_file_free(struct file *file)
629 {
630         security_ops->file_free_security(file);
631 }
632
633 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
634 {
635         return security_ops->file_ioctl(file, cmd, arg);
636 }
637
638 int security_file_mmap(struct file *file, unsigned long reqprot,
639                         unsigned long prot, unsigned long flags,
640                         unsigned long addr, unsigned long addr_only)
641 {
642         int ret;
643
644         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
645         if (ret)
646                 return ret;
647         return ima_file_mmap(file, prot);
648 }
649
650 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
651                             unsigned long prot)
652 {
653         return security_ops->file_mprotect(vma, reqprot, prot);
654 }
655
656 int security_file_lock(struct file *file, unsigned int cmd)
657 {
658         return security_ops->file_lock(file, cmd);
659 }
660
661 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
662 {
663         return security_ops->file_fcntl(file, cmd, arg);
664 }
665
666 int security_file_set_fowner(struct file *file)
667 {
668         return security_ops->file_set_fowner(file);
669 }
670
671 int security_file_send_sigiotask(struct task_struct *tsk,
672                                   struct fown_struct *fown, int sig)
673 {
674         return security_ops->file_send_sigiotask(tsk, fown, sig);
675 }
676
677 int security_file_receive(struct file *file)
678 {
679         return security_ops->file_receive(file);
680 }
681
682 int security_dentry_open(struct file *file, const struct cred *cred)
683 {
684         int ret;
685
686         ret = security_ops->dentry_open(file, cred);
687         if (ret)
688                 return ret;
689
690         return fsnotify_perm(file, MAY_OPEN);
691 }
692
693 int security_task_create(unsigned long clone_flags)
694 {
695         return security_ops->task_create(clone_flags);
696 }
697
698 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
699 {
700         return security_ops->cred_alloc_blank(cred, gfp);
701 }
702
703 void security_cred_free(struct cred *cred)
704 {
705         security_ops->cred_free(cred);
706 }
707
708 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
709 {
710         return security_ops->cred_prepare(new, old, gfp);
711 }
712
713 void security_transfer_creds(struct cred *new, const struct cred *old)
714 {
715         security_ops->cred_transfer(new, old);
716 }
717
718 int security_kernel_act_as(struct cred *new, u32 secid)
719 {
720         return security_ops->kernel_act_as(new, secid);
721 }
722
723 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
724 {
725         return security_ops->kernel_create_files_as(new, inode);
726 }
727
728 int security_kernel_module_request(char *kmod_name)
729 {
730         return security_ops->kernel_module_request(kmod_name);
731 }
732
733 int security_task_fix_setuid(struct cred *new, const struct cred *old,
734                              int flags)
735 {
736         return security_ops->task_fix_setuid(new, old, flags);
737 }
738
739 int security_task_setpgid(struct task_struct *p, pid_t pgid)
740 {
741         return security_ops->task_setpgid(p, pgid);
742 }
743
744 int security_task_getpgid(struct task_struct *p)
745 {
746         return security_ops->task_getpgid(p);
747 }
748
749 int security_task_getsid(struct task_struct *p)
750 {
751         return security_ops->task_getsid(p);
752 }
753
754 void security_task_getsecid(struct task_struct *p, u32 *secid)
755 {
756         security_ops->task_getsecid(p, secid);
757 }
758 EXPORT_SYMBOL(security_task_getsecid);
759
760 int security_task_setnice(struct task_struct *p, int nice)
761 {
762         return security_ops->task_setnice(p, nice);
763 }
764
765 int security_task_setioprio(struct task_struct *p, int ioprio)
766 {
767         return security_ops->task_setioprio(p, ioprio);
768 }
769
770 int security_task_getioprio(struct task_struct *p)
771 {
772         return security_ops->task_getioprio(p);
773 }
774
775 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
776                 struct rlimit *new_rlim)
777 {
778         return security_ops->task_setrlimit(p, resource, new_rlim);
779 }
780
781 int security_task_setscheduler(struct task_struct *p)
782 {
783         return security_ops->task_setscheduler(p);
784 }
785
786 int security_task_getscheduler(struct task_struct *p)
787 {
788         return security_ops->task_getscheduler(p);
789 }
790
791 int security_task_movememory(struct task_struct *p)
792 {
793         return security_ops->task_movememory(p);
794 }
795
796 int security_task_kill(struct task_struct *p, struct siginfo *info,
797                         int sig, u32 secid)
798 {
799         return security_ops->task_kill(p, info, sig, secid);
800 }
801
802 int security_task_wait(struct task_struct *p)
803 {
804         return security_ops->task_wait(p);
805 }
806
807 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
