]> git.karo-electronics.de Git - karo-tx-linux.git/blob - security/security.c
Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/bwh/sfc...
[karo-tx-linux.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22
23 #define MAX_LSM_EVM_XATTR       2
24
25 /* Boot-time LSM user choice */
26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
27         CONFIG_DEFAULT_SECURITY;
28
29 static struct security_operations *security_ops;
30 static struct security_operations default_security_ops = {
31         .name   = "default",
32 };
33
34 static inline int __init verify(struct security_operations *ops)
35 {
36         /* verify the security_operations structure exists */
37         if (!ops)
38                 return -EINVAL;
39         security_fixup_ops(ops);
40         return 0;
41 }
42
43 static void __init do_security_initcalls(void)
44 {
45         initcall_t *call;
46         call = __security_initcall_start;
47         while (call < __security_initcall_end) {
48                 (*call) ();
49                 call++;
50         }
51 }
52
53 /**
54  * security_init - initializes the security framework
55  *
56  * This should be called early in the kernel initialization sequence.
57  */
58 int __init security_init(void)
59 {
60         printk(KERN_INFO "Security Framework initialized\n");
61
62         security_fixup_ops(&default_security_ops);
63         security_ops = &default_security_ops;
64         do_security_initcalls();
65
66         return 0;
67 }
68
69 void reset_security_ops(void)
70 {
71         security_ops = &default_security_ops;
72 }
73
74 /* Save user chosen LSM */
75 static int __init choose_lsm(char *str)
76 {
77         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
78         return 1;
79 }
80 __setup("security=", choose_lsm);
81
82 /**
83  * security_module_enable - Load given security module on boot ?
84  * @ops: a pointer to the struct security_operations that is to be checked.
85  *
86  * Each LSM must pass this method before registering its own operations
87  * to avoid security registration races. This method may also be used
88  * to check if your LSM is currently loaded during kernel initialization.
89  *
90  * Return true if:
91  *      -The passed LSM is the one chosen by user at boot time,
92  *      -or the passed LSM is configured as the default and the user did not
93  *       choose an alternate LSM at boot time.
94  * Otherwise, return false.
95  */
96 int __init security_module_enable(struct security_operations *ops)
97 {
98         return !strcmp(ops->name, chosen_lsm);
99 }
100
101 /**
102  * register_security - registers a security framework with the kernel
103  * @ops: a pointer to the struct security_options that is to be registered
104  *
105  * This function allows a security module to register itself with the
106  * kernel security subsystem.  Some rudimentary checking is done on the @ops
107  * value passed to this function. You'll need to check first if your LSM
108  * is allowed to register its @ops by calling security_module_enable(@ops).
109  *
110  * If there is already a security module registered with the kernel,
111  * an error will be returned.  Otherwise %0 is returned on success.
112  */
113 int __init register_security(struct security_operations *ops)
114 {
115         if (verify(ops)) {
116                 printk(KERN_DEBUG "%s could not verify "
117                        "security_operations structure.\n", __func__);
118                 return -EINVAL;
119         }
120
121         if (security_ops != &default_security_ops)
122                 return -EAGAIN;
123
124         security_ops = ops;
125
126         return 0;
127 }
128
129 /* Security operations */
130
131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
132 {
133         return security_ops->ptrace_access_check(child, mode);
134 }
135
136 int security_ptrace_traceme(struct task_struct *parent)
137 {
138         return security_ops->ptrace_traceme(parent);
139 }
140
141 int security_capget(struct task_struct *target,
142                      kernel_cap_t *effective,
143                      kernel_cap_t *inheritable,
144                      kernel_cap_t *permitted)
145 {
146         return security_ops->capget(target, effective, inheritable, permitted);
147 }
148
149 int security_capset(struct cred *new, const struct cred *old,
150                     const kernel_cap_t *effective,
151                     const kernel_cap_t *inheritable,
152                     const kernel_cap_t *permitted)
153 {
154         return security_ops->capset(new, old,
155                                     effective, inheritable, permitted);
156 }
157
158 int security_capable(const struct cred *cred, struct user_namespace *ns,
159                      int cap)
160 {
161         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
162 }
163
164 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
165                              int cap)
166 {
167         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
168 }
169
170 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
171 {
172         return security_ops->quotactl(cmds, type, id, sb);
