]> git.karo-electronics.de Git - mv-sheeva.git/blob - security/selinux/hooks.c
rlimits: add task_struct to update_rlimit_cpu
[mv-sheeva.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 #include <linux/syslog.h>
80
81 #include "avc.h"
82 #include "objsec.h"
83 #include "netif.h"
84 #include "netnode.h"
85 #include "netport.h"
86 #include "xfrm.h"
87 #include "netlabel.h"
88 #include "audit.h"
89
90 #define XATTR_SELINUX_SUFFIX "selinux"
91 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
92
93 #define NUM_SEL_MNT_OPTS 5
94
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129 static struct kmem_cache *sel_inode_cache;
130
131 /**
132  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133  *
134  * Description:
135  * This function checks the SECMARK reference counter to see if any SECMARK
136  * targets are currently configured, if the reference counter is greater than
137  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
138  * enabled, false (0) if SECMARK is disabled.
139  *
140  */
141 static int selinux_secmark_enabled(void)
142 {
143         return (atomic_read(&selinux_secmark_refcount) > 0);
144 }
145
146 /*
147  * initialise the security for the init task
148  */
149 static void cred_init_security(void)
150 {
151         struct cred *cred = (struct cred *) current->real_cred;
152         struct task_security_struct *tsec;
153
154         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
155         if (!tsec)
156                 panic("SELinux:  Failed to initialize initial task.\n");
157
158         tsec->osid = tsec->sid = SECINITSID_KERNEL;
159         cred->security = tsec;
160 }
161
162 /*
163  * get the security ID of a set of credentials
164  */
165 static inline u32 cred_sid(const struct cred *cred)
166 {
167         const struct task_security_struct *tsec;
168
169         tsec = cred->security;
170         return tsec->sid;
171 }
172
173 /*
174  * get the objective security ID of a task
175  */
176 static inline u32 task_sid(const struct task_struct *task)
177 {
178         u32 sid;
179
180         rcu_read_lock();
181         sid = cred_sid(__task_cred(task));
182         rcu_read_unlock();
183         return sid;
184 }
185
186 /*
187  * get the subjective security ID of the current task
188  */
189 static inline u32 current_sid(void)
190 {
191         const struct task_security_struct *tsec = current_cred()->security;
192
193         return tsec->sid;
194 }
195
196 /* Allocate and free functions for each kind of security blob. */
197
198 static int inode_alloc_security(struct inode *inode)
199 {
200         struct inode_security_struct *isec;
201         u32 sid = current_sid();
202
203         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
204         if (!isec)
205                 return -ENOMEM;
206
207         mutex_init(&isec->lock);
208         INIT_LIST_HEAD(&isec->list);
209         isec->inode = inode;
210         isec->sid = SECINITSID_UNLABELED;
211         isec->sclass = SECCLASS_FILE;
212         isec->task_sid = sid;
213         inode->i_security = isec;
214
215         return 0;
216 }
217
218 static void inode_free_security(struct inode *inode)
219 {
220         struct inode_security_struct *isec = inode->i_security;
221         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
222
223         spin_lock(&sbsec->isec_lock);
224         if (!list_empty(&isec->list))
225                 list_del_init(&isec->list);
226         spin_unlock(&sbsec->isec_lock);
227
228         inode->i_security = NULL;
229         kmem_cache_free(sel_inode_cache, isec);
230 }
231
232 static int file_alloc_security(struct file *file)
233 {
234         struct file_security_struct *fsec;
235         u32 sid = current_sid();
236
237         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
238         if (!fsec)
239                 return -ENOMEM;
240
241         fsec->sid = sid;
242         fsec->fown_sid = sid;
243         file->f_security = fsec;
244
245         return 0;
246 }
247
248 static void file_free_security(struct file *file)
249 {
250         struct file_security_struct *fsec = file->f_security;
251         file->f_security = NULL;
252         kfree(fsec);
253 }
254
255 static int superblock_alloc_security(struct super_block *sb)
256 {
257         struct superblock_security_struct *sbsec;
258
259         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
260         if (!sbsec)
261                 return -ENOMEM;
262
263         mutex_init(&sbsec->lock);
264         INIT_LIST_HEAD(&sbsec->isec_head);
265         spin_lock_init(&sbsec->isec_lock);
266         sbsec->sb = sb;
267         sbsec->sid = SECINITSID_UNLABELED;
268         sbsec->def_sid = SECINITSID_FILE;
269         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
270         sb->s_security = sbsec;
271
272         return 0;
273 }
274
275 static void superblock_free_security(struct super_block *sb)
276 {
277         struct superblock_security_struct *sbsec = sb->s_security;
278         sb->s_security = NULL;
279         kfree(sbsec);
280 }
281
282 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
283 {
284         struct sk_security_struct *sksec;
285
286         sksec = kzalloc(sizeof(*sksec), priority);
287         if (!sksec)
288                 return -ENOMEM;
289
290         sksec->peer_sid = SECINITSID_UNLABELED;
291         sksec->sid = SECINITSID_UNLABELED;
292         sk->sk_security = sksec;
293
294         selinux_netlbl_sk_security_reset(sksec);
295
296         return 0;
297 }
298
299 static void sk_free_security(struct sock *sk)
300 {
301         struct sk_security_struct *sksec = sk->sk_security;
302
303         sk->sk_security = NULL;
304         selinux_netlbl_sk_security_free(sksec);
305         kfree(sksec);
306 }
307
308 /* The security server must be initialized before
309    any labeling or access decisions can be provided. */
310 extern int ss_initialized;
311
312 /* The file system's label must be initialized prior to use. */
313
314 static const char *labeling_behaviors[6] = {
315         "uses xattr",
316         "uses transition SIDs",
317         "uses task SIDs",
318         "uses genfs_contexts",
319         "not configured for labeling",
320         "uses mountpoint labeling",
321 };
322
323 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
324
325 static inline int inode_doinit(struct inode *inode)
326 {
327         return inode_doinit_with_dentry(inode, NULL);
328 }
329
330 enum {
331         Opt_error = -1,
332         Opt_context = 1,
333         Opt_fscontext = 2,
334         Opt_defcontext = 3,
335         Opt_rootcontext = 4,
336         Opt_labelsupport = 5,
337 };
338
339 static const match_table_t tokens = {
340         {Opt_context, CONTEXT_STR "%s"},
341         {Opt_fscontext, FSCONTEXT_STR "%s"},
342         {Opt_defcontext, DEFCONTEXT_STR "%s"},
343         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
344         {Opt_labelsupport, LABELSUPP_STR},
345         {Opt_error, NULL},
346 };
347
348 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
349
350 static int may_context_mount_sb_relabel(u32 sid,
351                         struct superblock_security_struct *sbsec,
352                         const struct cred *cred)
353 {
354         const struct task_security_struct *tsec = cred->security;
355         int rc;
356
357         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358                           FILESYSTEM__RELABELFROM, NULL);
359         if (rc)
360                 return rc;
361
362         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
363                           FILESYSTEM__RELABELTO, NULL);
364         return rc;
365 }
366
367 static int may_context_mount_inode_relabel(u32 sid,
368                         struct superblock_security_struct *sbsec,
369                         const struct cred *cred)
370 {
371         const struct task_security_struct *tsec = cred->security;
372         int rc;
373         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
374                           FILESYSTEM__RELABELFROM, NULL);
375         if (rc)
376                 return rc;
377
378         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
379                           FILESYSTEM__ASSOCIATE, NULL);
380         return rc;
381 }
382
383 static int sb_finish_set_opts(struct super_block *sb)
384 {
385         struct superblock_security_struct *sbsec = sb->s_security;
386         struct dentry *root = sb->s_root;
387         struct inode *root_inode = root->d_inode;
388         int rc = 0;
389
390         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
391                 /* Make sure that the xattr handler exists and that no
392                    error other than -ENODATA is returned by getxattr on
393                    the root directory.  -ENODATA is ok, as this may be
394                    the first boot of the SELinux kernel before we have
395                    assigned xattr values to the filesystem. */
396                 if (!root_inode->i_op->getxattr) {
397                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
398                                "xattr support\n", sb->s_id, sb->s_type->name);
399                         rc = -EOPNOTSUPP;
400                         goto out;
401                 }
402                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
403                 if (rc < 0 && rc != -ENODATA) {
404                         if (rc == -EOPNOTSUPP)
405                                 printk(KERN_WARNING "SELinux: (dev %s, type "
406                                        "%s) has no security xattr handler\n",
407                                        sb->s_id, sb->s_type->name);
408                         else
409                                 printk(KERN_WARNING "SELinux: (dev %s, type "
410                                        "%s) getxattr errno %d\n", sb->s_id,
411                                        sb->s_type->name, -rc);
412                         goto out;
413                 }
414         }
415
416         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
417
418         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
419                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
420                        sb->s_id, sb->s_type->name);
421         else
422                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
423                        sb->s_id, sb->s_type->name,
424                        labeling_behaviors[sbsec->behavior-1]);
425
426         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
427             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
428             sbsec->behavior == SECURITY_FS_USE_NONE ||
429             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
430                 sbsec->flags &= ~SE_SBLABELSUPP;
431
432         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
433         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
434                 sbsec->flags |= SE_SBLABELSUPP;
435
436         /* Initialize the root inode. */
437         rc = inode_doinit_with_dentry(root_inode, root);
438
439         /* Initialize any other inodes associated with the superblock, e.g.
440            inodes created prior to initial policy load or inodes created
441            during get_sb by a pseudo filesystem that directly
442            populates itself. */
443         spin_lock(&sbsec->isec_lock);
444 next_inode:
445         if (!list_empty(&sbsec->isec_head)) {
446                 struct inode_security_struct *isec =
447                                 list_entry(sbsec->isec_head.next,
448                                            struct inode_security_struct, list);
449                 struct inode *inode = isec->inode;
450                 spin_unlock(&sbsec->isec_lock);
451                 inode = igrab(inode);
452                 if (inode) {
453                         if (!IS_PRIVATE(inode))
454                                 inode_doinit(inode);
455                         iput(inode);
456                 }
457                 spin_lock(&sbsec->isec_lock);
458                 list_del_init(&isec->list);
459                 goto next_inode;
460         }
461         spin_unlock(&sbsec->isec_lock);
462 out:
463         return rc;
464 }
465
466 /*
467  * This function should allow an FS to ask what it's mount security
468  * options were so it can use those later for submounts, displaying
469  * mount options, or whatever.
470  */
471 static int selinux_get_mnt_opts(const struct super_block *sb,
472                                 struct security_mnt_opts *opts)
473 {
474         int rc = 0, i;
475         struct superblock_security_struct *sbsec = sb->s_security;
476         char *context = NULL;
477         u32 len;
478         char tmp;
479
480         security_init_mnt_opts(opts);
481
482         if (!(sbsec->flags & SE_SBINITIALIZED))
483                 return -EINVAL;
484
485         if (!ss_initialized)
486                 return -EINVAL;
487
488         tmp = sbsec->flags & SE_MNTMASK;
489         /* count the number of mount options for this sb */
490         for (i = 0; i < 8; i++) {
491                 if (tmp & 0x01)
492                         opts->num_mnt_opts++;
493                 tmp >>= 1;
494         }
495         /* Check if the Label support flag is set */
496         if (sbsec->flags & SE_SBLABELSUPP)
497                 opts->num_mnt_opts++;
498
499         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
500         if (!opts->mnt_opts) {
501                 rc = -ENOMEM;
502                 goto out_free;
503         }
504
505         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
506         if (!opts->mnt_opts_flags) {
507                 rc = -ENOMEM;
508                 goto out_free;
509         }
510
511         i = 0;
512         if (sbsec->flags & FSCONTEXT_MNT) {
513                 rc = security_sid_to_context(sbsec->sid, &context, &len);
514                 if (rc)
515                         goto out_free;
516                 opts->mnt_opts[i] = context;
517                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
518         }
519         if (sbsec->flags & CONTEXT_MNT) {
520                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
521                 if (rc)
522                         goto out_free;
523                 opts->mnt_opts[i] = context;
524                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
525         }
526         if (sbsec->flags & DEFCONTEXT_MNT) {
527                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
528                 if (rc)
529                         goto out_free;
530                 opts->mnt_opts[i] = context;
531                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
532         }
533         if (sbsec->flags & ROOTCONTEXT_MNT) {
534                 struct inode *root = sbsec->sb->s_root->d_inode;
535                 struct inode_security_struct *isec = root->i_security;
536
537                 rc = security_sid_to_context(isec->sid, &context, &len);
538                 if (rc)
539                         goto out_free;
540                 opts->mnt_opts[i] = context;
541                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
542         }
543         if (sbsec->flags & SE_SBLABELSUPP) {
544                 opts->mnt_opts[i] = NULL;
545                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
546         }
547
548         BUG_ON(i != opts->num_mnt_opts);
549
550         return 0;
551
552 out_free:
553         security_free_mnt_opts(opts);
554         return rc;
555 }
556
557 static int bad_option(struct superblock_security_struct *sbsec, char flag,
558                       u32 old_sid, u32 new_sid)
559 {
560         char mnt_flags = sbsec->flags & SE_MNTMASK;
561
562         /* check if the old mount command had the same options */
563         if (sbsec->flags & SE_SBINITIALIZED)
564                 if (!(sbsec->flags & flag) ||
565                     (old_sid != new_sid))
566                         return 1;
567
568         /* check if we were passed the same options twice,
569          * aka someone passed context=a,context=b
570          */
571         if (!(sbsec->flags & SE_SBINITIALIZED))
572                 if (mnt_flags & flag)
573                         return 1;
574         return 0;
575 }
576
577 /*
578  * Allow filesystems with binary mount data to explicitly set mount point
579  * labeling information.
580  */
581 static int selinux_set_mnt_opts(struct super_block *sb,
582                                 struct security_mnt_opts *opts)
583 {
584         const struct cred *cred = current_cred();
585         int rc = 0, i;
586         struct superblock_security_struct *sbsec = sb->s_security;
587         const char *name = sb->s_type->name;
588         struct inode *inode = sbsec->sb->s_root->d_inode;
589         struct inode_security_struct *root_isec = inode->i_security;
590         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
591         u32 defcontext_sid = 0;
592         char **mount_options = opts->mnt_opts;
593         int *flags = opts->mnt_opts_flags;
594         int num_opts = opts->num_mnt_opts;
595
596         mutex_lock(&sbsec->lock);
597
598         if (!ss_initialized) {
599                 if (!num_opts) {
600                         /* Defer initialization until selinux_complete_init,
601                            after the initial policy is loaded and the security
602                            server is ready to handle calls. */
603                         goto out;
604                 }
605                 rc = -EINVAL;
606                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
607                         "before the security server is initialized\n");
608                 goto out;
609         }
610
611         /*
612          * Binary mount data FS will come through this function twice.  Once
613          * from an explicit call and once from the generic calls from the vfs.
614          * Since the generic VFS calls will not contain any security mount data
615          * we need to skip the double mount verification.
616          *
617          * This does open a hole in which we will not notice if the first
618          * mount using this sb set explict options and a second mount using
619          * this sb does not set any security options.  (The first options
620          * will be used for both mounts)
621          */
622         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
623             && (num_opts == 0))
624                 goto out;
625
626         /*
627          * parse the mount options, check if they are valid sids.
628          * also check if someone is trying to mount the same sb more
629          * than once with different security options.
630          */
631         for (i = 0; i < num_opts; i++) {
632                 u32 sid;
633
634                 if (flags[i] == SE_SBLABELSUPP)
635                         continue;
636                 rc = security_context_to_sid(mount_options[i],
637                                              strlen(mount_options[i]), &sid);
638                 if (rc) {
639                         printk(KERN_WARNING "SELinux: security_context_to_sid"
640                                "(%s) failed for (dev %s, type %s) errno=%d\n",
641                                mount_options[i], sb->s_id, name, rc);
642                         goto out;
643                 }
644                 switch (flags[i]) {
645                 case FSCONTEXT_MNT:
646                         fscontext_sid = sid;
647
648                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
649                                         fscontext_sid))
650                                 goto out_double_mount;
651
652                         sbsec->flags |= FSCONTEXT_MNT;
653                         break;
654                 case CONTEXT_MNT:
655                         context_sid = sid;
656
657                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
658                                         context_sid))
659                                 goto out_double_mount;
660
661                         sbsec->flags |= CONTEXT_MNT;
662                         break;
663                 case ROOTCONTEXT_MNT:
664                         rootcontext_sid = sid;
665
666                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
667                                         rootcontext_sid))
668                                 goto out_double_mount;
669
670                         sbsec->flags |= ROOTCONTEXT_MNT;
671
672                         break;
673                 case DEFCONTEXT_MNT:
674                         defcontext_sid = sid;
675
676                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
677                                         defcontext_sid))
678                                 goto out_double_mount;
679
680                         sbsec->flags |= DEFCONTEXT_MNT;
681
682                         break;
683                 default:
684                         rc = -EINVAL;
685                         goto out;
686                 }
687         }
688
689         if (sbsec->flags & SE_SBINITIALIZED) {
690                 /* previously mounted with options, but not on this attempt? */
691                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
692                         goto out_double_mount;
693                 rc = 0;
694                 goto out;
695         }
696
697         if (strcmp(sb->s_type->name, "proc") == 0)
698                 sbsec->flags |= SE_SBPROC;
699
700         /* Determine the labeling behavior to use for this filesystem type. */
701         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
702         if (rc) {
703                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
704                        __func__, sb->s_type->name, rc);
705                 goto out;
706         }
707
708         /* sets the context of the superblock for the fs being mounted. */
709         if (fscontext_sid) {
710                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
711                 if (rc)
712                         goto out;
713
714                 sbsec->sid = fscontext_sid;
715         }
716
717         /*
718          * Switch to using mount point labeling behavior.
719          * sets the label used on all file below the mountpoint, and will set
720          * the superblock context if not already set.