808                          unsigned long arg4, unsigned long arg5)
809 {
810         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
811 }
812
813 void security_task_to_inode(struct task_struct *p, struct inode *inode)
814 {
815         security_ops->task_to_inode(p, inode);
816 }
817
818 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
819 {
820         return security_ops->ipc_permission(ipcp, flag);
821 }
822
823 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
824 {
825         security_ops->ipc_getsecid(ipcp, secid);
826 }
827
828 int security_msg_msg_alloc(struct msg_msg *msg)
829 {
830         return security_ops->msg_msg_alloc_security(msg);
831 }
832
833 void security_msg_msg_free(struct msg_msg *msg)
834 {
835         security_ops->msg_msg_free_security(msg);
836 }
837
838 int security_msg_queue_alloc(struct msg_queue *msq)
839 {
840         return security_ops->msg_queue_alloc_security(msq);
841 }
842
843 void security_msg_queue_free(struct msg_queue *msq)
844 {
845         security_ops->msg_queue_free_security(msq);
846 }
847
848 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
849 {
850         return security_ops->msg_queue_associate(msq, msqflg);
851 }
852
853 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
854 {
855         return security_ops->msg_queue_msgctl(msq, cmd);
856 }
857
858 int security_msg_queue_msgsnd(struct msg_queue *msq,
859                                struct msg_msg *msg, int msqflg)
860 {
861         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
862 }
863
864 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
865                                struct task_struct *target, long type, int mode)
866 {
867         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
868 }
869
870 int security_shm_alloc(struct shmid_kernel *shp)
871 {
872         return security_ops->shm_alloc_security(shp);
873 }
874
875 void security_shm_free(struct shmid_kernel *shp)
876 {
877         security_ops->shm_free_security(shp);
878 }
879
880 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
881 {
882         return security_ops->shm_associate(shp, shmflg);
883 }
884
885 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
886 {
887         return security_ops->shm_shmctl(shp, cmd);
888 }
889
890 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
891 {
892         return security_ops->shm_shmat(shp, shmaddr, shmflg);
893 }
894
895 int security_sem_alloc(struct sem_array *sma)
896 {
897         return security_ops->sem_alloc_security(sma);
898 }
899
900 void security_sem_free(struct sem_array *sma)
901 {
902         security_ops->sem_free_security(sma);
903 }
904
905 int security_sem_associate(struct sem_array *sma, int semflg)
906 {
907         return security_ops->sem_associate(sma, semflg);
908 }
909
910 int security_sem_semctl(struct sem_array *sma, int cmd)
911 {
912         return security_ops->sem_semctl(sma, cmd);
913 }
914
915 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
916                         unsigned nsops, int alter)
917 {
918         return security_ops->sem_semop(sma, sops, nsops, alter);
919 }
920
921 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
922 {
923         if (unlikely(inode && IS_PRIVATE(inode)))
924                 return;
925         security_ops->d_instantiate(dentry, inode);
926 }
927 EXPORT_SYMBOL(security_d_instantiate);
928
929 int security_getprocattr(struct task_struct *p, char *name, char **value)
930 {
931         return security_ops->getprocattr(p, name, value);
932 }
933
934 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
935 {
936         return security_ops->setprocattr(p, name, value, size);
937 }
938
939 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
940 {
941         return security_ops->netlink_send(sk, skb);
942 }
943
944 int security_netlink_recv(struct sk_buff *skb, int cap)
945 {
946         return security_ops->netlink_recv(skb, cap);
947 }
948 EXPORT_SYMBOL(security_netlink_recv);
949
950 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
951 {
952         return security_ops->secid_to_secctx(secid, secdata, seclen);
953 }
954 EXPORT_SYMBOL(security_secid_to_secctx);
955
956 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
957 {
958         return security_ops->secctx_to_secid(secdata, seclen, secid);
959 }
960 EXPORT_SYMBOL(security_secctx_to_secid);
961
962 void security_release_secctx(char *secdata, u32 seclen)
963 {
964         security_ops->release_secctx(secdata, seclen);
965 }
966 EXPORT_SYMBOL(security_release_secctx);
967
968 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
969 {
970         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
971 }
972 EXPORT_SYMBOL(security_inode_notifysecctx);
973
974 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
975 {
976         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
977 }
978 EXPORT_SYMBOL(security_inode_setsecctx);
979
980 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