173 }
174
175 int security_quota_on(struct dentry *dentry)
176 {
177         return security_ops->quota_on(dentry);
178 }
179
180 int security_syslog(int type)
181 {
182         return security_ops->syslog(type);
183 }
184
185 int security_settime(const struct timespec *ts, const struct timezone *tz)
186 {
187         return security_ops->settime(ts, tz);
188 }
189
190 int security_vm_enough_memory(long pages)
191 {
192         WARN_ON(current->mm == NULL);
193         return security_ops->vm_enough_memory(current->mm, pages);
194 }
195
196 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
197 {
198         WARN_ON(mm == NULL);
199         return security_ops->vm_enough_memory(mm, pages);
200 }
201
202 int security_vm_enough_memory_kern(long pages)
203 {
204         /* If current->mm is a kernel thread then we will pass NULL,
205            for this specific case that is fine */
206         return security_ops->vm_enough_memory(current->mm, pages);
207 }
208
209 int security_bprm_set_creds(struct linux_binprm *bprm)
210 {
211         return security_ops->bprm_set_creds(bprm);
212 }
213
214 int security_bprm_check(struct linux_binprm *bprm)
215 {
216         int ret;
217
218         ret = security_ops->bprm_check_security(bprm);
219         if (ret)
220                 return ret;
221         return ima_bprm_check(bprm);
222 }
223
224 void security_bprm_committing_creds(struct linux_binprm *bprm)
225 {
226         security_ops->bprm_committing_creds(bprm);
227 }
228
229 void security_bprm_committed_creds(struct linux_binprm *bprm)
230 {
231         security_ops->bprm_committed_creds(bprm);
232 }
233
234 int security_bprm_secureexec(struct linux_binprm *bprm)
235 {
236         return security_ops->bprm_secureexec(bprm);
237 }
238
239 int security_sb_alloc(struct super_block *sb)
240 {
241         return security_ops->sb_alloc_security(sb);
242 }
243
244 void security_sb_free(struct super_block *sb)
245 {
246         security_ops->sb_free_security(sb);
247 }
248
249 int security_sb_copy_data(char *orig, char *copy)
250 {
251         return security_ops->sb_copy_data(orig, copy);
252 }
253 EXPORT_SYMBOL(security_sb_copy_data);
254
255 int security_sb_remount(struct super_block *sb, void *data)
256 {
257         return security_ops->sb_remount(sb, data);
258 }
259
260 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
261 {
262         return security_ops->sb_kern_mount(sb, flags, data);
263 }
264
265 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
266 {
267         return security_ops->sb_show_options(m, sb);
268 }
269
270 int security_sb_statfs(struct dentry *dentry)
271 {
272         return security_ops->sb_statfs(dentry);
273 }
274
275 int security_sb_mount(char *dev_name, struct path *path,
276                        char *type, unsigned long flags, void *data)
277 {
278         return security_ops->sb_mount(dev_name, path, type, flags, data);
279 }
280
281 int security_sb_umount(struct vfsmount *mnt, int flags)
282 {
283         return security_ops->sb_umount(mnt, flags);
284 }
285
286 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
287 {
288         return security_ops->sb_pivotroot(old_path, new_path);
289 }
290
291 int security_sb_set_mnt_opts(struct super_block *sb,
292                                 struct security_mnt_opts *opts)
293 {
294         return security_ops->sb_set_mnt_opts(sb, opts);
295 }
296 EXPORT_SYMBOL(security_sb_set_mnt_opts);
297
298 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
299                                 struct super_block *newsb)
300 {
301         security_ops->sb_clone_mnt_opts(oldsb, newsb);
302 }
303 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
304
305 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
306 {
307         return security_ops->sb_parse_opts_str(options, opts);
308 }
309 EXPORT_SYMBOL(security_sb_parse_opts_str);
310
311 int security_inode_alloc(struct inode *inode)
312 {
313         inode->i_security = NULL;
314         return security_ops->inode_alloc_security(inode);
315 }
316
317 void security_inode_free(struct inode *inode)
318 {
319         integrity_inode_free(inode);
320         security_ops->inode_free_security(inode);
321 }
322
323 int security_inode_init_security(struct inode *inode, struct inode *dir,
324                                  const struct qstr *qstr,
325                                  const initxattrs initxattrs, void *fs_data)
326 {
327         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
328         struct xattr *lsm_xattr, *evm_xattr, *xattr;
329         int ret;
330
331         if (unlikely(IS_PRIVATE(inode)))
332                 return 0;
333
334         memset(new_xattrs, 0, sizeof new_xattrs);
335         if (!initxattrs)
336                 return security_ops->inode_init_security(inode, dir, qstr,
337                                                          NULL, NULL, NULL);
338         lsm_xattr = new_xattrs;
339         ret = security_ops->inode_init_security(inode, dir, qstr,
340                                                 &lsm_xattr->name,
