]> git.karo-electronics.de Git - karo-tx-linux.git/blob - security/security.c
take security_mmap_file() outside of ->mmap_sem
[karo-tx-linux.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <net/flow.h>
27
28 #define MAX_LSM_EVM_XATTR       2
29
30 /* Boot-time LSM user choice */
31 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
32         CONFIG_DEFAULT_SECURITY;
33
34 static struct security_operations *security_ops;
35 static struct security_operations default_security_ops = {
36         .name   = "default",
37 };
38
39 static inline int __init verify(struct security_operations *ops)
40 {
41         /* verify the security_operations structure exists */
42         if (!ops)
43                 return -EINVAL;
44         security_fixup_ops(ops);
45         return 0;
46 }
47
48 static void __init do_security_initcalls(void)
49 {
50         initcall_t *call;
51         call = __security_initcall_start;
52         while (call < __security_initcall_end) {
53                 (*call) ();
54                 call++;
55         }
56 }
57
58 /**
59  * security_init - initializes the security framework
60  *
61  * This should be called early in the kernel initialization sequence.
62  */
63 int __init security_init(void)
64 {
65         printk(KERN_INFO "Security Framework initialized\n");
66
67         security_fixup_ops(&default_security_ops);
68         security_ops = &default_security_ops;
69         do_security_initcalls();
70
71         return 0;
72 }
73
74 void reset_security_ops(void)
75 {
76         security_ops = &default_security_ops;
77 }
78
79 /* Save user chosen LSM */
80 static int __init choose_lsm(char *str)
81 {
82         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
83         return 1;
84 }
85 __setup("security=", choose_lsm);
86
87 /**
88  * security_module_enable - Load given security module on boot ?
89  * @ops: a pointer to the struct security_operations that is to be checked.
90  *
91  * Each LSM must pass this method before registering its own operations
92  * to avoid security registration races. This method may also be used
93  * to check if your LSM is currently loaded during kernel initialization.
94  *
95  * Return true if:
96  *      -The passed LSM is the one chosen by user at boot time,
97  *      -or the passed LSM is configured as the default and the user did not
98  *       choose an alternate LSM at boot time.
99  * Otherwise, return false.
100  */
101 int __init security_module_enable(struct security_operations *ops)
102 {
103         return !strcmp(ops->name, chosen_lsm);
104 }
105
106 /**
107  * register_security - registers a security framework with the kernel
108  * @ops: a pointer to the struct security_options that is to be registered
109  *
110  * This function allows a security module to register itself with the
111  * kernel security subsystem.  Some rudimentary checking is done on the @ops
112  * value passed to this function. You'll need to check first if your LSM
113  * is allowed to register its @ops by calling security_module_enable(@ops).
114  *
115  * If there is already a security module registered with the kernel,
116  * an error will be returned.  Otherwise %0 is returned on success.
117  */
118 int __init register_security(struct security_operations *ops)
119 {
120         if (verify(ops)) {
121                 printk(KERN_DEBUG "%s could not verify "
122                        "security_operations structure.\n", __func__);
123                 return -EINVAL;
124         }
125
126         if (security_ops != &default_security_ops)
127                 return -EAGAIN;
128
129         security_ops = ops;
130
131         return 0;
132 }
133
134 /* Security operations */
135
136 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
137 {
138         return security_ops->ptrace_access_check(child, mode);
139 }
140
141 int security_ptrace_traceme(struct task_struct *parent)
142 {
143         return security_ops->ptrace_traceme(parent);
144 }
145
146 int security_capget(struct task_struct *target,
147                      kernel_cap_t *effective,
148                      kernel_cap_t *inheritable,
149                      kernel_cap_t *permitted)
150 {
151         return security_ops->capget(target, effective, inheritable, permitted);
152 }
153
154 int security_capset(struct cred *new, const struct cred *old,
155                     const kernel_cap_t *effective,
156                     const kernel_cap_t *inheritable,
157                     const kernel_cap_t *permitted)
158 {
159         return security_ops->capset(new, old,
160                                     effective, inheritable, permitted);
161 }
162
163 int security_capable(const struct cred *cred, struct user_namespace *ns,
164                      int cap)
165 {
166         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
167 }
168
169 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
170                              int cap)
171 {
172         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
173 }
174
175 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
176 {
177         return security_ops->quotactl(cmds, type, id, sb);
178 }
179
180 int security_quota_on(struct dentry *dentry)
181 {
182         return security_ops->quota_on(dentry);
183 }
184
185 int security_syslog(int type)
186 {