721          */
722         if (context_sid) {
723                 if (!fscontext_sid) {
724                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
725                                                           cred);
726                         if (rc)
727                                 goto out;
728                         sbsec->sid = context_sid;
729                 } else {
730                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
731                                                              cred);
732                         if (rc)
733                                 goto out;
734                 }
735                 if (!rootcontext_sid)
736                         rootcontext_sid = context_sid;
737
738                 sbsec->mntpoint_sid = context_sid;
739                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
740         }
741
742         if (rootcontext_sid) {
743                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
744                                                      cred);
745                 if (rc)
746                         goto out;
747
748                 root_isec->sid = rootcontext_sid;
749                 root_isec->initialized = 1;
750         }
751
752         if (defcontext_sid) {
753                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
754                         rc = -EINVAL;
755                         printk(KERN_WARNING "SELinux: defcontext option is "
756                                "invalid for this filesystem type\n");
757                         goto out;
758                 }
759
760                 if (defcontext_sid != sbsec->def_sid) {
761                         rc = may_context_mount_inode_relabel(defcontext_sid,
762                                                              sbsec, cred);
763                         if (rc)
764                                 goto out;
765                 }
766
767                 sbsec->def_sid = defcontext_sid;
768         }
769
770         rc = sb_finish_set_opts(sb);
771 out:
772         mutex_unlock(&sbsec->lock);
773         return rc;
774 out_double_mount:
775         rc = -EINVAL;
776         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
777                "security settings for (dev %s, type %s)\n", sb->s_id, name);
778         goto out;
779 }
780
781 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
782                                         struct super_block *newsb)
783 {
784         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
785         struct superblock_security_struct *newsbsec = newsb->s_security;
786
787         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
788         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
789         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
790
791         /*
792          * if the parent was able to be mounted it clearly had no special lsm
793          * mount options.  thus we can safely deal with this superblock later
794          */
795         if (!ss_initialized)
796                 return;
797
798         /* how can we clone if the old one wasn't set up?? */
799         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
800
801         /* if fs is reusing a sb, just let its options stand... */
802         if (newsbsec->flags & SE_SBINITIALIZED)
803                 return;
804
805         mutex_lock(&newsbsec->lock);
806
807         newsbsec->flags = oldsbsec->flags;
808
809         newsbsec->sid = oldsbsec->sid;
810         newsbsec->def_sid = oldsbsec->def_sid;
811         newsbsec->behavior = oldsbsec->behavior;
812
813         if (set_context) {
814                 u32 sid = oldsbsec->mntpoint_sid;
815
816                 if (!set_fscontext)
817                         newsbsec->sid = sid;
818                 if (!set_rootcontext) {
819                         struct inode *newinode = newsb->s_root->d_inode;
820                         struct inode_security_struct *newisec = newinode->i_security;
821                         newisec->sid = sid;
822                 }
823                 newsbsec->mntpoint_sid = sid;
824         }
825         if (set_rootcontext) {
826                 const struct inode *oldinode = oldsb->s_root->d_inode;
827                 const struct inode_security_struct *oldisec = oldinode->i_security;
828                 struct inode *newinode = newsb->s_root->d_inode;
829                 struct inode_security_struct *newisec = newinode->i_security;
830
831                 newisec->sid = oldisec->sid;
832         }
833
834         sb_finish_set_opts(newsb);
835         mutex_unlock(&newsbsec->lock);
836 }
837
838 static int selinux_parse_opts_str(char *options,
839                                   struct security_mnt_opts *opts)
840 {
841         char *p;
842         char *context = NULL, *defcontext = NULL;
843         char *fscontext = NULL, *rootcontext = NULL;
844         int rc, num_mnt_opts = 0;
845
846         opts->num_mnt_opts = 0;
847
848         /* Standard string-based options. */
849         while ((p = strsep(&options, "|")) != NULL) {
850                 int token;
851                 substring_t args[MAX_OPT_ARGS];
852
853                 if (!*p)
854                         continue;
855
856                 token = match_token(p, tokens, args);
857
858                 switch (token) {
859                 case Opt_context:
860                         if (context || defcontext) {
861                                 rc = -EINVAL;
862                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
863                                 goto out_err;
864                         }
865                         context = match_strdup(&args[0]);
866                         if (!context) {
867                                 rc = -ENOMEM;
868                                 goto out_err;
869                         }
870                         break;
871
872                 case Opt_fscontext:
873                         if (fscontext) {
874                                 rc = -EINVAL;
875                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
876                                 goto out_err;
877                         }
878                         fscontext = match_strdup(&args[0]);
879                         if (!fscontext) {
880                                 rc = -ENOMEM;
881                                 goto out_err;
882                         }
883                         break;
884
885                 case Opt_rootcontext:
886                         if (rootcontext) {
887                                 rc = -EINVAL;
888                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
889                                 goto out_err;
890                         }
891                         rootcontext = match_strdup(&args[0]);
892                         if (!rootcontext) {
893                                 rc = -ENOMEM;
894                                 goto out_err;
895                         }
896                         break;
897
898                 case Opt_defcontext:
899                         if (context || defcontext) {
900                                 rc = -EINVAL;
901                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
902                                 goto out_err;
903                         }
904                         defcontext = match_strdup(&args[0]);
905                         if (!defcontext) {
906                                 rc = -ENOMEM;
907                                 goto out_err;
908                         }
909                         break;
910                 case Opt_labelsupport:
911                         break;
912                 default:
913                         rc = -EINVAL;
914                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
915                         goto out_err;
916
917                 }
918         }
919
920         rc = -ENOMEM;
921         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
922         if (!opts->mnt_opts)
923                 goto out_err;
924
925         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
926         if (!opts->mnt_opts_flags) {
927                 kfree(opts->mnt_opts);
928                 goto out_err;
929         }
930
931         if (fscontext) {
932                 opts->mnt_opts[num_mnt_opts] = fscontext;
933                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
934         }
935         if (context) {
936                 opts->mnt_opts[num_mnt_opts] = context;
937                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
938         }
939         if (rootcontext) {
940                 opts->mnt_opts[num_mnt_opts] = rootcontext;
941                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
942         }
943         if (defcontext) {
944                 opts->mnt_opts[num_mnt_opts] = defcontext;
945                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
946         }
947
948         opts->num_mnt_opts = num_mnt_opts;
949         return 0;
950
951 out_err:
952         kfree(context);
953         kfree(defcontext);
954         kfree(fscontext);
955         kfree(rootcontext);
956         return rc;
957 }
958 /*
959  * string mount options parsing and call set the sbsec
960  */
961 static int superblock_doinit(struct super_block *sb, void *data)
962 {
963         int rc = 0;
964         char *options = data;
965         struct security_mnt_opts opts;
966
967         security_init_mnt_opts(&opts);
968
969         if (!data)
970                 goto out;
971
972         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
973
974         rc = selinux_parse_opts_str(options, &opts);
975         if (rc)
976                 goto out_err;
977
978 out:
979         rc = selinux_set_mnt_opts(sb, &opts);
980
981 out_err:
982         security_free_mnt_opts(&opts);
983         return rc;
984 }
985
986 static void selinux_write_opts(struct seq_file *m,
987                                struct security_mnt_opts *opts)
988 {
989         int i;
990         char *prefix;
991
992         for (i = 0; i < opts->num_mnt_opts; i++) {
993                 char *has_comma;
994
995                 if (opts->mnt_opts[i])
996                         has_comma = strchr(opts->mnt_opts[i], ',');
997                 else
998                         has_comma = NULL;
999
1000                 switch (opts->mnt_opts_flags[i]) {
1001                 case CONTEXT_MNT:
1002                         prefix = CONTEXT_STR;
1003                         break;
1004                 case FSCONTEXT_MNT:
1005                         prefix = FSCONTEXT_STR;
1006                         break;
1007                 case ROOTCONTEXT_MNT:
1008                         prefix = ROOTCONTEXT_STR;
1009                         break;
1010                 case DEFCONTEXT_MNT:
1011                         prefix = DEFCONTEXT_STR;
1012                         break;
1013                 case SE_SBLABELSUPP:
1014                         seq_putc(m, ',');
1015                         seq_puts(m, LABELSUPP_STR);
1016                         continue;
1017                 default:
1018                         BUG();
1019                 };
1020                 /* we need a comma before each option */
1021                 seq_putc(m, ',');
1022                 seq_puts(m, prefix);
1023                 if (has_comma)
1024                         seq_putc(m, '\"');
1025                 seq_puts(m, opts->mnt_opts[i]);
1026                 if (has_comma)
1027                         seq_putc(m, '\"');
1028         }
1029 }
1030
1031 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1032 {
1033         struct security_mnt_opts opts;
1034         int rc;
1035
1036         rc = selinux_get_mnt_opts(sb, &opts);
1037         if (rc) {
1038                 /* before policy load we may get EINVAL, don't show anything */
1039                 if (rc == -EINVAL)
1040                         rc = 0;
1041                 return rc;
1042         }
1043
1044         selinux_write_opts(m, &opts);
1045
1046         security_free_mnt_opts(&opts);
1047
1048         return rc;
1049 }
1050
1051 static inline u16 inode_mode_to_security_class(umode_t mode)
1052 {
1053         switch (mode & S_IFMT) {
1054         case S_IFSOCK:
1055                 return SECCLASS_SOCK_FILE;
1056         case S_IFLNK:
1057                 return SECCLASS_LNK_FILE;
1058         case S_IFREG:
1059                 return SECCLASS_FILE;
1060         case S_IFBLK:
1061                 return SECCLASS_BLK_FILE;
1062         case S_IFDIR:
1063                 return SECCLASS_DIR;
1064         case S_IFCHR:
1065                 return SECCLASS_CHR_FILE;
1066         case S_IFIFO:
1067                 return SECCLASS_FIFO_FILE;
1068
1069         }
1070
1071         return SECCLASS_FILE;
1072 }
1073
1074 static inline int default_protocol_stream(int protocol)
1075 {
1076         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1077 }
1078
1079 static inline int default_protocol_dgram(int protocol)
1080 {
1081         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1082 }
1083
1084 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1085 {
1086         switch (family) {
1087         case PF_UNIX:
1088                 switch (type) {
1089                 case SOCK_STREAM:
1090                 case SOCK_SEQPACKET:
1091                         return SECCLASS_UNIX_STREAM_SOCKET;
1092                 case SOCK_DGRAM:
1093                         return SECCLASS_UNIX_DGRAM_SOCKET;
1094                 }
1095                 break;
1096         case PF_INET:
1097         case PF_INET6:
1098                 switch (type) {
1099                 case SOCK_STREAM:
1100                         if (default_protocol_stream(protocol))
1101                                 return SECCLASS_TCP_SOCKET;
1102                         else
1103                                 return SECCLASS_RAWIP_SOCKET;
1104                 case SOCK_DGRAM:
1105                         if (default_protocol_dgram(protocol))
1106                                 return SECCLASS_UDP_SOCKET;
1107                         else
1108                                 return SECCLASS_RAWIP_SOCKET;
1109                 case SOCK_DCCP:
1110                         return SECCLASS_DCCP_SOCKET;
1111                 default:
1112                         return SECCLASS_RAWIP_SOCKET;
1113                 }
1114                 break;
1115         case PF_NETLINK:
1116                 switch (protocol) {
1117                 case NETLINK_ROUTE:
1118                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1119                 case NETLINK_FIREWALL:
1120                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1121                 case NETLINK_INET_DIAG:
1122                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1123                 case NETLINK_NFLOG:
1124                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1125                 case NETLINK_XFRM:
1126                         return SECCLASS_NETLINK_XFRM_SOCKET;
1127                 case NETLINK_SELINUX:
1128                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1129                 case NETLINK_AUDIT:
1130                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1131                 case NETLINK_IP6_FW:
1132                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1133                 case NETLINK_DNRTMSG:
1134                         return SECCLASS_NETLINK_DNRT_SOCKET;
1135                 case NETLINK_KOBJECT_UEVENT:
1136                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1137                 default:
1138                         return SECCLASS_NETLINK_SOCKET;
1139                 }
1140         case PF_PACKET:
1141                 return SECCLASS_PACKET_SOCKET;
1142         case PF_KEY:
1143                 return SECCLASS_KEY_SOCKET;
1144         case PF_APPLETALK:
1145                 return SECCLASS_APPLETALK_SOCKET;
1146         }
1147
1148         return SECCLASS_SOCKET;
1149 }
1150
1151 #ifdef CONFIG_PROC_FS
1152 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1153                                 u16 tclass,
1154                                 u32 *sid)
1155 {
1156         int buflen, rc;
1157         char *buffer, *path, *end;
1158
1159         buffer = (char *)__get_free_page(GFP_KERNEL);
1160         if (!buffer)
1161                 return -ENOMEM;
1162
1163         buflen = PAGE_SIZE;
1164         end = buffer+buflen;
1165         *--end = '\0';
1166         buflen--;
1167         path = end-1;
1168         *path = '/';
1169         while (de && de != de->parent) {
1170                 buflen -= de->namelen + 1;
1171                 if (buflen < 0)
1172                         break;
1173                 end -= de->namelen;
1174                 memcpy(end, de->name, de->namelen);
1175                 *--end = '/';
1176                 path = end;
1177                 de = de->parent;
1178         }
1179         rc = security_genfs_sid("proc", path, tclass, sid);
1180         free_page((unsigned long)buffer);
1181         return rc;
1182 }
1183 #else
1184 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1185                                 u16 tclass,
1186                                 u32 *sid)
1187 {
1188         return -EINVAL;
1189 }
1190 #endif
1191
1192 /* The inode's security attributes must be initialized before first use. */
1193 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1194 {
1195         struct superblock_security_struct *sbsec = NULL;
1196         struct inode_security_struct *isec = inode->i_security;
1197         u32 sid;
1198         struct dentry *dentry;
1199 #define INITCONTEXTLEN 255
1200         char *context = NULL;
1201         unsigned len = 0;
1202         int rc = 0;
1203
1204         if (isec->initialized)
1205                 goto out;
1206
1207         mutex_lock(&isec->lock);
1208         if (isec->initialized)
1209                 goto out_unlock;
1210
1211         sbsec = inode->i_sb->s_security;
1212         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1213                 /* Defer initialization until selinux_complete_init,
1214                    after the initial policy is loaded and the security
1215                    server is ready to handle calls. */
1216                 spin_lock(&sbsec->isec_lock);
1217                 if (list_empty(&isec->list))
1218                         list_add(&isec->list, &sbsec->isec_head);
1219                 spin_unlock(&sbsec->isec_lock);
1220                 goto out_unlock;
1221         }
1222
1223         switch (sbsec->behavior) {
1224         case SECURITY_FS_USE_XATTR:
1225                 if (!inode->i_op->getxattr) {
1226                         isec->sid = sbsec->def_sid;
1227                         break;
1228                 }
1229
1230                 /* Need a dentry, since the xattr API requires one.
1231                    Life would be simpler if we could just pass the inode. */
1232                 if (opt_dentry) {
1233                         /* Called from d_instantiate or d_splice_alias. */
1234                         dentry = dget(opt_dentry);
1235                 } else {
1236                         /* Called from selinux_complete_init, try to find a dentry. */
1237                         dentry = d_find_alias(inode);
1238                 }
1239                 if (!dentry) {
1240                         /*
1241                          * this is can be hit on boot when a file is accessed
1242                          * before the policy is loaded.  When we load policy we
1243                          * may find inodes that have no dentry on the
1244                          * sbsec->isec_head list.  No reason to complain as these
1245                          * will get fixed up the next time we go through
1246                          * inode_doinit with a dentry, before these inodes could
1247                          * be used again by userspace.
1248                          */
1249                         goto out_unlock;
1250                 }
1251
1252                 len = INITCONTEXTLEN;
1253                 context = kmalloc(len+1, GFP_NOFS);
1254                 if (!context) {
1255                         rc = -ENOMEM;
1256                         dput(dentry);
1257                         goto out_unlock;
1258                 }
1259                 context[len] = '\0';
1260                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1261                                            context, len);
1262                 if (rc == -ERANGE) {
1263                         kfree(context);
1264
1265                         /* Need a larger buffer.  Query for the right size. */
1266                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1267                                                    NULL, 0);
1268                         if (rc < 0) {
1269                                 dput(dentry);
1270                                 goto out_unlock;
1271                         }
1272                         len = rc;
1273                         context = kmalloc(len+1, GFP_NOFS);
1274                         if (!context) {
1275                                 rc = -ENOMEM;
1276                                 dput(dentry);
1277                                 goto out_unlock;
1278                         }
1279                         context[len] = '\0';
1280                         rc = inode->i_op->getxattr(dentry,
1281                                                    XATTR_NAME_SELINUX,
1282                                                    context, len);
1283                 }
1284                 dput(dentry);
1285                 if (rc < 0) {
1286                         if (rc != -ENODATA) {
1287                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1288                                        "%d for dev=%s ino=%ld\n", __func__,
1289                                        -rc, inode->i_sb->s_id, inode->i_ino);
1290                                 kfree(context);
1291                                 goto out_unlock;
1292                         }
1293                         /* Map ENODATA to the default file SID */
1294                         sid = sbsec->def_sid;
1295                         rc = 0;
1296                 } else {
1297                         rc = security_context_to_sid_default(context, rc, &sid,
1298                                                              sbsec->def_sid,
1299                                                              GFP_NOFS);
1300                         if (rc) {
1301                                 char *dev = inode->i_sb->s_id;
1302                                 unsigned long ino = inode->i_ino;
1303
1304                                 if (rc == -EINVAL) {
1305                                         if (printk_ratelimit())
1306                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1307                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1308                                                         "filesystem in question.\n", ino, dev, context);
1309                                 } else {
1310                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1311                                                "returned %d for dev=%s ino=%ld\n",
1312                                                __func__, context, -rc, dev, ino);
1313                                 }
1314                                 kfree(context);
1315                                 /* Leave with the unlabeled SID */
1316                                 rc = 0;
1317                                 break;
1318                         }
1319                 }
1320                 kfree(context);
1321                 isec->sid = sid;
1322                 break;
1323         case SECURITY_FS_USE_TASK:
1324                 isec->sid = isec->task_sid;
1325                 break;
1326         case SECURITY_FS_USE_TRANS:
1327                 /* Default to the fs SID. */
1328                 isec->sid = sbsec->sid;
1329
1330                 /* Try to obtain a transition SID. */
1331                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1332                 rc = security_transition_sid(isec->task_sid,
1333                                              sbsec->sid,
1334                                              isec->sclass,
1335                                              &sid);
1336                 if (rc)
1337                         goto out_unlock;
1338                 isec->sid = sid;
1339                 break;
1340         case SECURITY_FS_USE_MNTPOINT:
1341                 isec->sid = sbsec->mntpoint_sid;
1342                 break;
1343         default:
1344                 /* Default to the fs superblock SID. */
1345                 isec->sid = sbsec->sid;
1346
1347                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1348                         struct proc_inode *proci = PROC_I(inode);
1349                         if (proci->pde) {
1350                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1351                                 rc = selinux_proc_get_sid(proci->pde,
1352                                                           isec->sclass,
1353                                                           &sid);
1354                                 if (rc)
1355                                         goto out_unlock;
1356                                 isec->sid = sid;
1357                         }
1358                 }
1359                 break;
1360         }
1361
1362         isec->initialized = 1;
1363
1364 out_unlock:
1365         mutex_unlock(&isec->lock);
1366 out:
1367         if (isec->sclass == SECCLASS_FILE)
1368                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1369         return rc;
1370 }
1371
1372 /* Convert a Linux signal to an access vector. */
1373 static inline u32 signal_to_av(int sig)
1374 {
1375         u32 perm = 0;
1376
1377         switch (sig) {
1378         case SIGCHLD:
1379                 /* Commonly granted from child to parent. */
1380                 perm = PROCESS__SIGCHLD;
1381                 break;
1382         case SIGKILL:
1383                 /* Cannot be caught or ignored */
1384                 perm = PROCESS__SIGKILL;
1385                 break;
1386         case SIGSTOP:
1387                 /* Cannot be caught or ignored */
1388                 perm = PROCESS__SIGSTOP;
1389                 break;
1390         default:
1391                 /* All other signals. */
1392                 perm = PROCESS__SIGNAL;
1393                 break;
1394         }
1395
1396         return perm;
1397 }
1398
1399 /*
1400  * Check permission between a pair of credentials
1401  * fork check, ptrace check, etc.
1402  */
1403 static int cred_has_perm(const struct cred *actor,
1404                          const struct cred *target,
1405                          u32 perms)
1406 {
1407         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1408
1409         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1410 }
1411
1412 /*
1413  * Check permission between a pair of tasks, e.g. signal checks,
1414  * fork check, ptrace check, etc.
1415  * tsk1 is the actor and tsk2 is the target
1416  * - this uses the default subjective creds of tsk1
1417  */
1418 static int task_has_perm(const struct task_struct *tsk1,
1419                          const struct task_struct *tsk2,
1420                          u32 perms)
1421 {
1422         const struct task_security_struct *__tsec1, *__tsec2;
1423         u32 sid1, sid2;
1424
1425         rcu_read_lock();
1426         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1427         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1428         rcu_read_unlock();
1429         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1430 }
1431
1432 /*
1433  * Check permission between current and another task, e.g. signal checks,
1434  * fork check, ptrace check, etc.
1435  * current is the actor and tsk2 is the target
1436  * - this uses current's subjective creds
1437  */
1438 static int current_has_perm(const struct task_struct *tsk,
1439                             u32 perms)
1440 {
1441         u32 sid, tsid;
1442
1443         sid = current_sid();
1444         tsid = task_sid(tsk);
1445         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1446 }
1447
1448 #if CAP_LAST_CAP > 63
1449 #error Fix SELinux to handle capabilities > 63.
1450 #endif
1451
1452 /* Check whether a task is allowed to use a capability. */
1453 static int task_has_capability(struct task_struct *tsk,
1454                                const struct cred *cred,
1455                                int cap, int audit)
1456 {
1457         struct common_audit_data ad;
1458         struct av_decision avd;
1459         u16 sclass;
1460         u32 sid = cred_sid(cred);
1461         u32 av = CAP_TO_MASK(cap);
1462         int rc;
1463
1464         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1465         ad.tsk = tsk;
1466         ad.u.cap = cap;
1467
1468         switch (CAP_TO_INDEX(cap)) {
1469         case 0:
1470                 sclass = SECCLASS_CAPABILITY;
1471                 break;
1472         case 1:
1473                 sclass = SECCLASS_CAPABILITY2;
1474                 break;
1475         default:
1476                 printk(KERN_ERR
1477                        "SELinux:  out of range capability %d\n", cap);
1478                 BUG();
1479         }
1480
1481         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1482         if (audit == SECURITY_CAP_AUDIT)
1483                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1484         return rc;
1485 }
1486
1487 /* Check whether a task is allowed to use a system operation. */
1488 static int task_has_system(struct task_struct *tsk,
1489                            u32 perms)
1490 {
1491         u32 sid = task_sid(tsk);
1492
1493         return avc_has_perm(sid, SECINITSID_KERNEL,
1494                             SECCLASS_SYSTEM, perms, NULL);
1495 }
1496
1497 /* Check whether a task has a particular permission to an inode.
