]> git.karo-electronics.de Git - karo-tx-linux.git/blob - security/security.c
Merge tag 'upstream-4.2-rc1' of git://git.infradead.org/linux-ubifs
[karo-tx-linux.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/security.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <net/flow.h>
29
30 #define MAX_LSM_EVM_XATTR       2
31
32 /* Boot-time LSM user choice */
33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34         CONFIG_DEFAULT_SECURITY;
35
36 static struct security_operations *security_ops;
37 static struct security_operations default_security_ops = {
38         .name   = "default",
39 };
40
41 static inline int __init verify(struct security_operations *ops)
42 {
43         /* verify the security_operations structure exists */
44         if (!ops)
45                 return -EINVAL;
46         security_fixup_ops(ops);
47         return 0;
48 }
49
50 static void __init do_security_initcalls(void)
51 {
52         initcall_t *call;
53         call = __security_initcall_start;
54         while (call < __security_initcall_end) {
55                 (*call) ();
56                 call++;
57         }
58 }
59
60 /**
61  * security_init - initializes the security framework
62  *
63  * This should be called early in the kernel initialization sequence.
64  */
65 int __init security_init(void)
66 {
67         printk(KERN_INFO "Security Framework initialized\n");
68
69         security_fixup_ops(&default_security_ops);
70         security_ops = &default_security_ops;
71         do_security_initcalls();
72
73         return 0;
74 }
75
76 void reset_security_ops(void)
77 {
78         security_ops = &default_security_ops;
79 }
80
81 /* Save user chosen LSM */
82 static int __init choose_lsm(char *str)
83 {
84         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85         return 1;
86 }
87 __setup("security=", choose_lsm);
88
89 /**
90  * security_module_enable - Load given security module on boot ?
91  * @ops: a pointer to the struct security_operations that is to be checked.
92  *
93  * Each LSM must pass this method before registering its own operations
94  * to avoid security registration races. This method may also be used
95  * to check if your LSM is currently loaded during kernel initialization.
96  *
97  * Return true if:
98  *      -The passed LSM is the one chosen by user at boot time,
99  *      -or the passed LSM is configured as the default and the user did not
100  *       choose an alternate LSM at boot time.
101  * Otherwise, return false.
102  */
103 int __init security_module_enable(struct security_operations *ops)
104 {
105         return !strcmp(ops->name, chosen_lsm);
106 }
107
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122         if (verify(ops)) {
123                 printk(KERN_DEBUG "%s could not verify "
124                        "security_operations structure.\n", __func__);
125                 return -EINVAL;
126         }
127
128         if (security_ops != &default_security_ops)
129                 return -EAGAIN;
130
131         security_ops = ops;
132
133         return 0;
134 }
135
136 /* Security operations */
137
138 int security_binder_set_context_mgr(struct task_struct *mgr)
139 {
140         return security_ops->binder_set_context_mgr(mgr);
141 }
142
143 int security_binder_transaction(struct task_struct *from,
144                                 struct task_struct *to)
145 {
146         return security_ops->binder_transaction(from, to);
147 }
148
149 int security_binder_transfer_binder(struct task_struct *from,
150                                     struct task_struct *to)
151 {
152         return security_ops->binder_transfer_binder(from, to);
153 }
154
155 int security_binder_transfer_file(struct task_struct *from,
156                                   struct task_struct *to, struct file *file)
157 {
158         return security_ops->binder_transfer_file(from, to, file);
159 }
160
161 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
162 {
163 #ifdef CONFIG_SECURITY_YAMA_STACKED
164         int rc;
165         rc = yama_ptrace_access_check(child, mode);
166         if (rc)
167                 return rc;
168 #endif
169         return security_ops->ptrace_access_check(child, mode);
170 }
171
172 int security_ptrace_traceme(struct task_struct *parent)
173 {
174 #ifdef CONFIG_SECURITY_YAMA_STACKED
175         int rc;
176         rc = yama_ptrace_traceme(parent);
177         if (rc)
178                 return rc;
179 #endif
180         return security_ops->ptrace_traceme(parent);
181 }
182
183 int security_capget(struct task_struct *target,
184                      kernel_cap_t *effective,
185                      kernel_cap_t *inheritable,
186                      kernel_cap_t *permitted)
187 {
188         return security_ops->capget(target, effective, inheritable, permitted);
189 }
190
191 int security_capset(struct cred *new, const struct cred *old,
192                     const kernel_cap_t *effective,
193                     const kernel_cap_t *inheritable,
194                     const kernel_cap_t *permitted)
195 {
196         return security_ops->capset(new, old,
197                                     effective, inheritable, permitted);
198 }
199
200 int security_capable(const struct cred *cred, struct user_namespace *ns,
201                      int cap)
202 {
203         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
204 }
205
206 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
207                              int cap)
208 {
209         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
210 }
211
212 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
213 {
214         return security_ops->quotactl(cmds, type, id, sb);
215 }
216
217 int security_quota_on(struct dentry *dentry)
218 {
219         return security_ops->quota_on(dentry);
220 }
221
222 int security_syslog(int type)
223 {
224         return security_ops->syslog(type);
