]> git.karo-electronics.de Git - mv-sheeva.git/blob - security/security.c
unistd: add __NR_prlimit64 syscall numbers
[mv-sheeva.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30         .name   = "default",
31 };
32
33 static inline int __init verify(struct security_operations *ops)
34 {
35         /* verify the security_operations structure exists */
36         if (!ops)
37                 return -EINVAL;
38         security_fixup_ops(ops);
39         return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44         initcall_t *call;
45         call = __security_initcall_start;
46         while (call < __security_initcall_end) {
47                 (*call) ();
48                 call++;
49         }
50 }
51
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59         printk(KERN_INFO "Security Framework initialized\n");
60
61         security_fixup_ops(&default_security_ops);
62         security_ops = &default_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70         security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77         return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *      -The passed LSM is the one chosen by user at boot time,
91  *      -or the passed LSM is configured as the default and the user did not
92  *       choose an alternate LSM at boot time,
93  *      -or there is no default LSM set and the user didn't specify a
94  *       specific LSM and we're the first to ask for registration permission,
95  *      -or the passed LSM is currently loaded.
96  * Otherwise, return false.
97  */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100         if (!*chosen_lsm)
101                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
102         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
103                 return 0;
104
105         return 1;
106 }
107
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122         if (verify(ops)) {
123                 printk(KERN_DEBUG "%s could not verify "
124                        "security_operations structure.\n", __func__);
125                 return -EINVAL;
126         }
127
128         if (security_ops != &default_security_ops)
129                 return -EAGAIN;
130
131         security_ops = ops;
132
133         return 0;
134 }
135
136 /* Security operations */
137
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140         return security_ops->ptrace_access_check(child, mode);
141 }
142
143 int security_ptrace_traceme(struct task_struct *parent)
144 {
145         return security_ops->ptrace_traceme(parent);
146 }
147
148 int security_capget(struct task_struct *target,
149                      kernel_cap_t *effective,
150                      kernel_cap_t *inheritable,
151                      kernel_cap_t *permitted)
152 {
153         return security_ops->capget(target, effective, inheritable, permitted);
154 }
155
156 int security_capset(struct cred *new, const struct cred *old,
157                     const kernel_cap_t *effective,
158                     const kernel_cap_t *inheritable,
159                     const kernel_cap_t *permitted)
160 {
161         return security_ops->capset(new, old,
162                                     effective, inheritable, permitted);
163 }
164
165 int security_capable(int cap)
166 {
167         return security_ops->capable(current, current_cred(), cap,
168                                      SECURITY_CAP_AUDIT);
169 }
170
171 int security_real_capable(struct task_struct *tsk, int cap)
172 {
173         const struct cred *cred;
174         int ret;
175
176         cred = get_task_cred(tsk);
177         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
178         put_cred(cred);
179         return ret;
180 }
181
182 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
183 {
184         const struct cred *cred;
185         int ret;
186
187         cred = get_task_cred(tsk);
188         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
189         put_cred(cred);
190         return ret;
191 }
192
193 int security_sysctl(struct ctl_table *table, int op)
194 {
195         return security_ops->sysctl(table, op);
196 }
197
198 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
199 {
200         return security_ops->quotactl(cmds, type, id, sb);
201 }
202
203 int security_quota_on(struct dentry *dentry)
204 {
205         return security_ops->quota_on(dentry);
206 }
207
208 int security_syslog(int type, bool from_file)
209 {
210         return security_ops->syslog(type, from_file);
211 }
212
213 int security_settime(struct timespec *ts, struct timezone *tz)
214 {
215         return security_ops->settime(ts, tz);
216 }
217
