]> git.karo-electronics.de Git - karo-tx-linux.git/blob - security/selinux/hooks.c
d3a2c2e80fec9f80c20634979d61e680be95aa97
[karo-tx-linux.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>    /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h>           /* for Unix socket types */
71 #include <net/af_unix.h>        /* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
74 #include <net/ipv6.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97
98 extern struct security_operations *security_ops;
99
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105
106 static int __init enforcing_setup(char *str)
107 {
108         unsigned long enforcing;
109         if (!kstrtoul(str, 0, &enforcing))
110                 selinux_enforcing = enforcing ? 1 : 0;
111         return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119 static int __init selinux_enabled_setup(char *str)
120 {
121         unsigned long enabled;
122         if (!kstrtoul(str, 0, &enabled))
123                 selinux_enabled = enabled ? 1 : 0;
124         return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130
131 static struct kmem_cache *sel_inode_cache;
132
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
141  * policy capability is enabled, SECMARK is always considered enabled.
142  *
143  */
144 static int selinux_secmark_enabled(void)
145 {
146         return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
147 }
148
149 /**
150  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
151  *
152  * Description:
153  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
154  * (1) if any are enabled or false (0) if neither are enabled.  If the
155  * always_check_network policy capability is enabled, peer labeling
156  * is always considered enabled.
157  *
158  */
159 static int selinux_peerlbl_enabled(void)
160 {
161         return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
162 }
163
164 /*
165  * initialise the security for the init task
166  */
167 static void cred_init_security(void)
168 {
169         struct cred *cred = (struct cred *) current->real_cred;
170         struct task_security_struct *tsec;
171
172         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
173         if (!tsec)
174                 panic("SELinux:  Failed to initialize initial task.\n");
175
176         tsec->osid = tsec->sid = SECINITSID_KERNEL;
177         cred->security = tsec;
178 }
179
180 /*
181  * get the security ID of a set of credentials
182  */
183 static inline u32 cred_sid(const struct cred *cred)
184 {
185         const struct task_security_struct *tsec;
186
187         tsec = cred->security;
188         return tsec->sid;
189 }
190
191 /*
192  * get the objective security ID of a task
193  */
194 static inline u32 task_sid(const struct task_struct *task)
195 {
196         u32 sid;
197
198         rcu_read_lock();
199         sid = cred_sid(__task_cred(task));
200         rcu_read_unlock();
201         return sid;
202 }
203
204 /*
205  * get the subjective security ID of the current task
206  */
207 static inline u32 current_sid(void)
208 {
209         const struct task_security_struct *tsec = current_security();
210
211         return tsec->sid;
212 }
213
214 /* Allocate and free functions for each kind of security blob. */
215
216 static int inode_alloc_security(struct inode *inode)
217 {
218         struct inode_security_struct *isec;
219         u32 sid = current_sid();
220
221         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
222         if (!isec)
223                 return -ENOMEM;
224
225         mutex_init(&isec->lock);
226         INIT_LIST_HEAD(&isec->list);
227         isec->inode = inode;
228         isec->sid = SECINITSID_UNLABELED;
229         isec->sclass = SECCLASS_FILE;
230         isec->task_sid = sid;
231         inode->i_security = isec;
232
233         return 0;
234 }
235
236 static void inode_free_rcu(struct rcu_head *head)
237 {
238         struct inode_security_struct *isec;
239
240         isec = container_of(head, struct inode_security_struct, rcu);
241         kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static void inode_free_security(struct inode *inode)
245 {
246         struct inode_security_struct *isec = inode->i_security;
247         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
248
249         spin_lock(&sbsec->isec_lock);
250         if (!list_empty(&isec->list))
251                 list_del_init(&isec->list);
252         spin_unlock(&sbsec->isec_lock);
253
254         /*
255          * The inode may still be referenced in a path walk and
256          * a call to selinux_inode_permission() can be made
257          * after inode_free_security() is called. Ideally, the VFS
258          * wouldn't do this, but fixing that is a much harder
259          * job. For now, simply free the i_security via RCU, and
260          * leave the current inode->i_security pointer intact.
261          * The inode will be freed after the RCU grace period too.
262          */
263         call_rcu(&isec->rcu, inode_free_rcu);
264 }
265
266 static int file_alloc_security(struct file *file)
267 {
268         struct file_security_struct *fsec;
269         u32 sid = current_sid();
270
271         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
272         if (!fsec)
273                 return -ENOMEM;
274
275         fsec->sid = sid;
276         fsec->fown_sid = sid;
277         file->f_security = fsec;
278
279         return 0;
280 }
281
282 static void file_free_security(struct file *file)
283 {
284         struct file_security_struct *fsec = file->f_security;
285         file->f_security = NULL;
286         kfree(fsec);
287 }
288
289 static int superblock_alloc_security(struct super_block *sb)
290 {
291         struct superblock_security_struct *sbsec;
292
293         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
294         if (!sbsec)
295                 return -ENOMEM;
296
297         mutex_init(&sbsec->lock);
298         INIT_LIST_HEAD(&sbsec->isec_head);
299         spin_lock_init(&sbsec->isec_lock);
300         sbsec->sb = sb;
301         sbsec->sid = SECINITSID_UNLABELED;
302         sbsec->def_sid = SECINITSID_FILE;
303         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
304         sb->s_security = sbsec;
305
306         return 0;
307 }
308
309 static void superblock_free_security(struct super_block *sb)
310 {
311         struct superblock_security_struct *sbsec = sb->s_security;
312         sb->s_security = NULL;
313         kfree(sbsec);
314 }
315
316 /* The file system's label must be initialized prior to use. */
317
318 static const char *labeling_behaviors[7] = {
319         "uses xattr",
320         "uses transition SIDs",
321         "uses task SIDs",
322         "uses genfs_contexts",
323         "not configured for labeling",
324         "uses mountpoint labeling",
325         "uses native labeling",
326 };
327
328 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
329
330 static inline int inode_doinit(struct inode *inode)
331 {
332         return inode_doinit_with_dentry(inode, NULL);
333 }
334
335 enum {
336         Opt_error = -1,
337         Opt_context = 1,
338         Opt_fscontext = 2,
339         Opt_defcontext = 3,
340         Opt_rootcontext = 4,
341         Opt_labelsupport = 5,
342         Opt_nextmntopt = 6,
343 };
344
345 #define NUM_SEL_MNT_OPTS        (Opt_nextmntopt - 1)
346
347 static const match_table_t tokens = {
348         {Opt_context, CONTEXT_STR "%s"},
349         {Opt_fscontext, FSCONTEXT_STR "%s"},
350         {Opt_defcontext, DEFCONTEXT_STR "%s"},
351         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
352         {Opt_labelsupport, LABELSUPP_STR},
353         {Opt_error, NULL},
354 };
355
356 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
357
358 static int may_context_mount_sb_relabel(u32 sid,
359                         struct superblock_security_struct *sbsec,
360                         const struct cred *cred)
361 {
362         const struct task_security_struct *tsec = cred->security;
363         int rc;
364
365         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
366                           FILESYSTEM__RELABELFROM, NULL);
367         if (rc)
368                 return rc;
369
370         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
371                           FILESYSTEM__RELABELTO, NULL);
372         return rc;
373 }
374
375 static int may_context_mount_inode_relabel(u32 sid,
376                         struct superblock_security_struct *sbsec,
377                         const struct cred *cred)
378 {
379         const struct task_security_struct *tsec = cred->security;
380         int rc;
381         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
382                           FILESYSTEM__RELABELFROM, NULL);
383         if (rc)
384                 return rc;
385
386         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
387                           FILESYSTEM__ASSOCIATE, NULL);
388         return rc;
389 }
390
391 static int selinux_is_sblabel_mnt(struct super_block *sb)
392 {
393         struct superblock_security_struct *sbsec = sb->s_security;
394
395         if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
396             sbsec->behavior == SECURITY_FS_USE_TRANS ||
397             sbsec->behavior == SECURITY_FS_USE_TASK)
398                 return 1;
399
400         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
401         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
402                 return 1;
403
404         /*
405          * Special handling for rootfs. Is genfs but supports
406          * setting SELinux context on in-core inodes.
407          */
408         if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
409                 return 1;
410
411         return 0;
412 }
413
414 static int sb_finish_set_opts(struct super_block *sb)
415 {
416         struct superblock_security_struct *sbsec = sb->s_security;
417         struct dentry *root = sb->s_root;
418         struct inode *root_inode = root->d_inode;
419         int rc = 0;
420
421         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422                 /* Make sure that the xattr handler exists and that no
423                    error other than -ENODATA is returned by getxattr on
424                    the root directory.  -ENODATA is ok, as this may be
425                    the first boot of the SELinux kernel before we have
426                    assigned xattr values to the filesystem. */
427                 if (!root_inode->i_op->getxattr) {
428                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429                                "xattr support\n", sb->s_id, sb->s_type->name);
430                         rc = -EOPNOTSUPP;
431                         goto out;
432                 }
433                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434                 if (rc < 0 && rc != -ENODATA) {
435                         if (rc == -EOPNOTSUPP)
436                                 printk(KERN_WARNING "SELinux: (dev %s, type "
437                                        "%s) has no security xattr handler\n",
438                                        sb->s_id, sb->s_type->name);
439                         else
440                                 printk(KERN_WARNING "SELinux: (dev %s, type "
441                                        "%s) getxattr errno %d\n", sb->s_id,
442                                        sb->s_type->name, -rc);
443                         goto out;
444                 }
445         }
446
447         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449                        sb->s_id, sb->s_type->name);
450         else
451                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
452                        sb->s_id, sb->s_type->name,
453                        labeling_behaviors[sbsec->behavior-1]);
454
455         sbsec->flags |= SE_SBINITIALIZED;
456         if (selinux_is_sblabel_mnt(sb))
457                 sbsec->flags |= SBLABEL_MNT;
458
459         /* Initialize the root inode. */
460         rc = inode_doinit_with_dentry(root_inode, root);
461
462         /* Initialize any other inodes associated with the superblock, e.g.
463            inodes created prior to initial policy load or inodes created
464            during get_sb by a pseudo filesystem that directly
465            populates itself. */
466         spin_lock(&sbsec->isec_lock);
467 next_inode:
468         if (!list_empty(&sbsec->isec_head)) {
469                 struct inode_security_struct *isec =
470                                 list_entry(sbsec->isec_head.next,
471                                            struct inode_security_struct, list);
472                 struct inode *inode = isec->inode;
473                 spin_unlock(&sbsec->isec_lock);
474                 inode = igrab(inode);
475                 if (inode) {
476                         if (!IS_PRIVATE(inode))
477                                 inode_doinit(inode);
478                         iput(inode);
479                 }
480                 spin_lock(&sbsec->isec_lock);
481                 list_del_init(&isec->list);
482                 goto next_inode;
483         }
484         spin_unlock(&sbsec->isec_lock);
485 out:
486         return rc;
487 }
488
489 /*
490  * This function should allow an FS to ask what it's mount security
491  * options were so it can use those later for submounts, displaying
492  * mount options, or whatever.
493  */
494 static int selinux_get_mnt_opts(const struct super_block *sb,
495                                 struct security_mnt_opts *opts)
496 {
497         int rc = 0, i;
498         struct superblock_security_struct *sbsec = sb->s_security;
499         char *context = NULL;
500         u32 len;
501         char tmp;
502
503         security_init_mnt_opts(opts);
504
505         if (!(sbsec->flags & SE_SBINITIALIZED))
506                 return -EINVAL;
507
508         if (!ss_initialized)
509                 return -EINVAL;
510
511         /* make sure we always check enough bits to cover the mask */
512         BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
513
514         tmp = sbsec->flags & SE_MNTMASK;
515         /* count the number of mount options for this sb */
516         for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
517                 if (tmp & 0x01)
518                         opts->num_mnt_opts++;
519                 tmp >>= 1;
520         }
521         /* Check if the Label support flag is set */
522         if (sbsec->flags & SBLABEL_MNT)
523                 opts->num_mnt_opts++;
524
525         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
526         if (!opts->mnt_opts) {
527                 rc = -ENOMEM;
528                 goto out_free;
529         }
530
531         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
532         if (!opts->mnt_opts_flags) {
533                 rc = -ENOMEM;
534                 goto out_free;
535         }
536
537         i = 0;
538         if (sbsec->flags & FSCONTEXT_MNT) {
539                 rc = security_sid_to_context(sbsec->sid, &context, &len);
540                 if (rc)
541                         goto out_free;
542                 opts->mnt_opts[i] = context;
543                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
544         }
545         if (sbsec->flags & CONTEXT_MNT) {
546                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
547                 if (rc)
548                         goto out_free;
549                 opts->mnt_opts[i] = context;
550                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
551         }
552         if (sbsec->flags & DEFCONTEXT_MNT) {
553                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
554                 if (rc)
555                         goto out_free;
556                 opts->mnt_opts[i] = context;
557                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
558         }
559         if (sbsec->flags & ROOTCONTEXT_MNT) {
560                 struct inode *root = sbsec->sb->s_root->d_inode;
561                 struct inode_security_struct *isec = root->i_security;
562
563                 rc = security_sid_to_context(isec->sid, &context, &len);
564                 if (rc)
565                         goto out_free;
566                 opts->mnt_opts[i] = context;
567                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
568         }
569         if (sbsec->flags & SBLABEL_MNT) {
570                 opts->mnt_opts[i] = NULL;
571                 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
572         }
573
574         BUG_ON(i != opts->num_mnt_opts);
575
576         return 0;
577
578 out_free:
579         security_free_mnt_opts(opts);
580         return rc;
581 }
582
583 static int bad_option(struct superblock_security_struct *sbsec, char flag,
584                       u32 old_sid, u32 new_sid)
585 {
586         char mnt_flags = sbsec->flags & SE_MNTMASK;
587
588         /* check if the old mount command had the same options */
589         if (sbsec->flags & SE_SBINITIALIZED)
590                 if (!(sbsec->flags & flag) ||
591                     (old_sid != new_sid))
592                         return 1;
593
594         /* check if we were passed the same options twice,
595          * aka someone passed context=a,context=b
596          */
597         if (!(sbsec->flags & SE_SBINITIALIZED))
598                 if (mnt_flags & flag)
599                         return 1;
600         return 0;
601 }
602
603 /*
604  * Allow filesystems with binary mount data to explicitly set mount point
605  * labeling information.
606  */
607 static int selinux_set_mnt_opts(struct super_block *sb,
608                                 struct security_mnt_opts *opts,
609                                 unsigned long kern_flags,
610                                 unsigned long *set_kern_flags)
611 {
612         const struct cred *cred = current_cred();
613         int rc = 0, i;
614         struct superblock_security_struct *sbsec = sb->s_security;
615         const char *name = sb->s_type->name;
616         struct inode *inode = sbsec->sb->s_root->d_inode;
617         struct inode_security_struct *root_isec = inode->i_security;
618         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
619         u32 defcontext_sid = 0;
620         char **mount_options = opts->mnt_opts;
621         int *flags = opts->mnt_opts_flags;
622         int num_opts = opts->num_mnt_opts;
623
624         mutex_lock(&sbsec->lock);
625
626         if (!ss_initialized) {
627                 if (!num_opts) {
628                         /* Defer initialization until selinux_complete_init,
629                            after the initial policy is loaded and the security
630                            server is ready to handle calls. */
631                         goto out;
632                 }
633                 rc = -EINVAL;
634                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
635                         "before the security server is initialized\n");
636                 goto out;
637         }
638         if (kern_flags && !set_kern_flags) {
639                 /* Specifying internal flags without providing a place to
640                  * place the results is not allowed */
641                 rc = -EINVAL;
642                 goto out;
643         }
644
645         /*
646          * Binary mount data FS will come through this function twice.  Once
647          * from an explicit call and once from the generic calls from the vfs.
648          * Since the generic VFS calls will not contain any security mount data
649          * we need to skip the double mount verification.
650          *
651          * This does open a hole in which we will not notice if the first
652          * mount using this sb set explict options and a second mount using
653          * this sb does not set any security options.  (The first options
654          * will be used for both mounts)
655          */
656         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
657             && (num_opts == 0))
658                 goto out;
659
660         /*
661          * parse the mount options, check if they are valid sids.
662          * also check if someone is trying to mount the same sb more
663          * than once with different security options.
664          */
665         for (i = 0; i < num_opts; i++) {
666                 u32 sid;
667
668                 if (flags[i] == SBLABEL_MNT)
669                         continue;
670                 rc = security_context_to_sid(mount_options[i],
671                                              strlen(mount_options[i]), &sid, GFP_KERNEL);
672                 if (rc) {
673                         printk(KERN_WARNING "SELinux: security_context_to_sid"
674                                "(%s) failed for (dev %s, type %s) errno=%d\n",
675                                mount_options[i], sb->s_id, name, rc);
676                         goto out;
677                 }
678                 switch (flags[i]) {
679                 case FSCONTEXT_MNT:
680                         fscontext_sid = sid;
681
682                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
683                                         fscontext_sid))
684                                 goto out_double_mount;
685
686                         sbsec->flags |= FSCONTEXT_MNT;
687                         break;
688                 case CONTEXT_MNT:
689                         context_sid = sid;
690
691                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
692                                         context_sid))
693                                 goto out_double_mount;
694
695                         sbsec->flags |= CONTEXT_MNT;
696                         break;
697                 case ROOTCONTEXT_MNT:
698                         rootcontext_sid = sid;
699
700                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
701                                         rootcontext_sid))
702                                 goto out_double_mount;
703
704                         sbsec->flags |= ROOTCONTEXT_MNT;
705
706                         break;
707                 case DEFCONTEXT_MNT:
708                         defcontext_sid = sid;
709
710                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
711                                         defcontext_sid))
712                                 goto out_double_mount;
713
714                         sbsec->flags |= DEFCONTEXT_MNT;
715
716                         break;
717                 default:
718                         rc = -EINVAL;
719                         goto out;
720                 }
721         }
722
723         if (sbsec->flags & SE_SBINITIALIZED) {
724                 /* previously mounted with options, but not on this attempt? */
725                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
726                         goto out_double_mount;
727                 rc = 0;
728                 goto out;
729         }
730
731         if (strcmp(sb->s_type->name, "proc") == 0)
732                 sbsec->flags |= SE_SBPROC;
733
734         if (!sbsec->behavior) {
735                 /*
736                  * Determine the labeling behavior to use for this
737                  * filesystem type.
738                  */
739                 rc = security_fs_use(sb);
740                 if (rc) {
741                         printk(KERN_WARNING
742                                 "%s: security_fs_use(%s) returned %d\n",
743                                         __func__, sb->s_type->name, rc);
744                         goto out;
745                 }
746         }
747         /* sets the context of the superblock for the fs being mounted. */
748         if (fscontext_sid) {
749                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
750                 if (rc)
751                         goto out;
752
753                 sbsec->sid = fscontext_sid;
754         }
755
756         /*
757          * Switch to using mount point labeling behavior.
758          * sets the label used on all file below the mountpoint, and will set
759          * the superblock context if not already set.