341                                                 &lsm_xattr->value,
342                                                 &lsm_xattr->value_len);
343         if (ret)
344                 goto out;
345
346         evm_xattr = lsm_xattr + 1;
347         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
348         if (ret)
349                 goto out;
350         ret = initxattrs(inode, new_xattrs, fs_data);
351 out:
352         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
353                 kfree(xattr->name);
354                 kfree(xattr->value);
355         }
356         return (ret == -EOPNOTSUPP) ? 0 : ret;
357 }
358 EXPORT_SYMBOL(security_inode_init_security);
359
360 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
361                                      const struct qstr *qstr, char **name,
362                                      void **value, size_t *len)
363 {
364         if (unlikely(IS_PRIVATE(inode)))
365                 return -EOPNOTSUPP;
366         return security_ops->inode_init_security(inode, dir, qstr, name, value,
367                                                  len);
368 }
369 EXPORT_SYMBOL(security_old_inode_init_security);
370
371 #ifdef CONFIG_SECURITY_PATH
372 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
373                         unsigned int dev)
374 {
375         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376                 return 0;
377         return security_ops->path_mknod(dir, dentry, mode, dev);
378 }
379 EXPORT_SYMBOL(security_path_mknod);
380
381 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
382 {
383         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
384                 return 0;
385         return security_ops->path_mkdir(dir, dentry, mode);
386 }
387 EXPORT_SYMBOL(security_path_mkdir);
388
389 int security_path_rmdir(struct path *dir, struct dentry *dentry)
390 {
391         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
392                 return 0;
393         return security_ops->path_rmdir(dir, dentry);
394 }
395
396 int security_path_unlink(struct path *dir, struct dentry *dentry)
397 {
398         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399                 return 0;
400         return security_ops->path_unlink(dir, dentry);
401 }
402 EXPORT_SYMBOL(security_path_unlink);
403
404 int security_path_symlink(struct path *dir, struct dentry *dentry,
405                           const char *old_name)
406 {
407         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
408                 return 0;
409         return security_ops->path_symlink(dir, dentry, old_name);
410 }
411
412 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
413                        struct dentry *new_dentry)
414 {
415         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
416                 return 0;
417         return security_ops->path_link(old_dentry, new_dir, new_dentry);
418 }
419
420 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
421                          struct path *new_dir, struct dentry *new_dentry)
422 {
423         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
424                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
425                 return 0;
426         return security_ops->path_rename(old_dir, old_dentry, new_dir,
427                                          new_dentry);
428 }
429 EXPORT_SYMBOL(security_path_rename);
430
431 int security_path_truncate(struct path *path)
432 {
433         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
434                 return 0;
435         return security_ops->path_truncate(path);
436 }
437
438 int security_path_chmod(struct path *path, umode_t mode)
439 {
440         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
441                 return 0;
442         return security_ops->path_chmod(path, mode);
443 }
444
445 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
446 {
447         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
448                 return 0;
449         return security_ops->path_chown(path, uid, gid);
450 }
451
452 int security_path_chroot(struct path *path)
453 {
454         return security_ops->path_chroot(path);
455 }
456 #endif
457
458 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
459 {
460         if (unlikely(IS_PRIVATE(dir)))
461                 return 0;
462         return security_ops->inode_create(dir, dentry, mode);
463 }
464 EXPORT_SYMBOL_GPL(security_inode_create);
465
466 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
467                          struct dentry *new_dentry)
468 {
469         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
470                 return 0;
471         return security_ops->inode_link(old_dentry, dir, new_dentry);
472 }
473
474 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
475 {
476         if (unlikely(IS_PRIVATE(dentry->d_inode)))
477                 return 0;
478         return security_ops->inode_unlink(dir, dentry);
479 }
480
481 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
482                             const char *old_name)