218 int security_vm_enough_memory(long pages)
219 {
220         WARN_ON(current->mm == NULL);
221         return security_ops->vm_enough_memory(current->mm, pages);
222 }
223
224 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
225 {
226         WARN_ON(mm == NULL);
227         return security_ops->vm_enough_memory(mm, pages);
228 }
229
230 int security_vm_enough_memory_kern(long pages)
231 {
232         /* If current->mm is a kernel thread then we will pass NULL,
233            for this specific case that is fine */
234         return security_ops->vm_enough_memory(current->mm, pages);
235 }
236
237 int security_bprm_set_creds(struct linux_binprm *bprm)
238 {
239         return security_ops->bprm_set_creds(bprm);
240 }
241
242 int security_bprm_check(struct linux_binprm *bprm)
243 {
244         int ret;
245
246         ret = security_ops->bprm_check_security(bprm);
247         if (ret)
248                 return ret;
249         return ima_bprm_check(bprm);
250 }
251
252 void security_bprm_committing_creds(struct linux_binprm *bprm)
253 {
254         security_ops->bprm_committing_creds(bprm);
255 }
256
257 void security_bprm_committed_creds(struct linux_binprm *bprm)
258 {
259         security_ops->bprm_committed_creds(bprm);
260 }
261
262 int security_bprm_secureexec(struct linux_binprm *bprm)
263 {
264         return security_ops->bprm_secureexec(bprm);
265 }
266
267 int security_sb_alloc(struct super_block *sb)
268 {
269         return security_ops->sb_alloc_security(sb);
270 }
271
272 void security_sb_free(struct super_block *sb)
273 {
274         security_ops->sb_free_security(sb);
275 }
276
277 int security_sb_copy_data(char *orig, char *copy)
278 {
279         return security_ops->sb_copy_data(orig, copy);
280 }
281 EXPORT_SYMBOL(security_sb_copy_data);
282
283 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
284 {
285         return security_ops->sb_kern_mount(sb, flags, data);
286 }
287
288 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
289 {
290         return security_ops->sb_show_options(m, sb);
291 }
292
293 int security_sb_statfs(struct dentry *dentry)
294 {
295         return security_ops->sb_statfs(dentry);
296 }
297
298 int security_sb_mount(char *dev_name, struct path *path,
299                        char *type, unsigned long flags, void *data)
300 {
301         return security_ops->sb_mount(dev_name, path, type, flags, data);
302 }
303
304 int security_sb_umount(struct vfsmount *mnt, int flags)
305 {
306         return security_ops->sb_umount(mnt, flags);
307 }
308
309 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
310 {
311         return security_ops->sb_pivotroot(old_path, new_path);
312 }
313
314 int security_sb_set_mnt_opts(struct super_block *sb,
315                                 struct security_mnt_opts *opts)
316 {
317         return security_ops->sb_set_mnt_opts(sb, opts);
318 }
319 EXPORT_SYMBOL(security_sb_set_mnt_opts);
320
321 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
322                                 struct super_block *newsb)
323 {
324         security_ops->sb_clone_mnt_opts(oldsb, newsb);
325 }
326 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
327
328 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
329 {
330         return security_ops->sb_parse_opts_str(options, opts);
331 }
332 EXPORT_SYMBOL(security_sb_parse_opts_str);
333
334 int security_inode_alloc(struct inode *inode)
335 {
336         int ret;
337
338         inode->i_security = NULL;
339         ret =  security_ops->inode_alloc_security(inode);
340         if (ret)
341                 return ret;
342         ret = ima_inode_alloc(inode);
343         if (ret)
344                 security_inode_free(inode);
345         return ret;
346 }
347
348 void security_inode_free(struct inode *inode)
349 {
350         ima_inode_free(inode);
351         security_ops->inode_free_security(inode);
352 }
353
354 int security_inode_init_security(struct inode *inode, struct inode *dir,
355                                   char **name, void **value, size_t *len)
356 {
357         if (unlikely(IS_PRIVATE(inode)))
358                 return -EOPNOTSUPP;
359         return security_ops->inode_init_security(inode, dir, name, value, len);
360 }
361 EXPORT_SYMBOL(security_inode_init_security);
362
363 #ifdef CONFIG_SECURITY_PATH
364 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
365                         unsigned int dev)
366 {
367         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
368                 return 0;
369         return security_ops->path_mknod(dir, dentry, mode, dev);
370 }
371 EXPORT_SYMBOL(security_path_mknod);
372
373 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
