]> git.karo-electronics.de Git - karo-tx-linux.git/blob - sound/core/pcm_lib.c
ALSA: pcm: add local header file for snd-pcm module
[karo-tx-linux.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #endif
46
47 /*
48  * fill ring buffer with silence
49  * runtime->silence_start: starting pointer to silence area
50  * runtime->silence_filled: size filled with silence
51  * runtime->silence_threshold: threshold from application
52  * runtime->silence_size: maximal size from application
53  *
54  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
55  */
56 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
57 {
58         struct snd_pcm_runtime *runtime = substream->runtime;
59         snd_pcm_uframes_t frames, ofs, transfer;
60
61         if (runtime->silence_size < runtime->boundary) {
62                 snd_pcm_sframes_t noise_dist, n;
63                 if (runtime->silence_start != runtime->control->appl_ptr) {
64                         n = runtime->control->appl_ptr - runtime->silence_start;
65                         if (n < 0)
66                                 n += runtime->boundary;
67                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
68                                 runtime->silence_filled -= n;
69                         else
70                                 runtime->silence_filled = 0;
71                         runtime->silence_start = runtime->control->appl_ptr;
72                 }
73                 if (runtime->silence_filled >= runtime->buffer_size)
74                         return;
75                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
76                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
77                         return;
78                 frames = runtime->silence_threshold - noise_dist;
79                 if (frames > runtime->silence_size)
80                         frames = runtime->silence_size;
81         } else {
82                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
83                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
84                         if (avail > runtime->buffer_size)
85                                 avail = runtime->buffer_size;
86                         runtime->silence_filled = avail > 0 ? avail : 0;
87                         runtime->silence_start = (runtime->status->hw_ptr +
88                                                   runtime->silence_filled) %
89                                                  runtime->boundary;
90                 } else {
91                         ofs = runtime->status->hw_ptr;
92                         frames = new_hw_ptr - ofs;
93                         if ((snd_pcm_sframes_t)frames < 0)
94                                 frames += runtime->boundary;
95                         runtime->silence_filled -= frames;
96                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
97                                 runtime->silence_filled = 0;
98                                 runtime->silence_start = new_hw_ptr;
99                         } else {
100                                 runtime->silence_start = ofs;
101                         }
102                 }
103                 frames = runtime->buffer_size - runtime->silence_filled;
104         }
105         if (snd_BUG_ON(frames > runtime->buffer_size))
106                 return;
107         if (frames == 0)
108                 return;
109         ofs = runtime->silence_start % runtime->buffer_size;
110         while (frames > 0) {
111                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
112                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
113                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
114                         if (substream->ops->silence) {
115                                 int err;
116                                 err = substream->ops->silence(substream, -1, ofs, transfer);
117                                 snd_BUG_ON(err < 0);
118                         } else {
119                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
120                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
121                         }
122                 } else {
123                         unsigned int c;
124                         unsigned int channels = runtime->channels;
125                         if (substream->ops->silence) {
126                                 for (c = 0; c < channels; ++c) {
127                                         int err;
128                                         err = substream->ops->silence(substream, c, ofs, transfer);
129                                         snd_BUG_ON(err < 0);
130                                 }
131                         } else {
132                                 size_t dma_csize = runtime->dma_bytes / channels;
133                                 for (c = 0; c < channels; ++c) {
134                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
135                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
136                                 }
137                         }
138                 }
139                 runtime->silence_filled += transfer;
140                 frames -= transfer;
141                 ofs = 0;
142         }
143 }
144
145 #ifdef CONFIG_SND_DEBUG
146 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
147                            char *name, size_t len)
148 {
149         snprintf(name, len, "pcmC%dD%d%c:%d",
150                  substream->pcm->card->number,
151                  substream->pcm->device,
152                  substream->stream ? 'c' : 'p',
153                  substream->number);
154 }
155 EXPORT_SYMBOL(snd_pcm_debug_name);
156 #endif
157
158 #define XRUN_DEBUG_BASIC        (1<<0)
159 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
160 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
161
162 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
163
164 #define xrun_debug(substream, mask) \
165                         ((substream)->pstr->xrun_debug & (mask))
166 #else
167 #define xrun_debug(substream, mask)     0
168 #endif
169
170 #define dump_stack_on_xrun(substream) do {                      \
171                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
172                         dump_stack();                           \
173         } while (0)
174
175 static void xrun(struct snd_pcm_substream *substream)
176 {
177         struct snd_pcm_runtime *runtime = substream->runtime;
178
179         trace_xrun(substream);
180         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
181                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
182         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
183         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
184                 char name[16];
185                 snd_pcm_debug_name(substream, name, sizeof(name));
186                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
187                 dump_stack_on_xrun(substream);
188         }
189 }
190
191 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
192 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
193         do {                                                            \
194                 trace_hw_ptr_error(substream, reason);  \
195                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
196                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
197                                            (in_interrupt) ? 'Q' : 'P', ##args); \
198                         dump_stack_on_xrun(substream);                  \
199                 }                                                       \
200         } while (0)
201
202 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
203
204 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