760          */
761         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
762                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
763                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
764         }
765
766         if (context_sid) {
767                 if (!fscontext_sid) {
768                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
769                                                           cred);
770                         if (rc)
771                                 goto out;
772                         sbsec->sid = context_sid;
773                 } else {
774                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
775                                                              cred);
776                         if (rc)
777                                 goto out;
778                 }
779                 if (!rootcontext_sid)
780                         rootcontext_sid = context_sid;
781
782                 sbsec->mntpoint_sid = context_sid;
783                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
784         }
785
786         if (rootcontext_sid) {
787                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
788                                                      cred);
789                 if (rc)
790                         goto out;
791
792                 root_isec->sid = rootcontext_sid;
793                 root_isec->initialized = 1;
794         }
795
796         if (defcontext_sid) {
797                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
798                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
799                         rc = -EINVAL;
800                         printk(KERN_WARNING "SELinux: defcontext option is "
801                                "invalid for this filesystem type\n");
802                         goto out;
803                 }
804
805                 if (defcontext_sid != sbsec->def_sid) {
806                         rc = may_context_mount_inode_relabel(defcontext_sid,
807                                                              sbsec, cred);
808                         if (rc)
809                                 goto out;
810                 }
811
812                 sbsec->def_sid = defcontext_sid;
813         }
814
815         rc = sb_finish_set_opts(sb);
816 out:
817         mutex_unlock(&sbsec->lock);
818         return rc;
819 out_double_mount:
820         rc = -EINVAL;
821         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
822                "security settings for (dev %s, type %s)\n", sb->s_id, name);
823         goto out;
824 }
825
826 static int selinux_cmp_sb_context(const struct super_block *oldsb,
827                                     const struct super_block *newsb)
828 {
829         struct superblock_security_struct *old = oldsb->s_security;
830         struct superblock_security_struct *new = newsb->s_security;
831         char oldflags = old->flags & SE_MNTMASK;
832         char newflags = new->flags & SE_MNTMASK;
833
834         if (oldflags != newflags)
835                 goto mismatch;
836         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
837                 goto mismatch;
838         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
839                 goto mismatch;
840         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
841                 goto mismatch;
842         if (oldflags & ROOTCONTEXT_MNT) {
843                 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
844                 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
845                 if (oldroot->sid != newroot->sid)
846                         goto mismatch;
847         }
848         return 0;
849 mismatch:
850         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
851                             "different security settings for (dev %s, "
852                             "type %s)\n", newsb->s_id, newsb->s_type->name);
853         return -EBUSY;
854 }
855
856 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
857                                         struct super_block *newsb)
858 {
859         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
860         struct superblock_security_struct *newsbsec = newsb->s_security;
861
862         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
863         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
864         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
865
866         /*
867          * if the parent was able to be mounted it clearly had no special lsm
868          * mount options.  thus we can safely deal with this superblock later
869          */
870         if (!ss_initialized)
871                 return 0;
872
873         /* how can we clone if the old one wasn't set up?? */
874         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
875
876         /* if fs is reusing a sb, make sure that the contexts match */
877         if (newsbsec->flags & SE_SBINITIALIZED)
878                 return selinux_cmp_sb_context(oldsb, newsb);
879
880         mutex_lock(&newsbsec->lock);
881
882         newsbsec->flags = oldsbsec->flags;
883
884         newsbsec->sid = oldsbsec->sid;
885         newsbsec->def_sid = oldsbsec->def_sid;
886         newsbsec->behavior = oldsbsec->behavior;
887
888         if (set_context) {
889                 u32 sid = oldsbsec->mntpoint_sid;
890
891                 if (!set_fscontext)
892                         newsbsec->sid = sid;
893                 if (!set_rootcontext) {
894                         struct inode *newinode = newsb->s_root->d_inode;
895                         struct inode_security_struct *newisec = newinode->i_security;
896                         newisec->sid = sid;
897                 }
898                 newsbsec->mntpoint_sid = sid;
899         }
900         if (set_rootcontext) {
901                 const struct inode *oldinode = oldsb->s_root->d_inode;
902                 const struct inode_security_struct *oldisec = oldinode->i_security;
903                 struct inode *newinode = newsb->s_root->d_inode;
904                 struct inode_security_struct *newisec = newinode->i_security;
905
906                 newisec->sid = oldisec->sid;
907         }
908
909         sb_finish_set_opts(newsb);
910         mutex_unlock(&newsbsec->lock);
911         return 0;
912 }
913
914 static int selinux_parse_opts_str(char *options,
915                                   struct security_mnt_opts *opts)
916 {
917         char *p;
918         char *context = NULL, *defcontext = NULL;
919         char *fscontext = NULL, *rootcontext = NULL;
920         int rc, num_mnt_opts = 0;
921
922         opts->num_mnt_opts = 0;
923
924         /* Standard string-based options. */
925         while ((p = strsep(&options, "|")) != NULL) {
926                 int token;
927                 substring_t args[MAX_OPT_ARGS];
928
929                 if (!*p)
930                         continue;
931
932                 token = match_token(p, tokens, args);
933
934                 switch (token) {
935                 case Opt_context:
936                         if (context || defcontext) {
937                                 rc = -EINVAL;
938                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
939                                 goto out_err;
940                         }
941                         context = match_strdup(&args[0]);
942                         if (!context) {
943                                 rc = -ENOMEM;
944                                 goto out_err;
945                         }
946                         break;
947
948                 case Opt_fscontext:
949                         if (fscontext) {
950                                 rc = -EINVAL;
951                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
952                                 goto out_err;
953                         }
954                         fscontext = match_strdup(&args[0]);
955                         if (!fscontext) {
956                                 rc = -ENOMEM;
957                                 goto out_err;
958                         }
959                         break;
960
961                 case Opt_rootcontext:
962                         if (rootcontext) {
963                                 rc = -EINVAL;
964                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
965                                 goto out_err;
966                         }
967                         rootcontext = match_strdup(&args[0]);
968                         if (!rootcontext) {
969                                 rc = -ENOMEM;
970                                 goto out_err;
971                         }
972                         break;
973
974                 case Opt_defcontext:
975                         if (context || defcontext) {
976                                 rc = -EINVAL;
977                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
978                                 goto out_err;
979                         }
980                         defcontext = match_strdup(&args[0]);
981                         if (!defcontext) {
982                                 rc = -ENOMEM;
983                                 goto out_err;
984                         }
985                         break;
986                 case Opt_labelsupport:
987                         break;
988                 default:
989                         rc = -EINVAL;
990                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
991                         goto out_err;
992
993                 }
994         }
995
996         rc = -ENOMEM;
997         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
998         if (!opts->mnt_opts)
999                 goto out_err;
1000
1001         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002         if (!opts->mnt_opts_flags) {
1003                 kfree(opts->mnt_opts);
1004                 goto out_err;
1005         }
1006
1007         if (fscontext) {
1008                 opts->mnt_opts[num_mnt_opts] = fscontext;
1009                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1010         }
1011         if (context) {
1012                 opts->mnt_opts[num_mnt_opts] = context;
1013                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1014         }
1015         if (rootcontext) {
1016                 opts->mnt_opts[num_mnt_opts] = rootcontext;
1017                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1018         }
1019         if (defcontext) {
1020                 opts->mnt_opts[num_mnt_opts] = defcontext;
1021                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1022         }
1023
1024         opts->num_mnt_opts = num_mnt_opts;
1025         return 0;
1026
1027 out_err:
1028         kfree(context);
1029         kfree(defcontext);
1030         kfree(fscontext);
1031         kfree(rootcontext);
1032         return rc;
1033 }
1034 /*
1035  * string mount options parsing and call set the sbsec
1036  */
1037 static int superblock_doinit(struct super_block *sb, void *data)
1038 {
1039         int rc = 0;
1040         char *options = data;
1041         struct security_mnt_opts opts;
1042
1043         security_init_mnt_opts(&opts);
1044
1045         if (!data)
1046                 goto out;
1047
1048         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1049
1050         rc = selinux_parse_opts_str(options, &opts);
1051         if (rc)
1052                 goto out_err;
1053
1054 out:
1055         rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1056
1057 out_err:
1058         security_free_mnt_opts(&opts);
1059         return rc;
1060 }
1061
1062 static void selinux_write_opts(struct seq_file *m,
1063                                struct security_mnt_opts *opts)
1064 {
1065         int i;
1066         char *prefix;
1067
1068         for (i = 0; i < opts->num_mnt_opts; i++) {
1069                 char *has_comma;
1070
1071                 if (opts->mnt_opts[i])
1072                         has_comma = strchr(opts->mnt_opts[i], ',');
1073                 else
1074                         has_comma = NULL;
1075
1076                 switch (opts->mnt_opts_flags[i]) {
1077                 case CONTEXT_MNT:
1078                         prefix = CONTEXT_STR;
1079                         break;
1080                 case FSCONTEXT_MNT:
1081                         prefix = FSCONTEXT_STR;
1082                         break;
1083                 case ROOTCONTEXT_MNT:
1084                         prefix = ROOTCONTEXT_STR;
1085                         break;
1086                 case DEFCONTEXT_MNT:
1087                         prefix = DEFCONTEXT_STR;
1088                         break;
1089                 case SBLABEL_MNT:
1090                         seq_putc(m, ',');
1091                         seq_puts(m, LABELSUPP_STR);
1092                         continue;
1093                 default:
1094                         BUG();
1095                         return;
1096                 };
1097                 /* we need a comma before each option */
1098                 seq_putc(m, ',');
1099                 seq_puts(m, prefix);
1100                 if (has_comma)
1101                         seq_putc(m, '\"');
1102                 seq_puts(m, opts->mnt_opts[i]);
1103                 if (has_comma)
1104                         seq_putc(m, '\"');
1105         }
1106 }
1107
1108 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109 {
1110         struct security_mnt_opts opts;
1111         int rc;
1112
1113         rc = selinux_get_mnt_opts(sb, &opts);
1114         if (rc) {
1115                 /* before policy load we may get EINVAL, don't show anything */
1116                 if (rc == -EINVAL)
1117                         rc = 0;
1118                 return rc;
1119         }
1120
1121         selinux_write_opts(m, &opts);
1122
1123         security_free_mnt_opts(&opts);
1124
1125         return rc;
1126 }
1127
1128 static inline u16 inode_mode_to_security_class(umode_t mode)
1129 {
1130         switch (mode & S_IFMT) {
1131         case S_IFSOCK:
1132                 return SECCLASS_SOCK_FILE;
1133         case S_IFLNK:
1134                 return SECCLASS_LNK_FILE;
1135         case S_IFREG:
1136                 return SECCLASS_FILE;
1137         case S_IFBLK:
1138                 return SECCLASS_BLK_FILE;
1139         case S_IFDIR:
1140                 return SECCLASS_DIR;
1141         case S_IFCHR:
1142                 return SECCLASS_CHR_FILE;
1143         case S_IFIFO:
1144                 return SECCLASS_FIFO_FILE;
1145
1146         }
1147
1148         return SECCLASS_FILE;
1149 }
1150
1151 static inline int default_protocol_stream(int protocol)
1152 {
1153         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1154 }
1155
1156 static inline int default_protocol_dgram(int protocol)
1157 {
1158         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1159 }
1160
1161 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1162 {
1163         switch (family) {
1164         case PF_UNIX:
1165                 switch (type) {
1166                 case SOCK_STREAM:
1167                 case SOCK_SEQPACKET:
1168                         return SECCLASS_UNIX_STREAM_SOCKET;
1169                 case SOCK_DGRAM:
1170                         return SECCLASS_UNIX_DGRAM_SOCKET;
1171                 }
1172                 break;
1173         case PF_INET:
1174         case PF_INET6:
1175                 switch (type) {
1176                 case SOCK_STREAM:
1177                         if (default_protocol_stream(protocol))
1178                                 return SECCLASS_TCP_SOCKET;
1179                         else
1180                                 return SECCLASS_RAWIP_SOCKET;
1181                 case SOCK_DGRAM:
1182                         if (default_protocol_dgram(protocol))
1183                                 return SECCLASS_UDP_SOCKET;
1184                         else
1185                                 return SECCLASS_RAWIP_SOCKET;
1186                 case SOCK_DCCP:
1187                         return SECCLASS_DCCP_SOCKET;
1188                 default:
1189                         return SECCLASS_RAWIP_SOCKET;
1190                 }
1191                 break;
1192         case PF_NETLINK:
1193                 switch (protocol) {
1194                 case NETLINK_ROUTE:
1195                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1196                 case NETLINK_FIREWALL:
1197                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198                 case NETLINK_SOCK_DIAG:
1199                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1200                 case NETLINK_NFLOG:
1201                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1202                 case NETLINK_XFRM:
1203                         return SECCLASS_NETLINK_XFRM_SOCKET;
1204                 case NETLINK_SELINUX:
1205                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1206                 case NETLINK_AUDIT:
1207                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1208                 case NETLINK_IP6_FW:
1209                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1210                 case NETLINK_DNRTMSG:
1211                         return SECCLASS_NETLINK_DNRT_SOCKET;
1212                 case NETLINK_KOBJECT_UEVENT:
1213                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1214                 default:
1215                         return SECCLASS_NETLINK_SOCKET;
1216                 }
1217         case PF_PACKET:
1218                 return SECCLASS_PACKET_SOCKET;
1219         case PF_KEY:
1220                 return SECCLASS_KEY_SOCKET;
1221         case PF_APPLETALK:
1222                 return SECCLASS_APPLETALK_SOCKET;
1223         }
1224
1225         return SECCLASS_SOCKET;
1226 }
1227
1228 #ifdef CONFIG_PROC_FS
1229 static int selinux_proc_get_sid(struct dentry *dentry,
1230                                 u16 tclass,
1231                                 u32 *sid)
1232 {
1233         int rc;
1234         char *buffer, *path;
1235
1236         buffer = (char *)__get_free_page(GFP_KERNEL);
1237         if (!buffer)
1238                 return -ENOMEM;
1239
1240         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1241         if (IS_ERR(path))
1242                 rc = PTR_ERR(path);
1243         else {
1244                 /* each process gets a /proc/PID/ entry. Strip off the
1245                  * PID part to get a valid selinux labeling.
1246                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247                 while (path[1] >= '0' && path[1] <= '9') {
1248                         path[1] = '/';
1249                         path++;
1250                 }
1251                 rc = security_genfs_sid("proc", path, tclass, sid);
1252         }
1253         free_page((unsigned long)buffer);
1254         return rc;
1255 }
1256 #else
1257 static int selinux_proc_get_sid(struct dentry *dentry,
1258                                 u16 tclass,
1259                                 u32 *sid)
1260 {
1261         return -EINVAL;
1262 }
1263 #endif
1264
1265 /* The inode's security attributes must be initialized before first use. */
1266 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1267 {
1268         struct superblock_security_struct *sbsec = NULL;
1269         struct inode_security_struct *isec = inode->i_security;
1270         u32 sid;
1271         struct dentry *dentry;
1272 #define INITCONTEXTLEN 255
1273         char *context = NULL;
1274         unsigned len = 0;
1275         int rc = 0;
1276
1277         if (isec->initialized)
1278                 goto out;
1279
1280         mutex_lock(&isec->lock);
1281         if (isec->initialized)
1282                 goto out_unlock;
1283
1284         sbsec = inode->i_sb->s_security;
1285         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286                 /* Defer initialization until selinux_complete_init,
1287                    after the initial policy is loaded and the security
1288                    server is ready to handle calls. */
1289                 spin_lock(&sbsec->isec_lock);
1290                 if (list_empty(&isec->list))
1291                         list_add(&isec->list, &sbsec->isec_head);
1292                 spin_unlock(&sbsec->isec_lock);
1293                 goto out_unlock;
1294         }
1295
1296         switch (sbsec->behavior) {
1297         case SECURITY_FS_USE_NATIVE:
1298                 break;
1299         case SECURITY_FS_USE_XATTR:
1300                 if (!inode->i_op->getxattr) {
1301                         isec->sid = sbsec->def_sid;
1302                         break;
1303                 }
1304
1305                 /* Need a dentry, since the xattr API requires one.
1306                    Life would be simpler if we could just pass the inode. */
1307                 if (opt_dentry) {
1308                         /* Called from d_instantiate or d_splice_alias. */
1309                         dentry = dget(opt_dentry);
1310                 } else {
1311                         /* Called from selinux_complete_init, try to find a dentry. */
1312                         dentry = d_find_alias(inode);
1313                 }
1314                 if (!dentry) {
1315                         /*
1316                          * this is can be hit on boot when a file is accessed
1317                          * before the policy is loaded.  When we load policy we
1318                          * may find inodes that have no dentry on the
1319                          * sbsec->isec_head list.  No reason to complain as these
1320                          * will get fixed up the next time we go through
1321                          * inode_doinit with a dentry, before these inodes could
1322                          * be used again by userspace.
1323                          */
1324                         goto out_unlock;
1325                 }
1326
1327                 len = INITCONTEXTLEN;
1328                 context = kmalloc(len+1, GFP_NOFS);
1329                 if (!context) {
1330                         rc = -ENOMEM;
1331                         dput(dentry);
1332                         goto out_unlock;
1333                 }
1334                 context[len] = '\0';
1335                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1336                                            context, len);
1337                 if (rc == -ERANGE) {
1338                         kfree(context);
1339
1340                         /* Need a larger buffer.  Query for the right size. */
1341                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1342                                                    NULL, 0);
1343                         if (rc < 0) {
1344                                 dput(dentry);
1345                                 goto out_unlock;
1346                         }
1347                         len = rc;
1348                         context = kmalloc(len+1, GFP_NOFS);
1349                         if (!context) {
1350                                 rc = -ENOMEM;
1351                                 dput(dentry);
1352                                 goto out_unlock;
1353                         }
1354                         context[len] = '\0';
1355                         rc = inode->i_op->getxattr(dentry,
1356                                                    XATTR_NAME_SELINUX,
1357                                                    context, len);
1358                 }
1359                 dput(dentry);
1360                 if (rc < 0) {
1361                         if (rc != -ENODATA) {
1362                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1363                                        "%d for dev=%s ino=%ld\n", __func__,
1364                                        -rc, inode->i_sb->s_id, inode->i_ino);
1365                                 kfree(context);
1366                                 goto out_unlock;
1367                         }
1368                         /* Map ENODATA to the default file SID */
1369                         sid = sbsec->def_sid;
1370                         rc = 0;
1371                 } else {
1372                         rc = security_context_to_sid_default(context, rc, &sid,
1373                                                              sbsec->def_sid,
1374                                                              GFP_NOFS);
1375                         if (rc) {
1376                                 char *dev = inode->i_sb->s_id;
1377                                 unsigned long ino = inode->i_ino;
1378
1379                                 if (rc == -EINVAL) {
1380                                         if (printk_ratelimit())
1381                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1383                                                         "filesystem in question.\n", ino, dev, context);
1384                                 } else {
1385                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1386                                                "returned %d for dev=%s ino=%ld\n",
1387                                                __func__, context, -rc, dev, ino);
1388                                 }
1389                                 kfree(context);
1390                                 /* Leave with the unlabeled SID */
1391                                 rc = 0;
1392                                 break;
1393                         }
1394                 }
1395                 kfree(context);
1396                 isec->sid = sid;
1397                 break;
1398         case SECURITY_FS_USE_TASK:
1399                 isec->sid = isec->task_sid;
1400                 break;
1401         case SECURITY_FS_USE_TRANS:
1402                 /* Default to the fs SID. */
1403                 isec->sid = sbsec->sid;
1404
1405                 /* Try to obtain a transition SID. */
1406                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408                                              isec->sclass, NULL, &sid);
1409                 if (rc)
1410                         goto out_unlock;
1411                 isec->sid = sid;
1412                 break;
1413         case SECURITY_FS_USE_MNTPOINT:
1414                 isec->sid = sbsec->mntpoint_sid;
1415                 break;
1416         default:
1417                 /* Default to the fs superblock SID. */
1418                 isec->sid = sbsec->sid;
1419
1420                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1421                         /* We must have a dentry to determine the label on
1422                          * procfs inodes */
1423                         if (opt_dentry)
1424                                 /* Called from d_instantiate or
1425                                  * d_splice_alias. */
1426                                 dentry = dget(opt_dentry);
1427                         else
1428                                 /* Called from selinux_complete_init, try to
1429                                  * find a dentry. */
1430                                 dentry = d_find_alias(inode);
1431                         /*
1432                          * This can be hit on boot when a file is accessed
1433                          * before the policy is loaded.  When we load policy we
1434                          * may find inodes that have no dentry on the
1435                          * sbsec->isec_head list.  No reason to complain as
1436                          * these will get fixed up the next time we go through
1437                          * inode_doinit() with a dentry, before these inodes
1438                          * could be used again by userspace.
1439                          */
1440                         if (!dentry)
1441                                 goto out_unlock;
1442                         isec->sclass = inode_mode_to_security_class(inode->i_mode);
1443                         rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1444                         dput(dentry);
1445                         if (rc)
1446                                 goto out_unlock;
1447                         isec->sid = sid;
1448                 }
1449                 break;
1450         }
1451
1452         isec->initialized = 1;
1453
1454 out_unlock:
1455         mutex_unlock(&isec->lock);
1456 out:
1457         if (isec->sclass == SECCLASS_FILE)
1458                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1459         return rc;
1460 }
1461
1462 /* Convert a Linux signal to an access vector. */
1463 static inline u32 signal_to_av(int sig)
1464 {
1465         u32 perm = 0;
1466
1467         switch (sig) {
1468         case SIGCHLD:
1469                 /* Commonly granted from child to parent. */
1470                 perm = PROCESS__SIGCHLD;
1471                 break;
1472         case SIGKILL:
1473                 /* Cannot be caught or ignored */
1474                 perm = PROCESS__SIGKILL;
1475                 break;
1476         case SIGSTOP:
1477                 /* Cannot be caught or ignored */
1478                 perm = PROCESS__SIGSTOP;
1479                 break;
1480         default:
1481                 /* All other signals. */
1482                 perm = PROCESS__SIGNAL;
1483                 break;
1484         }
1485
1486         return perm;
1487 }
1488
1489 /*
1490  * Check permission between a pair of credentials
1491  * fork check, ptrace check, etc.
1492  */
1493 static int cred_has_perm(const struct cred *actor,
1494                          const struct cred *target,
1495                          u32 perms)
1496 {
1497         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1498
1499         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1500 }
1501
1502 /*
1503  * Check permission between a pair of tasks, e.g. signal checks,
1504  * fork check, ptrace check, etc.
1505  * tsk1 is the actor and tsk2 is the target
1506  * - this uses the default subjective creds of tsk1
1507  */
1508 static int task_has_perm(const struct task_struct *tsk1,
1509                          const struct task_struct *tsk2,
1510                          u32 perms)
1511 {
1512         const struct task_security_struct *__tsec1, *__tsec2;
1513         u32 sid1, sid2;
1514
1515         rcu_read_lock();
1516         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1517         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1518         rcu_read_unlock();
1519         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1520 }
1521
1522 /*
1523  * Check permission between current and another task, e.g. signal checks,
1524  * fork check, ptrace check, etc.
1525  * current is the actor and tsk2 is the target
1526  * - this uses current's subjective creds
1527  */
1528 static int current_has_perm(const struct task_struct *tsk,
1529                             u32 perms)
1530 {
1531         u32 sid, tsid;
1532
1533         sid = current_sid();
1534         tsid = task_sid(tsk);
1535         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1536 }
1537
1538 #if CAP_LAST_CAP > 63
1539 #error Fix SELinux to handle capabilities > 63.
1540 #endif
1541
1542 /* Check whether a task is allowed to use a capability. */
1543 static int cred_has_capability(const struct cred *cred,
1544                                int cap, int audit)
1545 {
1546         struct common_audit_data ad;
1547         struct av_decision avd;
1548         u16 sclass;
1549         u32 sid = cred_sid(cred);
1550         u32 av = CAP_TO_MASK(cap);
1551         int rc;
1552
1553         ad.type = LSM_AUDIT_DATA_CAP;
1554         ad.u.cap = cap;
1555
1556         switch (CAP_TO_INDEX(cap)) {
1557         case 0:
1558                 sclass = SECCLASS_CAPABILITY;
1559                 break;
1560         case 1:
1561                 sclass = SECCLASS_CAPABILITY2;
1562                 break;
1563         default:
1564                 printk(KERN_ERR
1565                        "SELinux:  out of range capability %d\n", cap);
1566                 BUG();
1567                 return -EINVAL;
1568         }
1569
1570         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1571         if (audit == SECURITY_CAP_AUDIT) {
1572                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1573                 if (rc2)
1574                         return rc2;
1575         }
1576         return rc;
1577 }
1578
1579 /* Check whether a task is allowed to use a system operation. */
1580 static int task_has_system(struct task_struct *tsk,
1581                            u32 perms)
1582 {
1583         u32 sid = task_sid(tsk);
1584
1585         return avc_has_perm(sid, SECINITSID_KERNEL,
1586                             SECCLASS_SYSTEM, perms, NULL);
1587 }
1588
1589 /* Check whether a task has a particular permission to an inode.