374 {
375         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376                 return 0;
377         return security_ops->path_mkdir(dir, dentry, mode);
378 }
379
380 int security_path_rmdir(struct path *dir, struct dentry *dentry)
381 {
382         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
383                 return 0;
384         return security_ops->path_rmdir(dir, dentry);
385 }
386
387 int security_path_unlink(struct path *dir, struct dentry *dentry)
388 {
389         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390                 return 0;
391         return security_ops->path_unlink(dir, dentry);
392 }
393
394 int security_path_symlink(struct path *dir, struct dentry *dentry,
395                           const char *old_name)
396 {
397         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398                 return 0;
399         return security_ops->path_symlink(dir, dentry, old_name);
400 }
401
402 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
403                        struct dentry *new_dentry)
404 {
405         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
406                 return 0;
407         return security_ops->path_link(old_dentry, new_dir, new_dentry);
408 }
409
410 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
411                          struct path *new_dir, struct dentry *new_dentry)
412 {
413         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
414                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
415                 return 0;
416         return security_ops->path_rename(old_dir, old_dentry, new_dir,
417                                          new_dentry);
418 }
419
420 int security_path_truncate(struct path *path, loff_t length,
421                            unsigned int time_attrs)
422 {
423         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
424                 return 0;
425         return security_ops->path_truncate(path, length, time_attrs);
426 }
427
428 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
429                         mode_t mode)
430 {
431         if (unlikely(IS_PRIVATE(dentry->d_inode)))
432                 return 0;
433         return security_ops->path_chmod(dentry, mnt, mode);
434 }
435
436 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
437 {
438         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
439                 return 0;
440         return security_ops->path_chown(path, uid, gid);
441 }
442
443 int security_path_chroot(struct path *path)
444 {
445         return security_ops->path_chroot(path);
446 }
447 #endif
448
449 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
450 {
451         if (unlikely(IS_PRIVATE(dir)))
452                 return 0;
453         return security_ops->inode_create(dir, dentry, mode);
454 }
455 EXPORT_SYMBOL_GPL(security_inode_create);
456
457 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
458                          struct dentry *new_dentry)
459 {
460         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
461                 return 0;
462         return security_ops->inode_link(old_dentry, dir, new_dentry);
463 }
464
465 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
466 {
467         if (unlikely(IS_PRIVATE(dentry->d_inode)))
468                 return 0;
469         return security_ops->inode_unlink(dir, dentry);
470 }
471
472 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
473                             const char *old_name)
474 {
475         if (unlikely(IS_PRIVATE(dir)))
476                 return 0;
477         return security_ops->inode_symlink(dir, dentry, old_name);
478 }
479
480 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
481 {
482         if (unlikely(IS_PRIVATE(dir)))
483                 return 0;
484         return security_ops->inode_mkdir(dir, dentry, mode);
485 }
486 EXPORT_SYMBOL_GPL(security_inode_mkdir);
487
488 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
489 {
490         if (unlikely(IS_PRIVATE(dentry->d_inode)))
491                 return 0;
492         return security_ops->inode_rmdir(dir, dentry);
493 }
494
495 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
496 {
497         if (unlikely(IS_PRIVATE(dir)))
498                 return 0;
499         return security_ops->inode_mknod(dir, dentry, mode, dev);
500 }
501
502 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
503                            struct inode *new_dir, struct dentry *new_dentry)
504 {
505         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
506             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
507                 return 0;