483 {
484         if (unlikely(IS_PRIVATE(dir)))
485                 return 0;
486         return security_ops->inode_symlink(dir, dentry, old_name);
487 }
488
489 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
490 {
491         if (unlikely(IS_PRIVATE(dir)))
492                 return 0;
493         return security_ops->inode_mkdir(dir, dentry, mode);
494 }
495 EXPORT_SYMBOL_GPL(security_inode_mkdir);
496
497 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
498 {
499         if (unlikely(IS_PRIVATE(dentry->d_inode)))
500                 return 0;
501         return security_ops->inode_rmdir(dir, dentry);
502 }
503
504 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
505 {
506         if (unlikely(IS_PRIVATE(dir)))
507                 return 0;
508         return security_ops->inode_mknod(dir, dentry, mode, dev);
509 }
510
511 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
512                            struct inode *new_dir, struct dentry *new_dentry)
513 {
514         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
515             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
516                 return 0;
517         return security_ops->inode_rename(old_dir, old_dentry,
518                                            new_dir, new_dentry);
519 }
520
521 int security_inode_readlink(struct dentry *dentry)
522 {
523         if (unlikely(IS_PRIVATE(dentry->d_inode)))
524                 return 0;
525         return security_ops->inode_readlink(dentry);
526 }
527
528 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
529 {
530         if (unlikely(IS_PRIVATE(dentry->d_inode)))
531                 return 0;
532         return security_ops->inode_follow_link(dentry, nd);
533 }
534
535 int security_inode_permission(struct inode *inode, int mask)
536 {
537         if (unlikely(IS_PRIVATE(inode)))
538                 return 0;
539         return security_ops->inode_permission(inode, mask);
540 }
541
542 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
543 {
544         int ret;
545
546         if (unlikely(IS_PRIVATE(dentry->d_inode)))
547                 return 0;
548         ret = security_ops->inode_setattr(dentry, attr);
549         if (ret)
550                 return ret;
551         return evm_inode_setattr(dentry, attr);
552 }
553 EXPORT_SYMBOL_GPL(security_inode_setattr);
554
555 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
556 {
557         if (unlikely(IS_PRIVATE(dentry->d_inode)))
558                 return 0;
559         return security_ops->inode_getattr(mnt, dentry);
560 }
561
562 int security_inode_setxattr(struct dentry *dentry, const char *name,
563                             const void *value, size_t size, int flags)
564 {
565         int ret;
566
567         if (unlikely(IS_PRIVATE(dentry->d_inode)))
568                 return 0;
569         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
570         if (ret)
571                 return ret;
572         return evm_inode_setxattr(dentry, name, value, size);
573 }
574
575 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
576                                   const void *value, size_t size, int flags)
577 {
578         if (unlikely(IS_PRIVATE(dentry->d_inode)))
579                 return;
580         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
581         evm_inode_post_setxattr(dentry, name, value, size);
582 }
583
584 int security_inode_getxattr(struct dentry *dentry, const char *name)
585 {
586         if (unlikely(IS_PRIVATE(dentry->d_inode)))
587                 return 0;
588         return security_ops->inode_getxattr(dentry, name);
589 }
590
591 int security_inode_listxattr(struct dentry *dentry)
592 {
593         if (unlikely(IS_PRIVATE(dentry->d_inode)))
594                 return 0;
595         return security_ops->inode_listxattr(dentry);
596 }
597
598 int security_inode_removexattr(struct dentry *dentry, const char *name)
599 {
600         int ret;
601
602         if (unlikely(IS_PRIVATE(dentry->d_inode)))
603                 return 0;
604         ret = security_ops->inode_removexattr(dentry, name);
605         if (ret)
606                 return ret;
607         return evm_inode_removexattr(dentry, name);
608 }
609
610 int security_inode_need_killpriv(struct dentry *dentry)
611 {
612         return security_ops->inode_need_killpriv(dentry);
613 }
614
615 int security_inode_killpriv(struct dentry *dentry)
616 {
617         return security_ops->inode_killpriv(dentry);
618 }
619
620 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
621 {
622         if (unlikely(IS_PRIVATE(inode)))
623                 return -EOPNOTSUPP;
624         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
625 }
626
627 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
628 {
629         if (unlikely(IS_PRIVATE(inode)))
630                 return -EOPNOTSUPP;
631         return security_ops->inode_setsecurity(inode, name, value, size, flags);
632 }
633
634 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
635 {
636         if (unlikely(IS_PRIVATE(inode)))
637                 return 0;