225 }
226
227 int security_settime(const struct timespec *ts, const struct timezone *tz)
228 {
229         return security_ops->settime(ts, tz);
230 }
231
232 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
233 {
234         return security_ops->vm_enough_memory(mm, pages);
235 }
236
237 int security_bprm_set_creds(struct linux_binprm *bprm)
238 {
239         return security_ops->bprm_set_creds(bprm);
240 }
241
242 int security_bprm_check(struct linux_binprm *bprm)
243 {
244         int ret;
245
246         ret = security_ops->bprm_check_security(bprm);
247         if (ret)
248                 return ret;
249         return ima_bprm_check(bprm);
250 }
251
252 void security_bprm_committing_creds(struct linux_binprm *bprm)
253 {
254         security_ops->bprm_committing_creds(bprm);
255 }
256
257 void security_bprm_committed_creds(struct linux_binprm *bprm)
258 {
259         security_ops->bprm_committed_creds(bprm);
260 }
261
262 int security_bprm_secureexec(struct linux_binprm *bprm)
263 {
264         return security_ops->bprm_secureexec(bprm);
265 }
266
267 int security_sb_alloc(struct super_block *sb)
268 {
269         return security_ops->sb_alloc_security(sb);
270 }
271
272 void security_sb_free(struct super_block *sb)
273 {
274         security_ops->sb_free_security(sb);
275 }
276
277 int security_sb_copy_data(char *orig, char *copy)
278 {
279         return security_ops->sb_copy_data(orig, copy);
280 }
281 EXPORT_SYMBOL(security_sb_copy_data);
282
283 int security_sb_remount(struct super_block *sb, void *data)
284 {
285         return security_ops->sb_remount(sb, data);
286 }
287
288 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
289 {
290         return security_ops->sb_kern_mount(sb, flags, data);
291 }
292
293 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
294 {
295         return security_ops->sb_show_options(m, sb);
296 }
297
298 int security_sb_statfs(struct dentry *dentry)
299 {
300         return security_ops->sb_statfs(dentry);
301 }
302
303 int security_sb_mount(const char *dev_name, struct path *path,
304                        const char *type, unsigned long flags, void *data)
305 {
306         return security_ops->sb_mount(dev_name, path, type, flags, data);
307 }
308
309 int security_sb_umount(struct vfsmount *mnt, int flags)
310 {
311         return security_ops->sb_umount(mnt, flags);
312 }
313
314 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
315 {
316         return security_ops->sb_pivotroot(old_path, new_path);
317 }
318
319 int security_sb_set_mnt_opts(struct super_block *sb,
320                                 struct security_mnt_opts *opts,
321                                 unsigned long kern_flags,
322                                 unsigned long *set_kern_flags)
323 {
324         return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
325                                                 set_kern_flags);
326 }
327 EXPORT_SYMBOL(security_sb_set_mnt_opts);
328
329 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
330                                 struct super_block *newsb)
331 {
332         return security_ops->sb_clone_mnt_opts(oldsb, newsb);
333 }
334 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
335
336 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
337 {
338         return security_ops->sb_parse_opts_str(options, opts);
339 }
340 EXPORT_SYMBOL(security_sb_parse_opts_str);
341
342 int security_inode_alloc(struct inode *inode)
343 {
344         inode->i_security = NULL;
345         return security_ops->inode_alloc_security(inode);
346 }
347
348 void security_inode_free(struct inode *inode)
349 {
350         integrity_inode_free(inode);
351         security_ops->inode_free_security(inode);
352 }
353
354 int security_dentry_init_security(struct dentry *dentry, int mode,
355                                         struct qstr *name, void **ctx,
356                                         u32 *ctxlen)
357 {
358         return security_ops->dentry_init_security(dentry, mode, name,
359                                                         ctx, ctxlen);
360 }
361 EXPORT_SYMBOL(security_dentry_init_security);
362
363 int security_inode_init_security(struct inode *inode, struct inode *dir,
364                                  const struct qstr *qstr,
365                                  const initxattrs initxattrs, void *fs_data)
366 {
367         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
368         struct xattr *lsm_xattr, *evm_xattr, *xattr;
369         int ret;
370
371         if (unlikely(IS_PRIVATE(inode)))
372                 return 0;
373
374         if (!initxattrs)
375                 return security_ops->inode_init_security(inode, dir, qstr,
376                                                          NULL, NULL, NULL);
377         memset(new_xattrs, 0, sizeof(new_xattrs));
378         lsm_xattr = new_xattrs;
379         ret = security_ops->inode_init_security(inode, dir, qstr,
380                                                 &lsm_xattr->name,
381                                                 &lsm_xattr->value,
382                                                 &lsm_xattr->value_len);
383         if (ret)
384                 goto out;
385
386         evm_xattr = lsm_xattr + 1;
387         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
388         if (ret)
389                 goto out;
390         ret = initxattrs(inode, new_xattrs, fs_data);
391 out:
392         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
393                 kfree(xattr->value);
394         return (ret == -EOPNOTSUPP) ? 0 : ret;
395 }
396 EXPORT_SYMBOL(security_inode_init_security);
397
398 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
399                                      const struct qstr *qstr, const char **name,
400                                      void **value, size_t *len)