187         return security_ops->syslog(type);
188 }
189
190 int security_settime(const struct timespec *ts, const struct timezone *tz)
191 {
192         return security_ops->settime(ts, tz);
193 }
194
195 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
196 {
197         return security_ops->vm_enough_memory(mm, pages);
198 }
199
200 int security_bprm_set_creds(struct linux_binprm *bprm)
201 {
202         return security_ops->bprm_set_creds(bprm);
203 }
204
205 int security_bprm_check(struct linux_binprm *bprm)
206 {
207         int ret;
208
209         ret = security_ops->bprm_check_security(bprm);
210         if (ret)
211                 return ret;
212         return ima_bprm_check(bprm);
213 }
214
215 void security_bprm_committing_creds(struct linux_binprm *bprm)
216 {
217         security_ops->bprm_committing_creds(bprm);
218 }
219
220 void security_bprm_committed_creds(struct linux_binprm *bprm)
221 {
222         security_ops->bprm_committed_creds(bprm);
223 }
224
225 int security_bprm_secureexec(struct linux_binprm *bprm)
226 {
227         return security_ops->bprm_secureexec(bprm);
228 }
229
230 int security_sb_alloc(struct super_block *sb)
231 {
232         return security_ops->sb_alloc_security(sb);
233 }
234
235 void security_sb_free(struct super_block *sb)
236 {
237         security_ops->sb_free_security(sb);
238 }
239
240 int security_sb_copy_data(char *orig, char *copy)
241 {
242         return security_ops->sb_copy_data(orig, copy);
243 }
244 EXPORT_SYMBOL(security_sb_copy_data);
245
246 int security_sb_remount(struct super_block *sb, void *data)
247 {
248         return security_ops->sb_remount(sb, data);
249 }
250
251 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
252 {
253         return security_ops->sb_kern_mount(sb, flags, data);
254 }
255
256 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
257 {
258         return security_ops->sb_show_options(m, sb);
259 }
260
261 int security_sb_statfs(struct dentry *dentry)
262 {
263         return security_ops->sb_statfs(dentry);
264 }
265
266 int security_sb_mount(char *dev_name, struct path *path,
267                        char *type, unsigned long flags, void *data)
268 {
269         return security_ops->sb_mount(dev_name, path, type, flags, data);
270 }
271
272 int security_sb_umount(struct vfsmount *mnt, int flags)
273 {
274         return security_ops->sb_umount(mnt, flags);
275 }
276
277 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
278 {
279         return security_ops->sb_pivotroot(old_path, new_path);
280 }
281
282 int security_sb_set_mnt_opts(struct super_block *sb,
283                                 struct security_mnt_opts *opts)
284 {
285         return security_ops->sb_set_mnt_opts(sb, opts);
286 }
287 EXPORT_SYMBOL(security_sb_set_mnt_opts);
288
289 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
290                                 struct super_block *newsb)
291 {
292         security_ops->sb_clone_mnt_opts(oldsb, newsb);
293 }
294 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
295
296 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
297 {
298         return security_ops->sb_parse_opts_str(options, opts);
299 }
300 EXPORT_SYMBOL(security_sb_parse_opts_str);
301
302 int security_inode_alloc(struct inode *inode)
303 {
304         inode->i_security = NULL;
305         return security_ops->inode_alloc_security(inode);
306 }
307
308 void security_inode_free(struct inode *inode)
309 {
310         integrity_inode_free(inode);
311         security_ops->inode_free_security(inode);
312 }
313
314 int security_inode_init_security(struct inode *inode, struct inode *dir,
315                                  const struct qstr *qstr,
316                                  const initxattrs initxattrs, void *fs_data)
317 {
318         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
319         struct xattr *lsm_xattr, *evm_xattr, *xattr;
320         int ret;
321
322         if (unlikely(IS_PRIVATE(inode)))
323                 return 0;
324
325         memset(new_xattrs, 0, sizeof new_xattrs);
326         if (!initxattrs)
327                 return security_ops->inode_init_security(inode, dir, qstr,
328                                                          NULL, NULL, NULL);
329         lsm_xattr = new_xattrs;
330         ret = security_ops->inode_init_security(inode, dir, qstr,
331                                                 &lsm_xattr->name,
332                                                 &lsm_xattr->value,
333                                                 &lsm_xattr->value_len);
334         if (ret)
335                 goto out;
336
337         evm_xattr = lsm_xattr + 1;
338         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
339         if (ret)
340                 goto out;
341         ret = initxattrs(inode, new_xattrs, fs_data);
342 out:
343         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
344                 kfree(xattr->name);
345                 kfree(xattr->value);
346         }
347         return (ret == -EOPNOTSUPP) ? 0 : ret;
348 }
349 EXPORT_SYMBOL(security_inode_init_security);
350
351 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
352                                      const struct qstr *qstr, char **name,
353                                      void **value, size_t *len)