638         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
639 }
640
641 void security_inode_getsecid(const struct inode *inode, u32 *secid)
642 {
643         security_ops->inode_getsecid(inode, secid);
644 }
645
646 int security_file_permission(struct file *file, int mask)
647 {
648         int ret;
649
650         ret = security_ops->file_permission(file, mask);
651         if (ret)
652                 return ret;
653
654         return fsnotify_perm(file, mask);
655 }
656
657 int security_file_alloc(struct file *file)
658 {
659         return security_ops->file_alloc_security(file);
660 }
661
662 void security_file_free(struct file *file)
663 {
664         security_ops->file_free_security(file);
665 }
666
667 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
668 {
669         return security_ops->file_ioctl(file, cmd, arg);
670 }
671
672 int security_file_mmap(struct file *file, unsigned long reqprot,
673                         unsigned long prot, unsigned long flags,
674                         unsigned long addr, unsigned long addr_only)
675 {
676         int ret;
677
678         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
679         if (ret)
680                 return ret;
681         return ima_file_mmap(file, prot);
682 }
683
684 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
685                             unsigned long prot)
686 {
687         return security_ops->file_mprotect(vma, reqprot, prot);
688 }
689
690 int security_file_lock(struct file *file, unsigned int cmd)
691 {
692         return security_ops->file_lock(file, cmd);
693 }
694
695 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
696 {
697         return security_ops->file_fcntl(file, cmd, arg);
698 }
699
700 int security_file_set_fowner(struct file *file)
701 {
702         return security_ops->file_set_fowner(file);
703 }
704
705 int security_file_send_sigiotask(struct task_struct *tsk,
706                                   struct fown_struct *fown, int sig)
707 {
708         return security_ops->file_send_sigiotask(tsk, fown, sig);
709 }
710
711 int security_file_receive(struct file *file)
712 {
713         return security_ops->file_receive(file);
714 }
715
716 int security_dentry_open(struct file *file, const struct cred *cred)
717 {
718         int ret;
719
720         ret = security_ops->dentry_open(file, cred);
721         if (ret)
722                 return ret;
723
724         return fsnotify_perm(file, MAY_OPEN);
725 }
726
727 int security_task_create(unsigned long clone_flags)
728 {
729         return security_ops->task_create(clone_flags);
730 }
731
732 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
733 {
734         return security_ops->cred_alloc_blank(cred, gfp);
735 }
736
737 void security_cred_free(struct cred *cred)
738 {
739         security_ops->cred_free(cred);
740 }
741
742 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
743 {
744         return security_ops->cred_prepare(new, old, gfp);
745 }
746
747 void security_transfer_creds(struct cred *new, const struct cred *old)
748 {
749         security_ops->cred_transfer(new, old);
750 }
751
752 int security_kernel_act_as(struct cred *new, u32 secid)
753 {
754         return security_ops->kernel_act_as(new, secid);
755 }
756
757 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
758 {
759         return security_ops->kernel_create_files_as(new, inode);
760 }
761
762 int security_kernel_module_request(char *kmod_name)
763 {
764         return security_ops->kernel_module_request(kmod_name);
765 }
766
767 int security_task_fix_setuid(struct cred *new, const struct cred *old,
768                              int flags)
769 {
770         return security_ops->task_fix_setuid(new, old, flags);
771 }
772
773 int security_task_setpgid(struct task_struct *p, pid_t pgid)
774 {
775         return security_ops->task_setpgid(p, pgid);
776 }
777
778 int security_task_getpgid(struct task_struct *p)
779 {
780         return security_ops->task_getpgid(p);
781 }
782
783 int security_task_getsid(struct task_struct *p)
784 {
785         return security_ops->task_getsid(p);
786 }
787
788 void security_task_getsecid(struct task_struct *p, u32 *secid)
789 {
790         security_ops->task_getsecid(p, secid);
791 }
792 EXPORT_SYMBOL(security_task_getsecid);
793
794 int security_task_setnice(struct task_struct *p, int nice)
795 {
796         return security_ops->task_setnice(p, nice);
797 }
798
799 int security_task_setioprio(struct task_struct *p, int ioprio)
800 {
801         return security_ops->task_setioprio(p, ioprio);
802 }
803
804 int security_task_getioprio(struct task_struct *p)
805 {
806         return security_ops->task_getioprio(p);
807 }
808
809 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
810                 struct rlimit *new_rlim)
811 {
812         return security_ops->task_setrlimit(p, resource, new_rlim);
813 }
814
815 int security_task_setscheduler(struct task_struct *p)
816 {
817         return security_ops->task_setscheduler(p);
818 }
819
820 int security_task_getscheduler(struct task_struct *p)
821 {
822         return security_ops->task_getscheduler(p);