401 {
402         if (unlikely(IS_PRIVATE(inode)))
403                 return -EOPNOTSUPP;
404         return security_ops->inode_init_security(inode, dir, qstr, name, value,
405                                                  len);
406 }
407 EXPORT_SYMBOL(security_old_inode_init_security);
408
409 #ifdef CONFIG_SECURITY_PATH
410 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
411                         unsigned int dev)
412 {
413         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
414                 return 0;
415         return security_ops->path_mknod(dir, dentry, mode, dev);
416 }
417 EXPORT_SYMBOL(security_path_mknod);
418
419 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
420 {
421         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
422                 return 0;
423         return security_ops->path_mkdir(dir, dentry, mode);
424 }
425 EXPORT_SYMBOL(security_path_mkdir);
426
427 int security_path_rmdir(struct path *dir, struct dentry *dentry)
428 {
429         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
430                 return 0;
431         return security_ops->path_rmdir(dir, dentry);
432 }
433
434 int security_path_unlink(struct path *dir, struct dentry *dentry)
435 {
436         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
437                 return 0;
438         return security_ops->path_unlink(dir, dentry);
439 }
440 EXPORT_SYMBOL(security_path_unlink);
441
442 int security_path_symlink(struct path *dir, struct dentry *dentry,
443                           const char *old_name)
444 {
445         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
446                 return 0;
447         return security_ops->path_symlink(dir, dentry, old_name);
448 }
449
450 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
451                        struct dentry *new_dentry)
452 {
453         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
454                 return 0;
455         return security_ops->path_link(old_dentry, new_dir, new_dentry);
456 }
457
458 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
459                          struct path *new_dir, struct dentry *new_dentry,
460                          unsigned int flags)
461 {
462         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
463                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
464                 return 0;
465
466         if (flags & RENAME_EXCHANGE) {
467                 int err = security_ops->path_rename(new_dir, new_dentry,
468                                                     old_dir, old_dentry);
469                 if (err)
470                         return err;
471         }
472
473         return security_ops->path_rename(old_dir, old_dentry, new_dir,
474                                          new_dentry);
475 }
476 EXPORT_SYMBOL(security_path_rename);
477
478 int security_path_truncate(struct path *path)
479 {
480         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
481                 return 0;
482         return security_ops->path_truncate(path);
483 }
484
485 int security_path_chmod(struct path *path, umode_t mode)
486 {
487         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
488                 return 0;
489         return security_ops->path_chmod(path, mode);
490 }
491
492 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
493 {
494         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
495                 return 0;
496         return security_ops->path_chown(path, uid, gid);
497 }
498
499 int security_path_chroot(struct path *path)
500 {
501         return security_ops->path_chroot(path);
502 }
503 #endif
504
505 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
506 {
507         if (unlikely(IS_PRIVATE(dir)))
508                 return 0;
509         return security_ops->inode_create(dir, dentry, mode);
510 }
511 EXPORT_SYMBOL_GPL(security_inode_create);
512
513 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
514                          struct dentry *new_dentry)
515 {
516         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
517                 return 0;
518         return security_ops->inode_link(old_dentry, dir, new_dentry);
519 }
520
521 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
522 {
523         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
524                 return 0;
525         return security_ops->inode_unlink(dir, dentry);
526 }
527
528 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
529                             const char *old_name)
530 {
531         if (unlikely(IS_PRIVATE(dir)))
532                 return 0;
533         return security_ops->inode_symlink(dir, dentry, old_name);
534 }
535
536 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
537 {
538         if (unlikely(IS_PRIVATE(dir)))
539                 return 0;
540         return security_ops->inode_mkdir(dir, dentry, mode);
541 }
542 EXPORT_SYMBOL_GPL(security_inode_mkdir);
543
544 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
545 {
546         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
547                 return 0;
548         return security_ops->inode_rmdir(dir, dentry);
549 }
550
551 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
552 {
553         if (unlikely(IS_PRIVATE(dir)))
554                 return 0;
555         return security_ops->inode_mknod(dir, dentry, mode, dev);
556 }
557
558 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
559                            struct inode *new_dir, struct dentry *new_dentry,
560                            unsigned int flags)
561 {
562         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
563             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
564                 return 0;
565
566         if (flags & RENAME_EXCHANGE) {
567                 int err = security_ops->inode_rename(new_dir, new_dentry,