1590    The 'adp' parameter is optional and allows other audit
1591    data to be passed (e.g. the dentry). */
1592 static int inode_has_perm(const struct cred *cred,
1593                           struct inode *inode,
1594                           u32 perms,
1595                           struct common_audit_data *adp)
1596 {
1597         struct inode_security_struct *isec;
1598         u32 sid;
1599
1600         validate_creds(cred);
1601
1602         if (unlikely(IS_PRIVATE(inode)))
1603                 return 0;
1604
1605         sid = cred_sid(cred);
1606         isec = inode->i_security;
1607
1608         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1609 }
1610
1611 /* Same as inode_has_perm, but pass explicit audit data containing
1612    the dentry to help the auditing code to more easily generate the
1613    pathname if needed. */
1614 static inline int dentry_has_perm(const struct cred *cred,
1615                                   struct dentry *dentry,
1616                                   u32 av)
1617 {
1618         struct inode *inode = dentry->d_inode;
1619         struct common_audit_data ad;
1620
1621         ad.type = LSM_AUDIT_DATA_DENTRY;
1622         ad.u.dentry = dentry;
1623         return inode_has_perm(cred, inode, av, &ad);
1624 }
1625
1626 /* Same as inode_has_perm, but pass explicit audit data containing
1627    the path to help the auditing code to more easily generate the
1628    pathname if needed. */
1629 static inline int path_has_perm(const struct cred *cred,
1630                                 struct path *path,
1631                                 u32 av)
1632 {
1633         struct inode *inode = path->dentry->d_inode;
1634         struct common_audit_data ad;
1635
1636         ad.type = LSM_AUDIT_DATA_PATH;
1637         ad.u.path = *path;
1638         return inode_has_perm(cred, inode, av, &ad);
1639 }
1640
1641 /* Same as path_has_perm, but uses the inode from the file struct. */
1642 static inline int file_path_has_perm(const struct cred *cred,
1643                                      struct file *file,
1644                                      u32 av)
1645 {
1646         struct common_audit_data ad;
1647
1648         ad.type = LSM_AUDIT_DATA_PATH;
1649         ad.u.path = file->f_path;
1650         return inode_has_perm(cred, file_inode(file), av, &ad);
1651 }
1652
1653 /* Check whether a task can use an open file descriptor to
1654    access an inode in a given way.  Check access to the
1655    descriptor itself, and then use dentry_has_perm to
1656    check a particular permission to the file.
1657    Access to the descriptor is implicitly granted if it
1658    has the same SID as the process.  If av is zero, then
1659    access to the file is not checked, e.g. for cases
1660    where only the descriptor is affected like seek. */
1661 static int file_has_perm(const struct cred *cred,
1662                          struct file *file,
1663                          u32 av)
1664 {
1665         struct file_security_struct *fsec = file->f_security;
1666         struct inode *inode = file_inode(file);
1667         struct common_audit_data ad;
1668         u32 sid = cred_sid(cred);
1669         int rc;
1670
1671         ad.type = LSM_AUDIT_DATA_PATH;
1672         ad.u.path = file->f_path;
1673
1674         if (sid != fsec->sid) {
1675                 rc = avc_has_perm(sid, fsec->sid,
1676                                   SECCLASS_FD,
1677                                   FD__USE,
1678                                   &ad);
1679                 if (rc)
1680                         goto out;
1681         }
1682
1683         /* av is zero if only checking access to the descriptor. */
1684         rc = 0;
1685         if (av)
1686                 rc = inode_has_perm(cred, inode, av, &ad);
1687
1688 out:
1689         return rc;
1690 }
1691
1692 /* Check whether a task can create a file. */
1693 static int may_create(struct inode *dir,
1694                       struct dentry *dentry,
1695                       u16 tclass)
1696 {
1697         const struct task_security_struct *tsec = current_security();
1698         struct inode_security_struct *dsec;
1699         struct superblock_security_struct *sbsec;
1700         u32 sid, newsid;
1701         struct common_audit_data ad;
1702         int rc;
1703
1704         dsec = dir->i_security;
1705         sbsec = dir->i_sb->s_security;
1706
1707         sid = tsec->sid;
1708         newsid = tsec->create_sid;
1709
1710         ad.type = LSM_AUDIT_DATA_DENTRY;
1711         ad.u.dentry = dentry;
1712
1713         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1714                           DIR__ADD_NAME | DIR__SEARCH,
1715                           &ad);
1716         if (rc)
1717                 return rc;
1718
1719         if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1720                 rc = security_transition_sid(sid, dsec->sid, tclass,
1721                                              &dentry->d_name, &newsid);
1722                 if (rc)
1723                         return rc;
1724         }
1725
1726         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1727         if (rc)
1728                 return rc;
1729
1730         return avc_has_perm(newsid, sbsec->sid,
1731                             SECCLASS_FILESYSTEM,
1732                             FILESYSTEM__ASSOCIATE, &ad);
1733 }
1734
1735 /* Check whether a task can create a key. */
1736 static int may_create_key(u32 ksid,
1737                           struct task_struct *ctx)
1738 {
1739         u32 sid = task_sid(ctx);
1740
1741         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1742 }
1743
1744 #define MAY_LINK        0
1745 #define MAY_UNLINK      1
1746 #define MAY_RMDIR       2
1747
1748 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1749 static int may_link(struct inode *dir,
1750                     struct dentry *dentry,
1751                     int kind)
1752
1753 {
1754         struct inode_security_struct *dsec, *isec;
1755         struct common_audit_data ad;
1756         u32 sid = current_sid();
1757         u32 av;
1758         int rc;
1759
1760         dsec = dir->i_security;
1761         isec = dentry->d_inode->i_security;
1762
1763         ad.type = LSM_AUDIT_DATA_DENTRY;
1764         ad.u.dentry = dentry;
1765
1766         av = DIR__SEARCH;
1767         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1768         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1769         if (rc)
1770                 return rc;
1771
1772         switch (kind) {
1773         case MAY_LINK:
1774                 av = FILE__LINK;
1775                 break;
1776         case MAY_UNLINK:
1777                 av = FILE__UNLINK;
1778                 break;
1779         case MAY_RMDIR:
1780                 av = DIR__RMDIR;
1781                 break;
1782         default:
1783                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1784                         __func__, kind);
1785                 return 0;
1786         }
1787
1788         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1789         return rc;
1790 }
1791
1792 static inline int may_rename(struct inode *old_dir,
1793                              struct dentry *old_dentry,
1794                              struct inode *new_dir,
1795                              struct dentry *new_dentry)
1796 {
1797         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1798         struct common_audit_data ad;
1799         u32 sid = current_sid();
1800         u32 av;
1801         int old_is_dir, new_is_dir;
1802         int rc;
1803
1804         old_dsec = old_dir->i_security;
1805         old_isec = old_dentry->d_inode->i_security;
1806         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1807         new_dsec = new_dir->i_security;
1808
1809         ad.type = LSM_AUDIT_DATA_DENTRY;
1810
1811         ad.u.dentry = old_dentry;
1812         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1813                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1814         if (rc)
1815                 return rc;
1816         rc = avc_has_perm(sid, old_isec->sid,
1817                           old_isec->sclass, FILE__RENAME, &ad);
1818         if (rc)
1819                 return rc;
1820         if (old_is_dir && new_dir != old_dir) {
1821                 rc = avc_has_perm(sid, old_isec->sid,
1822                                   old_isec->sclass, DIR__REPARENT, &ad);
1823                 if (rc)
1824                         return rc;
1825         }
1826
1827         ad.u.dentry = new_dentry;
1828         av = DIR__ADD_NAME | DIR__SEARCH;
1829         if (new_dentry->d_inode)
1830                 av |= DIR__REMOVE_NAME;
1831         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1832         if (rc)
1833                 return rc;
1834         if (new_dentry->d_inode) {
1835                 new_isec = new_dentry->d_inode->i_security;
1836                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1837                 rc = avc_has_perm(sid, new_isec->sid,
1838                                   new_isec->sclass,
1839                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1840                 if (rc)
1841                         return rc;
1842         }
1843
1844         return 0;
1845 }
1846
1847 /* Check whether a task can perform a filesystem operation. */
1848 static int superblock_has_perm(const struct cred *cred,
1849                                struct super_block *sb,
1850                                u32 perms,
1851                                struct common_audit_data *ad)
1852 {
1853         struct superblock_security_struct *sbsec;
1854         u32 sid = cred_sid(cred);
1855
1856         sbsec = sb->s_security;
1857         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1858 }
1859
1860 /* Convert a Linux mode and permission mask to an access vector. */
1861 static inline u32 file_mask_to_av(int mode, int mask)
1862 {
1863         u32 av = 0;
1864
1865         if (!S_ISDIR(mode)) {
1866                 if (mask & MAY_EXEC)
1867                         av |= FILE__EXECUTE;
1868                 if (mask & MAY_READ)
1869                         av |= FILE__READ;
1870
1871                 if (mask & MAY_APPEND)
1872                         av |= FILE__APPEND;
1873                 else if (mask & MAY_WRITE)
1874                         av |= FILE__WRITE;
1875
1876         } else {
1877                 if (mask & MAY_EXEC)
1878                         av |= DIR__SEARCH;
1879                 if (mask & MAY_WRITE)
1880                         av |= DIR__WRITE;
1881                 if (mask & MAY_READ)
1882                         av |= DIR__READ;
1883         }
1884
1885         return av;
1886 }
1887
1888 /* Convert a Linux file to an access vector. */
1889 static inline u32 file_to_av(struct file *file)
1890 {
1891         u32 av = 0;
1892
1893         if (file->f_mode & FMODE_READ)
1894                 av |= FILE__READ;
1895         if (file->f_mode & FMODE_WRITE) {
1896                 if (file->f_flags & O_APPEND)
1897                         av |= FILE__APPEND;
1898                 else
1899                         av |= FILE__WRITE;
1900         }
1901         if (!av) {
1902                 /*
1903                  * Special file opened with flags 3 for ioctl-only use.
1904                  */
1905                 av = FILE__IOCTL;
1906         }
1907
1908         return av;
1909 }
1910
1911 /*
1912  * Convert a file to an access vector and include the correct open
1913  * open permission.
1914  */
1915 static inline u32 open_file_to_av(struct file *file)
1916 {
1917         u32 av = file_to_av(file);
1918
1919         if (selinux_policycap_openperm)
1920                 av |= FILE__OPEN;
1921
1922         return av;
1923 }
1924
1925 /* Hook functions begin here. */
1926
1927 static int selinux_ptrace_access_check(struct task_struct *child,
1928                                      unsigned int mode)
1929 {
1930         int rc;
1931
1932         rc = cap_ptrace_access_check(child, mode);
1933         if (rc)
1934                 return rc;
1935
1936         if (mode & PTRACE_MODE_READ) {
1937                 u32 sid = current_sid();
1938                 u32 csid = task_sid(child);
1939                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1940         }
1941
1942         return current_has_perm(child, PROCESS__PTRACE);
1943 }
1944
1945 static int selinux_ptrace_traceme(struct task_struct *parent)
1946 {
1947         int rc;
1948
1949         rc = cap_ptrace_traceme(parent);
1950         if (rc)
1951                 return rc;
1952
1953         return task_has_perm(parent, current, PROCESS__PTRACE);
1954 }
1955
1956 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1957                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1958 {
1959         int error;
1960
1961         error = current_has_perm(target, PROCESS__GETCAP);
1962         if (error)
1963                 return error;
1964
1965         return cap_capget(target, effective, inheritable, permitted);
1966 }
1967
1968 static int selinux_capset(struct cred *new, const struct cred *old,
1969                           const kernel_cap_t *effective,
1970                           const kernel_cap_t *inheritable,
1971                           const kernel_cap_t *permitted)
1972 {
1973         int error;
1974
1975         error = cap_capset(new, old,
1976                                       effective, inheritable, permitted);
1977         if (error)
1978                 return error;
1979
1980         return cred_has_perm(old, new, PROCESS__SETCAP);
1981 }
1982
1983 /*
1984  * (This comment used to live with the selinux_task_setuid hook,
1985  * which was removed).
1986  *
1987  * Since setuid only affects the current process, and since the SELinux
1988  * controls are not based on the Linux identity attributes, SELinux does not
1989  * need to control this operation.  However, SELinux does control the use of
1990  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1991  */
1992
1993 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1994                            int cap, int audit)
1995 {
1996         int rc;
1997
1998         rc = cap_capable(cred, ns, cap, audit);
1999         if (rc)
2000                 return rc;
2001
2002         return cred_has_capability(cred, cap, audit);
2003 }
2004
2005 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2006 {
2007         const struct cred *cred = current_cred();
2008         int rc = 0;
2009
2010         if (!sb)
2011                 return 0;
2012
2013         switch (cmds) {
2014         case Q_SYNC:
2015         case Q_QUOTAON:
2016         case Q_QUOTAOFF:
2017         case Q_SETINFO:
2018         case Q_SETQUOTA:
2019                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2020                 break;
2021         case Q_GETFMT:
2022         case Q_GETINFO:
2023         case Q_GETQUOTA:
2024                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2025                 break;
2026         default:
2027                 rc = 0;  /* let the kernel handle invalid cmds */
2028                 break;
2029         }
2030         return rc;
2031 }
2032
2033 static int selinux_quota_on(struct dentry *dentry)
2034 {
2035         const struct cred *cred = current_cred();
2036
2037         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2038 }
2039
2040 static int selinux_syslog(int type)
2041 {
2042         int rc;
2043
2044         switch (type) {
2045         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2046         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2047                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2048                 break;
2049         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2050         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2051         /* Set level of messages printed to console */
2052         case SYSLOG_ACTION_CONSOLE_LEVEL:
2053                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2054                 break;
2055         case SYSLOG_ACTION_CLOSE:       /* Close log */
2056         case SYSLOG_ACTION_OPEN:        /* Open log */
2057         case SYSLOG_ACTION_READ:        /* Read from log */
2058         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2059         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2060         default:
2061                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2062                 break;
2063         }
2064         return rc;
2065 }
2066
2067 /*
2068  * Check that a process has enough memory to allocate a new virtual
2069  * mapping. 0 means there is enough memory for the allocation to
2070  * succeed and -ENOMEM implies there is not.
2071  *
2072  * Do not audit the selinux permission check, as this is applied to all
2073  * processes that allocate mappings.
2074  */
2075 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2076 {
2077         int rc, cap_sys_admin = 0;
2078
2079         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2080                              SECURITY_CAP_NOAUDIT);
2081         if (rc == 0)
2082                 cap_sys_admin = 1;
2083
2084         return __vm_enough_memory(mm, pages, cap_sys_admin);
2085 }
2086
2087 /* binprm security operations */
2088
2089 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2090 {
2091         const struct task_security_struct *old_tsec;
2092         struct task_security_struct *new_tsec;
2093         struct inode_security_struct *isec;
2094         struct common_audit_data ad;
2095         struct inode *inode = file_inode(bprm->file);
2096         int rc;
2097
2098         rc = cap_bprm_set_creds(bprm);
2099         if (rc)
2100                 return rc;
2101
2102         /* SELinux context only depends on initial program or script and not
2103          * the script interpreter */
2104         if (bprm->cred_prepared)
2105                 return 0;
2106
2107         old_tsec = current_security();
2108         new_tsec = bprm->cred->security;
2109         isec = inode->i_security;
2110
2111         /* Default to the current task SID. */
2112         new_tsec->sid = old_tsec->sid;
2113         new_tsec->osid = old_tsec->sid;
2114
2115         /* Reset fs, key, and sock SIDs on execve. */
2116         new_tsec->create_sid = 0;
2117         new_tsec->keycreate_sid = 0;
2118         new_tsec->sockcreate_sid = 0;
2119
2120         if (old_tsec->exec_sid) {
2121                 new_tsec->sid = old_tsec->exec_sid;
2122                 /* Reset exec SID on execve. */
2123                 new_tsec->exec_sid = 0;
2124
2125                 /*
2126                  * Minimize confusion: if no_new_privs and a transition is
2127                  * explicitly requested, then fail the exec.
2128                  */
2129                 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2130                         return -EPERM;
2131         } else {
2132                 /* Check for a default transition on this program. */
2133                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2134                                              SECCLASS_PROCESS, NULL,
2135                                              &new_tsec->sid);
2136                 if (rc)
2137                         return rc;
2138         }
2139
2140         ad.type = LSM_AUDIT_DATA_PATH;
2141         ad.u.path = bprm->file->f_path;
2142
2143         if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2144             (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2145                 new_tsec->sid = old_tsec->sid;
2146
2147         if (new_tsec->sid == old_tsec->sid) {
2148                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2149                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2150                 if (rc)
2151                         return rc;
2152         } else {
2153                 /* Check permissions for the transition. */
2154                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2155                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2156                 if (rc)
2157                         return rc;
2158
2159                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2160                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2161                 if (rc)
2162                         return rc;
2163
2164                 /* Check for shared state */
2165                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2167                                           SECCLASS_PROCESS, PROCESS__SHARE,
2168                                           NULL);
2169                         if (rc)
2170                                 return -EPERM;
2171                 }
2172
2173                 /* Make sure that anyone attempting to ptrace over a task that
2174                  * changes its SID has the appropriate permit */
2175                 if (bprm->unsafe &
2176                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177                         struct task_struct *tracer;
2178                         struct task_security_struct *sec;
2179                         u32 ptsid = 0;
2180
2181                         rcu_read_lock();
2182                         tracer = ptrace_parent(current);
2183                         if (likely(tracer != NULL)) {
2184                                 sec = __task_cred(tracer)->security;
2185                                 ptsid = sec->sid;
2186                         }
2187                         rcu_read_unlock();
2188
2189                         if (ptsid != 0) {
2190                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2191                                                   SECCLASS_PROCESS,
2192                                                   PROCESS__PTRACE, NULL);
2193                                 if (rc)
2194                                         return -EPERM;
2195                         }
2196                 }
2197
2198                 /* Clear any possibly unsafe personality bits on exec: */
2199                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2200         }
2201
2202         return 0;
2203 }
2204
2205 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2206 {
2207         const struct task_security_struct *tsec = current_security();
2208         u32 sid, osid;
2209         int atsecure = 0;
2210
2211         sid = tsec->sid;
2212         osid = tsec->osid;
2213
2214         if (osid != sid) {
2215                 /* Enable secure mode for SIDs transitions unless
2216                    the noatsecure permission is granted between
2217                    the two SIDs, i.e. ahp returns 0. */
2218                 atsecure = avc_has_perm(osid, sid,
2219                                         SECCLASS_PROCESS,
2220                                         PROCESS__NOATSECURE, NULL);
2221         }
2222
2223         return (atsecure || cap_bprm_secureexec(bprm));
2224 }
2225
2226 static int match_file(const void *p, struct file *file, unsigned fd)
2227 {
2228         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2229 }
2230
2231 /* Derived from fs/exec.c:flush_old_files. */
2232 static inline void flush_unauthorized_files(const struct cred *cred,
2233                                             struct files_struct *files)
2234 {
2235         struct file *file, *devnull = NULL;
2236         struct tty_struct *tty;
2237         int drop_tty = 0;
2238         unsigned n;
2239
2240         tty = get_current_tty();
2241         if (tty) {
2242                 spin_lock(&tty_files_lock);
2243                 if (!list_empty(&tty->tty_files)) {
2244                         struct tty_file_private *file_priv;
2245
2246                         /* Revalidate access to controlling tty.
2247                            Use file_path_has_perm on the tty path directly
2248                            rather than using file_has_perm, as this particular
2249                            open file may belong to another process and we are
2250                            only interested in the inode-based check here. */
2251                         file_priv = list_first_entry(&tty->tty_files,
2252                                                 struct tty_file_private, list);
2253                         file = file_priv->file;
2254                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2255                                 drop_tty = 1;
2256                 }
2257                 spin_unlock(&tty_files_lock);
2258                 tty_kref_put(tty);
2259         }
2260         /* Reset controlling tty. */
2261         if (drop_tty)
2262                 no_tty();
2263
2264         /* Revalidate access to inherited open files. */
2265         n = iterate_fd(files, 0, match_file, cred);
2266         if (!n) /* none found? */
2267                 return;
2268
2269         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2270         if (IS_ERR(devnull))
2271                 devnull = NULL;
2272         /* replace all the matching ones with this */
2273         do {
2274                 replace_fd(n - 1, devnull, 0);
2275         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2276         if (devnull)
2277                 fput(devnull);
2278 }
2279
2280 /*
2281  * Prepare a process for imminent new credential changes due to exec
2282  */
2283 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2284 {
2285         struct task_security_struct *new_tsec;
2286         struct rlimit *rlim, *initrlim;
2287         int rc, i;
2288
2289         new_tsec = bprm->cred->security;
2290         if (new_tsec->sid == new_tsec->osid)
2291                 return;
2292
2293         /* Close files for which the new task SID is not authorized. */
2294         flush_unauthorized_files(bprm->cred, current->files);
2295
2296         /* Always clear parent death signal on SID transitions. */
2297         current->pdeath_signal = 0;
2298
2299         /* Check whether the new SID can inherit resource limits from the old
2300          * SID.  If not, reset all soft limits to the lower of the current
2301          * task's hard limit and the init task's soft limit.
2302          *
2303          * Note that the setting of hard limits (even to lower them) can be
2304          * controlled by the setrlimit check.  The inclusion of the init task's
2305          * soft limit into the computation is to avoid resetting soft limits
2306          * higher than the default soft limit for cases where the default is
2307          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2308          */
2309         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2310                           PROCESS__RLIMITINH, NULL);
2311         if (rc) {
2312                 /* protect against do_prlimit() */
2313                 task_lock(current);
2314                 for (i = 0; i < RLIM_NLIMITS; i++) {
2315                         rlim = current->signal->rlim + i;
2316                         initrlim = init_task.signal->rlim + i;
2317                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2318                 }
2319                 task_unlock(current);
2320                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2321         }
2322 }
2323
2324 /*
2325  * Clean up the process immediately after the installation of new credentials
2326  * due to exec
2327  */
2328 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2329 {
2330         const struct task_security_struct *tsec = current_security();
2331         struct itimerval itimer;
2332         u32 osid, sid;
2333         int rc, i;
2334
2335         osid = tsec->osid;
2336         sid = tsec->sid;
2337
2338         if (sid == osid)
2339                 return;
2340
2341         /* Check whether the new SID can inherit signal state from the old SID.
2342          * If not, clear itimers to avoid subsequent signal generation and
2343          * flush and unblock signals.
2344          *
2345          * This must occur _after_ the task SID has been updated so that any
2346          * kill done after the flush will be checked against the new SID.