508         return security_ops->inode_rename(old_dir, old_dentry,
509                                            new_dir, new_dentry);
510 }
511
512 int security_inode_readlink(struct dentry *dentry)
513 {
514         if (unlikely(IS_PRIVATE(dentry->d_inode)))
515                 return 0;
516         return security_ops->inode_readlink(dentry);
517 }
518
519 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
520 {
521         if (unlikely(IS_PRIVATE(dentry->d_inode)))
522                 return 0;
523         return security_ops->inode_follow_link(dentry, nd);
524 }
525
526 int security_inode_permission(struct inode *inode, int mask)
527 {
528         if (unlikely(IS_PRIVATE(inode)))
529                 return 0;
530         return security_ops->inode_permission(inode, mask);
531 }
532
533 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535         if (unlikely(IS_PRIVATE(dentry->d_inode)))
536                 return 0;
537         return security_ops->inode_setattr(dentry, attr);
538 }
539 EXPORT_SYMBOL_GPL(security_inode_setattr);
540
541 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
542 {
543         if (unlikely(IS_PRIVATE(dentry->d_inode)))
544                 return 0;
545         return security_ops->inode_getattr(mnt, dentry);
546 }
547
548 int security_inode_setxattr(struct dentry *dentry, const char *name,
549                             const void *value, size_t size, int flags)
550 {
551         if (unlikely(IS_PRIVATE(dentry->d_inode)))
552                 return 0;
553         return security_ops->inode_setxattr(dentry, name, value, size, flags);
554 }
555
556 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
557                                   const void *value, size_t size, int flags)
558 {
559         if (unlikely(IS_PRIVATE(dentry->d_inode)))
560                 return;
561         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
562 }
563
564 int security_inode_getxattr(struct dentry *dentry, const char *name)
565 {
566         if (unlikely(IS_PRIVATE(dentry->d_inode)))
567                 return 0;
568         return security_ops->inode_getxattr(dentry, name);
569 }
570
571 int security_inode_listxattr(struct dentry *dentry)
572 {
573         if (unlikely(IS_PRIVATE(dentry->d_inode)))
574                 return 0;
575         return security_ops->inode_listxattr(dentry);
576 }
577
578 int security_inode_removexattr(struct dentry *dentry, const char *name)
579 {
580         if (unlikely(IS_PRIVATE(dentry->d_inode)))
581                 return 0;
582         return security_ops->inode_removexattr(dentry, name);
583 }
584
585 int security_inode_need_killpriv(struct dentry *dentry)
586 {
587         return security_ops->inode_need_killpriv(dentry);
588 }
589
590 int security_inode_killpriv(struct dentry *dentry)
591 {
592         return security_ops->inode_killpriv(dentry);
593 }
594
595 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
596 {
597         if (unlikely(IS_PRIVATE(inode)))
598                 return -EOPNOTSUPP;
599         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
600 }
601
602 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
603 {
604         if (unlikely(IS_PRIVATE(inode)))
605                 return -EOPNOTSUPP;
606         return security_ops->inode_setsecurity(inode, name, value, size, flags);
607 }
608
609 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
610 {
611         if (unlikely(IS_PRIVATE(inode)))
612                 return 0;
613         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
614 }
615
616 void security_inode_getsecid(const struct inode *inode, u32 *secid)
617 {
618         security_ops->inode_getsecid(inode, secid);
619 }
620
621 int security_file_permission(struct file *file, int mask)
622 {
623         return security_ops->file_permission(file, mask);
624 }
625
626 int security_file_alloc(struct file *file)
627 {
628         return security_ops->file_alloc_security(file);
629 }
630
631 void security_file_free(struct file *file)
632 {
633         security_ops->file_free_security(file);
634 }
635
636 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
637 {
638         return security_ops->file_ioctl(file, cmd, arg);
639 }
640
641 int security_file_mmap(struct file *file, unsigned long reqprot,
642                         unsigned long prot, unsigned long flags,
643                         unsigned long addr, unsigned long addr_only)
644 {
645         int ret;
646
647         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
648         if (ret)
649                 return ret;
650         return ima_file_mmap(file, prot);
651 }
652
653 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