1498    The 'adp' parameter is optional and allows other audit
1499    data to be passed (e.g. the dentry). */
1500 static int inode_has_perm(const struct cred *cred,
1501                           struct inode *inode,
1502                           u32 perms,
1503                           struct common_audit_data *adp)
1504 {
1505         struct inode_security_struct *isec;
1506         struct common_audit_data ad;
1507         u32 sid;
1508
1509         validate_creds(cred);
1510
1511         if (unlikely(IS_PRIVATE(inode)))
1512                 return 0;
1513
1514         sid = cred_sid(cred);
1515         isec = inode->i_security;
1516
1517         if (!adp) {
1518                 adp = &ad;
1519                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1520                 ad.u.fs.inode = inode;
1521         }
1522
1523         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1524 }
1525
1526 /* Same as inode_has_perm, but pass explicit audit data containing
1527    the dentry to help the auditing code to more easily generate the
1528    pathname if needed. */
1529 static inline int dentry_has_perm(const struct cred *cred,
1530                                   struct vfsmount *mnt,
1531                                   struct dentry *dentry,
1532                                   u32 av)
1533 {
1534         struct inode *inode = dentry->d_inode;
1535         struct common_audit_data ad;
1536
1537         COMMON_AUDIT_DATA_INIT(&ad, FS);
1538         ad.u.fs.path.mnt = mnt;
1539         ad.u.fs.path.dentry = dentry;
1540         return inode_has_perm(cred, inode, av, &ad);
1541 }
1542
1543 /* Check whether a task can use an open file descriptor to
1544    access an inode in a given way.  Check access to the
1545    descriptor itself, and then use dentry_has_perm to
1546    check a particular permission to the file.
1547    Access to the descriptor is implicitly granted if it
1548    has the same SID as the process.  If av is zero, then
1549    access to the file is not checked, e.g. for cases
1550    where only the descriptor is affected like seek. */
1551 static int file_has_perm(const struct cred *cred,
1552                          struct file *file,
1553                          u32 av)
1554 {
1555         struct file_security_struct *fsec = file->f_security;
1556         struct inode *inode = file->f_path.dentry->d_inode;
1557         struct common_audit_data ad;
1558         u32 sid = cred_sid(cred);
1559         int rc;
1560
1561         COMMON_AUDIT_DATA_INIT(&ad, FS);
1562         ad.u.fs.path = file->f_path;
1563
1564         if (sid != fsec->sid) {
1565                 rc = avc_has_perm(sid, fsec->sid,
1566                                   SECCLASS_FD,
1567                                   FD__USE,
1568                                   &ad);
1569                 if (rc)
1570                         goto out;
1571         }
1572
1573         /* av is zero if only checking access to the descriptor. */
1574         rc = 0;
1575         if (av)
1576                 rc = inode_has_perm(cred, inode, av, &ad);
1577
1578 out:
1579         return rc;
1580 }
1581
1582 /* Check whether a task can create a file. */
1583 static int may_create(struct inode *dir,
1584                       struct dentry *dentry,
1585                       u16 tclass)
1586 {
1587         const struct cred *cred = current_cred();
1588         const struct task_security_struct *tsec = cred->security;
1589         struct inode_security_struct *dsec;
1590         struct superblock_security_struct *sbsec;
1591         u32 sid, newsid;
1592         struct common_audit_data ad;
1593         int rc;
1594
1595         dsec = dir->i_security;
1596         sbsec = dir->i_sb->s_security;
1597
1598         sid = tsec->sid;
1599         newsid = tsec->create_sid;
1600
1601         COMMON_AUDIT_DATA_INIT(&ad, FS);
1602         ad.u.fs.path.dentry = dentry;
1603
1604         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1605                           DIR__ADD_NAME | DIR__SEARCH,
1606                           &ad);
1607         if (rc)
1608                 return rc;
1609
1610         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1611                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1612                 if (rc)
1613                         return rc;
1614         }
1615
1616         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1617         if (rc)
1618                 return rc;
1619
1620         return avc_has_perm(newsid, sbsec->sid,
1621                             SECCLASS_FILESYSTEM,
1622                             FILESYSTEM__ASSOCIATE, &ad);
1623 }
1624
1625 /* Check whether a task can create a key. */
1626 static int may_create_key(u32 ksid,
1627                           struct task_struct *ctx)
1628 {
1629         u32 sid = task_sid(ctx);
1630
1631         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1632 }
1633
1634 #define MAY_LINK        0
1635 #define MAY_UNLINK      1
1636 #define MAY_RMDIR       2
1637
1638 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1639 static int may_link(struct inode *dir,
1640                     struct dentry *dentry,
1641                     int kind)
1642
1643 {
1644         struct inode_security_struct *dsec, *isec;
1645         struct common_audit_data ad;
1646         u32 sid = current_sid();
1647         u32 av;
1648         int rc;
1649
1650         dsec = dir->i_security;
1651         isec = dentry->d_inode->i_security;
1652
1653         COMMON_AUDIT_DATA_INIT(&ad, FS);
1654         ad.u.fs.path.dentry = dentry;
1655
1656         av = DIR__SEARCH;
1657         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1658         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1659         if (rc)
1660                 return rc;
1661
1662         switch (kind) {
1663         case MAY_LINK:
1664                 av = FILE__LINK;
1665                 break;
1666         case MAY_UNLINK:
1667                 av = FILE__UNLINK;
1668                 break;
1669         case MAY_RMDIR:
1670                 av = DIR__RMDIR;
1671                 break;
1672         default:
1673                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1674                         __func__, kind);
1675                 return 0;
1676         }
1677
1678         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1679         return rc;
1680 }
1681
1682 static inline int may_rename(struct inode *old_dir,
1683                              struct dentry *old_dentry,
1684                              struct inode *new_dir,
1685                              struct dentry *new_dentry)
1686 {
1687         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1688         struct common_audit_data ad;
1689         u32 sid = current_sid();
1690         u32 av;
1691         int old_is_dir, new_is_dir;
1692         int rc;
1693
1694         old_dsec = old_dir->i_security;
1695         old_isec = old_dentry->d_inode->i_security;
1696         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1697         new_dsec = new_dir->i_security;
1698
1699         COMMON_AUDIT_DATA_INIT(&ad, FS);
1700
1701         ad.u.fs.path.dentry = old_dentry;
1702         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1703                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1704         if (rc)
1705                 return rc;
1706         rc = avc_has_perm(sid, old_isec->sid,
1707                           old_isec->sclass, FILE__RENAME, &ad);
1708         if (rc)
1709                 return rc;
1710         if (old_is_dir && new_dir != old_dir) {
1711                 rc = avc_has_perm(sid, old_isec->sid,
1712                                   old_isec->sclass, DIR__REPARENT, &ad);
1713                 if (rc)
1714                         return rc;
1715         }
1716
1717         ad.u.fs.path.dentry = new_dentry;
1718         av = DIR__ADD_NAME | DIR__SEARCH;
1719         if (new_dentry->d_inode)
1720                 av |= DIR__REMOVE_NAME;
1721         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1722         if (rc)
1723                 return rc;
1724         if (new_dentry->d_inode) {
1725                 new_isec = new_dentry->d_inode->i_security;
1726                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1727                 rc = avc_has_perm(sid, new_isec->sid,
1728                                   new_isec->sclass,
1729                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1730                 if (rc)
1731                         return rc;
1732         }
1733
1734         return 0;
1735 }
1736
1737 /* Check whether a task can perform a filesystem operation. */
1738 static int superblock_has_perm(const struct cred *cred,
1739                                struct super_block *sb,
1740                                u32 perms,
1741                                struct common_audit_data *ad)
1742 {
1743         struct superblock_security_struct *sbsec;
1744         u32 sid = cred_sid(cred);
1745
1746         sbsec = sb->s_security;
1747         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1748 }
1749
1750 /* Convert a Linux mode and permission mask to an access vector. */
1751 static inline u32 file_mask_to_av(int mode, int mask)
1752 {
1753         u32 av = 0;
1754
1755         if ((mode & S_IFMT) != S_IFDIR) {
1756                 if (mask & MAY_EXEC)
1757                         av |= FILE__EXECUTE;
1758                 if (mask & MAY_READ)
1759                         av |= FILE__READ;
1760
1761                 if (mask & MAY_APPEND)
1762                         av |= FILE__APPEND;
1763                 else if (mask & MAY_WRITE)
1764                         av |= FILE__WRITE;
1765
1766         } else {
1767                 if (mask & MAY_EXEC)
1768                         av |= DIR__SEARCH;
1769                 if (mask & MAY_WRITE)
1770                         av |= DIR__WRITE;
1771                 if (mask & MAY_READ)
1772                         av |= DIR__READ;
1773         }
1774
1775         return av;
1776 }
1777
1778 /* Convert a Linux file to an access vector. */
1779 static inline u32 file_to_av(struct file *file)
1780 {
1781         u32 av = 0;
1782
1783         if (file->f_mode & FMODE_READ)
1784                 av |= FILE__READ;
1785         if (file->f_mode & FMODE_WRITE) {
1786                 if (file->f_flags & O_APPEND)
1787                         av |= FILE__APPEND;
1788                 else
1789                         av |= FILE__WRITE;
1790         }
1791         if (!av) {
1792                 /*
1793                  * Special file opened with flags 3 for ioctl-only use.
1794                  */
1795                 av = FILE__IOCTL;
1796         }
1797
1798         return av;
1799 }
1800
1801 /*
1802  * Convert a file to an access vector and include the correct open
1803  * open permission.
1804  */
1805 static inline u32 open_file_to_av(struct file *file)
1806 {
1807         u32 av = file_to_av(file);
1808
1809         if (selinux_policycap_openperm) {
1810                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1811                 /*
1812                  * lnk files and socks do not really have an 'open'
1813                  */
1814                 if (S_ISREG(mode))
1815                         av |= FILE__OPEN;
1816                 else if (S_ISCHR(mode))
1817                         av |= CHR_FILE__OPEN;
1818                 else if (S_ISBLK(mode))
1819                         av |= BLK_FILE__OPEN;
1820                 else if (S_ISFIFO(mode))
1821                         av |= FIFO_FILE__OPEN;
1822                 else if (S_ISDIR(mode))
1823                         av |= DIR__OPEN;
1824                 else if (S_ISSOCK(mode))
1825                         av |= SOCK_FILE__OPEN;
1826                 else
1827                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1828                                 "unknown mode:%o\n", __func__, mode);
1829         }
1830         return av;
1831 }
1832
1833 /* Hook functions begin here. */
1834
1835 static int selinux_ptrace_access_check(struct task_struct *child,
1836                                      unsigned int mode)
1837 {
1838         int rc;
1839
1840         rc = cap_ptrace_access_check(child, mode);
1841         if (rc)
1842                 return rc;
1843
1844         if (mode == PTRACE_MODE_READ) {
1845                 u32 sid = current_sid();
1846                 u32 csid = task_sid(child);
1847                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1848         }
1849
1850         return current_has_perm(child, PROCESS__PTRACE);
1851 }
1852
1853 static int selinux_ptrace_traceme(struct task_struct *parent)
1854 {
1855         int rc;
1856
1857         rc = cap_ptrace_traceme(parent);
1858         if (rc)
1859                 return rc;
1860
1861         return task_has_perm(parent, current, PROCESS__PTRACE);
1862 }
1863
1864 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1865                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1866 {
1867         int error;
1868
1869         error = current_has_perm(target, PROCESS__GETCAP);
1870         if (error)
1871                 return error;
1872
1873         return cap_capget(target, effective, inheritable, permitted);
1874 }
1875
1876 static int selinux_capset(struct cred *new, const struct cred *old,
1877                           const kernel_cap_t *effective,
1878                           const kernel_cap_t *inheritable,
1879                           const kernel_cap_t *permitted)
1880 {
1881         int error;
1882
1883         error = cap_capset(new, old,
1884                                       effective, inheritable, permitted);
1885         if (error)
1886                 return error;
1887
1888         return cred_has_perm(old, new, PROCESS__SETCAP);
1889 }
1890
1891 /*
1892  * (This comment used to live with the selinux_task_setuid hook,
1893  * which was removed).
1894  *
1895  * Since setuid only affects the current process, and since the SELinux
1896  * controls are not based on the Linux identity attributes, SELinux does not
1897  * need to control this operation.  However, SELinux does control the use of
1898  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1899  */
1900
1901 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1902                            int cap, int audit)
1903 {
1904         int rc;
1905
1906         rc = cap_capable(tsk, cred, cap, audit);
1907         if (rc)
1908                 return rc;
1909
1910         return task_has_capability(tsk, cred, cap, audit);
1911 }
1912
1913 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1914 {
1915         int buflen, rc;
1916         char *buffer, *path, *end;
1917
1918         rc = -ENOMEM;
1919         buffer = (char *)__get_free_page(GFP_KERNEL);
1920         if (!buffer)
1921                 goto out;
1922
1923         buflen = PAGE_SIZE;
1924         end = buffer+buflen;
1925         *--end = '\0';
1926         buflen--;
1927         path = end-1;
1928         *path = '/';
1929         while (table) {
1930                 const char *name = table->procname;
1931                 size_t namelen = strlen(name);
1932                 buflen -= namelen + 1;
1933                 if (buflen < 0)
1934                         goto out_free;
1935                 end -= namelen;
1936                 memcpy(end, name, namelen);
1937                 *--end = '/';
1938                 path = end;
1939                 table = table->parent;
1940         }
1941         buflen -= 4;
1942         if (buflen < 0)
1943                 goto out_free;
1944         end -= 4;
1945         memcpy(end, "/sys", 4);
1946         path = end;
1947         rc = security_genfs_sid("proc", path, tclass, sid);
1948 out_free:
1949         free_page((unsigned long)buffer);
1950 out:
1951         return rc;
1952 }
1953
1954 static int selinux_sysctl(ctl_table *table, int op)
1955 {
1956         int error = 0;
1957         u32 av;
1958         u32 tsid, sid;
1959         int rc;
1960
1961         sid = current_sid();
1962
1963         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1964                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1965         if (rc) {
1966                 /* Default to the well-defined sysctl SID. */
1967                 tsid = SECINITSID_SYSCTL;
1968         }
1969
1970         /* The op values are "defined" in sysctl.c, thereby creating
1971          * a bad coupling between this module and sysctl.c */
1972         if (op == 001) {
1973                 error = avc_has_perm(sid, tsid,
1974                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1975         } else {
1976                 av = 0;
1977                 if (op & 004)
1978                         av |= FILE__READ;
1979                 if (op & 002)
1980                         av |= FILE__WRITE;
1981                 if (av)
1982                         error = avc_has_perm(sid, tsid,
1983                                              SECCLASS_FILE, av, NULL);
1984         }
1985
1986         return error;
1987 }
1988
1989 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1990 {
1991         const struct cred *cred = current_cred();
1992         int rc = 0;
1993
1994         if (!sb)
1995                 return 0;
1996
1997         switch (cmds) {
1998         case Q_SYNC:
1999         case Q_QUOTAON:
2000         case Q_QUOTAOFF:
2001         case Q_SETINFO:
2002         case Q_SETQUOTA:
2003                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2004                 break;
2005         case Q_GETFMT:
2006         case Q_GETINFO:
2007         case Q_GETQUOTA:
2008                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2009                 break;
2010         default:
2011                 rc = 0;  /* let the kernel handle invalid cmds */
2012                 break;
2013         }
2014         return rc;
2015 }
2016
2017 static int selinux_quota_on(struct dentry *dentry)
2018 {
2019         const struct cred *cred = current_cred();
2020
2021         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2022 }
2023
2024 static int selinux_syslog(int type, bool from_file)
2025 {
2026         int rc;
2027
2028         rc = cap_syslog(type, from_file);
2029         if (rc)
2030                 return rc;
2031
2032         switch (type) {
2033         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2034         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2035                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2036                 break;
2037         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2038         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2039         /* Set level of messages printed to console */
2040         case SYSLOG_ACTION_CONSOLE_LEVEL:
2041                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2042                 break;
2043         case SYSLOG_ACTION_CLOSE:       /* Close log */
2044         case SYSLOG_ACTION_OPEN:        /* Open log */
2045         case SYSLOG_ACTION_READ:        /* Read from log */
2046         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2047         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2048         default:
2049                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2050                 break;
2051         }
2052         return rc;
2053 }
2054
2055 /*
2056  * Check that a process has enough memory to allocate a new virtual
2057  * mapping. 0 means there is enough memory for the allocation to
2058  * succeed and -ENOMEM implies there is not.
2059  *
2060  * Do not audit the selinux permission check, as this is applied to all
2061  * processes that allocate mappings.
2062  */
2063 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2064 {
2065         int rc, cap_sys_admin = 0;
2066
2067         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2068                              SECURITY_CAP_NOAUDIT);
2069         if (rc == 0)
2070                 cap_sys_admin = 1;
2071
2072         return __vm_enough_memory(mm, pages, cap_sys_admin);
2073 }
2074
2075 /* binprm security operations */
2076
2077 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2078 {
2079         const struct task_security_struct *old_tsec;
2080         struct task_security_struct *new_tsec;
2081         struct inode_security_struct *isec;
2082         struct common_audit_data ad;
2083         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2084         int rc;
2085
2086         rc = cap_bprm_set_creds(bprm);
2087         if (rc)
2088                 return rc;
2089
2090         /* SELinux context only depends on initial program or script and not
2091          * the script interpreter */
2092         if (bprm->cred_prepared)
2093                 return 0;
2094
2095         old_tsec = current_security();
2096         new_tsec = bprm->cred->security;
2097         isec = inode->i_security;
2098
2099         /* Default to the current task SID. */
2100         new_tsec->sid = old_tsec->sid;
2101         new_tsec->osid = old_tsec->sid;
2102
2103         /* Reset fs, key, and sock SIDs on execve. */
2104         new_tsec->create_sid = 0;
2105         new_tsec->keycreate_sid = 0;
2106         new_tsec->sockcreate_sid = 0;
2107
2108         if (old_tsec->exec_sid) {
2109                 new_tsec->sid = old_tsec->exec_sid;
2110                 /* Reset exec SID on execve. */
2111                 new_tsec->exec_sid = 0;
2112         } else {
2113                 /* Check for a default transition on this program. */
2114                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2115                                              SECCLASS_PROCESS, &new_tsec->sid);
2116                 if (rc)
2117                         return rc;
2118         }
2119
2120         COMMON_AUDIT_DATA_INIT(&ad, FS);
2121         ad.u.fs.path = bprm->file->f_path;
2122
2123         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2124                 new_tsec->sid = old_tsec->sid;
2125
2126         if (new_tsec->sid == old_tsec->sid) {
2127                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2128                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2129                 if (rc)
2130                         return rc;
2131         } else {
2132                 /* Check permissions for the transition. */
2133                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2134                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2135                 if (rc)
2136                         return rc;
2137
2138                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2139                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2140                 if (rc)
2141                         return rc;
2142
2143                 /* Check for shared state */
2144                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2145                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2146                                           SECCLASS_PROCESS, PROCESS__SHARE,
2147                                           NULL);
2148                         if (rc)
2149                                 return -EPERM;
2150                 }
2151
2152                 /* Make sure that anyone attempting to ptrace over a task that
2153                  * changes its SID has the appropriate permit */
2154                 if (bprm->unsafe &
2155                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2156                         struct task_struct *tracer;
2157                         struct task_security_struct *sec;
2158                         u32 ptsid = 0;
2159
2160                         rcu_read_lock();
2161                         tracer = tracehook_tracer_task(current);
2162                         if (likely(tracer != NULL)) {
2163                                 sec = __task_cred(tracer)->security;
2164                                 ptsid = sec->sid;
2165                         }
2166                         rcu_read_unlock();
2167
2168                         if (ptsid != 0) {
2169                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2170                                                   SECCLASS_PROCESS,
2171                                                   PROCESS__PTRACE, NULL);
2172                                 if (rc)
2173                                         return -EPERM;
2174                         }
2175                 }
2176
2177                 /* Clear any possibly unsafe personality bits on exec: */
2178                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2179         }
2180
2181         return 0;
2182 }
2183
2184 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2185 {
2186         const struct cred *cred = current_cred();
2187         const struct task_security_struct *tsec = cred->security;
2188         u32 sid, osid;
2189         int atsecure = 0;
2190
2191         sid = tsec->sid;
2192         osid = tsec->osid;
2193
2194         if (osid != sid) {
2195                 /* Enable secure mode for SIDs transitions unless
2196                    the noatsecure permission is granted between
2197                    the two SIDs, i.e. ahp returns 0. */
2198                 atsecure = avc_has_perm(osid, sid,
2199                                         SECCLASS_PROCESS,
2200                                         PROCESS__NOATSECURE, NULL);
2201         }
2202
2203         return (atsecure || cap_bprm_secureexec(bprm));
2204 }
2205
2206 extern struct vfsmount *selinuxfs_mount;
2207 extern struct dentry *selinux_null;
2208
2209 /* Derived from fs/exec.c:flush_old_files. */
2210 static inline void flush_unauthorized_files(const struct cred *cred,
2211                                             struct files_struct *files)
2212 {
2213         struct common_audit_data ad;
2214         struct file *file, *devnull = NULL;
2215         struct tty_struct *tty;
2216         struct fdtable *fdt;
2217         long j = -1;
2218         int drop_tty = 0;
2219
2220         tty = get_current_tty();
2221         if (tty) {
2222                 file_list_lock();
2223                 if (!list_empty(&tty->tty_files)) {
2224                         struct inode *inode;
2225
2226                         /* Revalidate access to controlling tty.