2347          */
2348         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2349         if (rc) {
2350                 memset(&itimer, 0, sizeof itimer);
2351                 for (i = 0; i < 3; i++)
2352                         do_setitimer(i, &itimer, NULL);
2353                 spin_lock_irq(&current->sighand->siglock);
2354                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2355                         __flush_signals(current);
2356                         flush_signal_handlers(current, 1);
2357                         sigemptyset(&current->blocked);
2358                 }
2359                 spin_unlock_irq(&current->sighand->siglock);
2360         }
2361
2362         /* Wake up the parent if it is waiting so that it can recheck
2363          * wait permission to the new task SID. */
2364         read_lock(&tasklist_lock);
2365         __wake_up_parent(current, current->real_parent);
2366         read_unlock(&tasklist_lock);
2367 }
2368
2369 /* superblock security operations */
2370
2371 static int selinux_sb_alloc_security(struct super_block *sb)
2372 {
2373         return superblock_alloc_security(sb);
2374 }
2375
2376 static void selinux_sb_free_security(struct super_block *sb)
2377 {
2378         superblock_free_security(sb);
2379 }
2380
2381 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2382 {
2383         if (plen > olen)
2384                 return 0;
2385
2386         return !memcmp(prefix, option, plen);
2387 }
2388
2389 static inline int selinux_option(char *option, int len)
2390 {
2391         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2392                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2393                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2394                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2395                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2396 }
2397
2398 static inline void take_option(char **to, char *from, int *first, int len)
2399 {
2400         if (!*first) {
2401                 **to = ',';
2402                 *to += 1;
2403         } else
2404                 *first = 0;
2405         memcpy(*to, from, len);
2406         *to += len;
2407 }
2408
2409 static inline void take_selinux_option(char **to, char *from, int *first,
2410                                        int len)
2411 {
2412         int current_size = 0;
2413
2414         if (!*first) {
2415                 **to = '|';
2416                 *to += 1;
2417         } else
2418                 *first = 0;
2419
2420         while (current_size < len) {
2421                 if (*from != '"') {
2422                         **to = *from;
2423                         *to += 1;
2424                 }
2425                 from += 1;
2426                 current_size += 1;
2427         }
2428 }
2429
2430 static int selinux_sb_copy_data(char *orig, char *copy)
2431 {
2432         int fnosec, fsec, rc = 0;
2433         char *in_save, *in_curr, *in_end;
2434         char *sec_curr, *nosec_save, *nosec;
2435         int open_quote = 0;
2436
2437         in_curr = orig;
2438         sec_curr = copy;
2439
2440         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2441         if (!nosec) {
2442                 rc = -ENOMEM;
2443                 goto out;
2444         }
2445
2446         nosec_save = nosec;
2447         fnosec = fsec = 1;
2448         in_save = in_end = orig;
2449
2450         do {
2451                 if (*in_end == '"')
2452                         open_quote = !open_quote;
2453                 if ((*in_end == ',' && open_quote == 0) ||
2454                                 *in_end == '\0') {
2455                         int len = in_end - in_curr;
2456
2457                         if (selinux_option(in_curr, len))
2458                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2459                         else
2460                                 take_option(&nosec, in_curr, &fnosec, len);
2461
2462                         in_curr = in_end + 1;
2463                 }
2464         } while (*in_end++);
2465
2466         strcpy(in_save, nosec_save);
2467         free_page((unsigned long)nosec_save);
2468 out:
2469         return rc;
2470 }
2471
2472 static int selinux_sb_remount(struct super_block *sb, void *data)
2473 {
2474         int rc, i, *flags;
2475         struct security_mnt_opts opts;
2476         char *secdata, **mount_options;
2477         struct superblock_security_struct *sbsec = sb->s_security;
2478
2479         if (!(sbsec->flags & SE_SBINITIALIZED))
2480                 return 0;
2481
2482         if (!data)
2483                 return 0;
2484
2485         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2486                 return 0;
2487
2488         security_init_mnt_opts(&opts);
2489         secdata = alloc_secdata();
2490         if (!secdata)
2491                 return -ENOMEM;
2492         rc = selinux_sb_copy_data(data, secdata);
2493         if (rc)
2494                 goto out_free_secdata;
2495
2496         rc = selinux_parse_opts_str(secdata, &opts);
2497         if (rc)
2498                 goto out_free_secdata;
2499
2500         mount_options = opts.mnt_opts;
2501         flags = opts.mnt_opts_flags;
2502
2503         for (i = 0; i < opts.num_mnt_opts; i++) {
2504                 u32 sid;
2505                 size_t len;
2506
2507                 if (flags[i] == SBLABEL_MNT)
2508                         continue;
2509                 len = strlen(mount_options[i]);
2510                 rc = security_context_to_sid(mount_options[i], len, &sid,
2511                                              GFP_KERNEL);
2512                 if (rc) {
2513                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2514                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2515                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2516                         goto out_free_opts;
2517                 }
2518                 rc = -EINVAL;
2519                 switch (flags[i]) {
2520                 case FSCONTEXT_MNT:
2521                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2522                                 goto out_bad_option;
2523                         break;
2524                 case CONTEXT_MNT:
2525                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2526                                 goto out_bad_option;
2527                         break;
2528                 case ROOTCONTEXT_MNT: {
2529                         struct inode_security_struct *root_isec;
2530                         root_isec = sb->s_root->d_inode->i_security;
2531
2532                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2533                                 goto out_bad_option;
2534                         break;
2535                 }
2536                 case DEFCONTEXT_MNT:
2537                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2538                                 goto out_bad_option;
2539                         break;
2540                 default:
2541                         goto out_free_opts;
2542                 }
2543         }
2544
2545         rc = 0;
2546 out_free_opts:
2547         security_free_mnt_opts(&opts);
2548 out_free_secdata:
2549         free_secdata(secdata);
2550         return rc;
2551 out_bad_option:
2552         printk(KERN_WARNING "SELinux: unable to change security options "
2553                "during remount (dev %s, type=%s)\n", sb->s_id,
2554                sb->s_type->name);
2555         goto out_free_opts;
2556 }
2557
2558 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2559 {
2560         const struct cred *cred = current_cred();
2561         struct common_audit_data ad;
2562         int rc;
2563
2564         rc = superblock_doinit(sb, data);
2565         if (rc)
2566                 return rc;
2567
2568         /* Allow all mounts performed by the kernel */
2569         if (flags & MS_KERNMOUNT)
2570                 return 0;
2571
2572         ad.type = LSM_AUDIT_DATA_DENTRY;
2573         ad.u.dentry = sb->s_root;
2574         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2575 }
2576
2577 static int selinux_sb_statfs(struct dentry *dentry)
2578 {
2579         const struct cred *cred = current_cred();
2580         struct common_audit_data ad;
2581
2582         ad.type = LSM_AUDIT_DATA_DENTRY;
2583         ad.u.dentry = dentry->d_sb->s_root;
2584         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2585 }
2586
2587 static int selinux_mount(const char *dev_name,
2588                          struct path *path,
2589                          const char *type,
2590                          unsigned long flags,
2591                          void *data)
2592 {
2593         const struct cred *cred = current_cred();
2594
2595         if (flags & MS_REMOUNT)
2596                 return superblock_has_perm(cred, path->dentry->d_sb,
2597                                            FILESYSTEM__REMOUNT, NULL);
2598         else
2599                 return path_has_perm(cred, path, FILE__MOUNTON);
2600 }
2601
2602 static int selinux_umount(struct vfsmount *mnt, int flags)
2603 {
2604         const struct cred *cred = current_cred();
2605
2606         return superblock_has_perm(cred, mnt->mnt_sb,
2607                                    FILESYSTEM__UNMOUNT, NULL);
2608 }
2609
2610 /* inode security operations */
2611
2612 static int selinux_inode_alloc_security(struct inode *inode)
2613 {
2614         return inode_alloc_security(inode);
2615 }
2616
2617 static void selinux_inode_free_security(struct inode *inode)
2618 {
2619         inode_free_security(inode);
2620 }
2621
2622 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2623                                         struct qstr *name, void **ctx,
2624                                         u32 *ctxlen)
2625 {
2626         const struct cred *cred = current_cred();
2627         struct task_security_struct *tsec;
2628         struct inode_security_struct *dsec;
2629         struct superblock_security_struct *sbsec;
2630         struct inode *dir = dentry->d_parent->d_inode;
2631         u32 newsid;
2632         int rc;
2633
2634         tsec = cred->security;
2635         dsec = dir->i_security;
2636         sbsec = dir->i_sb->s_security;
2637
2638         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2639                 newsid = tsec->create_sid;
2640         } else {
2641                 rc = security_transition_sid(tsec->sid, dsec->sid,
2642                                              inode_mode_to_security_class(mode),
2643                                              name,
2644                                              &newsid);
2645                 if (rc) {
2646                         printk(KERN_WARNING
2647                                 "%s: security_transition_sid failed, rc=%d\n",
2648                                __func__, -rc);
2649                         return rc;
2650                 }
2651         }
2652
2653         return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2654 }
2655
2656 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2657                                        const struct qstr *qstr,
2658                                        const char **name,
2659                                        void **value, size_t *len)
2660 {
2661         const struct task_security_struct *tsec = current_security();
2662         struct inode_security_struct *dsec;
2663         struct superblock_security_struct *sbsec;
2664         u32 sid, newsid, clen;
2665         int rc;
2666         char *context;
2667
2668         dsec = dir->i_security;
2669         sbsec = dir->i_sb->s_security;
2670
2671         sid = tsec->sid;
2672         newsid = tsec->create_sid;
2673
2674         if ((sbsec->flags & SE_SBINITIALIZED) &&
2675             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2676                 newsid = sbsec->mntpoint_sid;
2677         else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2678                 rc = security_transition_sid(sid, dsec->sid,
2679                                              inode_mode_to_security_class(inode->i_mode),
2680                                              qstr, &newsid);
2681                 if (rc) {
2682                         printk(KERN_WARNING "%s:  "
2683                                "security_transition_sid failed, rc=%d (dev=%s "
2684                                "ino=%ld)\n",
2685                                __func__,
2686                                -rc, inode->i_sb->s_id, inode->i_ino);
2687                         return rc;
2688                 }
2689         }
2690
2691         /* Possibly defer initialization to selinux_complete_init. */
2692         if (sbsec->flags & SE_SBINITIALIZED) {
2693                 struct inode_security_struct *isec = inode->i_security;
2694                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2695                 isec->sid = newsid;
2696                 isec->initialized = 1;
2697         }
2698
2699         if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2700                 return -EOPNOTSUPP;
2701
2702         if (name)
2703                 *name = XATTR_SELINUX_SUFFIX;
2704
2705         if (value && len) {
2706                 rc = security_sid_to_context_force(newsid, &context, &clen);
2707                 if (rc)
2708                         return rc;
2709                 *value = context;
2710                 *len = clen;
2711         }
2712
2713         return 0;
2714 }
2715
2716 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2717 {
2718         return may_create(dir, dentry, SECCLASS_FILE);
2719 }
2720
2721 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2722 {
2723         return may_link(dir, old_dentry, MAY_LINK);
2724 }
2725
2726 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2727 {
2728         return may_link(dir, dentry, MAY_UNLINK);
2729 }
2730
2731 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2732 {
2733         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2734 }
2735
2736 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2737 {
2738         return may_create(dir, dentry, SECCLASS_DIR);
2739 }
2740
2741 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2742 {
2743         return may_link(dir, dentry, MAY_RMDIR);
2744 }
2745
2746 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2747 {
2748         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2749 }
2750
2751 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2752                                 struct inode *new_inode, struct dentry *new_dentry)
2753 {
2754         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2755 }
2756
2757 static int selinux_inode_readlink(struct dentry *dentry)
2758 {
2759         const struct cred *cred = current_cred();
2760
2761         return dentry_has_perm(cred, dentry, FILE__READ);
2762 }
2763
2764 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2765 {
2766         const struct cred *cred = current_cred();
2767
2768         return dentry_has_perm(cred, dentry, FILE__READ);
2769 }
2770
2771 static noinline int audit_inode_permission(struct inode *inode,
2772                                            u32 perms, u32 audited, u32 denied,
2773                                            int result,
2774                                            unsigned flags)
2775 {
2776         struct common_audit_data ad;
2777         struct inode_security_struct *isec = inode->i_security;
2778         int rc;
2779
2780         ad.type = LSM_AUDIT_DATA_INODE;
2781         ad.u.inode = inode;
2782
2783         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2784                             audited, denied, result, &ad, flags);
2785         if (rc)
2786                 return rc;
2787         return 0;
2788 }
2789
2790 static int selinux_inode_permission(struct inode *inode, int mask)
2791 {
2792         const struct cred *cred = current_cred();
2793         u32 perms;
2794         bool from_access;
2795         unsigned flags = mask & MAY_NOT_BLOCK;
2796         struct inode_security_struct *isec;
2797         u32 sid;
2798         struct av_decision avd;
2799         int rc, rc2;
2800         u32 audited, denied;
2801
2802         from_access = mask & MAY_ACCESS;
2803         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2804
2805         /* No permission to check.  Existence test. */
2806         if (!mask)
2807                 return 0;
2808
2809         validate_creds(cred);
2810
2811         if (unlikely(IS_PRIVATE(inode)))
2812                 return 0;
2813
2814         perms = file_mask_to_av(inode->i_mode, mask);
2815
2816         sid = cred_sid(cred);
2817         isec = inode->i_security;
2818
2819         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2820         audited = avc_audit_required(perms, &avd, rc,
2821                                      from_access ? FILE__AUDIT_ACCESS : 0,
2822                                      &denied);
2823         if (likely(!audited))
2824                 return rc;
2825
2826         rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2827         if (rc2)
2828                 return rc2;
2829         return rc;
2830 }
2831
2832 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2833 {
2834         const struct cred *cred = current_cred();
2835         unsigned int ia_valid = iattr->ia_valid;
2836         __u32 av = FILE__WRITE;
2837
2838         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2839         if (ia_valid & ATTR_FORCE) {
2840                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2841                               ATTR_FORCE);
2842                 if (!ia_valid)
2843                         return 0;
2844         }
2845
2846         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2847                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2848                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2849
2850         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2851                 av |= FILE__OPEN;
2852
2853         return dentry_has_perm(cred, dentry, av);
2854 }
2855
2856 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2857 {
2858         const struct cred *cred = current_cred();
2859         struct path path;
2860
2861         path.dentry = dentry;
2862         path.mnt = mnt;
2863
2864         return path_has_perm(cred, &path, FILE__GETATTR);
2865 }
2866
2867 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2868 {
2869         const struct cred *cred = current_cred();
2870
2871         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2872                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2873                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2874                         if (!capable(CAP_SETFCAP))
2875                                 return -EPERM;
2876                 } else if (!capable(CAP_SYS_ADMIN)) {
2877                         /* A different attribute in the security namespace.
2878                            Restrict to administrator. */
2879                         return -EPERM;
2880                 }
2881         }
2882
2883         /* Not an attribute we recognize, so just check the
2884            ordinary setattr permission. */
2885         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2886 }
2887
2888 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2889                                   const void *value, size_t size, int flags)
2890 {
2891         struct inode *inode = dentry->d_inode;
2892         struct inode_security_struct *isec = inode->i_security;
2893         struct superblock_security_struct *sbsec;
2894         struct common_audit_data ad;
2895         u32 newsid, sid = current_sid();
2896         int rc = 0;
2897
2898         if (strcmp(name, XATTR_NAME_SELINUX))
2899                 return selinux_inode_setotherxattr(dentry, name);
2900
2901         sbsec = inode->i_sb->s_security;
2902         if (!(sbsec->flags & SBLABEL_MNT))
2903                 return -EOPNOTSUPP;
2904
2905         if (!inode_owner_or_capable(inode))
2906                 return -EPERM;
2907
2908         ad.type = LSM_AUDIT_DATA_DENTRY;
2909         ad.u.dentry = dentry;
2910
2911         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2912                           FILE__RELABELFROM, &ad);
2913         if (rc)
2914                 return rc;
2915
2916         rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2917         if (rc == -EINVAL) {
2918                 if (!capable(CAP_MAC_ADMIN)) {
2919                         struct audit_buffer *ab;
2920                         size_t audit_size;
2921                         const char *str;
2922
2923                         /* We strip a nul only if it is at the end, otherwise the
2924                          * context contains a nul and we should audit that */
2925                         if (value) {
2926                                 str = value;
2927                                 if (str[size - 1] == '\0')
2928                                         audit_size = size - 1;
2929                                 else
2930                                         audit_size = size;
2931                         } else {
2932                                 str = "";
2933                                 audit_size = 0;
2934                         }
2935                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2936                         audit_log_format(ab, "op=setxattr invalid_context=");
2937                         audit_log_n_untrustedstring(ab, value, audit_size);
2938                         audit_log_end(ab);
2939
2940                         return rc;
2941                 }
2942                 rc = security_context_to_sid_force(value, size, &newsid);
2943         }
2944         if (rc)
2945                 return rc;
2946
2947         rc = avc_has_perm(sid, newsid, isec->sclass,
2948                           FILE__RELABELTO, &ad);
2949         if (rc)
2950                 return rc;
2951
2952         rc = security_validate_transition(isec->sid, newsid, sid,
2953                                           isec->sclass);
2954         if (rc)
2955                 return rc;
2956
2957         return avc_has_perm(newsid,
2958                             sbsec->sid,
2959                             SECCLASS_FILESYSTEM,
2960                             FILESYSTEM__ASSOCIATE,
2961                             &ad);
2962 }
2963
2964 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2965                                         const void *value, size_t size,
2966                                         int flags)
2967 {
2968         struct inode *inode = dentry->d_inode;
2969         struct inode_security_struct *isec = inode->i_security;
2970         u32 newsid;
2971         int rc;
2972
2973         if (strcmp(name, XATTR_NAME_SELINUX)) {
2974                 /* Not an attribute we recognize, so nothing to do. */
2975                 return;
2976         }
2977
2978         rc = security_context_to_sid_force(value, size, &newsid);
2979         if (rc) {
2980                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2981                        "for (%s, %lu), rc=%d\n",
2982                        inode->i_sb->s_id, inode->i_ino, -rc);
2983                 return;
2984         }
2985
2986         isec->sclass = inode_mode_to_security_class(inode->i_mode);
2987         isec->sid = newsid;
2988         isec->initialized = 1;
2989
2990         return;
2991 }
2992
2993 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2994 {
2995         const struct cred *cred = current_cred();
2996
2997         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2998 }
2999
3000 static int selinux_inode_listxattr(struct dentry *dentry)
3001 {
3002         const struct cred *cred = current_cred();
3003
3004         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3005 }
3006
3007 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3008 {
3009         if (strcmp(name, XATTR_NAME_SELINUX))
3010                 return selinux_inode_setotherxattr(dentry, name);
3011
3012         /* No one is allowed to remove a SELinux security label.
3013            You can change the label, but all data must be labeled. */
3014         return -EACCES;
3015 }
3016
3017 /*
3018  * Copy the inode security context value to the user.
3019  *
3020  * Permission check is handled by selinux_inode_getxattr hook.
3021  */
3022 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3023 {
3024         u32 size;
3025         int error;
3026         char *context = NULL;
3027         struct inode_security_struct *isec = inode->i_security;
3028
3029         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3030                 return -EOPNOTSUPP;
3031
3032         /*
3033          * If the caller has CAP_MAC_ADMIN, then get the raw context
3034          * value even if it is not defined by current policy; otherwise,
3035          * use the in-core value under current policy.
3036          * Use the non-auditing forms of the permission checks since
3037          * getxattr may be called by unprivileged processes commonly
3038          * and lack of permission just means that we fall back to the
3039          * in-core context value, not a denial.
3040          */
3041         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3042                                 SECURITY_CAP_NOAUDIT);
3043         if (!error)
3044                 error = security_sid_to_context_force(isec->sid, &context,
3045                                                       &size);
3046         else
3047                 error = security_sid_to_context(isec->sid, &context, &size);
3048         if (error)
3049                 return error;
3050         error = size;
3051         if (alloc) {
3052                 *buffer = context;
3053                 goto out_nofree;
3054         }
3055         kfree(context);
3056 out_nofree:
3057         return error;
3058 }
3059
3060 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3061                                      const void *value, size_t size, int flags)
3062 {
3063         struct inode_security_struct *isec = inode->i_security;
3064         u32 newsid;
3065         int rc;
3066
3067         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3068                 return -EOPNOTSUPP;
3069
3070         if (!value || !size)
3071                 return -EACCES;
3072
3073         rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3074         if (rc)
3075                 return rc;
3076
3077         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3078         isec->sid = newsid;
3079         isec->initialized = 1;
3080         return 0;
3081 }
3082
3083 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3084 {
3085         const int len = sizeof(XATTR_NAME_SELINUX);
3086         if (buffer && len <= buffer_size)
3087                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3088         return len;
3089 }
3090
3091 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3092 {
3093         struct inode_security_struct *isec = inode->i_security;
3094         *secid = isec->sid;
3095 }
3096
3097 /* file security operations */
3098
3099 static int selinux_revalidate_file_permission(struct file *file, int mask)
3100 {
3101         const struct cred *cred = current_cred();
3102         struct inode *inode = file_inode(file);
3103
3104         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3105         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3106                 mask |= MAY_APPEND;
3107
3108         return file_has_perm(cred, file,
3109                              file_mask_to_av(inode->i_mode, mask));
3110 }
3111
3112 static int selinux_file_permission(struct file *file, int mask)
3113 {
3114         struct inode *inode = file_inode(file);
3115         struct file_security_struct *fsec = file->f_security;
3116         struct inode_security_struct *isec = inode->i_security;
3117         u32 sid = current_sid();
3118
3119         if (!mask)
3120                 /* No permission to check.  Existence test. */
3121                 return 0;
3122
3123         if (sid == fsec->sid && fsec->isid == isec->sid &&
3124             fsec->pseqno == avc_policy_seqno())
3125                 /* No change since file_open check. */
3126                 return 0;
3127
3128         return selinux_revalidate_file_permission(file, mask);
3129 }
3130
3131 static int selinux_file_alloc_security(struct file *file)
3132 {
3133         return file_alloc_security(file);
3134 }
3135
3136 static void selinux_file_free_security(struct file *file)
3137 {
3138         file_free_security(file);
3139 }
3140
3141 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3142                               unsigned long arg)
3143 {
3144         const struct cred *cred = current_cred();
3145         int error = 0;
3146
3147         switch (cmd) {
3148         case FIONREAD:
3149         /* fall through */
3150         case FIBMAP:
3151         /* fall through */
3152         case FIGETBSZ:
3153         /* fall through */
3154         case FS_IOC_GETFLAGS:
3155         /* fall through */
3156         case FS_IOC_GETVERSION:
3157                 error = file_has_perm(cred, file, FILE__GETATTR);
3158                 break;
3159
3160         case FS_IOC_SETFLAGS:
3161         /* fall through */
3162         case FS_IOC_SETVERSION:
3163                 error = file_has_perm(cred, file, FILE__SETATTR);
3164                 break;
3165
3166         /* sys_ioctl() checks */
3167         case FIONBIO:
3168         /* fall through */
3169         case FIOASYNC:
3170                 error = file_has_perm(cred, file, 0);
3171                 break;
3172
3173         case KDSKBENT:
3174         case KDSKBSENT:
3175                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3176                                             SECURITY_CAP_AUDIT);
3177                 break;
3178
3179         /* default case assumes that the command will go
3180          * to the file's ioctl() function.