654                             unsigned long prot)
655 {
656         return security_ops->file_mprotect(vma, reqprot, prot);
657 }
658
659 int security_file_lock(struct file *file, unsigned int cmd)
660 {
661         return security_ops->file_lock(file, cmd);
662 }
663
664 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
665 {
666         return security_ops->file_fcntl(file, cmd, arg);
667 }
668
669 int security_file_set_fowner(struct file *file)
670 {
671         return security_ops->file_set_fowner(file);
672 }
673
674 int security_file_send_sigiotask(struct task_struct *tsk,
675                                   struct fown_struct *fown, int sig)
676 {
677         return security_ops->file_send_sigiotask(tsk, fown, sig);
678 }
679
680 int security_file_receive(struct file *file)
681 {
682         return security_ops->file_receive(file);
683 }
684
685 int security_dentry_open(struct file *file, const struct cred *cred)
686 {
687         return security_ops->dentry_open(file, cred);
688 }
689
690 int security_task_create(unsigned long clone_flags)
691 {
692         return security_ops->task_create(clone_flags);
693 }
694
695 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
696 {
697         return security_ops->cred_alloc_blank(cred, gfp);
698 }
699
700 void security_cred_free(struct cred *cred)
701 {
702         security_ops->cred_free(cred);
703 }
704
705 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
706 {
707         return security_ops->cred_prepare(new, old, gfp);
708 }
709
710 void security_transfer_creds(struct cred *new, const struct cred *old)
711 {
712         security_ops->cred_transfer(new, old);
713 }
714
715 int security_kernel_act_as(struct cred *new, u32 secid)
716 {
717         return security_ops->kernel_act_as(new, secid);
718 }
719
720 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
721 {
722         return security_ops->kernel_create_files_as(new, inode);
723 }
724
725 int security_kernel_module_request(char *kmod_name)
726 {
727         return security_ops->kernel_module_request(kmod_name);
728 }
729
730 int security_task_fix_setuid(struct cred *new, const struct cred *old,
731                              int flags)
732 {
733         return security_ops->task_fix_setuid(new, old, flags);
734 }
735
736 int security_task_setpgid(struct task_struct *p, pid_t pgid)
737 {
738         return security_ops->task_setpgid(p, pgid);
739 }
740
741 int security_task_getpgid(struct task_struct *p)
742 {
743         return security_ops->task_getpgid(p);
744 }
745
746 int security_task_getsid(struct task_struct *p)
747 {
748         return security_ops->task_getsid(p);
749 }
750
751 void security_task_getsecid(struct task_struct *p, u32 *secid)
752 {
753         security_ops->task_getsecid(p, secid);
754 }
755 EXPORT_SYMBOL(security_task_getsecid);
756
757 int security_task_setnice(struct task_struct *p, int nice)
758 {
759         return security_ops->task_setnice(p, nice);
760 }
761
762 int security_task_setioprio(struct task_struct *p, int ioprio)
763 {
764         return security_ops->task_setioprio(p, ioprio);
765 }
766
767 int security_task_getioprio(struct task_struct *p)
768 {
769         return security_ops->task_getioprio(p);
770 }
771
772 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
773                 struct rlimit *new_rlim)
774 {
775         return security_ops->task_setrlimit(p, resource, new_rlim);
776 }
777
778 int security_task_setscheduler(struct task_struct *p,
779                                 int policy, struct sched_param *lp)
780 {
781         return security_ops->task_setscheduler(p, policy, lp);
782 }
783
784 int security_task_getscheduler(struct task_struct *p)
785 {
786         return security_ops->task_getscheduler(p);
787 }
788
789 int security_task_movememory(struct task_struct *p)
790 {
791         return security_ops->task_movememory(p);
792 }
793
794 int security_task_kill(struct task_struct *p, struct siginfo *info,
795                         int sig, u32 secid)
796 {
797         return security_ops->task_kill(p, info, sig, secid);
798 }
799
800 int security_task_wait(struct task_struct *p)
801 {
802         return security_ops->task_wait(p);
803 }
804
805 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
806                          unsigned long arg4, unsigned long arg5)
807 {
808         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
809 }
810
811 void security_task_to_inode(struct task_struct *p, struct inode *inode)
812 {
813         security_ops->task_to_inode(p, inode);
814 }
815
816 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
817 {
818         return security_ops->ipc_permission(ipcp, flag);