354 {
355         if (unlikely(IS_PRIVATE(inode)))
356                 return -EOPNOTSUPP;
357         return security_ops->inode_init_security(inode, dir, qstr, name, value,
358                                                  len);
359 }
360 EXPORT_SYMBOL(security_old_inode_init_security);
361
362 #ifdef CONFIG_SECURITY_PATH
363 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
364                         unsigned int dev)
365 {
366         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
367                 return 0;
368         return security_ops->path_mknod(dir, dentry, mode, dev);
369 }
370 EXPORT_SYMBOL(security_path_mknod);
371
372 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
373 {
374         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
375                 return 0;
376         return security_ops->path_mkdir(dir, dentry, mode);
377 }
378 EXPORT_SYMBOL(security_path_mkdir);
379
380 int security_path_rmdir(struct path *dir, struct dentry *dentry)
381 {
382         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
383                 return 0;
384         return security_ops->path_rmdir(dir, dentry);
385 }
386
387 int security_path_unlink(struct path *dir, struct dentry *dentry)
388 {
389         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390                 return 0;
391         return security_ops->path_unlink(dir, dentry);
392 }
393 EXPORT_SYMBOL(security_path_unlink);
394
395 int security_path_symlink(struct path *dir, struct dentry *dentry,
396                           const char *old_name)
397 {
398         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399                 return 0;
400         return security_ops->path_symlink(dir, dentry, old_name);
401 }
402
403 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
404                        struct dentry *new_dentry)
405 {
406         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
407                 return 0;
408         return security_ops->path_link(old_dentry, new_dir, new_dentry);
409 }
410
411 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
412                          struct path *new_dir, struct dentry *new_dentry)
413 {
414         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
415                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
416                 return 0;
417         return security_ops->path_rename(old_dir, old_dentry, new_dir,
418                                          new_dentry);
419 }
420 EXPORT_SYMBOL(security_path_rename);
421
422 int security_path_truncate(struct path *path)
423 {
424         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
425                 return 0;
426         return security_ops->path_truncate(path);
427 }
428
429 int security_path_chmod(struct path *path, umode_t mode)
430 {
431         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
432                 return 0;
433         return security_ops->path_chmod(path, mode);
434 }
435
436 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
437 {
438         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
439                 return 0;
440         return security_ops->path_chown(path, uid, gid);
441 }
442
443 int security_path_chroot(struct path *path)
444 {
445         return security_ops->path_chroot(path);
446 }
447 #endif
448
449 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
450 {
451         if (unlikely(IS_PRIVATE(dir)))
452                 return 0;
453         return security_ops->inode_create(dir, dentry, mode);
454 }
455 EXPORT_SYMBOL_GPL(security_inode_create);
456
457 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
458                          struct dentry *new_dentry)
459 {
460         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
461                 return 0;
462         return security_ops->inode_link(old_dentry, dir, new_dentry);
463 }
464
465 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
466 {
467         if (unlikely(IS_PRIVATE(dentry->d_inode)))
468                 return 0;
469         return security_ops->inode_unlink(dir, dentry);
470 }
471
472 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
473                             const char *old_name)
474 {
475         if (unlikely(IS_PRIVATE(dir)))
476                 return 0;
477         return security_ops->inode_symlink(dir, dentry, old_name);
478 }
479
480 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
481 {
482         if (unlikely(IS_PRIVATE(dir)))
483                 return 0;
484         return security_ops->inode_mkdir(dir, dentry, mode);
485 }
486 EXPORT_SYMBOL_GPL(security_inode_mkdir);
487
488 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
489 {
490         if (unlikely(IS_PRIVATE(dentry->d_inode)))
491                 return 0;
492         return security_ops->inode_rmdir(dir, dentry);
493 }
494
495 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
496 {
497         if (unlikely(IS_PRIVATE(dir)))
498                 return 0;
499         return security_ops->inode_mknod(dir, dentry, mode, dev);
500 }
501
502 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
503                            struct inode *new_dir, struct dentry *new_dentry)
504 {
505         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