2227                            Use inode_has_perm on the tty inode directly rather
2228                            than using file_has_perm, as this particular open
2229                            file may belong to another process and we are only
2230                            interested in the inode-based check here. */
2231                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2232                         inode = file->f_path.dentry->d_inode;
2233                         if (inode_has_perm(cred, inode,
2234                                            FILE__READ | FILE__WRITE, NULL)) {
2235                                 drop_tty = 1;
2236                         }
2237                 }
2238                 file_list_unlock();
2239                 tty_kref_put(tty);
2240         }
2241         /* Reset controlling tty. */
2242         if (drop_tty)
2243                 no_tty();
2244
2245         /* Revalidate access to inherited open files. */
2246
2247         COMMON_AUDIT_DATA_INIT(&ad, FS);
2248
2249         spin_lock(&files->file_lock);
2250         for (;;) {
2251                 unsigned long set, i;
2252                 int fd;
2253
2254                 j++;
2255                 i = j * __NFDBITS;
2256                 fdt = files_fdtable(files);
2257                 if (i >= fdt->max_fds)
2258                         break;
2259                 set = fdt->open_fds->fds_bits[j];
2260                 if (!set)
2261                         continue;
2262                 spin_unlock(&files->file_lock);
2263                 for ( ; set ; i++, set >>= 1) {
2264                         if (set & 1) {
2265                                 file = fget(i);
2266                                 if (!file)
2267                                         continue;
2268                                 if (file_has_perm(cred,
2269                                                   file,
2270                                                   file_to_av(file))) {
2271                                         sys_close(i);
2272                                         fd = get_unused_fd();
2273                                         if (fd != i) {
2274                                                 if (fd >= 0)
2275                                                         put_unused_fd(fd);
2276                                                 fput(file);
2277                                                 continue;
2278                                         }
2279                                         if (devnull) {
2280                                                 get_file(devnull);
2281                                         } else {
2282                                                 devnull = dentry_open(
2283                                                         dget(selinux_null),
2284                                                         mntget(selinuxfs_mount),
2285                                                         O_RDWR, cred);
2286                                                 if (IS_ERR(devnull)) {
2287                                                         devnull = NULL;
2288                                                         put_unused_fd(fd);
2289                                                         fput(file);
2290                                                         continue;
2291                                                 }
2292                                         }
2293                                         fd_install(fd, devnull);
2294                                 }
2295                                 fput(file);
2296                         }
2297                 }
2298                 spin_lock(&files->file_lock);
2299
2300         }
2301         spin_unlock(&files->file_lock);
2302 }
2303
2304 /*
2305  * Prepare a process for imminent new credential changes due to exec
2306  */
2307 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2308 {
2309         struct task_security_struct *new_tsec;
2310         struct rlimit *rlim, *initrlim;
2311         int rc, i;
2312
2313         new_tsec = bprm->cred->security;
2314         if (new_tsec->sid == new_tsec->osid)
2315                 return;
2316
2317         /* Close files for which the new task SID is not authorized. */
2318         flush_unauthorized_files(bprm->cred, current->files);
2319
2320         /* Always clear parent death signal on SID transitions. */
2321         current->pdeath_signal = 0;
2322
2323         /* Check whether the new SID can inherit resource limits from the old
2324          * SID.  If not, reset all soft limits to the lower of the current
2325          * task's hard limit and the init task's soft limit.
2326          *
2327          * Note that the setting of hard limits (even to lower them) can be
2328          * controlled by the setrlimit check.  The inclusion of the init task's
2329          * soft limit into the computation is to avoid resetting soft limits
2330          * higher than the default soft limit for cases where the default is
2331          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2332          */
2333         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2334                           PROCESS__RLIMITINH, NULL);
2335         if (rc) {
2336                 for (i = 0; i < RLIM_NLIMITS; i++) {
2337                         rlim = current->signal->rlim + i;
2338                         initrlim = init_task.signal->rlim + i;
2339                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2340                 }
2341                 update_rlimit_cpu(current,
2342                                 current->signal->rlim[RLIMIT_CPU].rlim_cur);
2343         }
2344 }
2345
2346 /*
2347  * Clean up the process immediately after the installation of new credentials
2348  * due to exec
2349  */
2350 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2351 {
2352         const struct task_security_struct *tsec = current_security();
2353         struct itimerval itimer;
2354         u32 osid, sid;
2355         int rc, i;
2356
2357         osid = tsec->osid;
2358         sid = tsec->sid;
2359
2360         if (sid == osid)
2361                 return;
2362
2363         /* Check whether the new SID can inherit signal state from the old SID.
2364          * If not, clear itimers to avoid subsequent signal generation and
2365          * flush and unblock signals.
2366          *
2367          * This must occur _after_ the task SID has been updated so that any
2368          * kill done after the flush will be checked against the new SID.
2369          */
2370         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2371         if (rc) {
2372                 memset(&itimer, 0, sizeof itimer);
2373                 for (i = 0; i < 3; i++)
2374                         do_setitimer(i, &itimer, NULL);
2375                 spin_lock_irq(&current->sighand->siglock);
2376                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2377                         __flush_signals(current);
2378                         flush_signal_handlers(current, 1);
2379                         sigemptyset(&current->blocked);
2380                 }
2381                 spin_unlock_irq(&current->sighand->siglock);
2382         }
2383
2384         /* Wake up the parent if it is waiting so that it can recheck
2385          * wait permission to the new task SID. */
2386         read_lock(&tasklist_lock);
2387         __wake_up_parent(current, current->real_parent);
2388         read_unlock(&tasklist_lock);
2389 }
2390
2391 /* superblock security operations */
2392
2393 static int selinux_sb_alloc_security(struct super_block *sb)
2394 {
2395         return superblock_alloc_security(sb);
2396 }
2397
2398 static void selinux_sb_free_security(struct super_block *sb)
2399 {
2400         superblock_free_security(sb);
2401 }
2402
2403 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2404 {
2405         if (plen > olen)
2406                 return 0;
2407
2408         return !memcmp(prefix, option, plen);
2409 }
2410
2411 static inline int selinux_option(char *option, int len)
2412 {
2413         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2414                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2415                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2416                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2417                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2418 }
2419
2420 static inline void take_option(char **to, char *from, int *first, int len)
2421 {
2422         if (!*first) {
2423                 **to = ',';
2424                 *to += 1;
2425         } else
2426                 *first = 0;
2427         memcpy(*to, from, len);
2428         *to += len;
2429 }
2430
2431 static inline void take_selinux_option(char **to, char *from, int *first,
2432                                        int len)
2433 {
2434         int current_size = 0;
2435
2436         if (!*first) {
2437                 **to = '|';
2438                 *to += 1;
2439         } else
2440                 *first = 0;
2441
2442         while (current_size < len) {
2443                 if (*from != '"') {
2444                         **to = *from;
2445                         *to += 1;
2446                 }
2447                 from += 1;
2448                 current_size += 1;
2449         }
2450 }
2451
2452 static int selinux_sb_copy_data(char *orig, char *copy)
2453 {
2454         int fnosec, fsec, rc = 0;
2455         char *in_save, *in_curr, *in_end;
2456         char *sec_curr, *nosec_save, *nosec;
2457         int open_quote = 0;
2458
2459         in_curr = orig;
2460         sec_curr = copy;
2461
2462         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2463         if (!nosec) {
2464                 rc = -ENOMEM;
2465                 goto out;
2466         }
2467
2468         nosec_save = nosec;
2469         fnosec = fsec = 1;
2470         in_save = in_end = orig;
2471
2472         do {
2473                 if (*in_end == '"')
2474                         open_quote = !open_quote;
2475                 if ((*in_end == ',' && open_quote == 0) ||
2476                                 *in_end == '\0') {
2477                         int len = in_end - in_curr;
2478
2479                         if (selinux_option(in_curr, len))
2480                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2481                         else
2482                                 take_option(&nosec, in_curr, &fnosec, len);
2483
2484                         in_curr = in_end + 1;
2485                 }
2486         } while (*in_end++);
2487
2488         strcpy(in_save, nosec_save);
2489         free_page((unsigned long)nosec_save);
2490 out:
2491         return rc;
2492 }
2493
2494 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2495 {
2496         const struct cred *cred = current_cred();
2497         struct common_audit_data ad;
2498         int rc;
2499
2500         rc = superblock_doinit(sb, data);
2501         if (rc)
2502                 return rc;
2503
2504         /* Allow all mounts performed by the kernel */
2505         if (flags & MS_KERNMOUNT)
2506                 return 0;
2507
2508         COMMON_AUDIT_DATA_INIT(&ad, FS);
2509         ad.u.fs.path.dentry = sb->s_root;
2510         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2511 }
2512
2513 static int selinux_sb_statfs(struct dentry *dentry)
2514 {
2515         const struct cred *cred = current_cred();
2516         struct common_audit_data ad;
2517
2518         COMMON_AUDIT_DATA_INIT(&ad, FS);
2519         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2520         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2521 }
2522
2523 static int selinux_mount(char *dev_name,
2524                          struct path *path,
2525                          char *type,
2526                          unsigned long flags,
2527                          void *data)
2528 {
2529         const struct cred *cred = current_cred();
2530
2531         if (flags & MS_REMOUNT)
2532                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2533                                            FILESYSTEM__REMOUNT, NULL);
2534         else
2535                 return dentry_has_perm(cred, path->mnt, path->dentry,
2536                                        FILE__MOUNTON);
2537 }
2538
2539 static int selinux_umount(struct vfsmount *mnt, int flags)
2540 {
2541         const struct cred *cred = current_cred();
2542
2543         return superblock_has_perm(cred, mnt->mnt_sb,
2544                                    FILESYSTEM__UNMOUNT, NULL);
2545 }
2546
2547 /* inode security operations */
2548
2549 static int selinux_inode_alloc_security(struct inode *inode)
2550 {
2551         return inode_alloc_security(inode);
2552 }
2553
2554 static void selinux_inode_free_security(struct inode *inode)
2555 {
2556         inode_free_security(inode);
2557 }
2558
2559 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2560                                        char **name, void **value,
2561                                        size_t *len)
2562 {
2563         const struct cred *cred = current_cred();
2564         const struct task_security_struct *tsec = cred->security;
2565         struct inode_security_struct *dsec;
2566         struct superblock_security_struct *sbsec;
2567         u32 sid, newsid, clen;
2568         int rc;
2569         char *namep = NULL, *context;
2570
2571         dsec = dir->i_security;
2572         sbsec = dir->i_sb->s_security;
2573
2574         sid = tsec->sid;
2575         newsid = tsec->create_sid;
2576
2577         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2578                 rc = security_transition_sid(sid, dsec->sid,
2579                                              inode_mode_to_security_class(inode->i_mode),
2580                                              &newsid);
2581                 if (rc) {
2582                         printk(KERN_WARNING "%s:  "
2583                                "security_transition_sid failed, rc=%d (dev=%s "
2584                                "ino=%ld)\n",
2585                                __func__,
2586                                -rc, inode->i_sb->s_id, inode->i_ino);
2587                         return rc;
2588                 }
2589         }
2590
2591         /* Possibly defer initialization to selinux_complete_init. */
2592         if (sbsec->flags & SE_SBINITIALIZED) {
2593                 struct inode_security_struct *isec = inode->i_security;
2594                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2595                 isec->sid = newsid;
2596                 isec->initialized = 1;
2597         }
2598
2599         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2600                 return -EOPNOTSUPP;
2601
2602         if (name) {
2603                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2604                 if (!namep)
2605                         return -ENOMEM;
2606                 *name = namep;
2607         }
2608
2609         if (value && len) {
2610                 rc = security_sid_to_context_force(newsid, &context, &clen);
2611                 if (rc) {
2612                         kfree(namep);
2613                         return rc;
2614                 }
2615                 *value = context;
2616                 *len = clen;
2617         }
2618
2619         return 0;
2620 }
2621
2622 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2623 {
2624         return may_create(dir, dentry, SECCLASS_FILE);
2625 }
2626
2627 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2628 {
2629         return may_link(dir, old_dentry, MAY_LINK);
2630 }
2631
2632 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2633 {
2634         return may_link(dir, dentry, MAY_UNLINK);
2635 }
2636
2637 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2638 {
2639         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2640 }
2641
2642 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2643 {
2644         return may_create(dir, dentry, SECCLASS_DIR);
2645 }
2646
2647 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2648 {
2649         return may_link(dir, dentry, MAY_RMDIR);
2650 }
2651
2652 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2653 {
2654         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2655 }
2656
2657 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2658                                 struct inode *new_inode, struct dentry *new_dentry)
2659 {
2660         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2661 }
2662
2663 static int selinux_inode_readlink(struct dentry *dentry)
2664 {
2665         const struct cred *cred = current_cred();
2666
2667         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2668 }
2669
2670 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2671 {
2672         const struct cred *cred = current_cred();
2673
2674         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2675 }
2676
2677 static int selinux_inode_permission(struct inode *inode, int mask)
2678 {
2679         const struct cred *cred = current_cred();
2680
2681         if (!mask) {
2682                 /* No permission to check.  Existence test. */
2683                 return 0;
2684         }
2685
2686         return inode_has_perm(cred, inode,
2687                               file_mask_to_av(inode->i_mode, mask), NULL);
2688 }
2689
2690 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2691 {
2692         const struct cred *cred = current_cred();
2693         unsigned int ia_valid = iattr->ia_valid;
2694
2695         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2696         if (ia_valid & ATTR_FORCE) {
2697                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2698                               ATTR_FORCE);
2699                 if (!ia_valid)
2700                         return 0;
2701         }
2702
2703         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2704                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2705                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2706
2707         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2708 }
2709
2710 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2711 {
2712         const struct cred *cred = current_cred();
2713
2714         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2715 }
2716
2717 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2718 {
2719         const struct cred *cred = current_cred();
2720
2721         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2722                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2723                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2724                         if (!capable(CAP_SETFCAP))
2725                                 return -EPERM;
2726                 } else if (!capable(CAP_SYS_ADMIN)) {
2727                         /* A different attribute in the security namespace.
2728                            Restrict to administrator. */
2729                         return -EPERM;
2730                 }
2731         }
2732
2733         /* Not an attribute we recognize, so just check the
2734            ordinary setattr permission. */
2735         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2736 }
2737
2738 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2739                                   const void *value, size_t size, int flags)
2740 {
2741         struct inode *inode = dentry->d_inode;
2742         struct inode_security_struct *isec = inode->i_security;
2743         struct superblock_security_struct *sbsec;
2744         struct common_audit_data ad;
2745         u32 newsid, sid = current_sid();
2746         int rc = 0;
2747
2748         if (strcmp(name, XATTR_NAME_SELINUX))
2749                 return selinux_inode_setotherxattr(dentry, name);
2750
2751         sbsec = inode->i_sb->s_security;
2752         if (!(sbsec->flags & SE_SBLABELSUPP))
2753                 return -EOPNOTSUPP;
2754
2755         if (!is_owner_or_cap(inode))
2756                 return -EPERM;
2757
2758         COMMON_AUDIT_DATA_INIT(&ad, FS);
2759         ad.u.fs.path.dentry = dentry;
2760
2761         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2762                           FILE__RELABELFROM, &ad);
2763         if (rc)
2764                 return rc;
2765
2766         rc = security_context_to_sid(value, size, &newsid);
2767         if (rc == -EINVAL) {
2768                 if (!capable(CAP_MAC_ADMIN))
2769                         return rc;
2770                 rc = security_context_to_sid_force(value, size, &newsid);
2771         }
2772         if (rc)
2773                 return rc;
2774
2775         rc = avc_has_perm(sid, newsid, isec->sclass,
2776                           FILE__RELABELTO, &ad);
2777         if (rc)
2778                 return rc;
2779
2780         rc = security_validate_transition(isec->sid, newsid, sid,
2781                                           isec->sclass);
2782         if (rc)
2783                 return rc;
2784
2785         return avc_has_perm(newsid,
2786                             sbsec->sid,
2787                             SECCLASS_FILESYSTEM,
2788                             FILESYSTEM__ASSOCIATE,
2789                             &ad);
2790 }
2791
2792 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2793                                         const void *value, size_t size,
2794                                         int flags)
2795 {
2796         struct inode *inode = dentry->d_inode;
2797         struct inode_security_struct *isec = inode->i_security;
2798         u32 newsid;
2799         int rc;
2800
2801         if (strcmp(name, XATTR_NAME_SELINUX)) {
2802                 /* Not an attribute we recognize, so nothing to do. */
2803                 return;
2804         }
2805
2806         rc = security_context_to_sid_force(value, size, &newsid);
2807         if (rc) {
2808                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2809                        "for (%s, %lu), rc=%d\n",
2810                        inode->i_sb->s_id, inode->i_ino, -rc);
2811                 return;
2812         }
2813
2814         isec->sid = newsid;
2815         return;
2816 }
2817
2818 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2819 {
2820         const struct cred *cred = current_cred();
2821
2822         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2823 }
2824
2825 static int selinux_inode_listxattr(struct dentry *dentry)
2826 {
2827         const struct cred *cred = current_cred();
2828
2829         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2830 }
2831
2832 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2833 {
2834         if (strcmp(name, XATTR_NAME_SELINUX))
2835                 return selinux_inode_setotherxattr(dentry, name);
2836
2837         /* No one is allowed to remove a SELinux security label.
2838            You can change the label, but all data must be labeled. */
2839         return -EACCES;
2840 }
2841
2842 /*
2843  * Copy the inode security context value to the user.
2844  *
2845  * Permission check is handled by selinux_inode_getxattr hook.
2846  */
2847 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2848 {
2849         u32 size;
2850         int error;
2851         char *context = NULL;
2852         struct inode_security_struct *isec = inode->i_security;
2853
2854         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2855                 return -EOPNOTSUPP;
2856
2857         /*
2858          * If the caller has CAP_MAC_ADMIN, then get the raw context
2859          * value even if it is not defined by current policy; otherwise,
2860          * use the in-core value under current policy.
2861          * Use the non-auditing forms of the permission checks since
2862          * getxattr may be called by unprivileged processes commonly
2863          * and lack of permission just means that we fall back to the
2864          * in-core context value, not a denial.
2865          */
2866         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2867                                 SECURITY_CAP_NOAUDIT);
2868         if (!error)
2869                 error = security_sid_to_context_force(isec->sid, &context,
2870                                                       &size);
2871         else
2872                 error = security_sid_to_context(isec->sid, &context, &size);
2873         if (error)
2874                 return error;
2875         error = size;
2876         if (alloc) {
2877                 *buffer = context;
2878                 goto out_nofree;
2879         }
2880         kfree(context);
2881 out_nofree:
2882         return error;
2883 }
2884
2885 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2886                                      const void *value, size_t size, int flags)
2887 {
2888         struct inode_security_struct *isec = inode->i_security;
2889         u32 newsid;
2890         int rc;
2891
2892         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2893                 return -EOPNOTSUPP;
2894
2895         if (!value || !size)
2896                 return -EACCES;
2897
2898         rc = security_context_to_sid((void *)value, size, &newsid);
2899         if (rc)
2900                 return rc;
2901
2902         isec->sid = newsid;
2903         isec->initialized = 1;
2904         return 0;
2905 }
2906
2907 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2908 {
2909         const int len = sizeof(XATTR_NAME_SELINUX);
2910         if (buffer && len <= buffer_size)
2911                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2912         return len;
2913 }
2914
2915 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2916 {
2917         struct inode_security_struct *isec = inode->i_security;
2918         *secid = isec->sid;
2919 }
2920
2921 /* file security operations */
2922
2923 static int selinux_revalidate_file_permission(struct file *file, int mask)
2924 {
2925         const struct cred *cred = current_cred();
2926         struct inode *inode = file->f_path.dentry->d_inode;
2927
2928         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2929         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2930                 mask |= MAY_APPEND;
2931
2932         return file_has_perm(cred, file,
2933                              file_mask_to_av(inode->i_mode, mask));
2934 }
2935
2936 static int selinux_file_permission(struct file *file, int mask)
2937 {
2938         struct inode *inode = file->f_path.dentry->d_inode;
2939         struct file_security_struct *fsec = file->f_security;
2940         struct inode_security_struct *isec = inode->i_security;
2941         u32 sid = current_sid();
2942
2943         if (!mask)
2944                 /* No permission to check.  Existence test. */
2945                 return 0;
2946
2947         if (sid == fsec->sid && fsec->isid == isec->sid &&
2948             fsec->pseqno == avc_policy_seqno())
2949                 /* No change since dentry_open check. */
2950                 return 0;
2951
2952         return selinux_revalidate_file_permission(file, mask);
2953 }
2954
2955 static int selinux_file_alloc_security(struct file *file)
2956 {
2957         return file_alloc_security(file);
2958 }
2959
2960 static void selinux_file_free_security(struct file *file)
2961 {
2962         file_free_security(file);
2963 }
2964
2965 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2966                               unsigned long arg)
2967 {
2968         const struct cred *cred = current_cred();
2969         u32 av = 0;
2970
2971         if (_IOC_DIR(cmd) & _IOC_WRITE)
2972                 av |= FILE__WRITE;
2973         if (_IOC_DIR(cmd) & _IOC_READ)
2974                 av |= FILE__READ;
2975         if (!av)
2976                 av = FILE__IOCTL;
2977
2978         return file_has_perm(cred, file, av);
2979 }
2980
2981 static int default_noexec;
2982
2983 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2984 {
2985         const struct cred *cred = current_cred();
2986         int rc = 0;
2987
2988         if (default_noexec &&
2989             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2990                 /*
2991                  * We are making executable an anonymous mapping or a
2992                  * private file mapping that will also be writable.