819 }
820
821 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
822 {
823         security_ops->ipc_getsecid(ipcp, secid);
824 }
825
826 int security_msg_msg_alloc(struct msg_msg *msg)
827 {
828         return security_ops->msg_msg_alloc_security(msg);
829 }
830
831 void security_msg_msg_free(struct msg_msg *msg)
832 {
833         security_ops->msg_msg_free_security(msg);
834 }
835
836 int security_msg_queue_alloc(struct msg_queue *msq)
837 {
838         return security_ops->msg_queue_alloc_security(msq);
839 }
840
841 void security_msg_queue_free(struct msg_queue *msq)
842 {
843         security_ops->msg_queue_free_security(msq);
844 }
845
846 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
847 {
848         return security_ops->msg_queue_associate(msq, msqflg);
849 }
850
851 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
852 {
853         return security_ops->msg_queue_msgctl(msq, cmd);
854 }
855
856 int security_msg_queue_msgsnd(struct msg_queue *msq,
857                                struct msg_msg *msg, int msqflg)
858 {
859         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
860 }
861
862 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
863                                struct task_struct *target, long type, int mode)
864 {
865         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
866 }
867
868 int security_shm_alloc(struct shmid_kernel *shp)
869 {
870         return security_ops->shm_alloc_security(shp);
871 }
872
873 void security_shm_free(struct shmid_kernel *shp)
874 {
875         security_ops->shm_free_security(shp);
876 }
877
878 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
879 {
880         return security_ops->shm_associate(shp, shmflg);
881 }
882
883 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
884 {
885         return security_ops->shm_shmctl(shp, cmd);
886 }
887
888 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
889 {
890         return security_ops->shm_shmat(shp, shmaddr, shmflg);
891 }
892
893 int security_sem_alloc(struct sem_array *sma)
894 {
895         return security_ops->sem_alloc_security(sma);
896 }
897
898 void security_sem_free(struct sem_array *sma)
899 {
900         security_ops->sem_free_security(sma);
901 }
902
903 int security_sem_associate(struct sem_array *sma, int semflg)
904 {
905         return security_ops->sem_associate(sma, semflg);
906 }
907
908 int security_sem_semctl(struct sem_array *sma, int cmd)
909 {
910         return security_ops->sem_semctl(sma, cmd);
911 }
912
913 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
914                         unsigned nsops, int alter)
915 {
916         return security_ops->sem_semop(sma, sops, nsops, alter);
917 }
918
919 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
920 {
921         if (unlikely(inode && IS_PRIVATE(inode)))
922                 return;
923         security_ops->d_instantiate(dentry, inode);
924 }
925 EXPORT_SYMBOL(security_d_instantiate);
926
927 int security_getprocattr(struct task_struct *p, char *name, char **value)
928 {
929         return security_ops->getprocattr(p, name, value);
930 }
931
932 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
933 {
934         return security_ops->setprocattr(p, name, value, size);
935 }
936
937 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
938 {
939         return security_ops->netlink_send(sk, skb);
940 }
941
942 int security_netlink_recv(struct sk_buff *skb, int cap)
943 {
944         return security_ops->netlink_recv(skb, cap);
945 }
946 EXPORT_SYMBOL(security_netlink_recv);
947
948 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
949 {
950         return security_ops->secid_to_secctx(secid, secdata, seclen);
951 }
952 EXPORT_SYMBOL(security_secid_to_secctx);
953
954 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
955 {
956         return security_ops->secctx_to_secid(secdata, seclen, secid);
957 }
958 EXPORT_SYMBOL(security_secctx_to_secid);
959
960 void security_release_secctx(char *secdata, u32 seclen)
961 {
962         security_ops->release_secctx(secdata, seclen);
963 }
964 EXPORT_SYMBOL(security_release_secctx);
965
966 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
967 {
968         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
969 }
970 EXPORT_SYMBOL(security_inode_notifysecctx);
971
972 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
973 {
974         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
975 }
976 EXPORT_SYMBOL(security_inode_setsecctx);
977
978 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
979 {
980         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
981 }
982 EXPORT_SYMBOL(security_inode_getsecctx);