3181          */
3182         default:
3183                 error = file_has_perm(cred, file, FILE__IOCTL);
3184         }
3185         return error;
3186 }
3187
3188 static int default_noexec;
3189
3190 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3191 {
3192         const struct cred *cred = current_cred();
3193         int rc = 0;
3194
3195         if (default_noexec &&
3196             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3197                 /*
3198                  * We are making executable an anonymous mapping or a
3199                  * private file mapping that will also be writable.
3200                  * This has an additional check.
3201                  */
3202                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3203                 if (rc)
3204                         goto error;
3205         }
3206
3207         if (file) {
3208                 /* read access is always possible with a mapping */
3209                 u32 av = FILE__READ;
3210
3211                 /* write access only matters if the mapping is shared */
3212                 if (shared && (prot & PROT_WRITE))
3213                         av |= FILE__WRITE;
3214
3215                 if (prot & PROT_EXEC)
3216                         av |= FILE__EXECUTE;
3217
3218                 return file_has_perm(cred, file, av);
3219         }
3220
3221 error:
3222         return rc;
3223 }
3224
3225 static int selinux_mmap_addr(unsigned long addr)
3226 {
3227         int rc;
3228
3229         /* do DAC check on address space usage */
3230         rc = cap_mmap_addr(addr);
3231         if (rc)
3232                 return rc;
3233
3234         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3235                 u32 sid = current_sid();
3236                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3237                                   MEMPROTECT__MMAP_ZERO, NULL);
3238         }
3239
3240         return rc;
3241 }
3242
3243 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3244                              unsigned long prot, unsigned long flags)
3245 {
3246         if (selinux_checkreqprot)
3247                 prot = reqprot;
3248
3249         return file_map_prot_check(file, prot,
3250                                    (flags & MAP_TYPE) == MAP_SHARED);
3251 }
3252
3253 static int selinux_file_mprotect(struct vm_area_struct *vma,
3254                                  unsigned long reqprot,
3255                                  unsigned long prot)
3256 {
3257         const struct cred *cred = current_cred();
3258
3259         if (selinux_checkreqprot)
3260                 prot = reqprot;
3261
3262         if (default_noexec &&
3263             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3264                 int rc = 0;
3265                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3266                     vma->vm_end <= vma->vm_mm->brk) {
3267                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3268                 } else if (!vma->vm_file &&
3269                            vma->vm_start <= vma->vm_mm->start_stack &&
3270                            vma->vm_end >= vma->vm_mm->start_stack) {
3271                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3272                 } else if (vma->vm_file && vma->anon_vma) {
3273                         /*
3274                          * We are making executable a file mapping that has
3275                          * had some COW done. Since pages might have been
3276                          * written, check ability to execute the possibly
3277                          * modified content.  This typically should only
3278                          * occur for text relocations.
3279                          */
3280                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3281                 }
3282                 if (rc)
3283                         return rc;
3284         }
3285
3286         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3287 }
3288
3289 static int selinux_file_lock(struct file *file, unsigned int cmd)
3290 {
3291         const struct cred *cred = current_cred();
3292
3293         return file_has_perm(cred, file, FILE__LOCK);
3294 }
3295
3296 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3297                               unsigned long arg)
3298 {
3299         const struct cred *cred = current_cred();
3300         int err = 0;
3301
3302         switch (cmd) {
3303         case F_SETFL:
3304                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3305                         err = file_has_perm(cred, file, FILE__WRITE);
3306                         break;
3307                 }
3308                 /* fall through */
3309         case F_SETOWN:
3310         case F_SETSIG:
3311         case F_GETFL:
3312         case F_GETOWN:
3313         case F_GETSIG:
3314         case F_GETOWNER_UIDS:
3315                 /* Just check FD__USE permission */
3316                 err = file_has_perm(cred, file, 0);
3317                 break;
3318         case F_GETLK:
3319         case F_SETLK:
3320         case F_SETLKW:
3321 #if BITS_PER_LONG == 32
3322         case F_GETLK64:
3323         case F_SETLK64:
3324         case F_SETLKW64:
3325 #endif
3326                 err = file_has_perm(cred, file, FILE__LOCK);
3327                 break;
3328         }
3329
3330         return err;
3331 }
3332
3333 static int selinux_file_set_fowner(struct file *file)
3334 {
3335         struct file_security_struct *fsec;
3336
3337         fsec = file->f_security;
3338         fsec->fown_sid = current_sid();
3339
3340         return 0;
3341 }
3342
3343 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3344                                        struct fown_struct *fown, int signum)
3345 {
3346         struct file *file;
3347         u32 sid = task_sid(tsk);
3348         u32 perm;
3349         struct file_security_struct *fsec;
3350
3351         /* struct fown_struct is never outside the context of a struct file */
3352         file = container_of(fown, struct file, f_owner);
3353
3354         fsec = file->f_security;
3355
3356         if (!signum)
3357                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3358         else
3359                 perm = signal_to_av(signum);
3360
3361         return avc_has_perm(fsec->fown_sid, sid,
3362                             SECCLASS_PROCESS, perm, NULL);
3363 }
3364
3365 static int selinux_file_receive(struct file *file)
3366 {
3367         const struct cred *cred = current_cred();
3368
3369         return file_has_perm(cred, file, file_to_av(file));
3370 }
3371
3372 static int selinux_file_open(struct file *file, const struct cred *cred)
3373 {
3374         struct file_security_struct *fsec;
3375         struct inode_security_struct *isec;
3376
3377         fsec = file->f_security;
3378         isec = file_inode(file)->i_security;
3379         /*
3380          * Save inode label and policy sequence number
3381          * at open-time so that selinux_file_permission
3382          * can determine whether revalidation is necessary.
3383          * Task label is already saved in the file security
3384          * struct as its SID.
3385          */
3386         fsec->isid = isec->sid;
3387         fsec->pseqno = avc_policy_seqno();
3388         /*
3389          * Since the inode label or policy seqno may have changed
3390          * between the selinux_inode_permission check and the saving
3391          * of state above, recheck that access is still permitted.
3392          * Otherwise, access might never be revalidated against the
3393          * new inode label or new policy.
3394          * This check is not redundant - do not remove.
3395          */
3396         return file_path_has_perm(cred, file, open_file_to_av(file));
3397 }
3398
3399 /* task security operations */
3400
3401 static int selinux_task_create(unsigned long clone_flags)
3402 {
3403         return current_has_perm(current, PROCESS__FORK);
3404 }
3405
3406 /*
3407  * allocate the SELinux part of blank credentials
3408  */
3409 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3410 {
3411         struct task_security_struct *tsec;
3412
3413         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3414         if (!tsec)
3415                 return -ENOMEM;
3416
3417         cred->security = tsec;
3418         return 0;
3419 }
3420
3421 /*
3422  * detach and free the LSM part of a set of credentials
3423  */
3424 static void selinux_cred_free(struct cred *cred)
3425 {
3426         struct task_security_struct *tsec = cred->security;
3427
3428         /*
3429          * cred->security == NULL if security_cred_alloc_blank() or
3430          * security_prepare_creds() returned an error.
3431          */
3432         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3433         cred->security = (void *) 0x7UL;
3434         kfree(tsec);
3435 }
3436
3437 /*
3438  * prepare a new set of credentials for modification
3439  */
3440 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3441                                 gfp_t gfp)
3442 {
3443         const struct task_security_struct *old_tsec;
3444         struct task_security_struct *tsec;
3445
3446         old_tsec = old->security;
3447
3448         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3449         if (!tsec)
3450                 return -ENOMEM;
3451
3452         new->security = tsec;
3453         return 0;
3454 }
3455
3456 /*
3457  * transfer the SELinux data to a blank set of creds
3458  */
3459 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3460 {
3461         const struct task_security_struct *old_tsec = old->security;
3462         struct task_security_struct *tsec = new->security;
3463
3464         *tsec = *old_tsec;
3465 }
3466
3467 /*
3468  * set the security data for a kernel service
3469  * - all the creation contexts are set to unlabelled
3470  */
3471 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3472 {
3473         struct task_security_struct *tsec = new->security;
3474         u32 sid = current_sid();
3475         int ret;
3476
3477         ret = avc_has_perm(sid, secid,
3478                            SECCLASS_KERNEL_SERVICE,
3479                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3480                            NULL);
3481         if (ret == 0) {
3482                 tsec->sid = secid;
3483                 tsec->create_sid = 0;
3484                 tsec->keycreate_sid = 0;
3485                 tsec->sockcreate_sid = 0;
3486         }
3487         return ret;
3488 }
3489
3490 /*
3491  * set the file creation context in a security record to the same as the
3492  * objective context of the specified inode
3493  */
3494 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3495 {
3496         struct inode_security_struct *isec = inode->i_security;
3497         struct task_security_struct *tsec = new->security;
3498         u32 sid = current_sid();
3499         int ret;
3500
3501         ret = avc_has_perm(sid, isec->sid,
3502                            SECCLASS_KERNEL_SERVICE,
3503                            KERNEL_SERVICE__CREATE_FILES_AS,
3504                            NULL);
3505
3506         if (ret == 0)
3507                 tsec->create_sid = isec->sid;
3508         return ret;
3509 }
3510
3511 static int selinux_kernel_module_request(char *kmod_name)
3512 {
3513         u32 sid;
3514         struct common_audit_data ad;
3515
3516         sid = task_sid(current);
3517
3518         ad.type = LSM_AUDIT_DATA_KMOD;
3519         ad.u.kmod_name = kmod_name;
3520
3521         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3522                             SYSTEM__MODULE_REQUEST, &ad);
3523 }
3524
3525 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3526 {
3527         return current_has_perm(p, PROCESS__SETPGID);
3528 }
3529
3530 static int selinux_task_getpgid(struct task_struct *p)
3531 {
3532         return current_has_perm(p, PROCESS__GETPGID);
3533 }
3534
3535 static int selinux_task_getsid(struct task_struct *p)
3536 {
3537         return current_has_perm(p, PROCESS__GETSESSION);
3538 }
3539
3540 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3541 {
3542         *secid = task_sid(p);
3543 }
3544
3545 static int selinux_task_setnice(struct task_struct *p, int nice)
3546 {
3547         int rc;
3548
3549         rc = cap_task_setnice(p, nice);
3550         if (rc)
3551                 return rc;
3552
3553         return current_has_perm(p, PROCESS__SETSCHED);
3554 }
3555
3556 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3557 {
3558         int rc;
3559
3560         rc = cap_task_setioprio(p, ioprio);
3561         if (rc)
3562                 return rc;
3563
3564         return current_has_perm(p, PROCESS__SETSCHED);
3565 }
3566
3567 static int selinux_task_getioprio(struct task_struct *p)
3568 {
3569         return current_has_perm(p, PROCESS__GETSCHED);
3570 }
3571
3572 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3573                 struct rlimit *new_rlim)
3574 {
3575         struct rlimit *old_rlim = p->signal->rlim + resource;
3576
3577         /* Control the ability to change the hard limit (whether
3578            lowering or raising it), so that the hard limit can
3579            later be used as a safe reset point for the soft limit
3580            upon context transitions.  See selinux_bprm_committing_creds. */
3581         if (old_rlim->rlim_max != new_rlim->rlim_max)
3582                 return current_has_perm(p, PROCESS__SETRLIMIT);
3583
3584         return 0;
3585 }
3586
3587 static int selinux_task_setscheduler(struct task_struct *p)
3588 {
3589         int rc;
3590
3591         rc = cap_task_setscheduler(p);
3592         if (rc)
3593                 return rc;
3594
3595         return current_has_perm(p, PROCESS__SETSCHED);
3596 }
3597
3598 static int selinux_task_getscheduler(struct task_struct *p)
3599 {
3600         return current_has_perm(p, PROCESS__GETSCHED);
3601 }
3602
3603 static int selinux_task_movememory(struct task_struct *p)
3604 {
3605         return current_has_perm(p, PROCESS__SETSCHED);
3606 }
3607
3608 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3609                                 int sig, u32 secid)
3610 {
3611         u32 perm;
3612         int rc;
3613
3614         if (!sig)
3615                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3616         else
3617                 perm = signal_to_av(sig);
3618         if (secid)
3619                 rc = avc_has_perm(secid, task_sid(p),
3620                                   SECCLASS_PROCESS, perm, NULL);
3621         else
3622                 rc = current_has_perm(p, perm);
3623         return rc;
3624 }
3625
3626 static int selinux_task_wait(struct task_struct *p)
3627 {
3628         return task_has_perm(p, current, PROCESS__SIGCHLD);
3629 }
3630
3631 static void selinux_task_to_inode(struct task_struct *p,
3632                                   struct inode *inode)
3633 {
3634         struct inode_security_struct *isec = inode->i_security;
3635         u32 sid = task_sid(p);
3636
3637         isec->sid = sid;
3638         isec->initialized = 1;
3639 }
3640
3641 /* Returns error only if unable to parse addresses */
3642 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3643                         struct common_audit_data *ad, u8 *proto)
3644 {
3645         int offset, ihlen, ret = -EINVAL;
3646         struct iphdr _iph, *ih;
3647
3648         offset = skb_network_offset(skb);
3649         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3650         if (ih == NULL)
3651                 goto out;
3652
3653         ihlen = ih->ihl * 4;
3654         if (ihlen < sizeof(_iph))
3655                 goto out;
3656
3657         ad->u.net->v4info.saddr = ih->saddr;
3658         ad->u.net->v4info.daddr = ih->daddr;
3659         ret = 0;
3660
3661         if (proto)
3662                 *proto = ih->protocol;
3663
3664         switch (ih->protocol) {
3665         case IPPROTO_TCP: {
3666                 struct tcphdr _tcph, *th;
3667
3668                 if (ntohs(ih->frag_off) & IP_OFFSET)
3669                         break;
3670
3671                 offset += ihlen;
3672                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3673                 if (th == NULL)
3674                         break;
3675
3676                 ad->u.net->sport = th->source;
3677                 ad->u.net->dport = th->dest;
3678                 break;
3679         }
3680
3681         case IPPROTO_UDP: {
3682                 struct udphdr _udph, *uh;
3683
3684                 if (ntohs(ih->frag_off) & IP_OFFSET)
3685                         break;
3686
3687                 offset += ihlen;
3688                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3689                 if (uh == NULL)
3690                         break;
3691
3692                 ad->u.net->sport = uh->source;
3693                 ad->u.net->dport = uh->dest;
3694                 break;
3695         }
3696
3697         case IPPROTO_DCCP: {
3698                 struct dccp_hdr _dccph, *dh;
3699
3700                 if (ntohs(ih->frag_off) & IP_OFFSET)
3701                         break;
3702
3703                 offset += ihlen;
3704                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3705                 if (dh == NULL)
3706                         break;
3707
3708                 ad->u.net->sport = dh->dccph_sport;
3709                 ad->u.net->dport = dh->dccph_dport;
3710                 break;
3711         }
3712
3713         default:
3714                 break;
3715         }
3716 out:
3717         return ret;
3718 }
3719
3720 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3721
3722 /* Returns error only if unable to parse addresses */
3723 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3724                         struct common_audit_data *ad, u8 *proto)
3725 {
3726         u8 nexthdr;
3727         int ret = -EINVAL, offset;
3728         struct ipv6hdr _ipv6h, *ip6;
3729         __be16 frag_off;
3730
3731         offset = skb_network_offset(skb);
3732         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3733         if (ip6 == NULL)
3734                 goto out;
3735
3736         ad->u.net->v6info.saddr = ip6->saddr;
3737         ad->u.net->v6info.daddr = ip6->daddr;
3738         ret = 0;
3739
3740         nexthdr = ip6->nexthdr;
3741         offset += sizeof(_ipv6h);
3742         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3743         if (offset < 0)
3744                 goto out;
3745
3746         if (proto)
3747                 *proto = nexthdr;
3748
3749         switch (nexthdr) {
3750         case IPPROTO_TCP: {
3751                 struct tcphdr _tcph, *th;
3752
3753                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3754                 if (th == NULL)
3755                         break;
3756
3757                 ad->u.net->sport = th->source;
3758                 ad->u.net->dport = th->dest;
3759                 break;
3760         }
3761
3762         case IPPROTO_UDP: {
3763                 struct udphdr _udph, *uh;
3764
3765                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3766                 if (uh == NULL)
3767                         break;
3768
3769                 ad->u.net->sport = uh->source;
3770                 ad->u.net->dport = uh->dest;
3771                 break;
3772         }
3773
3774         case IPPROTO_DCCP: {
3775                 struct dccp_hdr _dccph, *dh;
3776
3777                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3778                 if (dh == NULL)
3779                         break;
3780
3781                 ad->u.net->sport = dh->dccph_sport;
3782                 ad->u.net->dport = dh->dccph_dport;
3783                 break;
3784         }
3785
3786         /* includes fragments */
3787         default:
3788                 break;
3789         }
3790 out:
3791         return ret;
3792 }
3793
3794 #endif /* IPV6 */
3795
3796 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3797                              char **_addrp, int src, u8 *proto)
3798 {
3799         char *addrp;
3800         int ret;
3801
3802         switch (ad->u.net->family) {
3803         case PF_INET:
3804                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3805                 if (ret)
3806                         goto parse_error;
3807                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3808                                        &ad->u.net->v4info.daddr);
3809                 goto okay;
3810
3811 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3812         case PF_INET6:
3813                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3814                 if (ret)
3815                         goto parse_error;
3816                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3817                                        &ad->u.net->v6info.daddr);
3818                 goto okay;
3819 #endif  /* IPV6 */
3820         default:
3821                 addrp = NULL;
3822                 goto okay;
3823         }
3824
3825 parse_error:
3826         printk(KERN_WARNING
3827                "SELinux: failure in selinux_parse_skb(),"
3828                " unable to parse packet\n");
3829         return ret;
3830
3831 okay:
3832         if (_addrp)
3833                 *_addrp = addrp;
3834         return 0;
3835 }
3836
3837 /**
3838  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3839  * @skb: the packet
3840  * @family: protocol family
3841  * @sid: the packet's peer label SID
3842  *
3843  * Description:
3844  * Check the various different forms of network peer labeling and determine
3845  * the peer label/SID for the packet; most of the magic actually occurs in
3846  * the security server function security_net_peersid_cmp().  The function
3847  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3848  * or -EACCES if @sid is invalid due to inconsistencies with the different
3849  * peer labels.
3850  *
3851  */
3852 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3853 {
3854         int err;
3855         u32 xfrm_sid;
3856         u32 nlbl_sid;
3857         u32 nlbl_type;
3858
3859         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3860         if (unlikely(err))
3861                 return -EACCES;
3862         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3863         if (unlikely(err))
3864                 return -EACCES;
3865
3866         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3867         if (unlikely(err)) {
3868                 printk(KERN_WARNING
3869                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3870                        " unable to determine packet's peer label\n");
3871                 return -EACCES;
3872         }
3873
3874         return 0;
3875 }
3876
3877 /**
3878  * selinux_conn_sid - Determine the child socket label for a connection
3879  * @sk_sid: the parent socket's SID
3880  * @skb_sid: the packet's SID
3881  * @conn_sid: the resulting connection SID
3882  *
3883  * If @skb_sid is valid then the user:role:type information from @sk_sid is
3884  * combined with the MLS information from @skb_sid in order to create
3885  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3886  * of @sk_sid.  Returns zero on success, negative values on failure.
3887  *
3888  */
3889 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3890 {
3891         int err = 0;
3892
3893         if (skb_sid != SECSID_NULL)
3894                 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3895         else
3896                 *conn_sid = sk_sid;
3897
3898         return err;
3899 }
3900
3901 /* socket security operations */
3902
3903 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3904                                  u16 secclass, u32 *socksid)
3905 {
3906         if (tsec->sockcreate_sid > SECSID_NULL) {
3907                 *socksid = tsec->sockcreate_sid;
3908                 return 0;
3909         }
3910
3911         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3912                                        socksid);
3913 }
3914
3915 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3916 {
3917         struct sk_security_struct *sksec = sk->sk_security;
3918         struct common_audit_data ad;
3919         struct lsm_network_audit net = {0,};
3920         u32 tsid = task_sid(task);
3921
3922         if (sksec->sid == SECINITSID_KERNEL)
3923                 return 0;
3924
3925         ad.type = LSM_AUDIT_DATA_NET;
3926         ad.u.net = &net;
3927         ad.u.net->sk = sk;
3928
3929         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3930 }
3931
3932 static int selinux_socket_create(int family, int type,
3933                                  int protocol, int kern)
3934 {
3935         const struct task_security_struct *tsec = current_security();
3936         u32 newsid;
3937         u16 secclass;
3938         int rc;
3939
3940         if (kern)
3941                 return 0;
3942
3943         secclass = socket_type_to_security_class(family, type, protocol);
3944         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3945         if (rc)
3946                 return rc;
3947
3948         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3949 }
3950
3951 static int selinux_socket_post_create(struct socket *sock, int family,
3952                                       int type, int protocol, int kern)
3953 {
3954         const struct task_security_struct *tsec = current_security();
3955         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3956         struct sk_security_struct *sksec;
3957         int err = 0;
3958
3959         isec->sclass = socket_type_to_security_class(family, type, protocol);
3960
3961         if (kern)
3962                 isec->sid = SECINITSID_KERNEL;
3963         else {
3964                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3965                 if (err)
3966                         return err;
3967         }
3968
3969         isec->initialized = 1;
3970
3971         if (sock->sk) {
3972                 sksec = sock->sk->sk_security;
3973                 sksec->sid = isec->sid;
3974                 sksec->sclass = isec->sclass;
3975                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3976         }
3977
3978         return err;
3979 }
3980
3981 /* Range of port numbers used to automatically bind.