2993                  * This has an additional check.
2994                  */
2995                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2996                 if (rc)
2997                         goto error;
2998         }
2999
3000         if (file) {
3001                 /* read access is always possible with a mapping */
3002                 u32 av = FILE__READ;
3003
3004                 /* write access only matters if the mapping is shared */
3005                 if (shared && (prot & PROT_WRITE))
3006                         av |= FILE__WRITE;
3007
3008                 if (prot & PROT_EXEC)
3009                         av |= FILE__EXECUTE;
3010
3011                 return file_has_perm(cred, file, av);
3012         }
3013
3014 error:
3015         return rc;
3016 }
3017
3018 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3019                              unsigned long prot, unsigned long flags,
3020                              unsigned long addr, unsigned long addr_only)
3021 {
3022         int rc = 0;
3023         u32 sid = current_sid();
3024
3025         /*
3026          * notice that we are intentionally putting the SELinux check before
3027          * the secondary cap_file_mmap check.  This is such a likely attempt
3028          * at bad behaviour/exploit that we always want to get the AVC, even
3029          * if DAC would have also denied the operation.
3030          */
3031         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3032                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3033                                   MEMPROTECT__MMAP_ZERO, NULL);
3034                 if (rc)
3035                         return rc;
3036         }
3037
3038         /* do DAC check on address space usage */
3039         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3040         if (rc || addr_only)
3041                 return rc;
3042
3043         if (selinux_checkreqprot)
3044                 prot = reqprot;
3045
3046         return file_map_prot_check(file, prot,
3047                                    (flags & MAP_TYPE) == MAP_SHARED);
3048 }
3049
3050 static int selinux_file_mprotect(struct vm_area_struct *vma,
3051                                  unsigned long reqprot,
3052                                  unsigned long prot)
3053 {
3054         const struct cred *cred = current_cred();
3055
3056         if (selinux_checkreqprot)
3057                 prot = reqprot;
3058
3059         if (default_noexec &&
3060             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3061                 int rc = 0;
3062                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3063                     vma->vm_end <= vma->vm_mm->brk) {
3064                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3065                 } else if (!vma->vm_file &&
3066                            vma->vm_start <= vma->vm_mm->start_stack &&
3067                            vma->vm_end >= vma->vm_mm->start_stack) {
3068                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3069                 } else if (vma->vm_file && vma->anon_vma) {
3070                         /*
3071                          * We are making executable a file mapping that has
3072                          * had some COW done. Since pages might have been
3073                          * written, check ability to execute the possibly
3074                          * modified content.  This typically should only
3075                          * occur for text relocations.
3076                          */
3077                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3078                 }
3079                 if (rc)
3080                         return rc;
3081         }
3082
3083         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3084 }
3085
3086 static int selinux_file_lock(struct file *file, unsigned int cmd)
3087 {
3088         const struct cred *cred = current_cred();
3089
3090         return file_has_perm(cred, file, FILE__LOCK);
3091 }
3092
3093 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3094                               unsigned long arg)
3095 {
3096         const struct cred *cred = current_cred();
3097         int err = 0;
3098
3099         switch (cmd) {
3100         case F_SETFL:
3101                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3102                         err = -EINVAL;
3103                         break;
3104                 }
3105
3106                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3107                         err = file_has_perm(cred, file, FILE__WRITE);
3108                         break;
3109                 }
3110                 /* fall through */
3111         case F_SETOWN:
3112         case F_SETSIG:
3113         case F_GETFL:
3114         case F_GETOWN:
3115         case F_GETSIG:
3116                 /* Just check FD__USE permission */
3117                 err = file_has_perm(cred, file, 0);
3118                 break;
3119         case F_GETLK:
3120         case F_SETLK:
3121         case F_SETLKW:
3122 #if BITS_PER_LONG == 32
3123         case F_GETLK64:
3124         case F_SETLK64:
3125         case F_SETLKW64:
3126 #endif
3127                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3128                         err = -EINVAL;
3129                         break;
3130                 }
3131                 err = file_has_perm(cred, file, FILE__LOCK);
3132                 break;
3133         }
3134
3135         return err;
3136 }
3137
3138 static int selinux_file_set_fowner(struct file *file)
3139 {
3140         struct file_security_struct *fsec;
3141
3142         fsec = file->f_security;
3143         fsec->fown_sid = current_sid();
3144
3145         return 0;
3146 }
3147
3148 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3149                                        struct fown_struct *fown, int signum)
3150 {
3151         struct file *file;
3152         u32 sid = task_sid(tsk);
3153         u32 perm;
3154         struct file_security_struct *fsec;
3155
3156         /* struct fown_struct is never outside the context of a struct file */
3157         file = container_of(fown, struct file, f_owner);
3158
3159         fsec = file->f_security;
3160
3161         if (!signum)
3162                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3163         else
3164                 perm = signal_to_av(signum);
3165
3166         return avc_has_perm(fsec->fown_sid, sid,
3167                             SECCLASS_PROCESS, perm, NULL);
3168 }
3169
3170 static int selinux_file_receive(struct file *file)
3171 {
3172         const struct cred *cred = current_cred();
3173
3174         return file_has_perm(cred, file, file_to_av(file));
3175 }
3176
3177 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3178 {
3179         struct file_security_struct *fsec;
3180         struct inode *inode;
3181         struct inode_security_struct *isec;
3182
3183         inode = file->f_path.dentry->d_inode;
3184         fsec = file->f_security;
3185         isec = inode->i_security;
3186         /*
3187          * Save inode label and policy sequence number
3188          * at open-time so that selinux_file_permission
3189          * can determine whether revalidation is necessary.
3190          * Task label is already saved in the file security
3191          * struct as its SID.
3192          */
3193         fsec->isid = isec->sid;
3194         fsec->pseqno = avc_policy_seqno();
3195         /*
3196          * Since the inode label or policy seqno may have changed
3197          * between the selinux_inode_permission check and the saving
3198          * of state above, recheck that access is still permitted.
3199          * Otherwise, access might never be revalidated against the
3200          * new inode label or new policy.
3201          * This check is not redundant - do not remove.
3202          */
3203         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3204 }
3205
3206 /* task security operations */
3207
3208 static int selinux_task_create(unsigned long clone_flags)
3209 {
3210         return current_has_perm(current, PROCESS__FORK);
3211 }
3212
3213 /*
3214  * allocate the SELinux part of blank credentials
3215  */
3216 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3217 {
3218         struct task_security_struct *tsec;
3219
3220         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3221         if (!tsec)
3222                 return -ENOMEM;
3223
3224         cred->security = tsec;
3225         return 0;
3226 }
3227
3228 /*
3229  * detach and free the LSM part of a set of credentials
3230  */
3231 static void selinux_cred_free(struct cred *cred)
3232 {
3233         struct task_security_struct *tsec = cred->security;
3234
3235         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3236         cred->security = (void *) 0x7UL;
3237         kfree(tsec);
3238 }
3239
3240 /*
3241  * prepare a new set of credentials for modification
3242  */
3243 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3244                                 gfp_t gfp)
3245 {
3246         const struct task_security_struct *old_tsec;
3247         struct task_security_struct *tsec;
3248
3249         old_tsec = old->security;
3250
3251         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3252         if (!tsec)
3253                 return -ENOMEM;
3254
3255         new->security = tsec;
3256         return 0;
3257 }
3258
3259 /*
3260  * transfer the SELinux data to a blank set of creds
3261  */
3262 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3263 {
3264         const struct task_security_struct *old_tsec = old->security;
3265         struct task_security_struct *tsec = new->security;
3266
3267         *tsec = *old_tsec;
3268 }
3269
3270 /*
3271  * set the security data for a kernel service
3272  * - all the creation contexts are set to unlabelled
3273  */
3274 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3275 {
3276         struct task_security_struct *tsec = new->security;
3277         u32 sid = current_sid();
3278         int ret;
3279
3280         ret = avc_has_perm(sid, secid,
3281                            SECCLASS_KERNEL_SERVICE,
3282                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3283                            NULL);
3284         if (ret == 0) {
3285                 tsec->sid = secid;
3286                 tsec->create_sid = 0;
3287                 tsec->keycreate_sid = 0;
3288                 tsec->sockcreate_sid = 0;
3289         }
3290         return ret;
3291 }
3292
3293 /*
3294  * set the file creation context in a security record to the same as the
3295  * objective context of the specified inode
3296  */
3297 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3298 {
3299         struct inode_security_struct *isec = inode->i_security;
3300         struct task_security_struct *tsec = new->security;
3301         u32 sid = current_sid();
3302         int ret;
3303
3304         ret = avc_has_perm(sid, isec->sid,
3305                            SECCLASS_KERNEL_SERVICE,
3306                            KERNEL_SERVICE__CREATE_FILES_AS,
3307                            NULL);
3308
3309         if (ret == 0)
3310                 tsec->create_sid = isec->sid;
3311         return ret;
3312 }
3313
3314 static int selinux_kernel_module_request(char *kmod_name)
3315 {
3316         u32 sid;
3317         struct common_audit_data ad;
3318
3319         sid = task_sid(current);
3320
3321         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3322         ad.u.kmod_name = kmod_name;
3323
3324         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3325                             SYSTEM__MODULE_REQUEST, &ad);
3326 }
3327
3328 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3329 {
3330         return current_has_perm(p, PROCESS__SETPGID);
3331 }
3332
3333 static int selinux_task_getpgid(struct task_struct *p)
3334 {
3335         return current_has_perm(p, PROCESS__GETPGID);
3336 }
3337
3338 static int selinux_task_getsid(struct task_struct *p)
3339 {
3340         return current_has_perm(p, PROCESS__GETSESSION);
3341 }
3342
3343 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3344 {
3345         *secid = task_sid(p);
3346 }
3347
3348 static int selinux_task_setnice(struct task_struct *p, int nice)
3349 {
3350         int rc;
3351
3352         rc = cap_task_setnice(p, nice);
3353         if (rc)
3354                 return rc;
3355
3356         return current_has_perm(p, PROCESS__SETSCHED);
3357 }
3358
3359 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3360 {
3361         int rc;
3362
3363         rc = cap_task_setioprio(p, ioprio);
3364         if (rc)
3365                 return rc;
3366
3367         return current_has_perm(p, PROCESS__SETSCHED);
3368 }
3369
3370 static int selinux_task_getioprio(struct task_struct *p)
3371 {
3372         return current_has_perm(p, PROCESS__GETSCHED);
3373 }
3374
3375 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3376                 struct rlimit *new_rlim)
3377 {
3378         struct rlimit *old_rlim = p->signal->rlim + resource;
3379
3380         /* Control the ability to change the hard limit (whether
3381            lowering or raising it), so that the hard limit can
3382            later be used as a safe reset point for the soft limit
3383            upon context transitions.  See selinux_bprm_committing_creds. */
3384         if (old_rlim->rlim_max != new_rlim->rlim_max)
3385                 return current_has_perm(p, PROCESS__SETRLIMIT);
3386
3387         return 0;
3388 }
3389
3390 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3391 {
3392         int rc;
3393
3394         rc = cap_task_setscheduler(p, policy, lp);
3395         if (rc)
3396                 return rc;
3397
3398         return current_has_perm(p, PROCESS__SETSCHED);
3399 }
3400
3401 static int selinux_task_getscheduler(struct task_struct *p)
3402 {
3403         return current_has_perm(p, PROCESS__GETSCHED);
3404 }
3405
3406 static int selinux_task_movememory(struct task_struct *p)
3407 {
3408         return current_has_perm(p, PROCESS__SETSCHED);
3409 }
3410
3411 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3412                                 int sig, u32 secid)
3413 {
3414         u32 perm;
3415         int rc;
3416
3417         if (!sig)
3418                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3419         else
3420                 perm = signal_to_av(sig);
3421         if (secid)
3422                 rc = avc_has_perm(secid, task_sid(p),
3423                                   SECCLASS_PROCESS, perm, NULL);
3424         else
3425                 rc = current_has_perm(p, perm);
3426         return rc;
3427 }
3428
3429 static int selinux_task_wait(struct task_struct *p)
3430 {
3431         return task_has_perm(p, current, PROCESS__SIGCHLD);
3432 }
3433
3434 static void selinux_task_to_inode(struct task_struct *p,
3435                                   struct inode *inode)
3436 {
3437         struct inode_security_struct *isec = inode->i_security;
3438         u32 sid = task_sid(p);
3439
3440         isec->sid = sid;
3441         isec->initialized = 1;
3442 }
3443
3444 /* Returns error only if unable to parse addresses */
3445 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3446                         struct common_audit_data *ad, u8 *proto)
3447 {
3448         int offset, ihlen, ret = -EINVAL;
3449         struct iphdr _iph, *ih;
3450
3451         offset = skb_network_offset(skb);
3452         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3453         if (ih == NULL)
3454                 goto out;
3455
3456         ihlen = ih->ihl * 4;
3457         if (ihlen < sizeof(_iph))
3458                 goto out;
3459
3460         ad->u.net.v4info.saddr = ih->saddr;
3461         ad->u.net.v4info.daddr = ih->daddr;
3462         ret = 0;
3463
3464         if (proto)
3465                 *proto = ih->protocol;
3466
3467         switch (ih->protocol) {
3468         case IPPROTO_TCP: {
3469                 struct tcphdr _tcph, *th;
3470
3471                 if (ntohs(ih->frag_off) & IP_OFFSET)
3472                         break;
3473
3474                 offset += ihlen;
3475                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3476                 if (th == NULL)
3477                         break;
3478
3479                 ad->u.net.sport = th->source;
3480                 ad->u.net.dport = th->dest;
3481                 break;
3482         }
3483
3484         case IPPROTO_UDP: {
3485                 struct udphdr _udph, *uh;
3486
3487                 if (ntohs(ih->frag_off) & IP_OFFSET)
3488                         break;
3489
3490                 offset += ihlen;
3491                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3492                 if (uh == NULL)
3493                         break;
3494
3495                 ad->u.net.sport = uh->source;
3496                 ad->u.net.dport = uh->dest;
3497                 break;
3498         }
3499
3500         case IPPROTO_DCCP: {
3501                 struct dccp_hdr _dccph, *dh;
3502
3503                 if (ntohs(ih->frag_off) & IP_OFFSET)
3504                         break;
3505
3506                 offset += ihlen;
3507                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3508                 if (dh == NULL)
3509                         break;
3510
3511                 ad->u.net.sport = dh->dccph_sport;
3512                 ad->u.net.dport = dh->dccph_dport;
3513                 break;
3514         }
3515
3516         default:
3517                 break;
3518         }
3519 out:
3520         return ret;
3521 }
3522
3523 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3524
3525 /* Returns error only if unable to parse addresses */
3526 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3527                         struct common_audit_data *ad, u8 *proto)
3528 {
3529         u8 nexthdr;
3530         int ret = -EINVAL, offset;
3531         struct ipv6hdr _ipv6h, *ip6;
3532
3533         offset = skb_network_offset(skb);
3534         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3535         if (ip6 == NULL)
3536                 goto out;
3537
3538         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3539         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3540         ret = 0;
3541
3542         nexthdr = ip6->nexthdr;
3543         offset += sizeof(_ipv6h);
3544         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3545         if (offset < 0)
3546                 goto out;
3547
3548         if (proto)
3549                 *proto = nexthdr;
3550
3551         switch (nexthdr) {
3552         case IPPROTO_TCP: {
3553                 struct tcphdr _tcph, *th;
3554
3555                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3556                 if (th == NULL)
3557                         break;
3558
3559                 ad->u.net.sport = th->source;
3560                 ad->u.net.dport = th->dest;
3561                 break;
3562         }
3563
3564         case IPPROTO_UDP: {
3565                 struct udphdr _udph, *uh;
3566
3567                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3568                 if (uh == NULL)
3569                         break;
3570
3571                 ad->u.net.sport = uh->source;
3572                 ad->u.net.dport = uh->dest;
3573                 break;
3574         }
3575
3576         case IPPROTO_DCCP: {
3577                 struct dccp_hdr _dccph, *dh;
3578
3579                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3580                 if (dh == NULL)
3581                         break;
3582
3583                 ad->u.net.sport = dh->dccph_sport;
3584                 ad->u.net.dport = dh->dccph_dport;
3585                 break;
3586         }
3587
3588         /* includes fragments */
3589         default:
3590                 break;
3591         }
3592 out:
3593         return ret;
3594 }
3595
3596 #endif /* IPV6 */
3597
3598 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3599                              char **_addrp, int src, u8 *proto)
3600 {
3601         char *addrp;
3602         int ret;
3603
3604         switch (ad->u.net.family) {
3605         case PF_INET:
3606                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3607                 if (ret)
3608                         goto parse_error;
3609                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3610                                        &ad->u.net.v4info.daddr);
3611                 goto okay;
3612
3613 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3614         case PF_INET6:
3615                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3616                 if (ret)
3617                         goto parse_error;
3618                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3619                                        &ad->u.net.v6info.daddr);
3620                 goto okay;
3621 #endif  /* IPV6 */
3622         default:
3623                 addrp = NULL;
3624                 goto okay;
3625         }
3626
3627 parse_error:
3628         printk(KERN_WARNING
3629                "SELinux: failure in selinux_parse_skb(),"
3630                " unable to parse packet\n");
3631         return ret;
3632
3633 okay:
3634         if (_addrp)
3635                 *_addrp = addrp;
3636         return 0;
3637 }
3638
3639 /**
3640  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3641  * @skb: the packet
3642  * @family: protocol family
3643  * @sid: the packet's peer label SID
3644  *
3645  * Description:
3646  * Check the various different forms of network peer labeling and determine
3647  * the peer label/SID for the packet; most of the magic actually occurs in
3648  * the security server function security_net_peersid_cmp().  The function
3649  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3650  * or -EACCES if @sid is invalid due to inconsistencies with the different
3651  * peer labels.
3652  *
3653  */
3654 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3655 {
3656         int err;
3657         u32 xfrm_sid;
3658         u32 nlbl_sid;
3659         u32 nlbl_type;
3660
3661         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3662         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3663
3664         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3665         if (unlikely(err)) {
3666                 printk(KERN_WARNING
3667                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3668                        " unable to determine packet's peer label\n");
3669                 return -EACCES;
3670         }
3671
3672         return 0;
3673 }
3674
3675 /* socket security operations */
3676 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3677                            u32 perms)
3678 {
3679         struct inode_security_struct *isec;
3680         struct common_audit_data ad;
3681         u32 sid;
3682         int err = 0;
3683
3684         isec = SOCK_INODE(sock)->i_security;
3685
3686         if (isec->sid == SECINITSID_KERNEL)
3687                 goto out;
3688         sid = task_sid(task);
3689
3690         COMMON_AUDIT_DATA_INIT(&ad, NET);
3691         ad.u.net.sk = sock->sk;
3692         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3693
3694 out:
3695         return err;
3696 }
3697
3698 static int selinux_socket_create(int family, int type,
3699                                  int protocol, int kern)
3700 {
3701         const struct cred *cred = current_cred();
3702         const struct task_security_struct *tsec = cred->security;
3703         u32 sid, newsid;
3704         u16 secclass;
3705         int err = 0;
3706
3707         if (kern)
3708                 goto out;
3709
3710         sid = tsec->sid;
3711         newsid = tsec->sockcreate_sid ?: sid;
3712
3713         secclass = socket_type_to_security_class(family, type, protocol);
3714         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3715
3716 out:
3717         return err;
3718 }
3719
3720 static int selinux_socket_post_create(struct socket *sock, int family,
3721                                       int type, int protocol, int kern)
3722 {
3723         const struct cred *cred = current_cred();
3724         const struct task_security_struct *tsec = cred->security;
3725         struct inode_security_struct *isec;
3726         struct sk_security_struct *sksec;
3727         u32 sid, newsid;
3728         int err = 0;
3729
3730         sid = tsec->sid;
3731         newsid = tsec->sockcreate_sid;
3732
3733         isec = SOCK_INODE(sock)->i_security;
3734
3735         if (kern)
3736                 isec->sid = SECINITSID_KERNEL;
3737         else if (newsid)
3738                 isec->sid = newsid;
3739         else
3740                 isec->sid = sid;
3741
3742         isec->sclass = socket_type_to_security_class(family, type, protocol);
3743         isec->initialized = 1;
3744
3745         if (sock->sk) {
3746                 sksec = sock->sk->sk_security;
3747                 sksec->sid = isec->sid;
3748                 sksec->sclass = isec->sclass;
3749                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3750         }
3751
3752         return err;
3753 }
3754
3755 /* Range of port numbers used to automatically bind.