983
984 #ifdef CONFIG_SECURITY_NETWORK
985
986 int security_unix_stream_connect(struct socket *sock, struct socket *other,
987                                  struct sock *newsk)
988 {
989         return security_ops->unix_stream_connect(sock, other, newsk);
990 }
991 EXPORT_SYMBOL(security_unix_stream_connect);
992
993 int security_unix_may_send(struct socket *sock,  struct socket *other)
994 {
995         return security_ops->unix_may_send(sock, other);
996 }
997 EXPORT_SYMBOL(security_unix_may_send);
998
999 int security_socket_create(int family, int type, int protocol, int kern)
1000 {
1001         return security_ops->socket_create(family, type, protocol, kern);
1002 }
1003
1004 int security_socket_post_create(struct socket *sock, int family,
1005                                 int type, int protocol, int kern)
1006 {
1007         return security_ops->socket_post_create(sock, family, type,
1008                                                 protocol, kern);
1009 }
1010
1011 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1012 {
1013         return security_ops->socket_bind(sock, address, addrlen);
1014 }
1015
1016 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1017 {
1018         return security_ops->socket_connect(sock, address, addrlen);
1019 }
1020
1021 int security_socket_listen(struct socket *sock, int backlog)
1022 {
1023         return security_ops->socket_listen(sock, backlog);
1024 }
1025
1026 int security_socket_accept(struct socket *sock, struct socket *newsock)
1027 {
1028         return security_ops->socket_accept(sock, newsock);
1029 }
1030
1031 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1032 {
1033         return security_ops->socket_sendmsg(sock, msg, size);
1034 }
1035
1036 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1037                             int size, int flags)
1038 {
1039         return security_ops->socket_recvmsg(sock, msg, size, flags);
1040 }
1041
1042 int security_socket_getsockname(struct socket *sock)
1043 {
1044         return security_ops->socket_getsockname(sock);
1045 }
1046
1047 int security_socket_getpeername(struct socket *sock)
1048 {
1049         return security_ops->socket_getpeername(sock);
1050 }
1051
1052 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1053 {
1054         return security_ops->socket_getsockopt(sock, level, optname);
1055 }
1056
1057 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1058 {
1059         return security_ops->socket_setsockopt(sock, level, optname);
1060 }
1061
1062 int security_socket_shutdown(struct socket *sock, int how)
1063 {
1064         return security_ops->socket_shutdown(sock, how);
1065 }
1066
1067 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1068 {
1069         return security_ops->socket_sock_rcv_skb(sk, skb);
1070 }
1071 EXPORT_SYMBOL(security_sock_rcv_skb);
1072
1073 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1074                                       int __user *optlen, unsigned len)
1075 {
1076         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1077 }
1078
1079 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1080 {
1081         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1082 }
1083 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1084
1085 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1086 {
1087         return security_ops->sk_alloc_security(sk, family, priority);
1088 }
1089
1090 void security_sk_free(struct sock *sk)
1091 {
1092         security_ops->sk_free_security(sk);
1093 }
1094
1095 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1096 {
1097         security_ops->sk_clone_security(sk, newsk);
1098 }
1099
1100 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1101 {
1102         security_ops->sk_getsecid(sk, &fl->secid);
1103 }
1104 EXPORT_SYMBOL(security_sk_classify_flow);
1105
1106 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1107 {
1108         security_ops->req_classify_flow(req, fl);
1109 }
1110 EXPORT_SYMBOL(security_req_classify_flow);
1111
1112 void security_sock_graft(struct sock *sk, struct socket *parent)
1113 {
1114         security_ops->sock_graft(sk, parent);
1115 }
1116 EXPORT_SYMBOL(security_sock_graft);
1117
1118 int security_inet_conn_request(struct sock *sk,
1119                         struct sk_buff *skb, struct request_sock *req)
1120 {
1121         return security_ops->inet_conn_request(sk, skb, req);
1122 }
1123 EXPORT_SYMBOL(security_inet_conn_request);
1124
1125 void security_inet_csk_clone(struct sock *newsk,
1126                         const struct request_sock *req)
1127 {
1128         security_ops->inet_csk_clone(newsk, req);
1129 }
1130