823 }
824
825 int security_task_movememory(struct task_struct *p)
826 {
827         return security_ops->task_movememory(p);
828 }
829
830 int security_task_kill(struct task_struct *p, struct siginfo *info,
831                         int sig, u32 secid)
832 {
833         return security_ops->task_kill(p, info, sig, secid);
834 }
835
836 int security_task_wait(struct task_struct *p)
837 {
838         return security_ops->task_wait(p);
839 }
840
841 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
842                          unsigned long arg4, unsigned long arg5)
843 {
844         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
845 }
846
847 void security_task_to_inode(struct task_struct *p, struct inode *inode)
848 {
849         security_ops->task_to_inode(p, inode);
850 }
851
852 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
853 {
854         return security_ops->ipc_permission(ipcp, flag);
855 }
856
857 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
858 {
859         security_ops->ipc_getsecid(ipcp, secid);
860 }
861
862 int security_msg_msg_alloc(struct msg_msg *msg)
863 {
864         return security_ops->msg_msg_alloc_security(msg);
865 }
866
867 void security_msg_msg_free(struct msg_msg *msg)
868 {
869         security_ops->msg_msg_free_security(msg);
870 }
871
872 int security_msg_queue_alloc(struct msg_queue *msq)
873 {
874         return security_ops->msg_queue_alloc_security(msq);
875 }
876
877 void security_msg_queue_free(struct msg_queue *msq)
878 {
879         security_ops->msg_queue_free_security(msq);
880 }
881
882 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
883 {
884         return security_ops->msg_queue_associate(msq, msqflg);
885 }
886
887 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
888 {
889         return security_ops->msg_queue_msgctl(msq, cmd);
890 }
891
892 int security_msg_queue_msgsnd(struct msg_queue *msq,
893                                struct msg_msg *msg, int msqflg)
894 {
895         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
896 }
897
898 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
899                                struct task_struct *target, long type, int mode)
900 {
901         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
902 }
903
904 int security_shm_alloc(struct shmid_kernel *shp)
905 {
906         return security_ops->shm_alloc_security(shp);
907 }
908
909 void security_shm_free(struct shmid_kernel *shp)
910 {
911         security_ops->shm_free_security(shp);
912 }
913
914 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
915 {
916         return security_ops->shm_associate(shp, shmflg);
917 }
918
919 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
920 {
921         return security_ops->shm_shmctl(shp, cmd);
922 }
923
924 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
925 {
926         return security_ops->shm_shmat(shp, shmaddr, shmflg);
927 }
928
929 int security_sem_alloc(struct sem_array *sma)
930 {
931         return security_ops->sem_alloc_security(sma);
932 }
933
934 void security_sem_free(struct sem_array *sma)
935 {
936         security_ops->sem_free_security(sma);
937 }
938
939 int security_sem_associate(struct sem_array *sma, int semflg)
940 {
941         return security_ops->sem_associate(sma, semflg);
942 }
943
944 int security_sem_semctl(struct sem_array *sma, int cmd)
945 {
946         return security_ops->sem_semctl(sma, cmd);
947 }
948
949 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
950                         unsigned nsops, int alter)
951 {
952         return security_ops->sem_semop(sma, sops, nsops, alter);
953 }
954
955 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
956 {
957         if (unlikely(inode && IS_PRIVATE(inode)))
958                 return;
959         security_ops->d_instantiate(dentry, inode);
960 }
961 EXPORT_SYMBOL(security_d_instantiate);
962
963 int security_getprocattr(struct task_struct *p, char *name, char **value)
964 {
965         return security_ops->getprocattr(p, name, value);
966 }
967
968 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
969 {
970         return security_ops->setprocattr(p, name, value, size);
971 }
972
973 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
974 {
975         return security_ops->netlink_send(sk, skb);
976 }
977
978 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
979 {
980         return security_ops->secid_to_secctx(secid, secdata, seclen);
981 }
982 EXPORT_SYMBOL(security_secid_to_secctx);
983
984 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
985 {
986         return security_ops->secctx_to_secid(secdata, seclen, secid);
987 }
988 EXPORT_SYMBOL(security_secctx_to_secid);
989
990 void security_release_secctx(char *secdata, u32 seclen)
991 {
992         security_ops->release_secctx(secdata, seclen);
993 }
994 EXPORT_SYMBOL(security_release_secctx);
995
996 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
997 {
998         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
999 }
1000 EXPORT_SYMBOL(security_inode_notifysecctx);
1001
1002 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1003 {