568                                                      old_dir, old_dentry);
569                 if (err)
570                         return err;
571         }
572
573         return security_ops->inode_rename(old_dir, old_dentry,
574                                            new_dir, new_dentry);
575 }
576
577 int security_inode_readlink(struct dentry *dentry)
578 {
579         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
580                 return 0;
581         return security_ops->inode_readlink(dentry);
582 }
583
584 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
585                                bool rcu)
586 {
587         if (unlikely(IS_PRIVATE(inode)))
588                 return 0;
589         return security_ops->inode_follow_link(dentry, inode, rcu);
590 }
591
592 int security_inode_permission(struct inode *inode, int mask)
593 {
594         if (unlikely(IS_PRIVATE(inode)))
595                 return 0;
596         return security_ops->inode_permission(inode, mask);
597 }
598
599 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
600 {
601         int ret;
602
603         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
604                 return 0;
605         ret = security_ops->inode_setattr(dentry, attr);
606         if (ret)
607                 return ret;
608         return evm_inode_setattr(dentry, attr);
609 }
610 EXPORT_SYMBOL_GPL(security_inode_setattr);
611
612 int security_inode_getattr(const struct path *path)
613 {
614         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
615                 return 0;
616         return security_ops->inode_getattr(path);
617 }
618
619 int security_inode_setxattr(struct dentry *dentry, const char *name,
620                             const void *value, size_t size, int flags)
621 {
622         int ret;
623
624         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
625                 return 0;
626         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
627         if (ret)
628                 return ret;
629         ret = ima_inode_setxattr(dentry, name, value, size);
630         if (ret)
631                 return ret;
632         return evm_inode_setxattr(dentry, name, value, size);
633 }
634
635 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
636                                   const void *value, size_t size, int flags)
637 {
638         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
639                 return;
640         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
641         evm_inode_post_setxattr(dentry, name, value, size);
642 }
643
644 int security_inode_getxattr(struct dentry *dentry, const char *name)
645 {
646         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
647                 return 0;
648         return security_ops->inode_getxattr(dentry, name);
649 }
650
651 int security_inode_listxattr(struct dentry *dentry)
652 {
653         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
654                 return 0;
655         return security_ops->inode_listxattr(dentry);
656 }
657
658 int security_inode_removexattr(struct dentry *dentry, const char *name)
659 {
660         int ret;
661
662         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
663                 return 0;
664         ret = security_ops->inode_removexattr(dentry, name);
665         if (ret)
666                 return ret;
667         ret = ima_inode_removexattr(dentry, name);
668         if (ret)
669                 return ret;
670         return evm_inode_removexattr(dentry, name);
671 }
672
673 int security_inode_need_killpriv(struct dentry *dentry)
674 {
675         return security_ops->inode_need_killpriv(dentry);
676 }
677
678 int security_inode_killpriv(struct dentry *dentry)
679 {
680         return security_ops->inode_killpriv(dentry);
681 }
682
683 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
684 {
685         if (unlikely(IS_PRIVATE(inode)))
686                 return -EOPNOTSUPP;
687         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
688 }
689
690 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
691 {
692         if (unlikely(IS_PRIVATE(inode)))
693                 return -EOPNOTSUPP;
694         return security_ops->inode_setsecurity(inode, name, value, size, flags);
695 }
696
697 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
698 {
699         if (unlikely(IS_PRIVATE(inode)))
700                 return 0;
701         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
702 }
703 EXPORT_SYMBOL(security_inode_listsecurity);
704
705 void security_inode_getsecid(const struct inode *inode, u32 *secid)
706 {
707         security_ops->inode_getsecid(inode, secid);
708 }
709
710 int security_file_permission(struct file *file, int mask)
711 {
712         int ret;
713
714         ret = security_ops->file_permission(file, mask);
715         if (ret)
716                 return ret;
717
718         return fsnotify_perm(file, mask);
719 }
720
721 int security_file_alloc(struct file *file)
722 {
723         return security_ops->file_alloc_security(file);
724 }
725
726 void security_file_free(struct file *file)
727 {
728         security_ops->file_free_security(file);
729 }
730
731 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
732 {
733         return security_ops->file_ioctl(file, cmd, arg);
734 }
735
736 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
737 {
738         /*
739          * Does we have PROT_READ and does the application expect
740          * it to imply PROT_EXEC?  If not, nothing to talk about...
741          */
742         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
743                 return prot;
744         if (!(current->personality & READ_IMPLIES_EXEC))
745                 return prot;
746         /*
747          * if that's an anonymous mapping, let it.