3982    Need to determine whether we should perform a name_bind
3983    permission check between the socket and the port number. */
3984
3985 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3986 {
3987         struct sock *sk = sock->sk;
3988         u16 family;
3989         int err;
3990
3991         err = sock_has_perm(current, sk, SOCKET__BIND);
3992         if (err)
3993                 goto out;
3994
3995         /*
3996          * If PF_INET or PF_INET6, check name_bind permission for the port.
3997          * Multiple address binding for SCTP is not supported yet: we just
3998          * check the first address now.
3999          */
4000         family = sk->sk_family;
4001         if (family == PF_INET || family == PF_INET6) {
4002                 char *addrp;
4003                 struct sk_security_struct *sksec = sk->sk_security;
4004                 struct common_audit_data ad;
4005                 struct lsm_network_audit net = {0,};
4006                 struct sockaddr_in *addr4 = NULL;
4007                 struct sockaddr_in6 *addr6 = NULL;
4008                 unsigned short snum;
4009                 u32 sid, node_perm;
4010
4011                 if (family == PF_INET) {
4012                         addr4 = (struct sockaddr_in *)address;
4013                         snum = ntohs(addr4->sin_port);
4014                         addrp = (char *)&addr4->sin_addr.s_addr;
4015                 } else {
4016                         addr6 = (struct sockaddr_in6 *)address;
4017                         snum = ntohs(addr6->sin6_port);
4018                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4019                 }
4020
4021                 if (snum) {
4022                         int low, high;
4023
4024                         inet_get_local_port_range(sock_net(sk), &low, &high);
4025
4026                         if (snum < max(PROT_SOCK, low) || snum > high) {
4027                                 err = sel_netport_sid(sk->sk_protocol,
4028                                                       snum, &sid);
4029                                 if (err)
4030                                         goto out;
4031                                 ad.type = LSM_AUDIT_DATA_NET;
4032                                 ad.u.net = &net;
4033                                 ad.u.net->sport = htons(snum);
4034                                 ad.u.net->family = family;
4035                                 err = avc_has_perm(sksec->sid, sid,
4036                                                    sksec->sclass,
4037                                                    SOCKET__NAME_BIND, &ad);
4038                                 if (err)
4039                                         goto out;
4040                         }
4041                 }
4042
4043                 switch (sksec->sclass) {
4044                 case SECCLASS_TCP_SOCKET:
4045                         node_perm = TCP_SOCKET__NODE_BIND;
4046                         break;
4047
4048                 case SECCLASS_UDP_SOCKET:
4049                         node_perm = UDP_SOCKET__NODE_BIND;
4050                         break;
4051
4052                 case SECCLASS_DCCP_SOCKET:
4053                         node_perm = DCCP_SOCKET__NODE_BIND;
4054                         break;
4055
4056                 default:
4057                         node_perm = RAWIP_SOCKET__NODE_BIND;
4058                         break;
4059                 }
4060
4061                 err = sel_netnode_sid(addrp, family, &sid);
4062                 if (err)
4063                         goto out;
4064
4065                 ad.type = LSM_AUDIT_DATA_NET;
4066                 ad.u.net = &net;
4067                 ad.u.net->sport = htons(snum);
4068                 ad.u.net->family = family;
4069
4070                 if (family == PF_INET)
4071                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4072                 else
4073                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4074
4075                 err = avc_has_perm(sksec->sid, sid,
4076                                    sksec->sclass, node_perm, &ad);
4077                 if (err)
4078                         goto out;
4079         }
4080 out:
4081         return err;
4082 }
4083
4084 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4085 {
4086         struct sock *sk = sock->sk;
4087         struct sk_security_struct *sksec = sk->sk_security;
4088         int err;
4089
4090         err = sock_has_perm(current, sk, SOCKET__CONNECT);
4091         if (err)
4092                 return err;
4093
4094         /*
4095          * If a TCP or DCCP socket, check name_connect permission for the port.
4096          */
4097         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4098             sksec->sclass == SECCLASS_DCCP_SOCKET) {
4099                 struct common_audit_data ad;
4100                 struct lsm_network_audit net = {0,};
4101                 struct sockaddr_in *addr4 = NULL;
4102                 struct sockaddr_in6 *addr6 = NULL;
4103                 unsigned short snum;
4104                 u32 sid, perm;
4105
4106                 if (sk->sk_family == PF_INET) {
4107                         addr4 = (struct sockaddr_in *)address;
4108                         if (addrlen < sizeof(struct sockaddr_in))
4109                                 return -EINVAL;
4110                         snum = ntohs(addr4->sin_port);
4111                 } else {
4112                         addr6 = (struct sockaddr_in6 *)address;
4113                         if (addrlen < SIN6_LEN_RFC2133)
4114                                 return -EINVAL;
4115                         snum = ntohs(addr6->sin6_port);
4116                 }
4117
4118                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4119                 if (err)
4120                         goto out;
4121
4122                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4123                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4124
4125                 ad.type = LSM_AUDIT_DATA_NET;
4126                 ad.u.net = &net;
4127                 ad.u.net->dport = htons(snum);
4128                 ad.u.net->family = sk->sk_family;
4129                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4130                 if (err)
4131                         goto out;
4132         }
4133
4134         err = selinux_netlbl_socket_connect(sk, address);
4135
4136 out:
4137         return err;
4138 }
4139
4140 static int selinux_socket_listen(struct socket *sock, int backlog)
4141 {
4142         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4143 }
4144
4145 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4146 {
4147         int err;
4148         struct inode_security_struct *isec;
4149         struct inode_security_struct *newisec;
4150
4151         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4152         if (err)
4153                 return err;
4154
4155         newisec = SOCK_INODE(newsock)->i_security;
4156
4157         isec = SOCK_INODE(sock)->i_security;
4158         newisec->sclass = isec->sclass;
4159         newisec->sid = isec->sid;
4160         newisec->initialized = 1;
4161
4162         return 0;
4163 }
4164
4165 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4166                                   int size)
4167 {
4168         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4169 }
4170
4171 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4172                                   int size, int flags)
4173 {
4174         return sock_has_perm(current, sock->sk, SOCKET__READ);
4175 }
4176
4177 static int selinux_socket_getsockname(struct socket *sock)
4178 {
4179         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4180 }
4181
4182 static int selinux_socket_getpeername(struct socket *sock)
4183 {
4184         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4185 }
4186
4187 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4188 {
4189         int err;
4190
4191         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4192         if (err)
4193                 return err;
4194
4195         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4196 }
4197
4198 static int selinux_socket_getsockopt(struct socket *sock, int level,
4199                                      int optname)
4200 {
4201         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4202 }
4203
4204 static int selinux_socket_shutdown(struct socket *sock, int how)
4205 {
4206         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4207 }
4208
4209 static int selinux_socket_unix_stream_connect(struct sock *sock,
4210                                               struct sock *other,
4211                                               struct sock *newsk)
4212 {
4213         struct sk_security_struct *sksec_sock = sock->sk_security;
4214         struct sk_security_struct *sksec_other = other->sk_security;
4215         struct sk_security_struct *sksec_new = newsk->sk_security;
4216         struct common_audit_data ad;
4217         struct lsm_network_audit net = {0,};
4218         int err;
4219
4220         ad.type = LSM_AUDIT_DATA_NET;
4221         ad.u.net = &net;
4222         ad.u.net->sk = other;
4223
4224         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4225                            sksec_other->sclass,
4226                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4227         if (err)
4228                 return err;
4229
4230         /* server child socket */
4231         sksec_new->peer_sid = sksec_sock->sid;
4232         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4233                                     &sksec_new->sid);
4234         if (err)
4235                 return err;
4236
4237         /* connecting socket */
4238         sksec_sock->peer_sid = sksec_new->sid;
4239
4240         return 0;
4241 }
4242
4243 static int selinux_socket_unix_may_send(struct socket *sock,
4244                                         struct socket *other)
4245 {
4246         struct sk_security_struct *ssec = sock->sk->sk_security;
4247         struct sk_security_struct *osec = other->sk->sk_security;
4248         struct common_audit_data ad;
4249         struct lsm_network_audit net = {0,};
4250
4251         ad.type = LSM_AUDIT_DATA_NET;
4252         ad.u.net = &net;
4253         ad.u.net->sk = other->sk;
4254
4255         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4256                             &ad);
4257 }
4258
4259 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4260                                     u32 peer_sid,
4261                                     struct common_audit_data *ad)
4262 {
4263         int err;
4264         u32 if_sid;
4265         u32 node_sid;
4266
4267         err = sel_netif_sid(ifindex, &if_sid);
4268         if (err)
4269                 return err;
4270         err = avc_has_perm(peer_sid, if_sid,
4271                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4272         if (err)
4273                 return err;
4274
4275         err = sel_netnode_sid(addrp, family, &node_sid);
4276         if (err)
4277                 return err;
4278         return avc_has_perm(peer_sid, node_sid,
4279                             SECCLASS_NODE, NODE__RECVFROM, ad);
4280 }
4281
4282 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4283                                        u16 family)
4284 {
4285         int err = 0;
4286         struct sk_security_struct *sksec = sk->sk_security;
4287         u32 sk_sid = sksec->sid;
4288         struct common_audit_data ad;
4289         struct lsm_network_audit net = {0,};
4290         char *addrp;
4291
4292         ad.type = LSM_AUDIT_DATA_NET;
4293         ad.u.net = &net;
4294         ad.u.net->netif = skb->skb_iif;
4295         ad.u.net->family = family;
4296         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4297         if (err)
4298                 return err;
4299
4300         if (selinux_secmark_enabled()) {
4301                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4302                                    PACKET__RECV, &ad);
4303                 if (err)
4304                         return err;
4305         }
4306
4307         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4308         if (err)
4309                 return err;
4310         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4311
4312         return err;
4313 }
4314
4315 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4316 {
4317         int err;
4318         struct sk_security_struct *sksec = sk->sk_security;
4319         u16 family = sk->sk_family;
4320         u32 sk_sid = sksec->sid;
4321         struct common_audit_data ad;
4322         struct lsm_network_audit net = {0,};
4323         char *addrp;
4324         u8 secmark_active;
4325         u8 peerlbl_active;
4326
4327         if (family != PF_INET && family != PF_INET6)
4328                 return 0;
4329
4330         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4331         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4332                 family = PF_INET;
4333
4334         /* If any sort of compatibility mode is enabled then handoff processing
4335          * to the selinux_sock_rcv_skb_compat() function to deal with the
4336          * special handling.  We do this in an attempt to keep this function
4337          * as fast and as clean as possible. */
4338         if (!selinux_policycap_netpeer)
4339                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4340
4341         secmark_active = selinux_secmark_enabled();
4342         peerlbl_active = selinux_peerlbl_enabled();
4343         if (!secmark_active && !peerlbl_active)
4344                 return 0;
4345
4346         ad.type = LSM_AUDIT_DATA_NET;
4347         ad.u.net = &net;
4348         ad.u.net->netif = skb->skb_iif;
4349         ad.u.net->family = family;
4350         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4351         if (err)
4352                 return err;
4353
4354         if (peerlbl_active) {
4355                 u32 peer_sid;
4356
4357                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4358                 if (err)
4359                         return err;
4360                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4361                                                peer_sid, &ad);
4362                 if (err) {
4363                         selinux_netlbl_err(skb, err, 0);
4364                         return err;
4365                 }
4366                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4367                                    PEER__RECV, &ad);
4368                 if (err) {
4369                         selinux_netlbl_err(skb, err, 0);
4370                         return err;
4371                 }
4372         }
4373
4374         if (secmark_active) {
4375                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4376                                    PACKET__RECV, &ad);
4377                 if (err)
4378                         return err;
4379         }
4380
4381         return err;
4382 }
4383
4384 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4385                                             int __user *optlen, unsigned len)
4386 {
4387         int err = 0;
4388         char *scontext;
4389         u32 scontext_len;
4390         struct sk_security_struct *sksec = sock->sk->sk_security;
4391         u32 peer_sid = SECSID_NULL;
4392
4393         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4394             sksec->sclass == SECCLASS_TCP_SOCKET)
4395                 peer_sid = sksec->peer_sid;
4396         if (peer_sid == SECSID_NULL)
4397                 return -ENOPROTOOPT;
4398
4399         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4400         if (err)
4401                 return err;
4402
4403         if (scontext_len > len) {
4404                 err = -ERANGE;
4405                 goto out_len;
4406         }
4407
4408         if (copy_to_user(optval, scontext, scontext_len))
4409                 err = -EFAULT;
4410
4411 out_len:
4412         if (put_user(scontext_len, optlen))
4413                 err = -EFAULT;
4414         kfree(scontext);
4415         return err;
4416 }
4417
4418 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4419 {
4420         u32 peer_secid = SECSID_NULL;
4421         u16 family;
4422
4423         if (skb && skb->protocol == htons(ETH_P_IP))
4424                 family = PF_INET;
4425         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4426                 family = PF_INET6;
4427         else if (sock)
4428                 family = sock->sk->sk_family;
4429         else
4430                 goto out;
4431
4432         if (sock && family == PF_UNIX)
4433                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4434         else if (skb)
4435                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4436
4437 out:
4438         *secid = peer_secid;
4439         if (peer_secid == SECSID_NULL)
4440                 return -EINVAL;
4441         return 0;
4442 }
4443
4444 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4445 {
4446         struct sk_security_struct *sksec;
4447
4448         sksec = kzalloc(sizeof(*sksec), priority);
4449         if (!sksec)
4450                 return -ENOMEM;
4451
4452         sksec->peer_sid = SECINITSID_UNLABELED;
4453         sksec->sid = SECINITSID_UNLABELED;
4454         selinux_netlbl_sk_security_reset(sksec);
4455         sk->sk_security = sksec;
4456
4457         return 0;
4458 }
4459
4460 static void selinux_sk_free_security(struct sock *sk)
4461 {
4462         struct sk_security_struct *sksec = sk->sk_security;
4463
4464         sk->sk_security = NULL;
4465         selinux_netlbl_sk_security_free(sksec);
4466         kfree(sksec);
4467 }
4468
4469 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4470 {
4471         struct sk_security_struct *sksec = sk->sk_security;
4472         struct sk_security_struct *newsksec = newsk->sk_security;
4473
4474         newsksec->sid = sksec->sid;
4475         newsksec->peer_sid = sksec->peer_sid;
4476         newsksec->sclass = sksec->sclass;
4477
4478         selinux_netlbl_sk_security_reset(newsksec);
4479 }
4480
4481 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4482 {
4483         if (!sk)
4484                 *secid = SECINITSID_ANY_SOCKET;
4485         else {
4486                 struct sk_security_struct *sksec = sk->sk_security;
4487
4488                 *secid = sksec->sid;
4489         }
4490 }
4491
4492 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4493 {
4494         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4495         struct sk_security_struct *sksec = sk->sk_security;
4496
4497         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4498             sk->sk_family == PF_UNIX)
4499                 isec->sid = sksec->sid;
4500         sksec->sclass = isec->sclass;
4501 }
4502
4503 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4504                                      struct request_sock *req)
4505 {
4506         struct sk_security_struct *sksec = sk->sk_security;
4507         int err;
4508         u16 family = req->rsk_ops->family;
4509         u32 connsid;
4510         u32 peersid;
4511
4512         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4513         if (err)
4514                 return err;
4515         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4516         if (err)
4517                 return err;
4518         req->secid = connsid;
4519         req->peer_secid = peersid;
4520
4521         return selinux_netlbl_inet_conn_request(req, family);
4522 }
4523
4524 static void selinux_inet_csk_clone(struct sock *newsk,
4525                                    const struct request_sock *req)
4526 {
4527         struct sk_security_struct *newsksec = newsk->sk_security;
4528
4529         newsksec->sid = req->secid;
4530         newsksec->peer_sid = req->peer_secid;
4531         /* NOTE: Ideally, we should also get the isec->sid for the
4532            new socket in sync, but we don't have the isec available yet.
4533            So we will wait until sock_graft to do it, by which
4534            time it will have been created and available. */
4535
4536         /* We don't need to take any sort of lock here as we are the only
4537          * thread with access to newsksec */
4538         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4539 }
4540
4541 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4542 {
4543         u16 family = sk->sk_family;
4544         struct sk_security_struct *sksec = sk->sk_security;
4545
4546         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4547         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4548                 family = PF_INET;
4549
4550         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4551 }
4552
4553 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4554 {
4555         skb_set_owner_w(skb, sk);
4556 }
4557
4558 static int selinux_secmark_relabel_packet(u32 sid)
4559 {
4560         const struct task_security_struct *__tsec;
4561         u32 tsid;
4562
4563         __tsec = current_security();
4564         tsid = __tsec->sid;
4565
4566         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4567 }
4568
4569 static void selinux_secmark_refcount_inc(void)
4570 {
4571         atomic_inc(&selinux_secmark_refcount);
4572 }
4573
4574 static void selinux_secmark_refcount_dec(void)
4575 {
4576         atomic_dec(&selinux_secmark_refcount);
4577 }
4578
4579 static void selinux_req_classify_flow(const struct request_sock *req,
4580                                       struct flowi *fl)
4581 {
4582         fl->flowi_secid = req->secid;
4583 }
4584
4585 static int selinux_tun_dev_alloc_security(void **security)
4586 {
4587         struct tun_security_struct *tunsec;
4588
4589         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4590         if (!tunsec)
4591                 return -ENOMEM;
4592         tunsec->sid = current_sid();
4593
4594         *security = tunsec;
4595         return 0;
4596 }
4597
4598 static void selinux_tun_dev_free_security(void *security)
4599 {
4600         kfree(security);
4601 }
4602
4603 static int selinux_tun_dev_create(void)
4604 {
4605         u32 sid = current_sid();
4606
4607         /* we aren't taking into account the "sockcreate" SID since the socket
4608          * that is being created here is not a socket in the traditional sense,
4609          * instead it is a private sock, accessible only to the kernel, and
4610          * representing a wide range of network traffic spanning multiple
4611          * connections unlike traditional sockets - check the TUN driver to
4612          * get a better understanding of why this socket is special */
4613
4614         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4615                             NULL);
4616 }
4617
4618 static int selinux_tun_dev_attach_queue(void *security)
4619 {
4620         struct tun_security_struct *tunsec = security;
4621
4622         return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4623                             TUN_SOCKET__ATTACH_QUEUE, NULL);
4624 }
4625
4626 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4627 {
4628         struct tun_security_struct *tunsec = security;
4629         struct sk_security_struct *sksec = sk->sk_security;
4630
4631         /* we don't currently perform any NetLabel based labeling here and it
4632          * isn't clear that we would want to do so anyway; while we could apply
4633          * labeling without the support of the TUN user the resulting labeled
4634          * traffic from the other end of the connection would almost certainly
4635          * cause confusion to the TUN user that had no idea network labeling
4636          * protocols were being used */
4637
4638         sksec->sid = tunsec->sid;
4639         sksec->sclass = SECCLASS_TUN_SOCKET;
4640
4641         return 0;
4642 }
4643
4644 static int selinux_tun_dev_open(void *security)
4645 {
4646         struct tun_security_struct *tunsec = security;
4647         u32 sid = current_sid();
4648         int err;
4649
4650         err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4651                            TUN_SOCKET__RELABELFROM, NULL);
4652         if (err)
4653                 return err;
4654         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4655                            TUN_SOCKET__RELABELTO, NULL);
4656         if (err)
4657                 return err;
4658         tunsec->sid = sid;
4659
4660         return 0;
4661 }
4662
4663 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4664 {
4665         int err = 0;
4666         u32 perm;
4667         struct nlmsghdr *nlh;
4668         struct sk_security_struct *sksec = sk->sk_security;
4669
4670         if (skb->len < NLMSG_HDRLEN) {
4671                 err = -EINVAL;
4672                 goto out;
4673         }
4674         nlh = nlmsg_hdr(skb);
4675
4676         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4677         if (err) {
4678                 if (err == -EINVAL) {
4679                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4680                                   "SELinux:  unrecognized netlink message"
4681                                   " type=%hu for sclass=%hu\n",
4682                                   nlh->nlmsg_type, sksec->sclass);
4683                         if (!selinux_enforcing || security_get_allow_unknown())
4684                                 err = 0;
4685                 }
4686
4687                 /* Ignore */
4688                 if (err == -ENOENT)
4689                         err = 0;
4690                 goto out;
4691         }
4692
4693         err = sock_has_perm(current, sk, perm);
4694 out:
4695         return err;
4696 }
4697
4698 #ifdef CONFIG_NETFILTER
4699
4700 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4701                                        u16 family)
4702 {
4703         int err;
4704         char *addrp;
4705         u32 peer_sid;
4706         struct common_audit_data ad;
4707         struct lsm_network_audit net = {0,};
4708         u8 secmark_active;
4709         u8 netlbl_active;
4710         u8 peerlbl_active;
4711
4712         if (!selinux_policycap_netpeer)
4713                 return NF_ACCEPT;
4714
4715         secmark_active = selinux_secmark_enabled();
4716         netlbl_active = netlbl_enabled();
4717         peerlbl_active = selinux_peerlbl_enabled();
4718         if (!secmark_active && !peerlbl_active)
4719                 return NF_ACCEPT;
4720
4721         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4722                 return NF_DROP;
4723
4724         ad.type = LSM_AUDIT_DATA_NET;
4725         ad.u.net = &net;
4726         ad.u.net->netif = ifindex;
4727         ad.u.net->family = family;
4728         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4729                 return NF_DROP;
4730
4731         if (peerlbl_active) {
4732                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4733                                                peer_sid, &ad);
4734                 if (err) {
4735                         selinux_netlbl_err(skb, err, 1);
4736                         return NF_DROP;
4737                 }
4738         }
4739
4740         if (secmark_active)
4741                 if (avc_has_perm(peer_sid, skb->secmark,
4742                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4743                         return NF_DROP;
4744
4745         if (netlbl_active)
4746                 /* we do this in the FORWARD path and not the POST_ROUTING
4747                  * path because we want to make sure we apply the necessary
4748                  * labeling before IPsec is applied so we can leverage AH
4749                  * protection */
4750                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4751                         return NF_DROP;
4752
4753         return NF_ACCEPT;
4754 }
4755
4756 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4757                                          struct sk_buff *skb,
4758                                          const struct net_device *in,
4759                                          const struct net_device *out,
4760                                          int (*okfn)(struct sk_buff *))
4761 {
4762         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4763 }
4764
4765 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4766 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4767                                          struct sk_buff *skb,
4768                                          const struct net_device *in,
4769                                          const struct net_device *out,
4770                                          int (*okfn)(struct sk_buff *))
4771 {
4772         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4773 }
4774 #endif  /* IPV6 */
4775
4776 static unsigned int selinux_ip_output(struct sk_buff *skb,
4777                                       u16 family)
4778 {
4779         struct sock *sk;
4780         u32 sid;
4781
4782         if (!netlbl_enabled())
4783                 return NF_ACCEPT;
4784
4785         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4786          * because we want to make sure we apply the necessary labeling
4787          * before IPsec is applied so we can leverage AH protection */
4788         sk = skb->sk;
4789         if (sk) {
4790                 struct sk_security_struct *sksec;
4791
4792                 if (sk->sk_state == TCP_LISTEN)
4793                         /* if the socket is the listening state then this
4794                          * packet is a SYN-ACK packet which means it needs to
4795                          * be labeled based on the connection/request_sock and
4796                          * not the parent socket.  unfortunately, we can't
4797                          * lookup the request_sock yet as it isn't queued on
4798                          * the parent socket until after the SYN-ACK is sent.