506             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
507                 return 0;
508         return security_ops->inode_rename(old_dir, old_dentry,
509                                            new_dir, new_dentry);
510 }
511
512 int security_inode_readlink(struct dentry *dentry)
513 {
514         if (unlikely(IS_PRIVATE(dentry->d_inode)))
515                 return 0;
516         return security_ops->inode_readlink(dentry);
517 }
518
519 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
520 {
521         if (unlikely(IS_PRIVATE(dentry->d_inode)))
522                 return 0;
523         return security_ops->inode_follow_link(dentry, nd);
524 }
525
526 int security_inode_permission(struct inode *inode, int mask)
527 {
528         if (unlikely(IS_PRIVATE(inode)))
529                 return 0;
530         return security_ops->inode_permission(inode, mask);
531 }
532
533 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535         int ret;
536
537         if (unlikely(IS_PRIVATE(dentry->d_inode)))
538                 return 0;
539         ret = security_ops->inode_setattr(dentry, attr);
540         if (ret)
541                 return ret;
542         return evm_inode_setattr(dentry, attr);
543 }
544 EXPORT_SYMBOL_GPL(security_inode_setattr);
545
546 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
547 {
548         if (unlikely(IS_PRIVATE(dentry->d_inode)))
549                 return 0;
550         return security_ops->inode_getattr(mnt, dentry);
551 }
552
553 int security_inode_setxattr(struct dentry *dentry, const char *name,
554                             const void *value, size_t size, int flags)
555 {
556         int ret;
557
558         if (unlikely(IS_PRIVATE(dentry->d_inode)))
559                 return 0;
560         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
561         if (ret)
562                 return ret;
563         return evm_inode_setxattr(dentry, name, value, size);
564 }
565
566 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
567                                   const void *value, size_t size, int flags)
568 {
569         if (unlikely(IS_PRIVATE(dentry->d_inode)))
570                 return;
571         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
572         evm_inode_post_setxattr(dentry, name, value, size);
573 }
574
575 int security_inode_getxattr(struct dentry *dentry, const char *name)
576 {
577         if (unlikely(IS_PRIVATE(dentry->d_inode)))
578                 return 0;
579         return security_ops->inode_getxattr(dentry, name);
580 }
581
582 int security_inode_listxattr(struct dentry *dentry)
583 {
584         if (unlikely(IS_PRIVATE(dentry->d_inode)))
585                 return 0;
586         return security_ops->inode_listxattr(dentry);
587 }
588
589 int security_inode_removexattr(struct dentry *dentry, const char *name)
590 {
591         int ret;
592
593         if (unlikely(IS_PRIVATE(dentry->d_inode)))
594                 return 0;
595         ret = security_ops->inode_removexattr(dentry, name);
596         if (ret)
597                 return ret;
598         return evm_inode_removexattr(dentry, name);
599 }
600
601 int security_inode_need_killpriv(struct dentry *dentry)
602 {
603         return security_ops->inode_need_killpriv(dentry);
604 }
605
606 int security_inode_killpriv(struct dentry *dentry)
607 {
608         return security_ops->inode_killpriv(dentry);
609 }
610
611 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
612 {
613         if (unlikely(IS_PRIVATE(inode)))
614                 return -EOPNOTSUPP;
615         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
616 }
617
618 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
619 {
620         if (unlikely(IS_PRIVATE(inode)))
621                 return -EOPNOTSUPP;
622         return security_ops->inode_setsecurity(inode, name, value, size, flags);
623 }
624
625 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
626 {
627         if (unlikely(IS_PRIVATE(inode)))
628                 return 0;
629         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
630 }
631
632 void security_inode_getsecid(const struct inode *inode, u32 *secid)
633 {
634         security_ops->inode_getsecid(inode, secid);
635 }
636
637 int security_file_permission(struct file *file, int mask)
638 {
639         int ret;
640
641         ret = security_ops->file_permission(file, mask);
642         if (ret)
643                 return ret;
644
645         return fsnotify_perm(file, mask);
646 }
647
648 int security_file_alloc(struct file *file)
649 {
650         return security_ops->file_alloc_security(file);
651 }
652
653 void security_file_free(struct file *file)
654 {
655         security_ops->file_free_security(file);
656 }
657
658 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
659 {
660         return security_ops->file_ioctl(file, cmd, arg);
661 }
662
663 int security_mmap_file(struct file *file, unsigned long prot,
664                         unsigned long flags)
665 {
666         unsigned long reqprot = prot;
667         int ret;
668         /*
669          * Does the application expect PROT_READ to imply PROT_EXEC?
670          *
671          * (the exception is when the underlying filesystem is noexec
672          *  mounted, in which case we dont add PROT_EXEC.)