3756    Need to determine whether we should perform a name_bind
3757    permission check between the socket and the port number. */
3758
3759 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3760 {
3761         u16 family;
3762         int err;
3763
3764         err = socket_has_perm(current, sock, SOCKET__BIND);
3765         if (err)
3766                 goto out;
3767
3768         /*
3769          * If PF_INET or PF_INET6, check name_bind permission for the port.
3770          * Multiple address binding for SCTP is not supported yet: we just
3771          * check the first address now.
3772          */
3773         family = sock->sk->sk_family;
3774         if (family == PF_INET || family == PF_INET6) {
3775                 char *addrp;
3776                 struct inode_security_struct *isec;
3777                 struct common_audit_data ad;
3778                 struct sockaddr_in *addr4 = NULL;
3779                 struct sockaddr_in6 *addr6 = NULL;
3780                 unsigned short snum;
3781                 struct sock *sk = sock->sk;
3782                 u32 sid, node_perm;
3783
3784                 isec = SOCK_INODE(sock)->i_security;
3785
3786                 if (family == PF_INET) {
3787                         addr4 = (struct sockaddr_in *)address;
3788                         snum = ntohs(addr4->sin_port);
3789                         addrp = (char *)&addr4->sin_addr.s_addr;
3790                 } else {
3791                         addr6 = (struct sockaddr_in6 *)address;
3792                         snum = ntohs(addr6->sin6_port);
3793                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3794                 }
3795
3796                 if (snum) {
3797                         int low, high;
3798
3799                         inet_get_local_port_range(&low, &high);
3800
3801                         if (snum < max(PROT_SOCK, low) || snum > high) {
3802                                 err = sel_netport_sid(sk->sk_protocol,
3803                                                       snum, &sid);
3804                                 if (err)
3805                                         goto out;
3806                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3807                                 ad.u.net.sport = htons(snum);
3808                                 ad.u.net.family = family;
3809                                 err = avc_has_perm(isec->sid, sid,
3810                                                    isec->sclass,
3811                                                    SOCKET__NAME_BIND, &ad);
3812                                 if (err)
3813                                         goto out;
3814                         }
3815                 }
3816
3817                 switch (isec->sclass) {
3818                 case SECCLASS_TCP_SOCKET:
3819                         node_perm = TCP_SOCKET__NODE_BIND;
3820                         break;
3821
3822                 case SECCLASS_UDP_SOCKET:
3823                         node_perm = UDP_SOCKET__NODE_BIND;
3824                         break;
3825
3826                 case SECCLASS_DCCP_SOCKET:
3827                         node_perm = DCCP_SOCKET__NODE_BIND;
3828                         break;
3829
3830                 default:
3831                         node_perm = RAWIP_SOCKET__NODE_BIND;
3832                         break;
3833                 }
3834
3835                 err = sel_netnode_sid(addrp, family, &sid);
3836                 if (err)
3837                         goto out;
3838
3839                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3840                 ad.u.net.sport = htons(snum);
3841                 ad.u.net.family = family;
3842
3843                 if (family == PF_INET)
3844                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3845                 else
3846                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3847
3848                 err = avc_has_perm(isec->sid, sid,
3849                                    isec->sclass, node_perm, &ad);
3850                 if (err)
3851                         goto out;
3852         }
3853 out:
3854         return err;
3855 }
3856
3857 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3858 {
3859         struct sock *sk = sock->sk;
3860         struct inode_security_struct *isec;
3861         int err;
3862
3863         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3864         if (err)
3865                 return err;
3866
3867         /*
3868          * If a TCP or DCCP socket, check name_connect permission for the port.
3869          */
3870         isec = SOCK_INODE(sock)->i_security;
3871         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3872             isec->sclass == SECCLASS_DCCP_SOCKET) {
3873                 struct common_audit_data ad;
3874                 struct sockaddr_in *addr4 = NULL;
3875                 struct sockaddr_in6 *addr6 = NULL;
3876                 unsigned short snum;
3877                 u32 sid, perm;
3878
3879                 if (sk->sk_family == PF_INET) {
3880                         addr4 = (struct sockaddr_in *)address;
3881                         if (addrlen < sizeof(struct sockaddr_in))
3882                                 return -EINVAL;
3883                         snum = ntohs(addr4->sin_port);
3884                 } else {
3885                         addr6 = (struct sockaddr_in6 *)address;
3886                         if (addrlen < SIN6_LEN_RFC2133)
3887                                 return -EINVAL;
3888                         snum = ntohs(addr6->sin6_port);
3889                 }
3890
3891                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3892                 if (err)
3893                         goto out;
3894
3895                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3896                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3897
3898                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3899                 ad.u.net.dport = htons(snum);
3900                 ad.u.net.family = sk->sk_family;
3901                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3902                 if (err)
3903                         goto out;
3904         }
3905
3906         err = selinux_netlbl_socket_connect(sk, address);
3907
3908 out:
3909         return err;
3910 }
3911
3912 static int selinux_socket_listen(struct socket *sock, int backlog)
3913 {
3914         return socket_has_perm(current, sock, SOCKET__LISTEN);
3915 }
3916
3917 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3918 {
3919         int err;
3920         struct inode_security_struct *isec;
3921         struct inode_security_struct *newisec;
3922
3923         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3924         if (err)
3925                 return err;
3926
3927         newisec = SOCK_INODE(newsock)->i_security;
3928
3929         isec = SOCK_INODE(sock)->i_security;
3930         newisec->sclass = isec->sclass;
3931         newisec->sid = isec->sid;
3932         newisec->initialized = 1;
3933
3934         return 0;
3935 }
3936
3937 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3938                                   int size)
3939 {
3940         return socket_has_perm(current, sock, SOCKET__WRITE);
3941 }
3942
3943 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3944                                   int size, int flags)
3945 {
3946         return socket_has_perm(current, sock, SOCKET__READ);
3947 }
3948
3949 static int selinux_socket_getsockname(struct socket *sock)
3950 {
3951         return socket_has_perm(current, sock, SOCKET__GETATTR);
3952 }
3953
3954 static int selinux_socket_getpeername(struct socket *sock)
3955 {
3956         return socket_has_perm(current, sock, SOCKET__GETATTR);
3957 }
3958
3959 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3960 {
3961         int err;
3962
3963         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3964         if (err)
3965                 return err;
3966
3967         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3968 }
3969
3970 static int selinux_socket_getsockopt(struct socket *sock, int level,
3971                                      int optname)
3972 {
3973         return socket_has_perm(current, sock, SOCKET__GETOPT);
3974 }
3975
3976 static int selinux_socket_shutdown(struct socket *sock, int how)
3977 {
3978         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3979 }
3980
3981 static int selinux_socket_unix_stream_connect(struct socket *sock,
3982                                               struct socket *other,
3983                                               struct sock *newsk)
3984 {
3985         struct sk_security_struct *sksec;
3986         struct inode_security_struct *isec;
3987         struct inode_security_struct *other_isec;
3988         struct common_audit_data ad;
3989         int err;
3990
3991         isec = SOCK_INODE(sock)->i_security;
3992         other_isec = SOCK_INODE(other)->i_security;
3993
3994         COMMON_AUDIT_DATA_INIT(&ad, NET);
3995         ad.u.net.sk = other->sk;
3996
3997         err = avc_has_perm(isec->sid, other_isec->sid,
3998                            isec->sclass,
3999                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4000         if (err)
4001                 return err;
4002
4003         /* connecting socket */
4004         sksec = sock->sk->sk_security;
4005         sksec->peer_sid = other_isec->sid;
4006
4007         /* server child socket */
4008         sksec = newsk->sk_security;
4009         sksec->peer_sid = isec->sid;
4010         err = security_sid_mls_copy(other_isec->sid, sksec->peer_sid, &sksec->sid);
4011
4012         return err;
4013 }
4014
4015 static int selinux_socket_unix_may_send(struct socket *sock,
4016                                         struct socket *other)
4017 {
4018         struct inode_security_struct *isec;
4019         struct inode_security_struct *other_isec;
4020         struct common_audit_data ad;
4021         int err;
4022
4023         isec = SOCK_INODE(sock)->i_security;
4024         other_isec = SOCK_INODE(other)->i_security;
4025
4026         COMMON_AUDIT_DATA_INIT(&ad, NET);
4027         ad.u.net.sk = other->sk;
4028
4029         err = avc_has_perm(isec->sid, other_isec->sid,
4030                            isec->sclass, SOCKET__SENDTO, &ad);
4031         if (err)
4032                 return err;
4033
4034         return 0;
4035 }
4036
4037 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4038                                     u32 peer_sid,
4039                                     struct common_audit_data *ad)
4040 {
4041         int err;
4042         u32 if_sid;
4043         u32 node_sid;
4044
4045         err = sel_netif_sid(ifindex, &if_sid);
4046         if (err)
4047                 return err;
4048         err = avc_has_perm(peer_sid, if_sid,
4049                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4050         if (err)
4051                 return err;
4052
4053         err = sel_netnode_sid(addrp, family, &node_sid);
4054         if (err)
4055                 return err;
4056         return avc_has_perm(peer_sid, node_sid,
4057                             SECCLASS_NODE, NODE__RECVFROM, ad);
4058 }
4059
4060 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4061                                        u16 family)
4062 {
4063         int err = 0;
4064         struct sk_security_struct *sksec = sk->sk_security;
4065         u32 peer_sid;
4066         u32 sk_sid = sksec->sid;
4067         struct common_audit_data ad;
4068         char *addrp;
4069
4070         COMMON_AUDIT_DATA_INIT(&ad, NET);
4071         ad.u.net.netif = skb->skb_iif;
4072         ad.u.net.family = family;
4073         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4074         if (err)
4075                 return err;
4076
4077         if (selinux_secmark_enabled()) {
4078                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4079                                    PACKET__RECV, &ad);
4080                 if (err)
4081                         return err;
4082         }
4083
4084         if (selinux_policycap_netpeer) {
4085                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4086                 if (err)
4087                         return err;
4088                 err = avc_has_perm(sk_sid, peer_sid,
4089                                    SECCLASS_PEER, PEER__RECV, &ad);
4090                 if (err)
4091                         selinux_netlbl_err(skb, err, 0);
4092         } else {
4093                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4094                 if (err)
4095                         return err;
4096                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4097         }
4098
4099         return err;
4100 }
4101
4102 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4103 {
4104         int err;
4105         struct sk_security_struct *sksec = sk->sk_security;
4106         u16 family = sk->sk_family;
4107         u32 sk_sid = sksec->sid;
4108         struct common_audit_data ad;
4109         char *addrp;
4110         u8 secmark_active;
4111         u8 peerlbl_active;
4112
4113         if (family != PF_INET && family != PF_INET6)
4114                 return 0;
4115
4116         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4117         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4118                 family = PF_INET;
4119
4120         /* If any sort of compatibility mode is enabled then handoff processing
4121          * to the selinux_sock_rcv_skb_compat() function to deal with the
4122          * special handling.  We do this in an attempt to keep this function
4123          * as fast and as clean as possible. */
4124         if (!selinux_policycap_netpeer)
4125                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4126
4127         secmark_active = selinux_secmark_enabled();
4128         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4129         if (!secmark_active && !peerlbl_active)
4130                 return 0;
4131
4132         COMMON_AUDIT_DATA_INIT(&ad, NET);
4133         ad.u.net.netif = skb->skb_iif;
4134         ad.u.net.family = family;
4135         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4136         if (err)
4137                 return err;
4138
4139         if (peerlbl_active) {
4140                 u32 peer_sid;
4141
4142                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4143                 if (err)
4144                         return err;
4145                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4146                                                peer_sid, &ad);
4147                 if (err) {
4148                         selinux_netlbl_err(skb, err, 0);
4149                         return err;
4150                 }
4151                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4152                                    PEER__RECV, &ad);
4153                 if (err)
4154                         selinux_netlbl_err(skb, err, 0);
4155         }
4156
4157         if (secmark_active) {
4158                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4159                                    PACKET__RECV, &ad);
4160                 if (err)
4161                         return err;
4162         }
4163
4164         return err;
4165 }
4166
4167 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4168                                             int __user *optlen, unsigned len)
4169 {
4170         int err = 0;
4171         char *scontext;
4172         u32 scontext_len;
4173         struct sk_security_struct *sksec;
4174         struct inode_security_struct *isec;
4175         u32 peer_sid = SECSID_NULL;
4176
4177         isec = SOCK_INODE(sock)->i_security;
4178
4179         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4180             isec->sclass == SECCLASS_TCP_SOCKET) {
4181                 sksec = sock->sk->sk_security;
4182                 peer_sid = sksec->peer_sid;
4183         }
4184         if (peer_sid == SECSID_NULL) {
4185                 err = -ENOPROTOOPT;
4186                 goto out;
4187         }
4188
4189         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4190
4191         if (err)
4192                 goto out;
4193
4194         if (scontext_len > len) {
4195                 err = -ERANGE;
4196                 goto out_len;
4197         }
4198
4199         if (copy_to_user(optval, scontext, scontext_len))
4200                 err = -EFAULT;
4201
4202 out_len:
4203         if (put_user(scontext_len, optlen))
4204                 err = -EFAULT;
4205
4206         kfree(scontext);
4207 out:
4208         return err;
4209 }
4210
4211 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4212 {
4213         u32 peer_secid = SECSID_NULL;
4214         u16 family;
4215
4216         if (skb && skb->protocol == htons(ETH_P_IP))
4217                 family = PF_INET;
4218         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4219                 family = PF_INET6;
4220         else if (sock)
4221                 family = sock->sk->sk_family;
4222         else
4223                 goto out;
4224
4225         if (sock && family == PF_UNIX)
4226                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4227         else if (skb)
4228                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4229
4230 out:
4231         *secid = peer_secid;
4232         if (peer_secid == SECSID_NULL)
4233                 return -EINVAL;
4234         return 0;
4235 }
4236
4237 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4238 {
4239         return sk_alloc_security(sk, family, priority);
4240 }
4241
4242 static void selinux_sk_free_security(struct sock *sk)
4243 {
4244         sk_free_security(sk);
4245 }
4246
4247 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4248 {
4249         struct sk_security_struct *sksec = sk->sk_security;
4250         struct sk_security_struct *newsksec = newsk->sk_security;
4251
4252         newsksec->sid = sksec->sid;
4253         newsksec->peer_sid = sksec->peer_sid;
4254         newsksec->sclass = sksec->sclass;
4255
4256         selinux_netlbl_sk_security_reset(newsksec);
4257 }
4258
4259 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4260 {
4261         if (!sk)
4262                 *secid = SECINITSID_ANY_SOCKET;
4263         else {
4264                 struct sk_security_struct *sksec = sk->sk_security;
4265
4266                 *secid = sksec->sid;
4267         }
4268 }
4269
4270 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4271 {
4272         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4273         struct sk_security_struct *sksec = sk->sk_security;
4274
4275         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4276             sk->sk_family == PF_UNIX)
4277                 isec->sid = sksec->sid;
4278         sksec->sclass = isec->sclass;
4279 }
4280
4281 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4282                                      struct request_sock *req)
4283 {
4284         struct sk_security_struct *sksec = sk->sk_security;
4285         int err;
4286         u16 family = sk->sk_family;
4287         u32 newsid;
4288         u32 peersid;
4289
4290         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4291         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4292                 family = PF_INET;
4293
4294         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4295         if (err)
4296                 return err;
4297         if (peersid == SECSID_NULL) {
4298                 req->secid = sksec->sid;
4299                 req->peer_secid = SECSID_NULL;
4300         } else {
4301                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4302                 if (err)
4303                         return err;
4304                 req->secid = newsid;
4305                 req->peer_secid = peersid;
4306         }
4307
4308         return selinux_netlbl_inet_conn_request(req, family);
4309 }
4310
4311 static void selinux_inet_csk_clone(struct sock *newsk,
4312                                    const struct request_sock *req)
4313 {
4314         struct sk_security_struct *newsksec = newsk->sk_security;
4315
4316         newsksec->sid = req->secid;
4317         newsksec->peer_sid = req->peer_secid;
4318         /* NOTE: Ideally, we should also get the isec->sid for the
4319            new socket in sync, but we don't have the isec available yet.