1131 void security_inet_conn_established(struct sock *sk,
1132                         struct sk_buff *skb)
1133 {
1134         security_ops->inet_conn_established(sk, skb);
1135 }
1136
1137 int security_tun_dev_create(void)
1138 {
1139         return security_ops->tun_dev_create();
1140 }
1141 EXPORT_SYMBOL(security_tun_dev_create);
1142
1143 void security_tun_dev_post_create(struct sock *sk)
1144 {
1145         return security_ops->tun_dev_post_create(sk);
1146 }
1147 EXPORT_SYMBOL(security_tun_dev_post_create);
1148
1149 int security_tun_dev_attach(struct sock *sk)
1150 {
1151         return security_ops->tun_dev_attach(sk);
1152 }
1153 EXPORT_SYMBOL(security_tun_dev_attach);
1154
1155 #endif  /* CONFIG_SECURITY_NETWORK */
1156
1157 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1158
1159 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1160 {
1161         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1162 }
1163 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1164
1165 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1166                               struct xfrm_sec_ctx **new_ctxp)
1167 {
1168         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1169 }
1170
1171 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1172 {
1173         security_ops->xfrm_policy_free_security(ctx);
1174 }
1175 EXPORT_SYMBOL(security_xfrm_policy_free);
1176
1177 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1178 {
1179         return security_ops->xfrm_policy_delete_security(ctx);
1180 }
1181
1182 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1183 {
1184         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1185 }
1186 EXPORT_SYMBOL(security_xfrm_state_alloc);
1187
1188 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1189                                       struct xfrm_sec_ctx *polsec, u32 secid)
1190 {
1191         if (!polsec)
1192                 return 0;
1193         /*
1194          * We want the context to be taken from secid which is usually
1195          * from the sock.
1196          */
1197         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1198 }
1199
1200 int security_xfrm_state_delete(struct xfrm_state *x)
1201 {
1202         return security_ops->xfrm_state_delete_security(x);
1203 }
1204 EXPORT_SYMBOL(security_xfrm_state_delete);
1205
1206 void security_xfrm_state_free(struct xfrm_state *x)
1207 {
1208         security_ops->xfrm_state_free_security(x);
1209 }
1210
1211 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1212 {
1213         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1214 }
1215
1216 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1217                                        struct xfrm_policy *xp, struct flowi *fl)
1218 {
1219         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1220 }
1221
1222 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1223 {
1224         return security_ops->xfrm_decode_session(skb, secid, 1);
1225 }
1226
1227 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1228 {
1229         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1230
1231         BUG_ON(rc);
1232 }
1233 EXPORT_SYMBOL(security_skb_classify_flow);
1234
1235 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1236
1237 #ifdef CONFIG_KEYS
1238
1239 int security_key_alloc(struct key *key, const struct cred *cred,
1240                        unsigned long flags)
1241 {
1242         return security_ops->key_alloc(key, cred, flags);
1243 }
1244
1245 void security_key_free(struct key *key)
1246 {
1247         security_ops->key_free(key);
1248 }
1249
1250 int security_key_permission(key_ref_t key_ref,
1251                             const struct cred *cred, key_perm_t perm)
1252 {
1253         return security_ops->key_permission(key_ref, cred, perm);
1254 }
1255
1256 int security_key_getsecurity(struct key *key, char **_buffer)
1257 {
1258         return security_ops->key_getsecurity(key, _buffer);
1259 }
1260
1261 #endif  /* CONFIG_KEYS */
1262
1263 #ifdef CONFIG_AUDIT
1264
1265 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1266 {
1267         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1268 }
1269
1270 int security_audit_rule_known(struct audit_krule *krule)
1271 {
1272         return security_ops->audit_rule_known(krule);
1273 }
1274
1275 void security_audit_rule_free(void *lsmrule)
1276 {
1277         security_ops->audit_rule_free(lsmrule);
1278 }
1279
1280 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1281                               struct audit_context *actx)
1282 {
1283         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1284 }
1285
1286 #endif /* CONFIG_AUDIT */