748          */
749         if (!file)
750                 return prot | PROT_EXEC;
751         /*
752          * ditto if it's not on noexec mount, except that on !MMU we need
753          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
754          */
755         if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
756 #ifndef CONFIG_MMU
757                 if (file->f_op->mmap_capabilities) {
758                         unsigned caps = file->f_op->mmap_capabilities(file);
759                         if (!(caps & NOMMU_MAP_EXEC))
760                                 return prot;
761                 }
762 #endif
763                 return prot | PROT_EXEC;
764         }
765         /* anything on noexec mount won't get PROT_EXEC */
766         return prot;
767 }
768
769 int security_mmap_file(struct file *file, unsigned long prot,
770                         unsigned long flags)
771 {
772         int ret;
773         ret = security_ops->mmap_file(file, prot,
774                                         mmap_prot(file, prot), flags);
775         if (ret)
776                 return ret;
777         return ima_file_mmap(file, prot);
778 }
779
780 int security_mmap_addr(unsigned long addr)
781 {
782         return security_ops->mmap_addr(addr);
783 }
784
785 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
786                             unsigned long prot)
787 {
788         return security_ops->file_mprotect(vma, reqprot, prot);
789 }
790
791 int security_file_lock(struct file *file, unsigned int cmd)
792 {
793         return security_ops->file_lock(file, cmd);
794 }
795
796 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
797 {
798         return security_ops->file_fcntl(file, cmd, arg);
799 }
800
801 void security_file_set_fowner(struct file *file)
802 {
803         security_ops->file_set_fowner(file);
804 }
805
806 int security_file_send_sigiotask(struct task_struct *tsk,
807                                   struct fown_struct *fown, int sig)
808 {
809         return security_ops->file_send_sigiotask(tsk, fown, sig);
810 }
811
812 int security_file_receive(struct file *file)
813 {
814         return security_ops->file_receive(file);
815 }
816
817 int security_file_open(struct file *file, const struct cred *cred)
818 {
819         int ret;
820
821         ret = security_ops->file_open(file, cred);
822         if (ret)
823                 return ret;
824
825         return fsnotify_perm(file, MAY_OPEN);
826 }
827
828 int security_task_create(unsigned long clone_flags)
829 {
830         return security_ops->task_create(clone_flags);
831 }
832
833 void security_task_free(struct task_struct *task)
834 {
835 #ifdef CONFIG_SECURITY_YAMA_STACKED
836         yama_task_free(task);
837 #endif
838         security_ops->task_free(task);
839 }
840
841 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
842 {
843         return security_ops->cred_alloc_blank(cred, gfp);
844 }
845
846 void security_cred_free(struct cred *cred)
847 {
848         security_ops->cred_free(cred);
849 }
850
851 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
852 {
853         return security_ops->cred_prepare(new, old, gfp);
854 }
855
856 void security_transfer_creds(struct cred *new, const struct cred *old)
857 {
858         security_ops->cred_transfer(new, old);
859 }
860
861 int security_kernel_act_as(struct cred *new, u32 secid)
862 {
863         return security_ops->kernel_act_as(new, secid);
864 }
865
866 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
867 {
868         return security_ops->kernel_create_files_as(new, inode);
869 }
870
871 int security_kernel_fw_from_file(struct file *file, char *buf, size_t size)
872 {
873         int ret;
874
875         ret = security_ops->kernel_fw_from_file(file, buf, size);
876         if (ret)
877                 return ret;
878         return ima_fw_from_file(file, buf, size);
879 }
880 EXPORT_SYMBOL_GPL(security_kernel_fw_from_file);
881
882 int security_kernel_module_request(char *kmod_name)
883 {
884         return security_ops->kernel_module_request(kmod_name);
885 }
886
887 int security_kernel_module_from_file(struct file *file)
888 {
889         int ret;
890
891         ret = security_ops->kernel_module_from_file(file);
892         if (ret)
893                 return ret;
894         return ima_module_check(file);
895 }
896
897 int security_task_fix_setuid(struct cred *new, const struct cred *old,
898                              int flags)
899 {
900         return security_ops->task_fix_setuid(new, old, flags);
901 }
902
903 int security_task_setpgid(struct task_struct *p, pid_t pgid)
904 {
905         return security_ops->task_setpgid(p, pgid);
906 }
907
908 int security_task_getpgid(struct task_struct *p)
909 {
910         return security_ops->task_getpgid(p);
911 }
912
913 int security_task_getsid(struct task_struct *p)
914 {
915         return security_ops->task_getsid(p);
916 }
917
918 void security_task_getsecid(struct task_struct *p, u32 *secid)
919 {
920         security_ops->task_getsecid(p, secid);
921 }
922 EXPORT_SYMBOL(security_task_getsecid);
923
924 int security_task_setnice(struct task_struct *p, int nice)
925 {
926         return security_ops->task_setnice(p, nice);
927 }
928
929 int security_task_setioprio(struct task_struct *p, int ioprio)
930 {
931         return security_ops->task_setioprio(p, ioprio);
932 }
933
934 int security_task_getioprio(struct task_struct *p)
935 {
936         return security_ops->task_getioprio(p);
937 }
938
939 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
940                 struct rlimit *new_rlim)