4320            So we will wait until sock_graft to do it, by which
4321            time it will have been created and available. */
4322
4323         /* We don't need to take any sort of lock here as we are the only
4324          * thread with access to newsksec */
4325         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4326 }
4327
4328 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4329 {
4330         u16 family = sk->sk_family;
4331         struct sk_security_struct *sksec = sk->sk_security;
4332
4333         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4334         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4335                 family = PF_INET;
4336
4337         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4338 }
4339
4340 static void selinux_req_classify_flow(const struct request_sock *req,
4341                                       struct flowi *fl)
4342 {
4343         fl->secid = req->secid;
4344 }
4345
4346 static int selinux_tun_dev_create(void)
4347 {
4348         u32 sid = current_sid();
4349
4350         /* we aren't taking into account the "sockcreate" SID since the socket
4351          * that is being created here is not a socket in the traditional sense,
4352          * instead it is a private sock, accessible only to the kernel, and
4353          * representing a wide range of network traffic spanning multiple
4354          * connections unlike traditional sockets - check the TUN driver to
4355          * get a better understanding of why this socket is special */
4356
4357         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4358                             NULL);
4359 }
4360
4361 static void selinux_tun_dev_post_create(struct sock *sk)
4362 {
4363         struct sk_security_struct *sksec = sk->sk_security;
4364
4365         /* we don't currently perform any NetLabel based labeling here and it
4366          * isn't clear that we would want to do so anyway; while we could apply
4367          * labeling without the support of the TUN user the resulting labeled
4368          * traffic from the other end of the connection would almost certainly
4369          * cause confusion to the TUN user that had no idea network labeling
4370          * protocols were being used */
4371
4372         /* see the comments in selinux_tun_dev_create() about why we don't use
4373          * the sockcreate SID here */
4374
4375         sksec->sid = current_sid();
4376         sksec->sclass = SECCLASS_TUN_SOCKET;
4377 }
4378
4379 static int selinux_tun_dev_attach(struct sock *sk)
4380 {
4381         struct sk_security_struct *sksec = sk->sk_security;
4382         u32 sid = current_sid();
4383         int err;
4384
4385         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4386                            TUN_SOCKET__RELABELFROM, NULL);
4387         if (err)
4388                 return err;
4389         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4390                            TUN_SOCKET__RELABELTO, NULL);
4391         if (err)
4392                 return err;
4393
4394         sksec->sid = sid;
4395
4396         return 0;
4397 }
4398
4399 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4400 {
4401         int err = 0;
4402         u32 perm;
4403         struct nlmsghdr *nlh;
4404         struct socket *sock = sk->sk_socket;
4405         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4406
4407         if (skb->len < NLMSG_SPACE(0)) {
4408                 err = -EINVAL;
4409                 goto out;
4410         }
4411         nlh = nlmsg_hdr(skb);
4412
4413         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4414         if (err) {
4415                 if (err == -EINVAL) {
4416                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4417                                   "SELinux:  unrecognized netlink message"
4418                                   " type=%hu for sclass=%hu\n",
4419                                   nlh->nlmsg_type, isec->sclass);
4420                         if (!selinux_enforcing || security_get_allow_unknown())
4421                                 err = 0;
4422                 }
4423
4424                 /* Ignore */
4425                 if (err == -ENOENT)
4426                         err = 0;
4427                 goto out;
4428         }
4429
4430         err = socket_has_perm(current, sock, perm);
4431 out:
4432         return err;
4433 }
4434
4435 #ifdef CONFIG_NETFILTER
4436
4437 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4438                                        u16 family)
4439 {
4440         int err;
4441         char *addrp;
4442         u32 peer_sid;
4443         struct common_audit_data ad;
4444         u8 secmark_active;
4445         u8 netlbl_active;
4446         u8 peerlbl_active;
4447
4448         if (!selinux_policycap_netpeer)
4449                 return NF_ACCEPT;
4450
4451         secmark_active = selinux_secmark_enabled();
4452         netlbl_active = netlbl_enabled();
4453         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4454         if (!secmark_active && !peerlbl_active)
4455                 return NF_ACCEPT;
4456
4457         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4458                 return NF_DROP;
4459
4460         COMMON_AUDIT_DATA_INIT(&ad, NET);
4461         ad.u.net.netif = ifindex;
4462         ad.u.net.family = family;
4463         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4464                 return NF_DROP;
4465
4466         if (peerlbl_active) {
4467                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4468                                                peer_sid, &ad);
4469                 if (err) {
4470                         selinux_netlbl_err(skb, err, 1);
4471                         return NF_DROP;
4472                 }
4473         }
4474
4475         if (secmark_active)
4476                 if (avc_has_perm(peer_sid, skb->secmark,
4477                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4478                         return NF_DROP;
4479
4480         if (netlbl_active)
4481                 /* we do this in the FORWARD path and not the POST_ROUTING
4482                  * path because we want to make sure we apply the necessary
4483                  * labeling before IPsec is applied so we can leverage AH
4484                  * protection */
4485                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4486                         return NF_DROP;
4487
4488         return NF_ACCEPT;
4489 }
4490
4491 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4492                                          struct sk_buff *skb,
4493                                          const struct net_device *in,
4494                                          const struct net_device *out,
4495                                          int (*okfn)(struct sk_buff *))
4496 {
4497         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4498 }
4499
4500 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4501 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4502                                          struct sk_buff *skb,
4503                                          const struct net_device *in,
4504                                          const struct net_device *out,
4505                                          int (*okfn)(struct sk_buff *))
4506 {
4507         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4508 }
4509 #endif  /* IPV6 */
4510
4511 static unsigned int selinux_ip_output(struct sk_buff *skb,
4512                                       u16 family)
4513 {
4514         u32 sid;
4515
4516         if (!netlbl_enabled())
4517                 return NF_ACCEPT;
4518
4519         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4520          * because we want to make sure we apply the necessary labeling
4521          * before IPsec is applied so we can leverage AH protection */
4522         if (skb->sk) {
4523                 struct sk_security_struct *sksec = skb->sk->sk_security;
4524                 sid = sksec->sid;
4525         } else
4526                 sid = SECINITSID_KERNEL;
4527         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4528                 return NF_DROP;
4529
4530         return NF_ACCEPT;
4531 }
4532
4533 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4534                                         struct sk_buff *skb,
4535                                         const struct net_device *in,
4536                                         const struct net_device *out,
4537                                         int (*okfn)(struct sk_buff *))
4538 {
4539         return selinux_ip_output(skb, PF_INET);
4540 }
4541
4542 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4543                                                 int ifindex,
4544                                                 u16 family)
4545 {
4546         struct sock *sk = skb->sk;
4547         struct sk_security_struct *sksec;
4548         struct common_audit_data ad;
4549         char *addrp;
4550         u8 proto;
4551
4552         if (sk == NULL)
4553                 return NF_ACCEPT;
4554         sksec = sk->sk_security;
4555
4556         COMMON_AUDIT_DATA_INIT(&ad, NET);
4557         ad.u.net.netif = ifindex;
4558         ad.u.net.family = family;
4559         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4560                 return NF_DROP;
4561
4562         if (selinux_secmark_enabled())
4563                 if (avc_has_perm(sksec->sid, skb->secmark,
4564                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4565                         return NF_DROP;
4566
4567         if (selinux_policycap_netpeer)
4568                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4569                         return NF_DROP;
4570
4571         return NF_ACCEPT;
4572 }
4573
4574 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4575                                          u16 family)
4576 {
4577         u32 secmark_perm;
4578         u32 peer_sid;
4579         struct sock *sk;
4580         struct common_audit_data ad;
4581         char *addrp;
4582         u8 secmark_active;
4583         u8 peerlbl_active;
4584
4585         /* If any sort of compatibility mode is enabled then handoff processing
4586          * to the selinux_ip_postroute_compat() function to deal with the
4587          * special handling.  We do this in an attempt to keep this function
4588          * as fast and as clean as possible. */
4589         if (!selinux_policycap_netpeer)
4590                 return selinux_ip_postroute_compat(skb, ifindex, family);
4591 #ifdef CONFIG_XFRM
4592         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4593          * packet transformation so allow the packet to pass without any checks
4594          * since we'll have another chance to perform access control checks
4595          * when the packet is on it's final way out.
4596          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4597          *       is NULL, in this case go ahead and apply access control. */
4598         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4599                 return NF_ACCEPT;
4600 #endif
4601         secmark_active = selinux_secmark_enabled();
4602         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4603         if (!secmark_active && !peerlbl_active)
4604                 return NF_ACCEPT;
4605
4606         /* if the packet is being forwarded then get the peer label from the
4607          * packet itself; otherwise check to see if it is from a local
4608          * application or the kernel, if from an application get the peer label
4609          * from the sending socket, otherwise use the kernel's sid */
4610         sk = skb->sk;
4611         if (sk == NULL) {
4612                 switch (family) {
4613                 case PF_INET:
4614                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4615                                 secmark_perm = PACKET__FORWARD_OUT;
4616                         else
4617                                 secmark_perm = PACKET__SEND;
4618                         break;
4619                 case PF_INET6:
4620                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4621                                 secmark_perm = PACKET__FORWARD_OUT;
4622                         else
4623                                 secmark_perm = PACKET__SEND;
4624                         break;
4625                 default:
4626                         return NF_DROP;
4627                 }
4628                 if (secmark_perm == PACKET__FORWARD_OUT) {
4629                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4630                                 return NF_DROP;
4631                 } else
4632                         peer_sid = SECINITSID_KERNEL;
4633         } else {
4634                 struct sk_security_struct *sksec = sk->sk_security;
4635                 peer_sid = sksec->sid;
4636                 secmark_perm = PACKET__SEND;
4637         }
4638
4639         COMMON_AUDIT_DATA_INIT(&ad, NET);
4640         ad.u.net.netif = ifindex;
4641         ad.u.net.family = family;
4642         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4643                 return NF_DROP;
4644
4645         if (secmark_active)
4646                 if (avc_has_perm(peer_sid, skb->secmark,
4647                                  SECCLASS_PACKET, secmark_perm, &ad))
4648                         return NF_DROP;
4649
4650         if (peerlbl_active) {
4651                 u32 if_sid;
4652                 u32 node_sid;
4653
4654                 if (sel_netif_sid(ifindex, &if_sid))
4655                         return NF_DROP;
4656                 if (avc_has_perm(peer_sid, if_sid,
4657                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4658                         return NF_DROP;
4659
4660                 if (sel_netnode_sid(addrp, family, &node_sid))
4661                         return NF_DROP;
4662                 if (avc_has_perm(peer_sid, node_sid,
4663                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4664                         return NF_DROP;
4665         }
4666
4667         return NF_ACCEPT;
4668 }
4669
4670 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4671                                            struct sk_buff *skb,
4672                                            const struct net_device *in,
4673                                            const struct net_device *out,
4674                                            int (*okfn)(struct sk_buff *))
4675 {
4676         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4677 }
4678
4679 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4680 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4681                                            struct sk_buff *skb,
4682                                            const struct net_device *in,
4683                                            const struct net_device *out,
4684                                            int (*okfn)(struct sk_buff *))
4685 {
4686         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4687 }
4688 #endif  /* IPV6 */
4689
4690 #endif  /* CONFIG_NETFILTER */
4691
4692 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4693 {
4694         int err;
4695
4696         err = cap_netlink_send(sk, skb);
4697         if (err)
4698                 return err;
4699
4700         return selinux_nlmsg_perm(sk, skb);
4701 }
4702
4703 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4704 {
4705         int err;
4706         struct common_audit_data ad;
4707
4708         err = cap_netlink_recv(skb, capability);
4709         if (err)
4710                 return err;
4711
4712         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4713         ad.u.cap = capability;
4714
4715         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4716                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4717 }
4718
4719 static int ipc_alloc_security(struct task_struct *task,
4720                               struct kern_ipc_perm *perm,
4721                               u16 sclass)
4722 {
4723         struct ipc_security_struct *isec;
4724         u32 sid;
4725
4726         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4727         if (!isec)
4728                 return -ENOMEM;
4729
4730         sid = task_sid(task);
4731         isec->sclass = sclass;
4732         isec->sid = sid;
4733         perm->security = isec;
4734
4735         return 0;
4736 }
4737
4738 static void ipc_free_security(struct kern_ipc_perm *perm)
4739 {
4740         struct ipc_security_struct *isec = perm->security;
4741         perm->security = NULL;
4742         kfree(isec);
4743 }
4744
4745 static int msg_msg_alloc_security(struct msg_msg *msg)
4746 {
4747         struct msg_security_struct *msec;
4748
4749         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4750         if (!msec)
4751                 return -ENOMEM;
4752
4753         msec->sid = SECINITSID_UNLABELED;
4754         msg->security = msec;
4755
4756         return 0;
4757 }
4758
4759 static void msg_msg_free_security(struct msg_msg *msg)
4760 {
4761         struct msg_security_struct *msec = msg->security;
4762
4763         msg->security = NULL;
4764         kfree(msec);
4765 }
4766
4767 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4768                         u32 perms)
4769 {
4770         struct ipc_security_struct *isec;
4771         struct common_audit_data ad;
4772         u32 sid = current_sid();
4773
4774         isec = ipc_perms->security;
4775
4776         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4777         ad.u.ipc_id = ipc_perms->key;
4778
4779         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4780 }
4781
4782 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4783 {
4784         return msg_msg_alloc_security(msg);
4785 }
4786
4787 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4788 {
4789         msg_msg_free_security(msg);
4790 }
4791
4792 /* message queue security operations */
4793 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4794 {
4795         struct ipc_security_struct *isec;
4796         struct common_audit_data ad;
4797         u32 sid = current_sid();
4798         int rc;
4799
4800         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4801         if (rc)
4802                 return rc;
4803
4804         isec = msq->q_perm.security;
4805
4806         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4807         ad.u.ipc_id = msq->q_perm.key;
4808
4809         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4810                           MSGQ__CREATE, &ad);
4811         if (rc) {
4812                 ipc_free_security(&msq->q_perm);
4813                 return rc;
4814         }
4815         return 0;
4816 }
4817
4818 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4819 {
4820         ipc_free_security(&msq->q_perm);
4821 }
4822
4823 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4824 {
4825         struct ipc_security_struct *isec;
4826         struct common_audit_data ad;
4827         u32 sid = current_sid();
4828
4829         isec = msq->q_perm.security;
4830
4831         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4832         ad.u.ipc_id = msq->q_perm.key;
4833
4834         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4835                             MSGQ__ASSOCIATE, &ad);
4836 }
4837
4838 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4839 {
4840         int err;
4841         int perms;
4842
4843         switch (cmd) {
4844         case IPC_INFO:
4845         case MSG_INFO:
4846                 /* No specific object, just general system-wide information. */
4847                 return task_has_system(current, SYSTEM__IPC_INFO);
4848         case IPC_STAT:
4849         case MSG_STAT:
4850                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4851                 break;
4852         case IPC_SET:
4853                 perms = MSGQ__SETATTR;
4854                 break;
4855         case IPC_RMID:
4856                 perms = MSGQ__DESTROY;
4857                 break;
4858         default:
4859                 return 0;
4860         }
4861
4862         err = ipc_has_perm(&msq->q_perm, perms);
4863         return err;
4864 }
4865
4866 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4867 {
4868         struct ipc_security_struct *isec;
4869         struct msg_security_struct *msec;
4870         struct common_audit_data ad;
4871         u32 sid = current_sid();
4872         int rc;
4873
4874         isec = msq->q_perm.security;
4875         msec = msg->security;
4876
4877         /*
4878          * First time through, need to assign label to the message
4879          */
4880         if (msec->sid == SECINITSID_UNLABELED) {
4881                 /*
4882                  * Compute new sid based on current process and
4883                  * message queue this message will be stored in
4884                  */
4885                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4886                                              &msec->sid);
4887                 if (rc)
4888                         return rc;
4889         }
4890
4891         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4892         ad.u.ipc_id = msq->q_perm.key;
4893
4894         /* Can this process write to the queue? */
4895         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4896                           MSGQ__WRITE, &ad);
4897         if (!rc)
4898                 /* Can this process send the message */
4899                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4900                                   MSG__SEND, &ad);
4901         if (!rc)
4902                 /* Can the message be put in the queue? */
4903                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4904                                   MSGQ__ENQUEUE, &ad);
4905
4906         return rc;
4907 }
4908
4909 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4910                                     struct task_struct *target,
4911                                     long type, int mode)
4912 {
4913         struct ipc_security_struct *isec;
4914         struct msg_security_struct *msec;
4915         struct common_audit_data ad;
4916         u32 sid = task_sid(target);
4917         int rc;
4918
4919         isec = msq->q_perm.security;
4920         msec = msg->security;
4921
4922         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4923         ad.u.ipc_id = msq->q_perm.key;
4924
4925         rc = avc_has_perm(sid, isec->sid,
4926                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4927         if (!rc)
4928                 rc = avc_has_perm(sid, msec->sid,
4929                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4930         return rc;
4931 }
4932
4933 /* Shared Memory security operations */
4934 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4935 {
4936         struct ipc_security_struct *isec;
4937         struct common_audit_data ad;
4938         u32 sid = current_sid();
4939         int rc;
4940
4941         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4942         if (rc)
4943                 return rc;
4944
4945         isec = shp->shm_perm.security;
4946
4947         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4948         ad.u.ipc_id = shp->shm_perm.key;
4949
4950         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4951                           SHM__CREATE, &ad);
4952         if (rc) {
4953                 ipc_free_security(&shp->shm_perm);
4954                 return rc;
4955         }
4956         return 0;
4957 }
4958
4959 static void selinux_shm_free_security(struct shmid_kernel *shp)
4960 {
4961         ipc_free_security(&shp->shm_perm);
4962 }
4963
4964 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4965 {
4966         struct ipc_security_struct *isec;
4967         struct common_audit_data ad;
4968         u32 sid = current_sid();
4969
4970         isec = shp->shm_perm.security;
4971
4972         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4973         ad.u.ipc_id = shp->shm_perm.key;
4974
4975         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4976                             SHM__ASSOCIATE, &ad);
4977 }
4978
4979 /* Note, at this point, shp is locked down */
4980 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4981 {
4982         int perms;
4983         int err;
4984
4985         switch (cmd) {
4986         case IPC_INFO:
4987         case SHM_INFO:
4988                 /* No specific object, just general system-wide information. */
4989                 return task_has_system(current, SYSTEM__IPC_INFO);
4990         case IPC_STAT:
4991         case SHM_STAT:
4992                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4993                 break;
4994         case IPC_SET:
4995                 perms = SHM__SETATTR;
4996                 break;
4997         case SHM_LOCK:
4998         case SHM_UNLOCK:
4999                 perms = SHM__LOCK;
5000                 break;
5001         case IPC_RMID:
5002                 perms = SHM__DESTROY;
5003                 break;
5004         default:
5005                 return 0;
5006         }
5007
5008         err = ipc_has_perm(&shp->shm_perm, perms);
5009         return err;
5010 }
5011
5012 static int selinux_shm_shmat(struct shmid_kernel *shp,
5013                              char __user *shmaddr, int shmflg)
5014 {
5015         u32 perms;
5016
5017         if (shmflg & SHM_RDONLY)
5018                 perms = SHM__READ;
5019         else
5020                 perms = SHM__READ | SHM__WRITE;
5021
5022         return ipc_has_perm(&shp->shm_perm, perms);
5023 }
5024
5025 /* Semaphore security operations */
5026 static int selinux_sem_alloc_security(struct sem_array *sma)
5027 {
5028         struct ipc_security_struct *isec;
5029         struct common_audit_data ad;
5030         u32 sid = current_sid();
5031         int rc;
5032
5033         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5034         if (rc)
5035                 return rc;
5036
5037         isec = sma->sem_perm.security;
5038
5039         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5040         ad.u.ipc_id = sma->sem_perm.key;
5041
5042         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5043                           SEM__CREATE, &ad);
5044         if (rc) {
5045                 ipc_free_security(&sma->sem_perm);
5046                 return rc;
5047         }
5048         return 0;
5049 }
5050
5051 static void selinux_sem_free_security(struct sem_array *sma)
5052 {
5053         ipc_free_security(&sma->sem_perm);
5054 }
5055
5056 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5057 {
5058         struct ipc_security_struct *isec;
5059         struct common_audit_data ad;
5060         u32 sid = current_sid();
5061
5062         isec = sma->sem_perm.security;
5063
5064         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5065         ad.u.ipc_id = sma->sem_perm.key;
5066
5067         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5068                             SEM__ASSOCIATE, &ad);
5069 }
5070
5071 /* Note, at this point, sma is locked down */
5072 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5073 {
5074         int err;
5075         u32 perms;
5076
5077         switch (cmd) {
5078         case IPC_INFO:
5079         case SEM_INFO:
5080                 /* No specific object, just general system-wide information. */
5081                 return task_has_system(current, SYSTEM__IPC_INFO);
5082         case GETPID:
5083         case GETNCNT:
5084         case GETZCNT:
5085                 perms = SEM__GETATTR;
5086                 break;
5087         case GETVAL:
5088         case GETALL:
5089                 perms = SEM__READ;
5090                 break;
5091         case SETVAL:
5092         case SETALL:
5093                 perms = SEM__WRITE;
5094                 break;
5095         case IPC_RMID:
5096                 perms = SEM__DESTROY;
5097                 break;
5098         case IPC_SET:
5099                 perms = SEM__SETATTR;
5100                 break;
5101         case IPC_STAT:
5102         case SEM_STAT:
5103                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5104                 break;
5105         default:
5106                 return 0;
5107         }
5108
5109         err = ipc_has_perm(&sma->sem_perm, perms);
5110         return err;
5111 }
5112
5113 static int selinux_sem_semop(struct sem_array *sma,
5114                              struct sembuf *sops, unsigned nsops, int alter)
5115 {
5116         u32 perms;
5117
5118         if (alter)
5119                 perms = SEM__READ | SEM__WRITE;
5120         else
5121                 perms = SEM__READ;
5122
5123         return ipc_has_perm(&sma->sem_perm, perms);
5124 }
5125
5126 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5127 {
5128         u32 av = 0;
5129
5130         av = 0;
5131         if (flag & S_IRUGO)
5132                 av |= IPC__UNIX_READ;
5133         if (flag & S_IWUGO)
5134                 av |= IPC__UNIX_WRITE;
5135
5136         if (av == 0)
5137                 return 0;
5138
5139         return ipc_has_perm(ipcp, av);
5140 }
5141
5142 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5143 {
5144         struct ipc_security_struct *isec = ipcp->security;
5145         *secid = isec->sid;
5146 }
5147
5148 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5149 {
5150         if (inode)
5151                 inode_doinit_with_dentry(inode, dentry);
5152 }
5153
5154 static int selinux_getprocattr(struct task_struct *p,
5155                                char *name, char **value)
5156 {
5157         const struct task_security_struct *__tsec;
5158         u32 sid;
5159         int error;
5160         unsigned len;
5161
5162         if (current != p) {
5163                 error = current_has_perm(p, PROCESS__GETATTR);
5164                 if (error)
5165                         return error;
5166         }
5167
5168         rcu_read_lock();
5169         __tsec = __task_cred(p)->security;
5170
5171         if (!strcmp(name, "current"))
5172                 sid = __tsec->sid;
5173         else if (!strcmp(name, "prev"))
5174                 sid = __tsec->osid;
5175         else if (!strcmp(name, "exec"))
5176                 sid = __tsec->exec_sid;
5177         else if (!strcmp(name, "fscreate"))
5178                 sid = __tsec->create_sid;
5179         else if (!strcmp(name, "keycreate"))
5180                 sid = __tsec->keycreate_sid;
5181         else if (!strcmp(name, "sockcreate"))
5182                 sid = __tsec->sockcreate_sid;
5183         else
5184                 goto invalid;
5185         rcu_read_unlock();
5186
5187         if (!sid)
5188                 return 0;
5189
5190         error = security_sid_to_context(sid, value, &len);
5191         if (error)
5192                 return error;
5193         return len;
5194
5195 invalid:
5196         rcu_read_unlock();
5197         return -EINVAL;
5198 }
5199
5200 static int selinux_setprocattr(struct task_struct *p,
5201                                char *name, void *value, size_t size)
5202 {
5203         struct task_security_struct *tsec;
5204         struct task_struct *tracer;
5205         struct cred *new;
5206         u32 sid = 0, ptsid;
5207         int error;
5208         char *str = value;
5209
5210         if (current != p) {
5211                 /* SELinux only allows a process to change its own
5212                    security attributes. */
5213                 return -EACCES;
5214         }
5215
5216         /*
5217          * Basic control over ability to set these attributes at all.