981 {
982         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
983 }
984 EXPORT_SYMBOL(security_inode_getsecctx);
985
986 #ifdef CONFIG_SECURITY_NETWORK
987
988 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
989 {
990         return security_ops->unix_stream_connect(sock, other, newsk);
991 }
992 EXPORT_SYMBOL(security_unix_stream_connect);
993
994 int security_unix_may_send(struct socket *sock,  struct socket *other)
995 {
996         return security_ops->unix_may_send(sock, other);
997 }
998 EXPORT_SYMBOL(security_unix_may_send);
999
1000 int security_socket_create(int family, int type, int protocol, int kern)
1001 {
1002         return security_ops->socket_create(family, type, protocol, kern);
1003 }
1004
1005 int security_socket_post_create(struct socket *sock, int family,
1006                                 int type, int protocol, int kern)
1007 {
1008         return security_ops->socket_post_create(sock, family, type,
1009                                                 protocol, kern);
1010 }
1011
1012 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1013 {
1014         return security_ops->socket_bind(sock, address, addrlen);
1015 }
1016
1017 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1018 {
1019         return security_ops->socket_connect(sock, address, addrlen);
1020 }
1021
1022 int security_socket_listen(struct socket *sock, int backlog)
1023 {
1024         return security_ops->socket_listen(sock, backlog);
1025 }
1026
1027 int security_socket_accept(struct socket *sock, struct socket *newsock)
1028 {
1029         return security_ops->socket_accept(sock, newsock);
1030 }
1031
1032 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1033 {
1034         return security_ops->socket_sendmsg(sock, msg, size);
1035 }
1036
1037 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1038                             int size, int flags)
1039 {
1040         return security_ops->socket_recvmsg(sock, msg, size, flags);
1041 }
1042
1043 int security_socket_getsockname(struct socket *sock)
1044 {
1045         return security_ops->socket_getsockname(sock);
1046 }
1047
1048 int security_socket_getpeername(struct socket *sock)
1049 {
1050         return security_ops->socket_getpeername(sock);
1051 }
1052
1053 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1054 {
1055         return security_ops->socket_getsockopt(sock, level, optname);
1056 }
1057
1058 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1059 {
1060         return security_ops->socket_setsockopt(sock, level, optname);
1061 }
1062
1063 int security_socket_shutdown(struct socket *sock, int how)
1064 {
1065         return security_ops->socket_shutdown(sock, how);
1066 }
1067
1068 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1069 {
1070         return security_ops->socket_sock_rcv_skb(sk, skb);
1071 }
1072 EXPORT_SYMBOL(security_sock_rcv_skb);
1073
1074 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1075                                       int __user *optlen, unsigned len)
1076 {
1077         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1078 }
1079
1080 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1081 {
1082         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1083 }
1084 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1085
1086 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1087 {
1088         return security_ops->sk_alloc_security(sk, family, priority);
1089 }
1090
1091 void security_sk_free(struct sock *sk)
1092 {
1093         security_ops->sk_free_security(sk);
1094 }
1095
1096 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1097 {
1098         security_ops->sk_clone_security(sk, newsk);
1099 }
1100
1101 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1102 {
1103         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1104 }
1105 EXPORT_SYMBOL(security_sk_classify_flow);
1106
1107 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1108 {
1109         security_ops->req_classify_flow(req, fl);
1110 }
1111 EXPORT_SYMBOL(security_req_classify_flow);
1112
1113 void security_sock_graft(struct sock *sk, struct socket *parent)
1114 {
1115         security_ops->sock_graft(sk, parent);
1116 }
1117 EXPORT_SYMBOL(security_sock_graft);
1118
1119 int security_inet_conn_request(struct sock *sk,
1120                         struct sk_buff *skb, struct request_sock *req)
1121 {
1122         return security_ops->inet_conn_request(sk, skb, req);
1123 }
1124 EXPORT_SYMBOL(security_inet_conn_request);
1125
1126 void security_inet_csk_clone(struct sock *newsk,
1127                         const struct request_sock *req)
1128 {
1129         security_ops->inet_csk_clone(newsk, req);
1130 }
1131
1132 void security_inet_conn_established(struct sock *sk,
1133                         struct sk_buff *skb)
1134 {
1135         security_ops->inet_conn_established(sk, skb);
1136 }
1137
1138 int security_secmark_relabel_packet(u32 secid)
1139 {