673          */
674         if (!(reqprot & PROT_READ))
675                 goto out;
676         if (!(current->personality & READ_IMPLIES_EXEC))
677                 goto out;
678         if (!file) {
679                 prot |= PROT_EXEC;
680         } else if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
681 #ifndef CONFIG_MMU
682                 unsigned long caps = 0;
683                 struct address_space *mapping = file->f_mapping;
684                 if (mapping && mapping->backing_dev_info)
685                         caps = mapping->backing_dev_info->capabilities;
686                 if (!(caps & BDI_CAP_EXEC_MAP))
687                         goto out;
688 #endif
689                 prot |= PROT_EXEC;
690         }
691 out:
692         ret = security_ops->mmap_file(file, reqprot, prot, flags);
693         if (ret)
694                 return ret;
695         return ima_file_mmap(file, prot);
696 }
697
698 int security_mmap_addr(unsigned long addr)
699 {
700         return security_ops->mmap_addr(addr);
701 }
702
703 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
704                             unsigned long prot)
705 {
706         return security_ops->file_mprotect(vma, reqprot, prot);
707 }
708
709 int security_file_lock(struct file *file, unsigned int cmd)
710 {
711         return security_ops->file_lock(file, cmd);
712 }
713
714 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
715 {
716         return security_ops->file_fcntl(file, cmd, arg);
717 }
718
719 int security_file_set_fowner(struct file *file)
720 {
721         return security_ops->file_set_fowner(file);
722 }
723
724 int security_file_send_sigiotask(struct task_struct *tsk,
725                                   struct fown_struct *fown, int sig)
726 {
727         return security_ops->file_send_sigiotask(tsk, fown, sig);
728 }
729
730 int security_file_receive(struct file *file)
731 {
732         return security_ops->file_receive(file);
733 }
734
735 int security_file_open(struct file *file, const struct cred *cred)
736 {
737         int ret;
738
739         ret = security_ops->file_open(file, cred);
740         if (ret)
741                 return ret;
742
743         return fsnotify_perm(file, MAY_OPEN);
744 }
745
746 int security_task_create(unsigned long clone_flags)
747 {
748         return security_ops->task_create(clone_flags);
749 }
750
751 void security_task_free(struct task_struct *task)
752 {
753         security_ops->task_free(task);
754 }
755
756 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
757 {
758         return security_ops->cred_alloc_blank(cred, gfp);
759 }
760
761 void security_cred_free(struct cred *cred)
762 {
763         security_ops->cred_free(cred);
764 }
765
766 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
767 {
768         return security_ops->cred_prepare(new, old, gfp);
769 }
770
771 void security_transfer_creds(struct cred *new, const struct cred *old)
772 {
773         security_ops->cred_transfer(new, old);
774 }
775
776 int security_kernel_act_as(struct cred *new, u32 secid)
777 {
778         return security_ops->kernel_act_as(new, secid);
779 }
780
781 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
782 {
783         return security_ops->kernel_create_files_as(new, inode);
784 }
785
786 int security_kernel_module_request(char *kmod_name)
787 {
788         return security_ops->kernel_module_request(kmod_name);
789 }
790
791 int security_task_fix_setuid(struct cred *new, const struct cred *old,
792                              int flags)
793 {
794         return security_ops->task_fix_setuid(new, old, flags);
795 }
796
797 int security_task_setpgid(struct task_struct *p, pid_t pgid)
798 {
799         return security_ops->task_setpgid(p, pgid);
800 }
801
802 int security_task_getpgid(struct task_struct *p)
803 {
804         return security_ops->task_getpgid(p);
805 }
806
807 int security_task_getsid(struct task_struct *p)
808 {
809         return security_ops->task_getsid(p);
810 }
811
812 void security_task_getsecid(struct task_struct *p, u32 *secid)
813 {
814         security_ops->task_getsecid(p, secid);
815 }
816 EXPORT_SYMBOL(security_task_getsecid);
817
818 int security_task_setnice(struct task_struct *p, int nice)
819 {
820         return security_ops->task_setnice(p, nice);
821 }
822
823 int security_task_setioprio(struct task_struct *p, int ioprio)
824 {
825         return security_ops->task_setioprio(p, ioprio);
826 }
827
828 int security_task_getioprio(struct task_struct *p)
829 {
830         return security_ops->task_getioprio(p);
831 }
832
833 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
834                 struct rlimit *new_rlim)
835 {
836         return security_ops->task_setrlimit(p, resource, new_rlim);
837 }
838
839 int security_task_setscheduler(struct task_struct *p)
840 {
841         return security_ops->task_setscheduler(p);
842 }
843
844 int security_task_getscheduler(struct task_struct *p)
845 {
846         return security_ops->task_getscheduler(p);
847 }
848
849 int security_task_movememory(struct task_struct *p)
850 {