941 {
942         return security_ops->task_setrlimit(p, resource, new_rlim);
943 }
944
945 int security_task_setscheduler(struct task_struct *p)
946 {
947         return security_ops->task_setscheduler(p);
948 }
949
950 int security_task_getscheduler(struct task_struct *p)
951 {
952         return security_ops->task_getscheduler(p);
953 }
954
955 int security_task_movememory(struct task_struct *p)
956 {
957         return security_ops->task_movememory(p);
958 }
959
960 int security_task_kill(struct task_struct *p, struct siginfo *info,
961                         int sig, u32 secid)
962 {
963         return security_ops->task_kill(p, info, sig, secid);
964 }
965
966 int security_task_wait(struct task_struct *p)
967 {
968         return security_ops->task_wait(p);
969 }
970
971 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
972                          unsigned long arg4, unsigned long arg5)
973 {
974 #ifdef CONFIG_SECURITY_YAMA_STACKED
975         int rc;
976         rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
977         if (rc != -ENOSYS)
978                 return rc;
979 #endif
980         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
981 }
982
983 void security_task_to_inode(struct task_struct *p, struct inode *inode)
984 {
985         security_ops->task_to_inode(p, inode);
986 }
987
988 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
989 {
990         return security_ops->ipc_permission(ipcp, flag);
991 }
992
993 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
994 {
995         security_ops->ipc_getsecid(ipcp, secid);
996 }
997
998 int security_msg_msg_alloc(struct msg_msg *msg)
999 {
1000         return security_ops->msg_msg_alloc_security(msg);
1001 }
1002
1003 void security_msg_msg_free(struct msg_msg *msg)
1004 {
1005         security_ops->msg_msg_free_security(msg);
1006 }
1007
1008 int security_msg_queue_alloc(struct msg_queue *msq)
1009 {
1010         return security_ops->msg_queue_alloc_security(msq);
1011 }
1012
1013 void security_msg_queue_free(struct msg_queue *msq)
1014 {
1015         security_ops->msg_queue_free_security(msq);
1016 }
1017
1018 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
1019 {
1020         return security_ops->msg_queue_associate(msq, msqflg);
1021 }
1022
1023 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
1024 {
1025         return security_ops->msg_queue_msgctl(msq, cmd);
1026 }
1027
1028 int security_msg_queue_msgsnd(struct msg_queue *msq,
1029                                struct msg_msg *msg, int msqflg)
1030 {
1031         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
1032 }
1033
1034 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1035                                struct task_struct *target, long type, int mode)
1036 {
1037         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
1038 }
1039
1040 int security_shm_alloc(struct shmid_kernel *shp)
1041 {
1042         return security_ops->shm_alloc_security(shp);
1043 }
1044
1045 void security_shm_free(struct shmid_kernel *shp)
1046 {
1047         security_ops->shm_free_security(shp);
1048 }
1049
1050 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1051 {
1052         return security_ops->shm_associate(shp, shmflg);
1053 }
1054
1055 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1056 {
1057         return security_ops->shm_shmctl(shp, cmd);
1058 }
1059
1060 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1061 {
1062         return security_ops->shm_shmat(shp, shmaddr, shmflg);
1063 }
1064
1065 int security_sem_alloc(struct sem_array *sma)
1066 {
1067         return security_ops->sem_alloc_security(sma);
1068 }
1069
1070 void security_sem_free(struct sem_array *sma)
1071 {
1072         security_ops->sem_free_security(sma);
1073 }
1074
1075 int security_sem_associate(struct sem_array *sma, int semflg)
1076 {
1077         return security_ops->sem_associate(sma, semflg);
1078 }
1079
1080 int security_sem_semctl(struct sem_array *sma, int cmd)
1081 {
1082         return security_ops->sem_semctl(sma, cmd);
1083 }
1084
1085 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1086                         unsigned nsops, int alter)
1087 {
1088         return security_ops->sem_semop(sma, sops, nsops, alter);
1089 }
1090
1091 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1092 {
1093         if (unlikely(inode && IS_PRIVATE(inode)))
1094                 return;
1095         security_ops->d_instantiate(dentry, inode);
1096 }
1097 EXPORT_SYMBOL(security_d_instantiate);
1098
1099 int security_getprocattr(struct task_struct *p, char *name, char **value)
1100 {
1101         return security_ops->getprocattr(p, name, value);
1102 }
1103
1104 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1105 {
1106         return security_ops->setprocattr(p, name, value, size);
1107 }
1108
1109 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1110 {
1111         return security_ops->netlink_send(sk, skb);
1112 }
1113
1114 int security_ismaclabel(const char *name)
1115 {
1116         return security_ops->ismaclabel(name);
1117 }
1118 EXPORT_SYMBOL(security_ismaclabel);
1119
1120 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1121 {
1122         return security_ops->secid_to_secctx(secid, secdata, seclen);
1123 }
1124 EXPORT_SYMBOL(security_secid_to_secctx);
1125
1126 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1127 {
1128         return security_ops->secctx_to_secid(secdata, seclen, secid);
1129 }
1130 EXPORT_SYMBOL(security_secctx_to_secid);
1131
1132 void security_release_secctx(char *secdata, u32 seclen)