1140         return security_ops->secmark_relabel_packet(secid);
1141 }
1142 EXPORT_SYMBOL(security_secmark_relabel_packet);
1143
1144 void security_secmark_refcount_inc(void)
1145 {
1146         security_ops->secmark_refcount_inc();
1147 }
1148 EXPORT_SYMBOL(security_secmark_refcount_inc);
1149
1150 void security_secmark_refcount_dec(void)
1151 {
1152         security_ops->secmark_refcount_dec();
1153 }
1154 EXPORT_SYMBOL(security_secmark_refcount_dec);
1155
1156 int security_tun_dev_create(void)
1157 {
1158         return security_ops->tun_dev_create();
1159 }
1160 EXPORT_SYMBOL(security_tun_dev_create);
1161
1162 void security_tun_dev_post_create(struct sock *sk)
1163 {
1164         return security_ops->tun_dev_post_create(sk);
1165 }
1166 EXPORT_SYMBOL(security_tun_dev_post_create);
1167
1168 int security_tun_dev_attach(struct sock *sk)
1169 {
1170         return security_ops->tun_dev_attach(sk);
1171 }
1172 EXPORT_SYMBOL(security_tun_dev_attach);
1173
1174 #endif  /* CONFIG_SECURITY_NETWORK */
1175
1176 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1177
1178 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1179 {
1180         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1181 }
1182 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1183
1184 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1185                               struct xfrm_sec_ctx **new_ctxp)
1186 {
1187         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1188 }
1189
1190 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1191 {
1192         security_ops->xfrm_policy_free_security(ctx);
1193 }
1194 EXPORT_SYMBOL(security_xfrm_policy_free);
1195
1196 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1197 {
1198         return security_ops->xfrm_policy_delete_security(ctx);
1199 }
1200
1201 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1202 {
1203         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1204 }
1205 EXPORT_SYMBOL(security_xfrm_state_alloc);
1206
1207 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1208                                       struct xfrm_sec_ctx *polsec, u32 secid)
1209 {
1210         if (!polsec)
1211                 return 0;
1212         /*
1213          * We want the context to be taken from secid which is usually
1214          * from the sock.
1215          */
1216         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1217 }
1218
1219 int security_xfrm_state_delete(struct xfrm_state *x)
1220 {
1221         return security_ops->xfrm_state_delete_security(x);
1222 }
1223 EXPORT_SYMBOL(security_xfrm_state_delete);
1224
1225 void security_xfrm_state_free(struct xfrm_state *x)
1226 {
1227         security_ops->xfrm_state_free_security(x);
1228 }
1229
1230 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1231 {
1232         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1233 }
1234
1235 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1236                                        struct xfrm_policy *xp,
1237                                        const struct flowi *fl)
1238 {
1239         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1240 }
1241
1242 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1243 {
1244         return security_ops->xfrm_decode_session(skb, secid, 1);
1245 }
1246
1247 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1248 {
1249         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1250
1251         BUG_ON(rc);
1252 }
1253 EXPORT_SYMBOL(security_skb_classify_flow);
1254
1255 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1256
1257 #ifdef CONFIG_KEYS
1258
1259 int security_key_alloc(struct key *key, const struct cred *cred,
1260                        unsigned long flags)
1261 {
1262         return security_ops->key_alloc(key, cred, flags);
1263 }
1264
1265 void security_key_free(struct key *key)
1266 {
1267         security_ops->key_free(key);
1268 }
1269
1270 int security_key_permission(key_ref_t key_ref,
1271                             const struct cred *cred, key_perm_t perm)
1272 {
1273         return security_ops->key_permission(key_ref, cred, perm);
1274 }
1275
1276 int security_key_getsecurity(struct key *key, char **_buffer)
1277 {
1278         return security_ops->key_getsecurity(key, _buffer);
1279 }
1280
1281 #endif  /* CONFIG_KEYS */
1282
1283 #ifdef CONFIG_AUDIT
1284
1285 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1286 {
1287         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1288 }
1289
1290 int security_audit_rule_known(struct audit_krule *krule)
1291 {
1292         return security_ops->audit_rule_known(krule);
1293 }
1294
1295 void security_audit_rule_free(void *lsmrule)
1296 {
1297         security_ops->audit_rule_free(lsmrule);
1298 }
1299
1300 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1301                               struct audit_context *actx)
1302 {
1303         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1304 }
1305
1306 #endif /* CONFIG_AUDIT */