1004         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1005 }
1006 EXPORT_SYMBOL(security_inode_setsecctx);
1007
1008 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1009 {
1010         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1011 }
1012 EXPORT_SYMBOL(security_inode_getsecctx);
1013
1014 #ifdef CONFIG_SECURITY_NETWORK
1015
1016 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1017 {
1018         return security_ops->unix_stream_connect(sock, other, newsk);
1019 }
1020 EXPORT_SYMBOL(security_unix_stream_connect);
1021
1022 int security_unix_may_send(struct socket *sock,  struct socket *other)
1023 {
1024         return security_ops->unix_may_send(sock, other);
1025 }
1026 EXPORT_SYMBOL(security_unix_may_send);
1027
1028 int security_socket_create(int family, int type, int protocol, int kern)
1029 {
1030         return security_ops->socket_create(family, type, protocol, kern);
1031 }
1032
1033 int security_socket_post_create(struct socket *sock, int family,
1034                                 int type, int protocol, int kern)
1035 {
1036         return security_ops->socket_post_create(sock, family, type,
1037                                                 protocol, kern);
1038 }
1039
1040 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1041 {
1042         return security_ops->socket_bind(sock, address, addrlen);
1043 }
1044
1045 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1046 {
1047         return security_ops->socket_connect(sock, address, addrlen);
1048 }
1049
1050 int security_socket_listen(struct socket *sock, int backlog)
1051 {
1052         return security_ops->socket_listen(sock, backlog);
1053 }
1054
1055 int security_socket_accept(struct socket *sock, struct socket *newsock)
1056 {
1057         return security_ops->socket_accept(sock, newsock);
1058 }
1059
1060 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1061 {
1062         return security_ops->socket_sendmsg(sock, msg, size);
1063 }
1064
1065 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1066                             int size, int flags)
1067 {
1068         return security_ops->socket_recvmsg(sock, msg, size, flags);
1069 }
1070
1071 int security_socket_getsockname(struct socket *sock)
1072 {
1073         return security_ops->socket_getsockname(sock);
1074 }
1075
1076 int security_socket_getpeername(struct socket *sock)
1077 {
1078         return security_ops->socket_getpeername(sock);
1079 }
1080
1081 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1082 {
1083         return security_ops->socket_getsockopt(sock, level, optname);
1084 }
1085
1086 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1087 {
1088         return security_ops->socket_setsockopt(sock, level, optname);
1089 }
1090
1091 int security_socket_shutdown(struct socket *sock, int how)
1092 {
1093         return security_ops->socket_shutdown(sock, how);
1094 }
1095
1096 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1097 {
1098         return security_ops->socket_sock_rcv_skb(sk, skb);
1099 }
1100 EXPORT_SYMBOL(security_sock_rcv_skb);
1101
1102 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1103                                       int __user *optlen, unsigned len)
1104 {
1105         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1106 }
1107
1108 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1109 {
1110         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1111 }
1112 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1113
1114 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1115 {
1116         return security_ops->sk_alloc_security(sk, family, priority);
1117 }
1118
1119 void security_sk_free(struct sock *sk)
1120 {
1121         security_ops->sk_free_security(sk);
1122 }
1123
1124 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1125 {
1126         security_ops->sk_clone_security(sk, newsk);
1127 }
1128 EXPORT_SYMBOL(security_sk_clone);
1129
1130 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1131 {
1132         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1133 }
1134 EXPORT_SYMBOL(security_sk_classify_flow);
1135
1136 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1137 {
1138         security_ops->req_classify_flow(req, fl);
1139 }
1140 EXPORT_SYMBOL(security_req_classify_flow);
1141
1142 void security_sock_graft(struct sock *sk, struct socket *parent)
1143 {
1144         security_ops->sock_graft(sk, parent);
1145 }
1146 EXPORT_SYMBOL(security_sock_graft);
1147
1148 int security_inet_conn_request(struct sock *sk,
1149                         struct sk_buff *skb, struct request_sock *req)
1150 {
1151         return security_ops->inet_conn_request(sk, skb, req);
1152 }
1153 EXPORT_SYMBOL(security_inet_conn_request);
1154
1155 void security_inet_csk_clone(struct sock *newsk,
1156                         const struct request_sock *req)
1157 {
1158         security_ops->inet_csk_clone(newsk, req);
1159 }
1160
1161 void security_inet_conn_established(struct sock *sk,
1162                         struct sk_buff *skb)
1163 {