1133 {
1134         security_ops->release_secctx(secdata, seclen);
1135 }
1136 EXPORT_SYMBOL(security_release_secctx);
1137
1138 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1139 {
1140         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1141 }
1142 EXPORT_SYMBOL(security_inode_notifysecctx);
1143
1144 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1145 {
1146         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1147 }
1148 EXPORT_SYMBOL(security_inode_setsecctx);
1149
1150 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1151 {
1152         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1153 }
1154 EXPORT_SYMBOL(security_inode_getsecctx);
1155
1156 #ifdef CONFIG_SECURITY_NETWORK
1157
1158 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1159 {
1160         return security_ops->unix_stream_connect(sock, other, newsk);
1161 }
1162 EXPORT_SYMBOL(security_unix_stream_connect);
1163
1164 int security_unix_may_send(struct socket *sock,  struct socket *other)
1165 {
1166         return security_ops->unix_may_send(sock, other);
1167 }
1168 EXPORT_SYMBOL(security_unix_may_send);
1169
1170 int security_socket_create(int family, int type, int protocol, int kern)
1171 {
1172         return security_ops->socket_create(family, type, protocol, kern);
1173 }
1174
1175 int security_socket_post_create(struct socket *sock, int family,
1176                                 int type, int protocol, int kern)
1177 {
1178         return security_ops->socket_post_create(sock, family, type,
1179                                                 protocol, kern);
1180 }
1181
1182 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1183 {
1184         return security_ops->socket_bind(sock, address, addrlen);
1185 }
1186
1187 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1188 {
1189         return security_ops->socket_connect(sock, address, addrlen);
1190 }
1191
1192 int security_socket_listen(struct socket *sock, int backlog)
1193 {
1194         return security_ops->socket_listen(sock, backlog);
1195 }
1196
1197 int security_socket_accept(struct socket *sock, struct socket *newsock)
1198 {
1199         return security_ops->socket_accept(sock, newsock);
1200 }
1201
1202 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1203 {
1204         return security_ops->socket_sendmsg(sock, msg, size);
1205 }
1206
1207 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1208                             int size, int flags)
1209 {
1210         return security_ops->socket_recvmsg(sock, msg, size, flags);
1211 }
1212
1213 int security_socket_getsockname(struct socket *sock)
1214 {
1215         return security_ops->socket_getsockname(sock);
1216 }
1217
1218 int security_socket_getpeername(struct socket *sock)
1219 {
1220         return security_ops->socket_getpeername(sock);
1221 }
1222
1223 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1224 {
1225         return security_ops->socket_getsockopt(sock, level, optname);
1226 }
1227
1228 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1229 {
1230         return security_ops->socket_setsockopt(sock, level, optname);
1231 }
1232
1233 int security_socket_shutdown(struct socket *sock, int how)
1234 {
1235         return security_ops->socket_shutdown(sock, how);
1236 }
1237
1238 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1239 {
1240         return security_ops->socket_sock_rcv_skb(sk, skb);
1241 }
1242 EXPORT_SYMBOL(security_sock_rcv_skb);
1243
1244 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1245                                       int __user *optlen, unsigned len)
1246 {
1247         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1248 }
1249
1250 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1251 {
1252         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1253 }
1254 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1255
1256 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1257 {
1258         return security_ops->sk_alloc_security(sk, family, priority);
1259 }
1260
1261 void security_sk_free(struct sock *sk)
1262 {
1263         security_ops->sk_free_security(sk);
1264 }
1265
1266 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1267 {
1268         security_ops->sk_clone_security(sk, newsk);
1269 }
1270 EXPORT_SYMBOL(security_sk_clone);
1271
1272 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1273 {
1274         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1275 }
1276 EXPORT_SYMBOL(security_sk_classify_flow);
1277
1278 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1279 {
1280         security_ops->req_classify_flow(req, fl);
1281 }
1282 EXPORT_SYMBOL(security_req_classify_flow);
1283
1284 void security_sock_graft(struct sock *sk, struct socket *parent)
1285 {
1286         security_ops->sock_graft(sk, parent);
1287 }
1288 EXPORT_SYMBOL(security_sock_graft);
1289
1290 int security_inet_conn_request(struct sock *sk,
1291                         struct sk_buff *skb, struct request_sock *req)
1292 {
1293         return security_ops->inet_conn_request(sk, skb, req);
1294 }
1295 EXPORT_SYMBOL(security_inet_conn_request);
1296
1297 void security_inet_csk_clone(struct sock *newsk,
1298                         const struct request_sock *req)
1299 {
1300         security_ops->inet_csk_clone(newsk, req);
1301 }
1302
1303 void security_inet_conn_established(struct sock *sk,
1304                         struct sk_buff *skb)
1305 {
1306         security_ops->inet_conn_established(sk, skb);
1307 }
1308
1309 int security_secmark_relabel_packet(u32 secid)
1310 {