4799                          * the "solution" is to simply pass the packet as-is
4800                          * as any IP option based labeling should be copied
4801                          * from the initial connection request (in the IP
4802                          * layer).  it is far from ideal, but until we get a
4803                          * security label in the packet itself this is the
4804                          * best we can do. */
4805                         return NF_ACCEPT;
4806
4807                 /* standard practice, label using the parent socket */
4808                 sksec = sk->sk_security;
4809                 sid = sksec->sid;
4810         } else
4811                 sid = SECINITSID_KERNEL;
4812         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4813                 return NF_DROP;
4814
4815         return NF_ACCEPT;
4816 }
4817
4818 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4819                                         struct sk_buff *skb,
4820                                         const struct net_device *in,
4821                                         const struct net_device *out,
4822                                         int (*okfn)(struct sk_buff *))
4823 {
4824         return selinux_ip_output(skb, PF_INET);
4825 }
4826
4827 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4828                                                 int ifindex,
4829                                                 u16 family)
4830 {
4831         struct sock *sk = skb->sk;
4832         struct sk_security_struct *sksec;
4833         struct common_audit_data ad;
4834         struct lsm_network_audit net = {0,};
4835         char *addrp;
4836         u8 proto;
4837
4838         if (sk == NULL)
4839                 return NF_ACCEPT;
4840         sksec = sk->sk_security;
4841
4842         ad.type = LSM_AUDIT_DATA_NET;
4843         ad.u.net = &net;
4844         ad.u.net->netif = ifindex;
4845         ad.u.net->family = family;
4846         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4847                 return NF_DROP;
4848
4849         if (selinux_secmark_enabled())
4850                 if (avc_has_perm(sksec->sid, skb->secmark,
4851                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4852                         return NF_DROP_ERR(-ECONNREFUSED);
4853
4854         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4855                 return NF_DROP_ERR(-ECONNREFUSED);
4856
4857         return NF_ACCEPT;
4858 }
4859
4860 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4861                                          u16 family)
4862 {
4863         u32 secmark_perm;
4864         u32 peer_sid;
4865         struct sock *sk;
4866         struct common_audit_data ad;
4867         struct lsm_network_audit net = {0,};
4868         char *addrp;
4869         u8 secmark_active;
4870         u8 peerlbl_active;
4871
4872         /* If any sort of compatibility mode is enabled then handoff processing
4873          * to the selinux_ip_postroute_compat() function to deal with the
4874          * special handling.  We do this in an attempt to keep this function
4875          * as fast and as clean as possible. */
4876         if (!selinux_policycap_netpeer)
4877                 return selinux_ip_postroute_compat(skb, ifindex, family);
4878
4879         secmark_active = selinux_secmark_enabled();
4880         peerlbl_active = selinux_peerlbl_enabled();
4881         if (!secmark_active && !peerlbl_active)
4882                 return NF_ACCEPT;
4883
4884         sk = skb->sk;
4885
4886 #ifdef CONFIG_XFRM
4887         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4888          * packet transformation so allow the packet to pass without any checks
4889          * since we'll have another chance to perform access control checks
4890          * when the packet is on it's final way out.
4891          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4892          *       is NULL, in this case go ahead and apply access control.
4893          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4894          *       TCP listening state we cannot wait until the XFRM processing
4895          *       is done as we will miss out on the SA label if we do;
4896          *       unfortunately, this means more work, but it is only once per
4897          *       connection. */
4898         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4899             !(sk != NULL && sk->sk_state == TCP_LISTEN))
4900                 return NF_ACCEPT;
4901 #endif
4902
4903         if (sk == NULL) {
4904                 /* Without an associated socket the packet is either coming
4905                  * from the kernel or it is being forwarded; check the packet
4906                  * to determine which and if the packet is being forwarded
4907                  * query the packet directly to determine the security label. */
4908                 if (skb->skb_iif) {
4909                         secmark_perm = PACKET__FORWARD_OUT;
4910                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4911                                 return NF_DROP;
4912                 } else {
4913                         secmark_perm = PACKET__SEND;
4914                         peer_sid = SECINITSID_KERNEL;
4915                 }
4916         } else if (sk->sk_state == TCP_LISTEN) {
4917                 /* Locally generated packet but the associated socket is in the
4918                  * listening state which means this is a SYN-ACK packet.  In
4919                  * this particular case the correct security label is assigned
4920                  * to the connection/request_sock but unfortunately we can't
4921                  * query the request_sock as it isn't queued on the parent
4922                  * socket until after the SYN-ACK packet is sent; the only
4923                  * viable choice is to regenerate the label like we do in
4924                  * selinux_inet_conn_request().  See also selinux_ip_output()
4925                  * for similar problems. */
4926                 u32 skb_sid;
4927                 struct sk_security_struct *sksec = sk->sk_security;
4928                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4929                         return NF_DROP;
4930                 /* At this point, if the returned skb peerlbl is SECSID_NULL
4931                  * and the packet has been through at least one XFRM
4932                  * transformation then we must be dealing with the "final"
4933                  * form of labeled IPsec packet; since we've already applied
4934                  * all of our access controls on this packet we can safely
4935                  * pass the packet. */
4936                 if (skb_sid == SECSID_NULL) {
4937                         switch (family) {
4938                         case PF_INET:
4939                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4940                                         return NF_ACCEPT;
4941                                 break;
4942                         case PF_INET6:
4943                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4944                                         return NF_ACCEPT;
4945                         default:
4946                                 return NF_DROP_ERR(-ECONNREFUSED);
4947                         }
4948                 }
4949                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4950                         return NF_DROP;
4951                 secmark_perm = PACKET__SEND;
4952         } else {
4953                 /* Locally generated packet, fetch the security label from the
4954                  * associated socket. */
4955                 struct sk_security_struct *sksec = sk->sk_security;
4956                 peer_sid = sksec->sid;
4957                 secmark_perm = PACKET__SEND;
4958         }
4959
4960         ad.type = LSM_AUDIT_DATA_NET;
4961         ad.u.net = &net;
4962         ad.u.net->netif = ifindex;
4963         ad.u.net->family = family;
4964         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4965                 return NF_DROP;
4966
4967         if (secmark_active)
4968                 if (avc_has_perm(peer_sid, skb->secmark,
4969                                  SECCLASS_PACKET, secmark_perm, &ad))
4970                         return NF_DROP_ERR(-ECONNREFUSED);
4971
4972         if (peerlbl_active) {
4973                 u32 if_sid;
4974                 u32 node_sid;
4975
4976                 if (sel_netif_sid(ifindex, &if_sid))
4977                         return NF_DROP;
4978                 if (avc_has_perm(peer_sid, if_sid,
4979                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4980                         return NF_DROP_ERR(-ECONNREFUSED);
4981
4982                 if (sel_netnode_sid(addrp, family, &node_sid))
4983                         return NF_DROP;
4984                 if (avc_has_perm(peer_sid, node_sid,
4985                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4986                         return NF_DROP_ERR(-ECONNREFUSED);
4987         }
4988
4989         return NF_ACCEPT;
4990 }
4991
4992 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4993                                            struct sk_buff *skb,
4994                                            const struct net_device *in,
4995                                            const struct net_device *out,
4996                                            int (*okfn)(struct sk_buff *))
4997 {
4998         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4999 }
5000
5001 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5002 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5003                                            struct sk_buff *skb,
5004                                            const struct net_device *in,
5005                                            const struct net_device *out,
5006                                            int (*okfn)(struct sk_buff *))
5007 {
5008         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5009 }
5010 #endif  /* IPV6 */
5011
5012 #endif  /* CONFIG_NETFILTER */
5013
5014 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5015 {
5016         int err;
5017
5018         err = cap_netlink_send(sk, skb);
5019         if (err)
5020                 return err;
5021
5022         return selinux_nlmsg_perm(sk, skb);
5023 }
5024
5025 static int ipc_alloc_security(struct task_struct *task,
5026                               struct kern_ipc_perm *perm,
5027                               u16 sclass)
5028 {
5029         struct ipc_security_struct *isec;
5030         u32 sid;
5031
5032         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5033         if (!isec)
5034                 return -ENOMEM;
5035
5036         sid = task_sid(task);
5037         isec->sclass = sclass;
5038         isec->sid = sid;
5039         perm->security = isec;
5040
5041         return 0;
5042 }
5043
5044 static void ipc_free_security(struct kern_ipc_perm *perm)
5045 {
5046         struct ipc_security_struct *isec = perm->security;
5047         perm->security = NULL;
5048         kfree(isec);
5049 }
5050
5051 static int msg_msg_alloc_security(struct msg_msg *msg)
5052 {
5053         struct msg_security_struct *msec;
5054
5055         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5056         if (!msec)
5057                 return -ENOMEM;
5058
5059         msec->sid = SECINITSID_UNLABELED;
5060         msg->security = msec;
5061
5062         return 0;
5063 }
5064
5065 static void msg_msg_free_security(struct msg_msg *msg)
5066 {
5067         struct msg_security_struct *msec = msg->security;
5068
5069         msg->security = NULL;
5070         kfree(msec);
5071 }
5072
5073 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5074                         u32 perms)
5075 {
5076         struct ipc_security_struct *isec;
5077         struct common_audit_data ad;
5078         u32 sid = current_sid();
5079
5080         isec = ipc_perms->security;
5081
5082         ad.type = LSM_AUDIT_DATA_IPC;
5083         ad.u.ipc_id = ipc_perms->key;
5084
5085         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5086 }
5087
5088 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5089 {
5090         return msg_msg_alloc_security(msg);
5091 }
5092
5093 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5094 {
5095         msg_msg_free_security(msg);
5096 }
5097
5098 /* message queue security operations */
5099 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5100 {
5101         struct ipc_security_struct *isec;
5102         struct common_audit_data ad;
5103         u32 sid = current_sid();
5104         int rc;
5105
5106         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5107         if (rc)
5108                 return rc;
5109
5110         isec = msq->q_perm.security;
5111
5112         ad.type = LSM_AUDIT_DATA_IPC;
5113         ad.u.ipc_id = msq->q_perm.key;
5114
5115         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5116                           MSGQ__CREATE, &ad);
5117         if (rc) {
5118                 ipc_free_security(&msq->q_perm);
5119                 return rc;
5120         }
5121         return 0;
5122 }
5123
5124 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5125 {
5126         ipc_free_security(&msq->q_perm);
5127 }
5128
5129 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5130 {
5131         struct ipc_security_struct *isec;
5132         struct common_audit_data ad;
5133         u32 sid = current_sid();
5134
5135         isec = msq->q_perm.security;
5136
5137         ad.type = LSM_AUDIT_DATA_IPC;
5138         ad.u.ipc_id = msq->q_perm.key;
5139
5140         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5141                             MSGQ__ASSOCIATE, &ad);
5142 }
5143
5144 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5145 {
5146         int err;
5147         int perms;
5148
5149         switch (cmd) {
5150         case IPC_INFO:
5151         case MSG_INFO:
5152                 /* No specific object, just general system-wide information. */
5153                 return task_has_system(current, SYSTEM__IPC_INFO);
5154         case IPC_STAT:
5155         case MSG_STAT:
5156                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5157                 break;
5158         case IPC_SET:
5159                 perms = MSGQ__SETATTR;
5160                 break;
5161         case IPC_RMID:
5162                 perms = MSGQ__DESTROY;
5163                 break;
5164         default:
5165                 return 0;
5166         }
5167
5168         err = ipc_has_perm(&msq->q_perm, perms);
5169         return err;
5170 }
5171
5172 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5173 {
5174         struct ipc_security_struct *isec;
5175         struct msg_security_struct *msec;
5176         struct common_audit_data ad;
5177         u32 sid = current_sid();
5178         int rc;
5179
5180         isec = msq->q_perm.security;
5181         msec = msg->security;
5182
5183         /*
5184          * First time through, need to assign label to the message
5185          */
5186         if (msec->sid == SECINITSID_UNLABELED) {
5187                 /*
5188                  * Compute new sid based on current process and
5189                  * message queue this message will be stored in
5190                  */
5191                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5192                                              NULL, &msec->sid);
5193                 if (rc)
5194                         return rc;
5195         }
5196
5197         ad.type = LSM_AUDIT_DATA_IPC;
5198         ad.u.ipc_id = msq->q_perm.key;
5199
5200         /* Can this process write to the queue? */
5201         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5202                           MSGQ__WRITE, &ad);
5203         if (!rc)
5204                 /* Can this process send the message */
5205                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5206                                   MSG__SEND, &ad);
5207         if (!rc)
5208                 /* Can the message be put in the queue? */
5209                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5210                                   MSGQ__ENQUEUE, &ad);
5211
5212         return rc;
5213 }
5214
5215 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5216                                     struct task_struct *target,
5217                                     long type, int mode)
5218 {
5219         struct ipc_security_struct *isec;
5220         struct msg_security_struct *msec;
5221         struct common_audit_data ad;
5222         u32 sid = task_sid(target);
5223         int rc;
5224
5225         isec = msq->q_perm.security;
5226         msec = msg->security;
5227
5228         ad.type = LSM_AUDIT_DATA_IPC;
5229         ad.u.ipc_id = msq->q_perm.key;
5230
5231         rc = avc_has_perm(sid, isec->sid,
5232                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5233         if (!rc)
5234                 rc = avc_has_perm(sid, msec->sid,
5235                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5236         return rc;
5237 }
5238
5239 /* Shared Memory security operations */
5240 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5241 {
5242         struct ipc_security_struct *isec;
5243         struct common_audit_data ad;
5244         u32 sid = current_sid();
5245         int rc;
5246
5247         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5248         if (rc)
5249                 return rc;
5250
5251         isec = shp->shm_perm.security;
5252
5253         ad.type = LSM_AUDIT_DATA_IPC;
5254         ad.u.ipc_id = shp->shm_perm.key;
5255
5256         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5257                           SHM__CREATE, &ad);
5258         if (rc) {
5259                 ipc_free_security(&shp->shm_perm);
5260                 return rc;
5261         }
5262         return 0;
5263 }
5264
5265 static void selinux_shm_free_security(struct shmid_kernel *shp)
5266 {
5267         ipc_free_security(&shp->shm_perm);
5268 }
5269
5270 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5271 {
5272         struct ipc_security_struct *isec;
5273         struct common_audit_data ad;
5274         u32 sid = current_sid();
5275
5276         isec = shp->shm_perm.security;
5277
5278         ad.type = LSM_AUDIT_DATA_IPC;
5279         ad.u.ipc_id = shp->shm_perm.key;
5280
5281         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5282                             SHM__ASSOCIATE, &ad);
5283 }
5284
5285 /* Note, at this point, shp is locked down */
5286 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5287 {
5288         int perms;
5289         int err;
5290
5291         switch (cmd) {
5292         case IPC_INFO:
5293         case SHM_INFO:
5294                 /* No specific object, just general system-wide information. */
5295                 return task_has_system(current, SYSTEM__IPC_INFO);
5296         case IPC_STAT:
5297         case SHM_STAT:
5298                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5299                 break;
5300         case IPC_SET:
5301                 perms = SHM__SETATTR;
5302                 break;
5303         case SHM_LOCK:
5304         case SHM_UNLOCK:
5305                 perms = SHM__LOCK;
5306                 break;
5307         case IPC_RMID:
5308                 perms = SHM__DESTROY;
5309                 break;
5310         default:
5311                 return 0;
5312         }
5313
5314         err = ipc_has_perm(&shp->shm_perm, perms);
5315         return err;
5316 }
5317
5318 static int selinux_shm_shmat(struct shmid_kernel *shp,
5319                              char __user *shmaddr, int shmflg)
5320 {
5321         u32 perms;
5322
5323         if (shmflg & SHM_RDONLY)
5324                 perms = SHM__READ;
5325         else
5326                 perms = SHM__READ | SHM__WRITE;
5327
5328         return ipc_has_perm(&shp->shm_perm, perms);
5329 }
5330
5331 /* Semaphore security operations */
5332 static int selinux_sem_alloc_security(struct sem_array *sma)
5333 {
5334         struct ipc_security_struct *isec;
5335         struct common_audit_data ad;
5336         u32 sid = current_sid();
5337         int rc;
5338
5339         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5340         if (rc)
5341                 return rc;
5342
5343         isec = sma->sem_perm.security;
5344
5345         ad.type = LSM_AUDIT_DATA_IPC;
5346         ad.u.ipc_id = sma->sem_perm.key;
5347
5348         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5349                           SEM__CREATE, &ad);
5350         if (rc) {
5351                 ipc_free_security(&sma->sem_perm);
5352                 return rc;
5353         }
5354         return 0;
5355 }
5356
5357 static void selinux_sem_free_security(struct sem_array *sma)
5358 {
5359         ipc_free_security(&sma->sem_perm);
5360 }
5361
5362 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5363 {
5364         struct ipc_security_struct *isec;
5365         struct common_audit_data ad;
5366         u32 sid = current_sid();
5367
5368         isec = sma->sem_perm.security;
5369
5370         ad.type = LSM_AUDIT_DATA_IPC;
5371         ad.u.ipc_id = sma->sem_perm.key;
5372
5373         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5374                             SEM__ASSOCIATE, &ad);
5375 }
5376
5377 /* Note, at this point, sma is locked down */
5378 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5379 {
5380         int err;
5381         u32 perms;
5382
5383         switch (cmd) {
5384         case IPC_INFO:
5385         case SEM_INFO:
5386                 /* No specific object, just general system-wide information. */
5387                 return task_has_system(current, SYSTEM__IPC_INFO);
5388         case GETPID:
5389         case GETNCNT:
5390         case GETZCNT:
5391                 perms = SEM__GETATTR;
5392                 break;
5393         case GETVAL:
5394         case GETALL:
5395                 perms = SEM__READ;
5396                 break;
5397         case SETVAL:
5398         case SETALL:
5399                 perms = SEM__WRITE;
5400                 break;
5401         case IPC_RMID:
5402                 perms = SEM__DESTROY;
5403                 break;
5404         case IPC_SET:
5405                 perms = SEM__SETATTR;
5406                 break;
5407         case IPC_STAT:
5408         case SEM_STAT:
5409                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5410                 break;
5411         default:
5412                 return 0;
5413         }
5414
5415         err = ipc_has_perm(&sma->sem_perm, perms);
5416         return err;
5417 }
5418
5419 static int selinux_sem_semop(struct sem_array *sma,
5420                              struct sembuf *sops, unsigned nsops, int alter)
5421 {
5422         u32 perms;
5423
5424         if (alter)
5425                 perms = SEM__READ | SEM__WRITE;
5426         else
5427                 perms = SEM__READ;
5428
5429         return ipc_has_perm(&sma->sem_perm, perms);
5430 }
5431
5432 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5433 {
5434         u32 av = 0;
5435
5436         av = 0;
5437         if (flag & S_IRUGO)
5438                 av |= IPC__UNIX_READ;
5439         if (flag & S_IWUGO)
5440                 av |= IPC__UNIX_WRITE;
5441
5442         if (av == 0)
5443                 return 0;
5444
5445         return ipc_has_perm(ipcp, av);
5446 }
5447
5448 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5449 {
5450         struct ipc_security_struct *isec = ipcp->security;
5451         *secid = isec->sid;
5452 }
5453
5454 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5455 {
5456         if (inode)
5457                 inode_doinit_with_dentry(inode, dentry);
5458 }
5459
5460 static int selinux_getprocattr(struct task_struct *p,
5461                                char *name, char **value)
5462 {
5463         const struct task_security_struct *__tsec;
5464         u32 sid;
5465         int error;
5466         unsigned len;
5467
5468         if (current != p) {
5469                 error = current_has_perm(p, PROCESS__GETATTR);
5470                 if (error)
5471                         return error;
5472         }
5473
5474         rcu_read_lock();
5475         __tsec = __task_cred(p)->security;
5476
5477         if (!strcmp(name, "current"))
5478                 sid = __tsec->sid;
5479         else if (!strcmp(name, "prev"))
5480                 sid = __tsec->osid;
5481         else if (!strcmp(name, "exec"))
5482                 sid = __tsec->exec_sid;
5483         else if (!strcmp(name, "fscreate"))
5484                 sid = __tsec->create_sid;
5485         else if (!strcmp(name, "keycreate"))
5486                 sid = __tsec->keycreate_sid;
5487         else if (!strcmp(name, "sockcreate"))
5488                 sid = __tsec->sockcreate_sid;
5489         else
5490                 goto invalid;
5491         rcu_read_unlock();
5492
5493         if (!sid)
5494                 return 0;
5495
5496         error = security_sid_to_context(sid, value, &len);
5497         if (error)
5498                 return error;
5499         return len;
5500
5501 invalid:
5502         rcu_read_unlock();
5503         return -EINVAL;
5504 }
5505
5506 static int selinux_setprocattr(struct task_struct *p,
5507                                char *name, void *value, size_t size)
5508 {
5509         struct task_security_struct *tsec;
5510         struct task_struct *tracer;
5511         struct cred *new;
5512         u32 sid = 0, ptsid;
5513         int error;
5514         char *str = value;
5515
5516         if (current != p) {
5517                 /* SELinux only allows a process to change its own
5518                    security attributes. */
5519                 return -EACCES;
5520         }
5521
5522         /*
5523          * Basic control over ability to set these attributes at all.