1164         security_ops->inet_conn_established(sk, skb);
1165 }
1166
1167 int security_secmark_relabel_packet(u32 secid)
1168 {
1169         return security_ops->secmark_relabel_packet(secid);
1170 }
1171 EXPORT_SYMBOL(security_secmark_relabel_packet);
1172
1173 void security_secmark_refcount_inc(void)
1174 {
1175         security_ops->secmark_refcount_inc();
1176 }
1177 EXPORT_SYMBOL(security_secmark_refcount_inc);
1178
1179 void security_secmark_refcount_dec(void)
1180 {
1181         security_ops->secmark_refcount_dec();
1182 }
1183 EXPORT_SYMBOL(security_secmark_refcount_dec);
1184
1185 int security_tun_dev_create(void)
1186 {
1187         return security_ops->tun_dev_create();
1188 }
1189 EXPORT_SYMBOL(security_tun_dev_create);
1190
1191 void security_tun_dev_post_create(struct sock *sk)
1192 {
1193         return security_ops->tun_dev_post_create(sk);
1194 }
1195 EXPORT_SYMBOL(security_tun_dev_post_create);
1196
1197 int security_tun_dev_attach(struct sock *sk)
1198 {
1199         return security_ops->tun_dev_attach(sk);
1200 }
1201 EXPORT_SYMBOL(security_tun_dev_attach);
1202
1203 #endif  /* CONFIG_SECURITY_NETWORK */
1204
1205 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1206
1207 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1208 {
1209         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1210 }
1211 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1212
1213 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1214                               struct xfrm_sec_ctx **new_ctxp)
1215 {
1216         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1217 }
1218
1219 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1220 {
1221         security_ops->xfrm_policy_free_security(ctx);
1222 }
1223 EXPORT_SYMBOL(security_xfrm_policy_free);
1224
1225 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1226 {
1227         return security_ops->xfrm_policy_delete_security(ctx);
1228 }
1229
1230 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1231 {
1232         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1233 }
1234 EXPORT_SYMBOL(security_xfrm_state_alloc);
1235
1236 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1237                                       struct xfrm_sec_ctx *polsec, u32 secid)
1238 {
1239         if (!polsec)
1240                 return 0;
1241         /*
1242          * We want the context to be taken from secid which is usually
1243          * from the sock.
1244          */
1245         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1246 }
1247
1248 int security_xfrm_state_delete(struct xfrm_state *x)
1249 {
1250         return security_ops->xfrm_state_delete_security(x);
1251 }
1252 EXPORT_SYMBOL(security_xfrm_state_delete);
1253
1254 void security_xfrm_state_free(struct xfrm_state *x)
1255 {
1256         security_ops->xfrm_state_free_security(x);
1257 }
1258
1259 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1260 {
1261         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1262 }
1263
1264 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1265                                        struct xfrm_policy *xp,
1266                                        const struct flowi *fl)
1267 {
1268         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1269 }
1270
1271 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1272 {
1273         return security_ops->xfrm_decode_session(skb, secid, 1);
1274 }
1275
1276 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1277 {
1278         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1279
1280         BUG_ON(rc);
1281 }
1282 EXPORT_SYMBOL(security_skb_classify_flow);
1283
1284 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1285
1286 #ifdef CONFIG_KEYS
1287
1288 int security_key_alloc(struct key *key, const struct cred *cred,
1289                        unsigned long flags)
1290 {
1291         return security_ops->key_alloc(key, cred, flags);
1292 }
1293
1294 void security_key_free(struct key *key)
1295 {
1296         security_ops->key_free(key);
1297 }
1298
1299 int security_key_permission(key_ref_t key_ref,
1300                             const struct cred *cred, key_perm_t perm)
1301 {
1302         return security_ops->key_permission(key_ref, cred, perm);
1303 }
1304
1305 int security_key_getsecurity(struct key *key, char **_buffer)
1306 {
1307         return security_ops->key_getsecurity(key, _buffer);
1308 }
1309
1310 #endif  /* CONFIG_KEYS */
1311
1312 #ifdef CONFIG_AUDIT
1313
1314 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1315 {
1316         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1317 }
1318
1319 int security_audit_rule_known(struct audit_krule *krule)
1320 {
1321         return security_ops->audit_rule_known(krule);
1322 }
1323
1324 void security_audit_rule_free(void *lsmrule)
1325 {
1326         security_ops->audit_rule_free(lsmrule);
1327 }
1328
1329 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1330                               struct audit_context *actx)
1331 {
1332         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1333 }
1334
1335 #endif /* CONFIG_AUDIT */