851         return security_ops->task_movememory(p);
852 }
853
854 int security_task_kill(struct task_struct *p, struct siginfo *info,
855                         int sig, u32 secid)
856 {
857         return security_ops->task_kill(p, info, sig, secid);
858 }
859
860 int security_task_wait(struct task_struct *p)
861 {
862         return security_ops->task_wait(p);
863 }
864
865 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
866                          unsigned long arg4, unsigned long arg5)
867 {
868         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
869 }
870
871 void security_task_to_inode(struct task_struct *p, struct inode *inode)
872 {
873         security_ops->task_to_inode(p, inode);
874 }
875
876 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
877 {
878         return security_ops->ipc_permission(ipcp, flag);
879 }
880
881 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
882 {
883         security_ops->ipc_getsecid(ipcp, secid);
884 }
885
886 int security_msg_msg_alloc(struct msg_msg *msg)
887 {
888         return security_ops->msg_msg_alloc_security(msg);
889 }
890
891 void security_msg_msg_free(struct msg_msg *msg)
892 {
893         security_ops->msg_msg_free_security(msg);
894 }
895
896 int security_msg_queue_alloc(struct msg_queue *msq)
897 {
898         return security_ops->msg_queue_alloc_security(msq);
899 }
900
901 void security_msg_queue_free(struct msg_queue *msq)
902 {
903         security_ops->msg_queue_free_security(msq);
904 }
905
906 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
907 {
908         return security_ops->msg_queue_associate(msq, msqflg);
909 }
910
911 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
912 {
913         return security_ops->msg_queue_msgctl(msq, cmd);
914 }
915
916 int security_msg_queue_msgsnd(struct msg_queue *msq,
917                                struct msg_msg *msg, int msqflg)
918 {
919         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
920 }
921
922 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
923                                struct task_struct *target, long type, int mode)
924 {
925         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
926 }
927
928 int security_shm_alloc(struct shmid_kernel *shp)
929 {
930         return security_ops->shm_alloc_security(shp);
931 }
932
933 void security_shm_free(struct shmid_kernel *shp)
934 {
935         security_ops->shm_free_security(shp);
936 }
937
938 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
939 {
940         return security_ops->shm_associate(shp, shmflg);
941 }
942
943 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
944 {
945         return security_ops->shm_shmctl(shp, cmd);
946 }
947
948 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
949 {
950         return security_ops->shm_shmat(shp, shmaddr, shmflg);
951 }
952
953 int security_sem_alloc(struct sem_array *sma)
954 {
955         return security_ops->sem_alloc_security(sma);
956 }
957
958 void security_sem_free(struct sem_array *sma)
959 {
960         security_ops->sem_free_security(sma);
961 }
962
963 int security_sem_associate(struct sem_array *sma, int semflg)
964 {
965         return security_ops->sem_associate(sma, semflg);
966 }
967
968 int security_sem_semctl(struct sem_array *sma, int cmd)
969 {
970         return security_ops->sem_semctl(sma, cmd);
971 }
972
973 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
974                         unsigned nsops, int alter)
975 {
976         return security_ops->sem_semop(sma, sops, nsops, alter);
977 }
978
979 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
980 {
981         if (unlikely(inode && IS_PRIVATE(inode)))
982                 return;
983         security_ops->d_instantiate(dentry, inode);
984 }
985 EXPORT_SYMBOL(security_d_instantiate);
986
987 int security_getprocattr(struct task_struct *p, char *name, char **value)
988 {
989         return security_ops->getprocattr(p, name, value);
990 }
991
992 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
993 {
994         return security_ops->setprocattr(p, name, value, size);
995 }
996
997 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
998 {
999         return security_ops->netlink_send(sk, skb);
1000 }
1001
1002 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1003 {
1004         return security_ops->secid_to_secctx(secid, secdata, seclen);
1005 }
1006 EXPORT_SYMBOL(security_secid_to_secctx);
1007
1008 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1009 {
1010         return security_ops->secctx_to_secid(secdata, seclen, secid);
1011 }
1012 EXPORT_SYMBOL(security_secctx_to_secid);
1013
1014 void security_release_secctx(char *secdata, u32 seclen)
1015 {
1016         security_ops->release_secctx(secdata, seclen);
1017 }
1018 EXPORT_SYMBOL(security_release_secctx);
1019
1020 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1021 {
1022         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1023 }
1024 EXPORT_SYMBOL(security_inode_notifysecctx);
1025
1026 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1027 {