5524          * current == p, but we'll pass them separately in case the
5525          * above restriction is ever removed.
5526          */
5527         if (!strcmp(name, "exec"))
5528                 error = current_has_perm(p, PROCESS__SETEXEC);
5529         else if (!strcmp(name, "fscreate"))
5530                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5531         else if (!strcmp(name, "keycreate"))
5532                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5533         else if (!strcmp(name, "sockcreate"))
5534                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5535         else if (!strcmp(name, "current"))
5536                 error = current_has_perm(p, PROCESS__SETCURRENT);
5537         else
5538                 error = -EINVAL;
5539         if (error)
5540                 return error;
5541
5542         /* Obtain a SID for the context, if one was specified. */
5543         if (size && str[1] && str[1] != '\n') {
5544                 if (str[size-1] == '\n') {
5545                         str[size-1] = 0;
5546                         size--;
5547                 }
5548                 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5549                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5550                         if (!capable(CAP_MAC_ADMIN)) {
5551                                 struct audit_buffer *ab;
5552                                 size_t audit_size;
5553
5554                                 /* We strip a nul only if it is at the end, otherwise the
5555                                  * context contains a nul and we should audit that */
5556                                 if (str[size - 1] == '\0')
5557                                         audit_size = size - 1;
5558                                 else
5559                                         audit_size = size;
5560                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5561                                 audit_log_format(ab, "op=fscreate invalid_context=");
5562                                 audit_log_n_untrustedstring(ab, value, audit_size);
5563                                 audit_log_end(ab);
5564
5565                                 return error;
5566                         }
5567                         error = security_context_to_sid_force(value, size,
5568                                                               &sid);
5569                 }
5570                 if (error)
5571                         return error;
5572         }
5573
5574         new = prepare_creds();
5575         if (!new)
5576                 return -ENOMEM;
5577
5578         /* Permission checking based on the specified context is
5579            performed during the actual operation (execve,
5580            open/mkdir/...), when we know the full context of the
5581            operation.  See selinux_bprm_set_creds for the execve
5582            checks and may_create for the file creation checks. The
5583            operation will then fail if the context is not permitted. */
5584         tsec = new->security;
5585         if (!strcmp(name, "exec")) {
5586                 tsec->exec_sid = sid;
5587         } else if (!strcmp(name, "fscreate")) {
5588                 tsec->create_sid = sid;
5589         } else if (!strcmp(name, "keycreate")) {
5590                 error = may_create_key(sid, p);
5591                 if (error)
5592                         goto abort_change;
5593                 tsec->keycreate_sid = sid;
5594         } else if (!strcmp(name, "sockcreate")) {
5595                 tsec->sockcreate_sid = sid;
5596         } else if (!strcmp(name, "current")) {
5597                 error = -EINVAL;
5598                 if (sid == 0)
5599                         goto abort_change;
5600
5601                 /* Only allow single threaded processes to change context */
5602                 error = -EPERM;
5603                 if (!current_is_single_threaded()) {
5604                         error = security_bounded_transition(tsec->sid, sid);
5605                         if (error)
5606                                 goto abort_change;
5607                 }
5608
5609                 /* Check permissions for the transition. */
5610                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5611                                      PROCESS__DYNTRANSITION, NULL);
5612                 if (error)
5613                         goto abort_change;
5614
5615                 /* Check for ptracing, and update the task SID if ok.
5616                    Otherwise, leave SID unchanged and fail. */
5617                 ptsid = 0;
5618                 rcu_read_lock();
5619                 tracer = ptrace_parent(p);
5620                 if (tracer)
5621                         ptsid = task_sid(tracer);
5622                 rcu_read_unlock();
5623
5624                 if (tracer) {
5625                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5626                                              PROCESS__PTRACE, NULL);
5627                         if (error)
5628                                 goto abort_change;
5629                 }
5630
5631                 tsec->sid = sid;
5632         } else {
5633                 error = -EINVAL;
5634                 goto abort_change;
5635         }
5636
5637         commit_creds(new);
5638         return size;
5639
5640 abort_change:
5641         abort_creds(new);
5642         return error;
5643 }
5644
5645 static int selinux_ismaclabel(const char *name)
5646 {
5647         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5648 }
5649
5650 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5651 {
5652         return security_sid_to_context(secid, secdata, seclen);
5653 }
5654
5655 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5656 {
5657         return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5658 }
5659
5660 static void selinux_release_secctx(char *secdata, u32 seclen)
5661 {
5662         kfree(secdata);
5663 }
5664
5665 /*
5666  *      called with inode->i_mutex locked
5667  */
5668 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5669 {
5670         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5671 }
5672
5673 /*
5674  *      called with inode->i_mutex locked
5675  */
5676 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5677 {
5678         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5679 }
5680
5681 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5682 {
5683         int len = 0;
5684         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5685                                                 ctx, true);
5686         if (len < 0)
5687                 return len;
5688         *ctxlen = len;
5689         return 0;
5690 }
5691 #ifdef CONFIG_KEYS
5692
5693 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5694                              unsigned long flags)
5695 {
5696         const struct task_security_struct *tsec;
5697         struct key_security_struct *ksec;
5698
5699         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5700         if (!ksec)
5701                 return -ENOMEM;
5702
5703         tsec = cred->security;
5704         if (tsec->keycreate_sid)
5705                 ksec->sid = tsec->keycreate_sid;
5706         else
5707                 ksec->sid = tsec->sid;
5708
5709         k->security = ksec;
5710         return 0;
5711 }
5712
5713 static void selinux_key_free(struct key *k)
5714 {
5715         struct key_security_struct *ksec = k->security;
5716
5717         k->security = NULL;
5718         kfree(ksec);
5719 }
5720
5721 static int selinux_key_permission(key_ref_t key_ref,
5722                                   const struct cred *cred,
5723                                   unsigned perm)
5724 {
5725         struct key *key;
5726         struct key_security_struct *ksec;
5727         u32 sid;
5728
5729         /* if no specific permissions are requested, we skip the
5730            permission check. No serious, additional covert channels
5731            appear to be created. */
5732         if (perm == 0)
5733                 return 0;
5734
5735         sid = cred_sid(cred);
5736
5737         key = key_ref_to_ptr(key_ref);
5738         ksec = key->security;
5739
5740         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5741 }
5742
5743 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5744 {
5745         struct key_security_struct *ksec = key->security;
5746         char *context = NULL;
5747         unsigned len;
5748         int rc;
5749
5750         rc = security_sid_to_context(ksec->sid, &context, &len);
5751         if (!rc)
5752                 rc = len;
5753         *_buffer = context;
5754         return rc;
5755 }
5756
5757 #endif
5758
5759 static struct security_operations selinux_ops = {
5760         .name =                         "selinux",
5761
5762         .ptrace_access_check =          selinux_ptrace_access_check,
5763         .ptrace_traceme =               selinux_ptrace_traceme,
5764         .capget =                       selinux_capget,
5765         .capset =                       selinux_capset,
5766         .capable =                      selinux_capable,
5767         .quotactl =                     selinux_quotactl,
5768         .quota_on =                     selinux_quota_on,
5769         .syslog =                       selinux_syslog,
5770         .vm_enough_memory =             selinux_vm_enough_memory,
5771
5772         .netlink_send =                 selinux_netlink_send,
5773
5774         .bprm_set_creds =               selinux_bprm_set_creds,
5775         .bprm_committing_creds =        selinux_bprm_committing_creds,
5776         .bprm_committed_creds =         selinux_bprm_committed_creds,
5777         .bprm_secureexec =              selinux_bprm_secureexec,
5778
5779         .sb_alloc_security =            selinux_sb_alloc_security,
5780         .sb_free_security =             selinux_sb_free_security,
5781         .sb_copy_data =                 selinux_sb_copy_data,
5782         .sb_remount =                   selinux_sb_remount,
5783         .sb_kern_mount =                selinux_sb_kern_mount,
5784         .sb_show_options =              selinux_sb_show_options,
5785         .sb_statfs =                    selinux_sb_statfs,
5786         .sb_mount =                     selinux_mount,
5787         .sb_umount =                    selinux_umount,
5788         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5789         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5790         .sb_parse_opts_str =            selinux_parse_opts_str,
5791
5792         .dentry_init_security =         selinux_dentry_init_security,
5793
5794         .inode_alloc_security =         selinux_inode_alloc_security,
5795         .inode_free_security =          selinux_inode_free_security,
5796         .inode_init_security =          selinux_inode_init_security,
5797         .inode_create =                 selinux_inode_create,
5798         .inode_link =                   selinux_inode_link,
5799         .inode_unlink =                 selinux_inode_unlink,
5800         .inode_symlink =                selinux_inode_symlink,
5801         .inode_mkdir =                  selinux_inode_mkdir,
5802         .inode_rmdir =                  selinux_inode_rmdir,
5803         .inode_mknod =                  selinux_inode_mknod,
5804         .inode_rename =                 selinux_inode_rename,
5805         .inode_readlink =               selinux_inode_readlink,
5806         .inode_follow_link =            selinux_inode_follow_link,
5807         .inode_permission =             selinux_inode_permission,
5808         .inode_setattr =                selinux_inode_setattr,
5809         .inode_getattr =                selinux_inode_getattr,
5810         .inode_setxattr =               selinux_inode_setxattr,
5811         .inode_post_setxattr =          selinux_inode_post_setxattr,
5812         .inode_getxattr =               selinux_inode_getxattr,
5813         .inode_listxattr =              selinux_inode_listxattr,
5814         .inode_removexattr =            selinux_inode_removexattr,
5815         .inode_getsecurity =            selinux_inode_getsecurity,
5816         .inode_setsecurity =            selinux_inode_setsecurity,
5817         .inode_listsecurity =           selinux_inode_listsecurity,
5818         .inode_getsecid =               selinux_inode_getsecid,
5819
5820         .file_permission =              selinux_file_permission,
5821         .file_alloc_security =          selinux_file_alloc_security,
5822         .file_free_security =           selinux_file_free_security,
5823         .file_ioctl =                   selinux_file_ioctl,
5824         .mmap_file =                    selinux_mmap_file,
5825         .mmap_addr =                    selinux_mmap_addr,
5826         .file_mprotect =                selinux_file_mprotect,
5827         .file_lock =                    selinux_file_lock,
5828         .file_fcntl =                   selinux_file_fcntl,
5829         .file_set_fowner =              selinux_file_set_fowner,
5830         .file_send_sigiotask =          selinux_file_send_sigiotask,
5831         .file_receive =                 selinux_file_receive,
5832
5833         .file_open =                    selinux_file_open,
5834
5835         .task_create =                  selinux_task_create,
5836         .cred_alloc_blank =             selinux_cred_alloc_blank,
5837         .cred_free =                    selinux_cred_free,
5838         .cred_prepare =                 selinux_cred_prepare,
5839         .cred_transfer =                selinux_cred_transfer,
5840         .kernel_act_as =                selinux_kernel_act_as,
5841         .kernel_create_files_as =       selinux_kernel_create_files_as,
5842         .kernel_module_request =        selinux_kernel_module_request,
5843         .task_setpgid =                 selinux_task_setpgid,
5844         .task_getpgid =                 selinux_task_getpgid,
5845         .task_getsid =                  selinux_task_getsid,
5846         .task_getsecid =                selinux_task_getsecid,
5847         .task_setnice =                 selinux_task_setnice,
5848         .task_setioprio =               selinux_task_setioprio,
5849         .task_getioprio =               selinux_task_getioprio,
5850         .task_setrlimit =               selinux_task_setrlimit,
5851         .task_setscheduler =            selinux_task_setscheduler,
5852         .task_getscheduler =            selinux_task_getscheduler,
5853         .task_movememory =              selinux_task_movememory,
5854         .task_kill =                    selinux_task_kill,
5855         .task_wait =                    selinux_task_wait,
5856         .task_to_inode =                selinux_task_to_inode,
5857
5858         .ipc_permission =               selinux_ipc_permission,
5859         .ipc_getsecid =                 selinux_ipc_getsecid,
5860
5861         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5862         .msg_msg_free_security =        selinux_msg_msg_free_security,
5863
5864         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5865         .msg_queue_free_security =      selinux_msg_queue_free_security,
5866         .msg_queue_associate =          selinux_msg_queue_associate,
5867         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5868         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5869         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5870
5871         .shm_alloc_security =           selinux_shm_alloc_security,
5872         .shm_free_security =            selinux_shm_free_security,
5873         .shm_associate =                selinux_shm_associate,
5874         .shm_shmctl =                   selinux_shm_shmctl,
5875         .shm_shmat =                    selinux_shm_shmat,
5876
5877         .sem_alloc_security =           selinux_sem_alloc_security,
5878         .sem_free_security =            selinux_sem_free_security,
5879         .sem_associate =                selinux_sem_associate,
5880         .sem_semctl =                   selinux_sem_semctl,
5881         .sem_semop =                    selinux_sem_semop,
5882
5883         .d_instantiate =                selinux_d_instantiate,
5884
5885         .getprocattr =                  selinux_getprocattr,
5886         .setprocattr =                  selinux_setprocattr,
5887
5888         .ismaclabel =                   selinux_ismaclabel,
5889         .secid_to_secctx =              selinux_secid_to_secctx,
5890         .secctx_to_secid =              selinux_secctx_to_secid,
5891         .release_secctx =               selinux_release_secctx,
5892         .inode_notifysecctx =           selinux_inode_notifysecctx,
5893         .inode_setsecctx =              selinux_inode_setsecctx,
5894         .inode_getsecctx =              selinux_inode_getsecctx,
5895
5896         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5897         .unix_may_send =                selinux_socket_unix_may_send,
5898
5899         .socket_create =                selinux_socket_create,
5900         .socket_post_create =           selinux_socket_post_create,
5901         .socket_bind =                  selinux_socket_bind,
5902         .socket_connect =               selinux_socket_connect,
5903         .socket_listen =                selinux_socket_listen,
5904         .socket_accept =                selinux_socket_accept,
5905         .socket_sendmsg =               selinux_socket_sendmsg,
5906         .socket_recvmsg =               selinux_socket_recvmsg,
5907         .socket_getsockname =           selinux_socket_getsockname,
5908         .socket_getpeername =           selinux_socket_getpeername,
5909         .socket_getsockopt =            selinux_socket_getsockopt,
5910         .socket_setsockopt =            selinux_socket_setsockopt,
5911         .socket_shutdown =              selinux_socket_shutdown,
5912         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5913         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5914         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5915         .sk_alloc_security =            selinux_sk_alloc_security,
5916         .sk_free_security =             selinux_sk_free_security,
5917         .sk_clone_security =            selinux_sk_clone_security,
5918         .sk_getsecid =                  selinux_sk_getsecid,
5919         .sock_graft =                   selinux_sock_graft,
5920         .inet_conn_request =            selinux_inet_conn_request,
5921         .inet_csk_clone =               selinux_inet_csk_clone,
5922         .inet_conn_established =        selinux_inet_conn_established,
5923         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5924         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5925         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5926         .req_classify_flow =            selinux_req_classify_flow,
5927         .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
5928         .tun_dev_free_security =        selinux_tun_dev_free_security,
5929         .tun_dev_create =               selinux_tun_dev_create,
5930         .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
5931         .tun_dev_attach =               selinux_tun_dev_attach,
5932         .tun_dev_open =                 selinux_tun_dev_open,
5933         .skb_owned_by =                 selinux_skb_owned_by,
5934
5935 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5936         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5937         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5938         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5939         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5940         .xfrm_state_alloc =             selinux_xfrm_state_alloc,
5941         .xfrm_state_alloc_acquire =     selinux_xfrm_state_alloc_acquire,
5942         .xfrm_state_free_security =     selinux_xfrm_state_free,
5943         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5944         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5945         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5946         .xfrm_decode_session =          selinux_xfrm_decode_session,
5947 #endif
5948
5949 #ifdef CONFIG_KEYS
5950         .key_alloc =                    selinux_key_alloc,
5951         .key_free =                     selinux_key_free,
5952         .key_permission =               selinux_key_permission,
5953         .key_getsecurity =              selinux_key_getsecurity,
5954 #endif
5955
5956 #ifdef CONFIG_AUDIT
5957         .audit_rule_init =              selinux_audit_rule_init,
5958         .audit_rule_known =             selinux_audit_rule_known,
5959         .audit_rule_match =             selinux_audit_rule_match,
5960         .audit_rule_free =              selinux_audit_rule_free,
5961 #endif
5962 };
5963
5964 static __init int selinux_init(void)
5965 {
5966         if (!security_module_enable(&selinux_ops)) {
5967                 selinux_enabled = 0;
5968                 return 0;
5969         }
5970
5971         if (!selinux_enabled) {
5972                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5973                 return 0;
5974         }
5975
5976         printk(KERN_INFO "SELinux:  Initializing.\n");
5977
5978         /* Set the security state for the initial task. */
5979         cred_init_security();
5980
5981         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5982
5983         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5984                                             sizeof(struct inode_security_struct),
5985                                             0, SLAB_PANIC, NULL);
5986         avc_init();
5987
5988         if (register_security(&selinux_ops))
5989                 panic("SELinux: Unable to register with kernel.\n");
5990
5991         if (selinux_enforcing)
5992                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5993         else
5994                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5995
5996         return 0;
5997 }
5998
5999 static void delayed_superblock_init(struct super_block *sb, void *unused)
6000 {
6001         superblock_doinit(sb, NULL);
6002 }
6003
6004 void selinux_complete_init(void)
6005 {
6006         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6007
6008         /* Set up any superblocks initialized prior to the policy load. */
6009         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6010         iterate_supers(delayed_superblock_init, NULL);
6011 }
6012
6013 /* SELinux requires early initialization in order to label
6014    all processes and objects when they are created. */
6015 security_initcall(selinux_init);
6016
6017 #if defined(CONFIG_NETFILTER)
6018
6019 static struct nf_hook_ops selinux_ipv4_ops[] = {
6020         {
6021                 .hook =         selinux_ipv4_postroute,
6022                 .owner =        THIS_MODULE,
6023                 .pf =           NFPROTO_IPV4,
6024                 .hooknum =      NF_INET_POST_ROUTING,
6025                 .priority =     NF_IP_PRI_SELINUX_LAST,
6026         },
6027         {
6028                 .hook =         selinux_ipv4_forward,
6029                 .owner =        THIS_MODULE,
6030                 .pf =           NFPROTO_IPV4,
6031                 .hooknum =      NF_INET_FORWARD,
6032                 .priority =     NF_IP_PRI_SELINUX_FIRST,
6033         },
6034         {
6035                 .hook =         selinux_ipv4_output,
6036                 .owner =        THIS_MODULE,
6037                 .pf =           NFPROTO_IPV4,
6038                 .hooknum =      NF_INET_LOCAL_OUT,
6039                 .priority =     NF_IP_PRI_SELINUX_FIRST,
6040         }
6041 };
6042
6043 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6044
6045 static struct nf_hook_ops selinux_ipv6_ops[] = {
6046         {
6047                 .hook =         selinux_ipv6_postroute,
6048                 .owner =        THIS_MODULE,
6049                 .pf =           NFPROTO_IPV6,
6050                 .hooknum =      NF_INET_POST_ROUTING,
6051                 .priority =     NF_IP6_PRI_SELINUX_LAST,
6052         },
6053         {
6054                 .hook =         selinux_ipv6_forward,
6055                 .owner =        THIS_MODULE,
6056                 .pf =           NFPROTO_IPV6,
6057                 .hooknum =      NF_INET_FORWARD,
6058                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
6059         }
6060 };
6061
6062 #endif  /* IPV6 */
6063
6064 static int __init selinux_nf_ip_init(void)
6065 {
6066         int err = 0;
6067
6068         if (!selinux_enabled)
6069                 goto out;
6070
6071         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6072
6073         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6074         if (err)
6075                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6076
6077 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6078         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6079         if (err)
6080                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6081 #endif  /* IPV6 */
6082
6083 out:
6084         return err;
6085 }
6086
6087 __initcall(selinux_nf_ip_init);
6088
6089 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6090 static void selinux_nf_ip_exit(void)
6091 {
6092         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6093
6094         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6095 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6096         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6097 #endif  /* IPV6 */
6098 }
6099 #endif
6100
6101 #else /* CONFIG_NETFILTER */
6102
6103 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6104 #define selinux_nf_ip_exit()
6105 #endif
6106
6107 #endif /* CONFIG_NETFILTER */
6108
6109 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6110 static int selinux_disabled;
6111
6112 int selinux_disable(void)
6113 {
6114         if (ss_initialized) {
6115                 /* Not permitted after initial policy load. */
6116                 return -EINVAL;
6117         }
6118
6119         if (selinux_disabled) {
6120                 /* Only do this once. */
6121                 return -EINVAL;
6122         }
6123
6124         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6125
6126         selinux_disabled = 1;
6127         selinux_enabled = 0;
6128
6129         reset_security_ops();
6130
6131         /* Try to destroy the avc node cache */
6132         avc_disable();
6133
6134         /* Unregister netfilter hooks. */
6135         selinux_nf_ip_exit();
6136
6137         /* Unregister selinuxfs. */
6138         exit_sel_fs();
6139
6140         return 0;
6141 }
6142 #endif