5218          * current == p, but we'll pass them separately in case the
5219          * above restriction is ever removed.
5220          */
5221         if (!strcmp(name, "exec"))
5222                 error = current_has_perm(p, PROCESS__SETEXEC);
5223         else if (!strcmp(name, "fscreate"))
5224                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5225         else if (!strcmp(name, "keycreate"))
5226                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5227         else if (!strcmp(name, "sockcreate"))
5228                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5229         else if (!strcmp(name, "current"))
5230                 error = current_has_perm(p, PROCESS__SETCURRENT);
5231         else
5232                 error = -EINVAL;
5233         if (error)
5234                 return error;
5235
5236         /* Obtain a SID for the context, if one was specified. */
5237         if (size && str[1] && str[1] != '\n') {
5238                 if (str[size-1] == '\n') {
5239                         str[size-1] = 0;
5240                         size--;
5241                 }
5242                 error = security_context_to_sid(value, size, &sid);
5243                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5244                         if (!capable(CAP_MAC_ADMIN))
5245                                 return error;
5246                         error = security_context_to_sid_force(value, size,
5247                                                               &sid);
5248                 }
5249                 if (error)
5250                         return error;
5251         }
5252
5253         new = prepare_creds();
5254         if (!new)
5255                 return -ENOMEM;
5256
5257         /* Permission checking based on the specified context is
5258            performed during the actual operation (execve,
5259            open/mkdir/...), when we know the full context of the
5260            operation.  See selinux_bprm_set_creds for the execve
5261            checks and may_create for the file creation checks. The
5262            operation will then fail if the context is not permitted. */
5263         tsec = new->security;
5264         if (!strcmp(name, "exec")) {
5265                 tsec->exec_sid = sid;
5266         } else if (!strcmp(name, "fscreate")) {
5267                 tsec->create_sid = sid;
5268         } else if (!strcmp(name, "keycreate")) {
5269                 error = may_create_key(sid, p);
5270                 if (error)
5271                         goto abort_change;
5272                 tsec->keycreate_sid = sid;
5273         } else if (!strcmp(name, "sockcreate")) {
5274                 tsec->sockcreate_sid = sid;
5275         } else if (!strcmp(name, "current")) {
5276                 error = -EINVAL;
5277                 if (sid == 0)
5278                         goto abort_change;
5279
5280                 /* Only allow single threaded processes to change context */
5281                 error = -EPERM;
5282                 if (!current_is_single_threaded()) {
5283                         error = security_bounded_transition(tsec->sid, sid);
5284                         if (error)
5285                                 goto abort_change;
5286                 }
5287
5288                 /* Check permissions for the transition. */
5289                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5290                                      PROCESS__DYNTRANSITION, NULL);
5291                 if (error)
5292                         goto abort_change;
5293
5294                 /* Check for ptracing, and update the task SID if ok.
5295                    Otherwise, leave SID unchanged and fail. */
5296                 ptsid = 0;
5297                 task_lock(p);
5298                 tracer = tracehook_tracer_task(p);
5299                 if (tracer)
5300                         ptsid = task_sid(tracer);
5301                 task_unlock(p);
5302
5303                 if (tracer) {
5304                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5305                                              PROCESS__PTRACE, NULL);
5306                         if (error)
5307                                 goto abort_change;
5308                 }
5309
5310                 tsec->sid = sid;
5311         } else {
5312                 error = -EINVAL;
5313                 goto abort_change;
5314         }
5315
5316         commit_creds(new);
5317         return size;
5318
5319 abort_change:
5320         abort_creds(new);
5321         return error;
5322 }
5323
5324 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5325 {
5326         return security_sid_to_context(secid, secdata, seclen);
5327 }
5328
5329 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5330 {
5331         return security_context_to_sid(secdata, seclen, secid);
5332 }
5333
5334 static void selinux_release_secctx(char *secdata, u32 seclen)
5335 {
5336         kfree(secdata);
5337 }
5338
5339 /*
5340  *      called with inode->i_mutex locked
5341  */
5342 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5343 {
5344         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5345 }
5346
5347 /*
5348  *      called with inode->i_mutex locked
5349  */
5350 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5351 {
5352         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5353 }
5354
5355 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5356 {
5357         int len = 0;
5358         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5359                                                 ctx, true);
5360         if (len < 0)
5361                 return len;
5362         *ctxlen = len;
5363         return 0;
5364 }
5365 #ifdef CONFIG_KEYS
5366
5367 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5368                              unsigned long flags)
5369 {
5370         const struct task_security_struct *tsec;
5371         struct key_security_struct *ksec;
5372
5373         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5374         if (!ksec)
5375                 return -ENOMEM;
5376
5377         tsec = cred->security;
5378         if (tsec->keycreate_sid)
5379                 ksec->sid = tsec->keycreate_sid;
5380         else
5381                 ksec->sid = tsec->sid;
5382
5383         k->security = ksec;
5384         return 0;
5385 }
5386
5387 static void selinux_key_free(struct key *k)
5388 {
5389         struct key_security_struct *ksec = k->security;
5390
5391         k->security = NULL;
5392         kfree(ksec);
5393 }
5394
5395 static int selinux_key_permission(key_ref_t key_ref,
5396                                   const struct cred *cred,
5397                                   key_perm_t perm)
5398 {
5399         struct key *key;
5400         struct key_security_struct *ksec;
5401         u32 sid;
5402
5403         /* if no specific permissions are requested, we skip the
5404            permission check. No serious, additional covert channels
5405            appear to be created. */
5406         if (perm == 0)
5407                 return 0;
5408
5409         sid = cred_sid(cred);
5410
5411         key = key_ref_to_ptr(key_ref);
5412         ksec = key->security;
5413
5414         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5415 }
5416
5417 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5418 {
5419         struct key_security_struct *ksec = key->security;
5420         char *context = NULL;
5421         unsigned len;
5422         int rc;
5423
5424         rc = security_sid_to_context(ksec->sid, &context, &len);
5425         if (!rc)
5426                 rc = len;
5427         *_buffer = context;
5428         return rc;
5429 }
5430
5431 #endif
5432
5433 static struct security_operations selinux_ops = {
5434         .name =                         "selinux",
5435
5436         .ptrace_access_check =          selinux_ptrace_access_check,
5437         .ptrace_traceme =               selinux_ptrace_traceme,
5438         .capget =                       selinux_capget,
5439         .capset =                       selinux_capset,
5440         .sysctl =                       selinux_sysctl,
5441         .capable =                      selinux_capable,
5442         .quotactl =                     selinux_quotactl,
5443         .quota_on =                     selinux_quota_on,
5444         .syslog =                       selinux_syslog,
5445         .vm_enough_memory =             selinux_vm_enough_memory,
5446
5447         .netlink_send =                 selinux_netlink_send,
5448         .netlink_recv =                 selinux_netlink_recv,
5449
5450         .bprm_set_creds =               selinux_bprm_set_creds,
5451         .bprm_committing_creds =        selinux_bprm_committing_creds,
5452         .bprm_committed_creds =         selinux_bprm_committed_creds,
5453         .bprm_secureexec =              selinux_bprm_secureexec,
5454
5455         .sb_alloc_security =            selinux_sb_alloc_security,
5456         .sb_free_security =             selinux_sb_free_security,
5457         .sb_copy_data =                 selinux_sb_copy_data,
5458         .sb_kern_mount =                selinux_sb_kern_mount,
5459         .sb_show_options =              selinux_sb_show_options,
5460         .sb_statfs =                    selinux_sb_statfs,
5461         .sb_mount =                     selinux_mount,
5462         .sb_umount =                    selinux_umount,
5463         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5464         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5465         .sb_parse_opts_str =            selinux_parse_opts_str,
5466
5467
5468         .inode_alloc_security =         selinux_inode_alloc_security,
5469         .inode_free_security =          selinux_inode_free_security,
5470         .inode_init_security =          selinux_inode_init_security,
5471         .inode_create =                 selinux_inode_create,
5472         .inode_link =                   selinux_inode_link,
5473         .inode_unlink =                 selinux_inode_unlink,
5474         .inode_symlink =                selinux_inode_symlink,
5475         .inode_mkdir =                  selinux_inode_mkdir,
5476         .inode_rmdir =                  selinux_inode_rmdir,
5477         .inode_mknod =                  selinux_inode_mknod,
5478         .inode_rename =                 selinux_inode_rename,
5479         .inode_readlink =               selinux_inode_readlink,
5480         .inode_follow_link =            selinux_inode_follow_link,
5481         .inode_permission =             selinux_inode_permission,
5482         .inode_setattr =                selinux_inode_setattr,
5483         .inode_getattr =                selinux_inode_getattr,
5484         .inode_setxattr =               selinux_inode_setxattr,
5485         .inode_post_setxattr =          selinux_inode_post_setxattr,
5486         .inode_getxattr =               selinux_inode_getxattr,
5487         .inode_listxattr =              selinux_inode_listxattr,
5488         .inode_removexattr =            selinux_inode_removexattr,
5489         .inode_getsecurity =            selinux_inode_getsecurity,
5490         .inode_setsecurity =            selinux_inode_setsecurity,
5491         .inode_listsecurity =           selinux_inode_listsecurity,
5492         .inode_getsecid =               selinux_inode_getsecid,
5493
5494         .file_permission =              selinux_file_permission,
5495         .file_alloc_security =          selinux_file_alloc_security,
5496         .file_free_security =           selinux_file_free_security,
5497         .file_ioctl =                   selinux_file_ioctl,
5498         .file_mmap =                    selinux_file_mmap,
5499         .file_mprotect =                selinux_file_mprotect,
5500         .file_lock =                    selinux_file_lock,
5501         .file_fcntl =                   selinux_file_fcntl,
5502         .file_set_fowner =              selinux_file_set_fowner,
5503         .file_send_sigiotask =          selinux_file_send_sigiotask,
5504         .file_receive =                 selinux_file_receive,
5505
5506         .dentry_open =                  selinux_dentry_open,
5507
5508         .task_create =                  selinux_task_create,
5509         .cred_alloc_blank =             selinux_cred_alloc_blank,
5510         .cred_free =                    selinux_cred_free,
5511         .cred_prepare =                 selinux_cred_prepare,
5512         .cred_transfer =                selinux_cred_transfer,
5513         .kernel_act_as =                selinux_kernel_act_as,
5514         .kernel_create_files_as =       selinux_kernel_create_files_as,
5515         .kernel_module_request =        selinux_kernel_module_request,
5516         .task_setpgid =                 selinux_task_setpgid,
5517         .task_getpgid =                 selinux_task_getpgid,
5518         .task_getsid =                  selinux_task_getsid,
5519         .task_getsecid =                selinux_task_getsecid,
5520         .task_setnice =                 selinux_task_setnice,
5521         .task_setioprio =               selinux_task_setioprio,
5522         .task_getioprio =               selinux_task_getioprio,
5523         .task_setrlimit =               selinux_task_setrlimit,
5524         .task_setscheduler =            selinux_task_setscheduler,
5525         .task_getscheduler =            selinux_task_getscheduler,
5526         .task_movememory =              selinux_task_movememory,
5527         .task_kill =                    selinux_task_kill,
5528         .task_wait =                    selinux_task_wait,
5529         .task_to_inode =                selinux_task_to_inode,
5530
5531         .ipc_permission =               selinux_ipc_permission,
5532         .ipc_getsecid =                 selinux_ipc_getsecid,
5533
5534         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5535         .msg_msg_free_security =        selinux_msg_msg_free_security,
5536
5537         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5538         .msg_queue_free_security =      selinux_msg_queue_free_security,
5539         .msg_queue_associate =          selinux_msg_queue_associate,
5540         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5541         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5542         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5543
5544         .shm_alloc_security =           selinux_shm_alloc_security,
5545         .shm_free_security =            selinux_shm_free_security,
5546         .shm_associate =                selinux_shm_associate,
5547         .shm_shmctl =                   selinux_shm_shmctl,
5548         .shm_shmat =                    selinux_shm_shmat,
5549
5550         .sem_alloc_security =           selinux_sem_alloc_security,
5551         .sem_free_security =            selinux_sem_free_security,
5552         .sem_associate =                selinux_sem_associate,
5553         .sem_semctl =                   selinux_sem_semctl,
5554         .sem_semop =                    selinux_sem_semop,
5555
5556         .d_instantiate =                selinux_d_instantiate,
5557
5558         .getprocattr =                  selinux_getprocattr,
5559         .setprocattr =                  selinux_setprocattr,
5560
5561         .secid_to_secctx =              selinux_secid_to_secctx,
5562         .secctx_to_secid =              selinux_secctx_to_secid,
5563         .release_secctx =               selinux_release_secctx,
5564         .inode_notifysecctx =           selinux_inode_notifysecctx,
5565         .inode_setsecctx =              selinux_inode_setsecctx,
5566         .inode_getsecctx =              selinux_inode_getsecctx,
5567
5568         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5569         .unix_may_send =                selinux_socket_unix_may_send,
5570
5571         .socket_create =                selinux_socket_create,
5572         .socket_post_create =           selinux_socket_post_create,
5573         .socket_bind =                  selinux_socket_bind,
5574         .socket_connect =               selinux_socket_connect,
5575         .socket_listen =                selinux_socket_listen,
5576         .socket_accept =                selinux_socket_accept,
5577         .socket_sendmsg =               selinux_socket_sendmsg,
5578         .socket_recvmsg =               selinux_socket_recvmsg,
5579         .socket_getsockname =           selinux_socket_getsockname,
5580         .socket_getpeername =           selinux_socket_getpeername,
5581         .socket_getsockopt =            selinux_socket_getsockopt,
5582         .socket_setsockopt =            selinux_socket_setsockopt,
5583         .socket_shutdown =              selinux_socket_shutdown,
5584         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5585         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5586         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5587         .sk_alloc_security =            selinux_sk_alloc_security,
5588         .sk_free_security =             selinux_sk_free_security,
5589         .sk_clone_security =            selinux_sk_clone_security,
5590         .sk_getsecid =                  selinux_sk_getsecid,
5591         .sock_graft =                   selinux_sock_graft,
5592         .inet_conn_request =            selinux_inet_conn_request,
5593         .inet_csk_clone =               selinux_inet_csk_clone,
5594         .inet_conn_established =        selinux_inet_conn_established,
5595         .req_classify_flow =            selinux_req_classify_flow,
5596         .tun_dev_create =               selinux_tun_dev_create,
5597         .tun_dev_post_create =          selinux_tun_dev_post_create,
5598         .tun_dev_attach =               selinux_tun_dev_attach,
5599
5600 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5601         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5602         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5603         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5604         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5605         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5606         .xfrm_state_free_security =     selinux_xfrm_state_free,
5607         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5608         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5609         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5610         .xfrm_decode_session =          selinux_xfrm_decode_session,
5611 #endif
5612
5613 #ifdef CONFIG_KEYS
5614         .key_alloc =                    selinux_key_alloc,
5615         .key_free =                     selinux_key_free,
5616         .key_permission =               selinux_key_permission,
5617         .key_getsecurity =              selinux_key_getsecurity,
5618 #endif
5619
5620 #ifdef CONFIG_AUDIT
5621         .audit_rule_init =              selinux_audit_rule_init,
5622         .audit_rule_known =             selinux_audit_rule_known,
5623         .audit_rule_match =             selinux_audit_rule_match,
5624         .audit_rule_free =              selinux_audit_rule_free,
5625 #endif
5626 };
5627
5628 static __init int selinux_init(void)
5629 {
5630         if (!security_module_enable(&selinux_ops)) {
5631                 selinux_enabled = 0;
5632                 return 0;
5633         }
5634
5635         if (!selinux_enabled) {
5636                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5637                 return 0;
5638         }
5639
5640         printk(KERN_INFO "SELinux:  Initializing.\n");
5641
5642         /* Set the security state for the initial task. */
5643         cred_init_security();
5644
5645         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5646
5647         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5648                                             sizeof(struct inode_security_struct),
5649                                             0, SLAB_PANIC, NULL);
5650         avc_init();
5651
5652         if (register_security(&selinux_ops))
5653                 panic("SELinux: Unable to register with kernel.\n");
5654
5655         if (selinux_enforcing)
5656                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5657         else
5658                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5659
5660         return 0;
5661 }
5662
5663 static void delayed_superblock_init(struct super_block *sb, void *unused)
5664 {
5665         superblock_doinit(sb, NULL);
5666 }
5667
5668 void selinux_complete_init(void)
5669 {
5670         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5671
5672         /* Set up any superblocks initialized prior to the policy load. */
5673         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5674         iterate_supers(delayed_superblock_init, NULL);
5675 }
5676
5677 /* SELinux requires early initialization in order to label
5678    all processes and objects when they are created. */
5679 security_initcall(selinux_init);
5680
5681 #if defined(CONFIG_NETFILTER)
5682
5683 static struct nf_hook_ops selinux_ipv4_ops[] = {
5684         {
5685                 .hook =         selinux_ipv4_postroute,
5686                 .owner =        THIS_MODULE,
5687                 .pf =           PF_INET,
5688                 .hooknum =      NF_INET_POST_ROUTING,
5689                 .priority =     NF_IP_PRI_SELINUX_LAST,
5690         },
5691         {
5692                 .hook =         selinux_ipv4_forward,
5693                 .owner =        THIS_MODULE,
5694                 .pf =           PF_INET,
5695                 .hooknum =      NF_INET_FORWARD,
5696                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5697         },
5698         {
5699                 .hook =         selinux_ipv4_output,
5700                 .owner =        THIS_MODULE,
5701                 .pf =           PF_INET,
5702                 .hooknum =      NF_INET_LOCAL_OUT,
5703                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5704         }
5705 };
5706
5707 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5708
5709 static struct nf_hook_ops selinux_ipv6_ops[] = {
5710         {
5711                 .hook =         selinux_ipv6_postroute,
5712                 .owner =        THIS_MODULE,
5713                 .pf =           PF_INET6,
5714                 .hooknum =      NF_INET_POST_ROUTING,
5715                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5716         },
5717         {
5718                 .hook =         selinux_ipv6_forward,
5719                 .owner =        THIS_MODULE,
5720                 .pf =           PF_INET6,
5721                 .hooknum =      NF_INET_FORWARD,
5722                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5723         }
5724 };
5725
5726 #endif  /* IPV6 */
5727
5728 static int __init selinux_nf_ip_init(void)
5729 {
5730         int err = 0;
5731
5732         if (!selinux_enabled)
5733                 goto out;
5734
5735         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5736
5737         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5738         if (err)
5739                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5740
5741 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5742         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5743         if (err)
5744                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5745 #endif  /* IPV6 */
5746
5747 out:
5748         return err;
5749 }
5750
5751 __initcall(selinux_nf_ip_init);
5752
5753 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5754 static void selinux_nf_ip_exit(void)
5755 {
5756         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5757
5758         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5759 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5760         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5761 #endif  /* IPV6 */
5762 }
5763 #endif
5764
5765 #else /* CONFIG_NETFILTER */
5766
5767 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5768 #define selinux_nf_ip_exit()
5769 #endif
5770
5771 #endif /* CONFIG_NETFILTER */
5772
5773 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5774 static int selinux_disabled;
5775
5776 int selinux_disable(void)
5777 {
5778         extern void exit_sel_fs(void);
5779
5780         if (ss_initialized) {
5781                 /* Not permitted after initial policy load. */
5782                 return -EINVAL;
5783         }
5784
5785         if (selinux_disabled) {
5786                 /* Only do this once. */
5787                 return -EINVAL;
5788         }
5789
5790         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5791
5792         selinux_disabled = 1;
5793         selinux_enabled = 0;
5794
5795         reset_security_ops();
5796
5797         /* Try to destroy the avc node cache */
5798         avc_disable();
5799
5800         /* Unregister netfilter hooks. */
5801         selinux_nf_ip_exit();
5802
5803         /* Unregister selinuxfs. */
5804         exit_sel_fs();
5805
5806         return 0;
5807 }
5808 #endif