1028         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1029 }
1030 EXPORT_SYMBOL(security_inode_setsecctx);
1031
1032 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1033 {
1034         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1035 }
1036 EXPORT_SYMBOL(security_inode_getsecctx);
1037
1038 #ifdef CONFIG_SECURITY_NETWORK
1039
1040 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1041 {
1042         return security_ops->unix_stream_connect(sock, other, newsk);
1043 }
1044 EXPORT_SYMBOL(security_unix_stream_connect);
1045
1046 int security_unix_may_send(struct socket *sock,  struct socket *other)
1047 {
1048         return security_ops->unix_may_send(sock, other);
1049 }
1050 EXPORT_SYMBOL(security_unix_may_send);
1051
1052 int security_socket_create(int family, int type, int protocol, int kern)
1053 {
1054         return security_ops->socket_create(family, type, protocol, kern);
1055 }
1056
1057 int security_socket_post_create(struct socket *sock, int family,
1058                                 int type, int protocol, int kern)
1059 {
1060         return security_ops->socket_post_create(sock, family, type,
1061                                                 protocol, kern);
1062 }
1063
1064 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1065 {
1066         return security_ops->socket_bind(sock, address, addrlen);
1067 }
1068
1069 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1070 {
1071         return security_ops->socket_connect(sock, address, addrlen);
1072 }
1073
1074 int security_socket_listen(struct socket *sock, int backlog)
1075 {
1076         return security_ops->socket_listen(sock, backlog);
1077 }
1078
1079 int security_socket_accept(struct socket *sock, struct socket *newsock)
1080 {
1081         return security_ops->socket_accept(sock, newsock);
1082 }
1083
1084 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1085 {
1086         return security_ops->socket_sendmsg(sock, msg, size);
1087 }
1088
1089 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1090                             int size, int flags)
1091 {
1092         return security_ops->socket_recvmsg(sock, msg, size, flags);
1093 }
1094
1095 int security_socket_getsockname(struct socket *sock)
1096 {
1097         return security_ops->socket_getsockname(sock);
1098 }
1099
1100 int security_socket_getpeername(struct socket *sock)
1101 {
1102         return security_ops->socket_getpeername(sock);
1103 }
1104
1105 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1106 {
1107         return security_ops->socket_getsockopt(sock, level, optname);
1108 }
1109
1110 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1111 {
1112         return security_ops->socket_setsockopt(sock, level, optname);
1113 }
1114
1115 int security_socket_shutdown(struct socket *sock, int how)
1116 {
1117         return security_ops->socket_shutdown(sock, how);
1118 }
1119
1120 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1121 {
1122         return security_ops->socket_sock_rcv_skb(sk, skb);
1123 }
1124 EXPORT_SYMBOL(security_sock_rcv_skb);
1125
1126 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1127                                       int __user *optlen, unsigned len)
1128 {
1129         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1130 }
1131
1132 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1133 {
1134         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1135 }
1136 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1137
1138 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1139 {
1140         return security_ops->sk_alloc_security(sk, family, priority);
1141 }
1142
1143 void security_sk_free(struct sock *sk)
1144 {
1145         security_ops->sk_free_security(sk);
1146 }
1147
1148 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1149 {
1150         security_ops->sk_clone_security(sk, newsk);
1151 }
1152 EXPORT_SYMBOL(security_sk_clone);
1153
1154 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1155 {
1156         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1157 }
1158 EXPORT_SYMBOL(security_sk_classify_flow);
1159
1160 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1161 {
1162         security_ops->req_classify_flow(req, fl);
1163 }
1164 EXPORT_SYMBOL(security_req_classify_flow);
1165
1166 void security_sock_graft(struct sock *sk, struct socket *parent)
1167 {
1168         security_ops->sock_graft(sk, parent);
1169 }
1170 EXPORT_SYMBOL(security_sock_graft);
1171
1172 int security_inet_conn_request(struct sock *sk,
1173                         struct sk_buff *skb, struct request_sock *req)
1174 {
1175         return security_ops->inet_conn_request(sk, skb, req);
1176 }
1177 EXPORT_SYMBOL(security_inet_conn_request);
1178
1179 void security_inet_csk_clone(struct sock *newsk,
1180                         const struct request_sock *req)
1181 {
1182         security_ops->inet_csk_clone(newsk, req);
1183 }
1184
1185 void security_inet_conn_established(struct sock *sk,
1186                         struct sk_buff *skb)
1187 {
1188         security_ops->inet_conn_established(sk, skb);