1311         return security_ops->secmark_relabel_packet(secid);
1312 }
1313 EXPORT_SYMBOL(security_secmark_relabel_packet);
1314
1315 void security_secmark_refcount_inc(void)
1316 {
1317         security_ops->secmark_refcount_inc();
1318 }
1319 EXPORT_SYMBOL(security_secmark_refcount_inc);
1320
1321 void security_secmark_refcount_dec(void)
1322 {
1323         security_ops->secmark_refcount_dec();
1324 }
1325 EXPORT_SYMBOL(security_secmark_refcount_dec);
1326
1327 int security_tun_dev_alloc_security(void **security)
1328 {
1329         return security_ops->tun_dev_alloc_security(security);
1330 }
1331 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1332
1333 void security_tun_dev_free_security(void *security)
1334 {
1335         security_ops->tun_dev_free_security(security);
1336 }
1337 EXPORT_SYMBOL(security_tun_dev_free_security);
1338
1339 int security_tun_dev_create(void)
1340 {
1341         return security_ops->tun_dev_create();
1342 }
1343 EXPORT_SYMBOL(security_tun_dev_create);
1344
1345 int security_tun_dev_attach_queue(void *security)
1346 {
1347         return security_ops->tun_dev_attach_queue(security);
1348 }
1349 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1350
1351 int security_tun_dev_attach(struct sock *sk, void *security)
1352 {
1353         return security_ops->tun_dev_attach(sk, security);
1354 }
1355 EXPORT_SYMBOL(security_tun_dev_attach);
1356
1357 int security_tun_dev_open(void *security)
1358 {
1359         return security_ops->tun_dev_open(security);
1360 }
1361 EXPORT_SYMBOL(security_tun_dev_open);
1362
1363 #endif  /* CONFIG_SECURITY_NETWORK */
1364
1365 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1366
1367 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1368                                struct xfrm_user_sec_ctx *sec_ctx,
1369                                gfp_t gfp)
1370 {
1371         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
1372 }
1373 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1374
1375 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1376                               struct xfrm_sec_ctx **new_ctxp)
1377 {
1378         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1379 }
1380
1381 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1382 {
1383         security_ops->xfrm_policy_free_security(ctx);
1384 }
1385 EXPORT_SYMBOL(security_xfrm_policy_free);
1386
1387 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1388 {
1389         return security_ops->xfrm_policy_delete_security(ctx);
1390 }
1391
1392 int security_xfrm_state_alloc(struct xfrm_state *x,
1393                               struct xfrm_user_sec_ctx *sec_ctx)
1394 {
1395         return security_ops->xfrm_state_alloc(x, sec_ctx);
1396 }
1397 EXPORT_SYMBOL(security_xfrm_state_alloc);
1398
1399 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1400                                       struct xfrm_sec_ctx *polsec, u32 secid)
1401 {
1402         return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
1403 }
1404
1405 int security_xfrm_state_delete(struct xfrm_state *x)
1406 {
1407         return security_ops->xfrm_state_delete_security(x);
1408 }
1409 EXPORT_SYMBOL(security_xfrm_state_delete);
1410
1411 void security_xfrm_state_free(struct xfrm_state *x)
1412 {
1413         security_ops->xfrm_state_free_security(x);
1414 }
1415
1416 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1417 {
1418         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1419 }
1420
1421 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1422                                        struct xfrm_policy *xp,
1423                                        const struct flowi *fl)
1424 {
1425         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1426 }
1427
1428 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1429 {
1430         return security_ops->xfrm_decode_session(skb, secid, 1);
1431 }
1432
1433 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1434 {
1435         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1436
1437         BUG_ON(rc);
1438 }
1439 EXPORT_SYMBOL(security_skb_classify_flow);
1440
1441 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1442
1443 #ifdef CONFIG_KEYS
1444
1445 int security_key_alloc(struct key *key, const struct cred *cred,
1446                        unsigned long flags)
1447 {
1448         return security_ops->key_alloc(key, cred, flags);
1449 }
1450
1451 void security_key_free(struct key *key)
1452 {
1453         security_ops->key_free(key);
1454 }
1455
1456 int security_key_permission(key_ref_t key_ref,
1457                             const struct cred *cred, unsigned perm)
1458 {
1459         return security_ops->key_permission(key_ref, cred, perm);
1460 }
1461
1462 int security_key_getsecurity(struct key *key, char **_buffer)
1463 {
1464         return security_ops->key_getsecurity(key, _buffer);
1465 }
1466
1467 #endif  /* CONFIG_KEYS */
1468
1469 #ifdef CONFIG_AUDIT
1470
1471 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1472 {
1473         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1474 }
1475
1476 int security_audit_rule_known(struct audit_krule *krule)
1477 {
1478         return security_ops->audit_rule_known(krule);
1479 }
1480
1481 void security_audit_rule_free(void *lsmrule)
1482 {
1483         security_ops->audit_rule_free(lsmrule);
1484 }
1485
1486 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1487                               struct audit_context *actx)
1488 {
1489         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1490 }
1491
1492 #endif /* CONFIG_AUDIT */