1189 }
1190
1191 int security_secmark_relabel_packet(u32 secid)
1192 {
1193         return security_ops->secmark_relabel_packet(secid);
1194 }
1195 EXPORT_SYMBOL(security_secmark_relabel_packet);
1196
1197 void security_secmark_refcount_inc(void)
1198 {
1199         security_ops->secmark_refcount_inc();
1200 }
1201 EXPORT_SYMBOL(security_secmark_refcount_inc);
1202
1203 void security_secmark_refcount_dec(void)
1204 {
1205         security_ops->secmark_refcount_dec();
1206 }
1207 EXPORT_SYMBOL(security_secmark_refcount_dec);
1208
1209 int security_tun_dev_create(void)
1210 {
1211         return security_ops->tun_dev_create();
1212 }
1213 EXPORT_SYMBOL(security_tun_dev_create);
1214
1215 void security_tun_dev_post_create(struct sock *sk)
1216 {
1217         return security_ops->tun_dev_post_create(sk);
1218 }
1219 EXPORT_SYMBOL(security_tun_dev_post_create);
1220
1221 int security_tun_dev_attach(struct sock *sk)
1222 {
1223         return security_ops->tun_dev_attach(sk);
1224 }
1225 EXPORT_SYMBOL(security_tun_dev_attach);
1226
1227 #endif  /* CONFIG_SECURITY_NETWORK */
1228
1229 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1230
1231 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1232 {
1233         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1234 }
1235 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1236
1237 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1238                               struct xfrm_sec_ctx **new_ctxp)
1239 {
1240         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1241 }
1242
1243 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1244 {
1245         security_ops->xfrm_policy_free_security(ctx);
1246 }
1247 EXPORT_SYMBOL(security_xfrm_policy_free);
1248
1249 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1250 {
1251         return security_ops->xfrm_policy_delete_security(ctx);
1252 }
1253
1254 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1255 {
1256         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1257 }
1258 EXPORT_SYMBOL(security_xfrm_state_alloc);
1259
1260 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1261                                       struct xfrm_sec_ctx *polsec, u32 secid)
1262 {
1263         if (!polsec)
1264                 return 0;
1265         /*
1266          * We want the context to be taken from secid which is usually
1267          * from the sock.
1268          */
1269         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1270 }
1271
1272 int security_xfrm_state_delete(struct xfrm_state *x)
1273 {
1274         return security_ops->xfrm_state_delete_security(x);
1275 }
1276 EXPORT_SYMBOL(security_xfrm_state_delete);
1277
1278 void security_xfrm_state_free(struct xfrm_state *x)
1279 {
1280         security_ops->xfrm_state_free_security(x);
1281 }
1282
1283 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1284 {
1285         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1286 }
1287
1288 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1289                                        struct xfrm_policy *xp,
1290                                        const struct flowi *fl)
1291 {
1292         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1293 }
1294
1295 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1296 {
1297         return security_ops->xfrm_decode_session(skb, secid, 1);
1298 }
1299
1300 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1301 {
1302         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1303
1304         BUG_ON(rc);
1305 }
1306 EXPORT_SYMBOL(security_skb_classify_flow);
1307
1308 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1309
1310 #ifdef CONFIG_KEYS
1311
1312 int security_key_alloc(struct key *key, const struct cred *cred,
1313                        unsigned long flags)
1314 {
1315         return security_ops->key_alloc(key, cred, flags);
1316 }
1317
1318 void security_key_free(struct key *key)
1319 {
1320         security_ops->key_free(key);
1321 }
1322
1323 int security_key_permission(key_ref_t key_ref,
1324                             const struct cred *cred, key_perm_t perm)
1325 {
1326         return security_ops->key_permission(key_ref, cred, perm);
1327 }
1328
1329 int security_key_getsecurity(struct key *key, char **_buffer)
1330 {
1331         return security_ops->key_getsecurity(key, _buffer);
1332 }
1333
1334 #endif  /* CONFIG_KEYS */
1335
1336 #ifdef CONFIG_AUDIT
1337
1338 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1339 {
1340         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1341 }
1342
1343 int security_audit_rule_known(struct audit_krule *krule)
1344 {
1345         return security_ops->audit_rule_known(krule);
1346 }
1347
1348 void security_audit_rule_free(void *lsmrule)
1349 {
1350         security_ops->audit_rule_free(lsmrule);
1351 }
1352
1353 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1354                               struct audit_context *actx)
1355 {
1356         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1357 }
1358
1359 #endif /* CONFIG_AUDIT */