205
206 #endif
207
208 int snd_pcm_update_state(struct snd_pcm_substream *substream,
209                          struct snd_pcm_runtime *runtime)
210 {
211         snd_pcm_uframes_t avail;
212
213         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
214                 avail = snd_pcm_playback_avail(runtime);
215         else
216                 avail = snd_pcm_capture_avail(runtime);
217         if (avail > runtime->avail_max)
218                 runtime->avail_max = avail;
219         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
220                 if (avail >= runtime->buffer_size) {
221                         snd_pcm_drain_done(substream);
222                         return -EPIPE;
223                 }
224         } else {
225                 if (avail >= runtime->stop_threshold) {
226                         xrun(substream);
227                         return -EPIPE;
228                 }
229         }
230         if (runtime->twake) {
231                 if (avail >= runtime->twake)
232                         wake_up(&runtime->tsleep);
233         } else if (avail >= runtime->control->avail_min)
234                 wake_up(&runtime->sleep);
235         return 0;
236 }
237
238 static void update_audio_tstamp(struct snd_pcm_substream *substream,
239                                 struct timespec *curr_tstamp,
240                                 struct timespec *audio_tstamp)
241 {
242         struct snd_pcm_runtime *runtime = substream->runtime;
243         u64 audio_frames, audio_nsecs;
244         struct timespec driver_tstamp;
245
246         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
247                 return;
248
249         if (!(substream->ops->get_time_info) ||
250                 (runtime->audio_tstamp_report.actual_type ==
251                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
252
253                 /*
254                  * provide audio timestamp derived from pointer position
255                  * add delay only if requested
256                  */
257
258                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
259
260                 if (runtime->audio_tstamp_config.report_delay) {
261                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
262                                 audio_frames -=  runtime->delay;
263                         else
264                                 audio_frames +=  runtime->delay;
265                 }
266                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
267                                 runtime->rate);
268                 *audio_tstamp = ns_to_timespec(audio_nsecs);
269         }
270         runtime->status->audio_tstamp = *audio_tstamp;
271         runtime->status->tstamp = *curr_tstamp;
272
273         /*
274          * re-take a driver timestamp to let apps detect if the reference tstamp
275          * read by low-level hardware was provided with a delay
276          */
277         snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
278         runtime->driver_tstamp = driver_tstamp;
279 }
280
281 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
282                                   unsigned int in_interrupt)
283 {
284         struct snd_pcm_runtime *runtime = substream->runtime;
285         snd_pcm_uframes_t pos;
286         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
287         snd_pcm_sframes_t hdelta, delta;
288         unsigned long jdelta;
289         unsigned long curr_jiffies;
290         struct timespec curr_tstamp;
291         struct timespec audio_tstamp;
292         int crossed_boundary = 0;
293
294         old_hw_ptr = runtime->status->hw_ptr;
295
296         /*
297          * group pointer, time and jiffies reads to allow for more
298          * accurate correlations/corrections.
299          * The values are stored at the end of this routine after
300          * corrections for hw_ptr position
301          */
302         pos = substream->ops->pointer(substream);
303         curr_jiffies = jiffies;
304         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
305                 if ((substream->ops->get_time_info) &&
306                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
307                         substream->ops->get_time_info(substream, &curr_tstamp,
308                                                 &audio_tstamp,
309                                                 &runtime->audio_tstamp_config,
310                                                 &runtime->audio_tstamp_report);
311
312                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
313                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
314                                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
315                 } else
316                         snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
317         }
318
319         if (pos == SNDRV_PCM_POS_XRUN) {
320                 xrun(substream);
321                 return -EPIPE;
322         }
323         if (pos >= runtime->buffer_size) {
324                 if (printk_ratelimit()) {
325                         char name[16];
326                         snd_pcm_debug_name(substream, name, sizeof(name));
327                         pcm_err(substream->pcm,
328                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
329                                 name, pos, runtime->buffer_size,
330                                 runtime->period_size);
331                 }
332                 pos = 0;
333         }
334         pos -= pos % runtime->min_align;
335         trace_hwptr(substream, pos, in_interrupt);
336         hw_base = runtime->hw_ptr_base;
337         new_hw_ptr = hw_base + pos;
338         if (in_interrupt) {
339                 /* we know that one period was processed */
340                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
341                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
342                 if (delta > new_hw_ptr) {
343                         /* check for double acknowledged interrupts */
344                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
345                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
346                                 hw_base += runtime->buffer_size;
347                                 if (hw_base >= runtime->boundary) {
348                                         hw_base = 0;
349                                         crossed_boundary++;
350                                 }
351                                 new_hw_ptr = hw_base + pos;
352                                 goto __delta;
353                         }
354                 }
355         }
356         /* new_hw_ptr might be lower than old_hw_ptr in case when */
357         /* pointer crosses the end of the ring buffer */
358         if (new_hw_ptr < old_hw_ptr) {
359                 hw_base += runtime->buffer_size;
360                 if (hw_base >= runtime->boundary) {
361                         hw_base = 0;
362                         crossed_boundary++;
363                 }
364                 new_hw_ptr = hw_base + pos;
365         }
366       __delta:
367         delta = new_hw_ptr - old_hw_ptr;
368         if (delta < 0)
369                 delta += runtime->boundary;
370
371         if (runtime->no_period_wakeup) {
372                 snd_pcm_sframes_t xrun_threshold;
373                 /*
374                  * Without regular period interrupts, we have to check
375                  * the elapsed time to detect xruns.
376                  */
377                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
378                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
379                         goto no_delta_check;
380                 hdelta = jdelta - delta * HZ / runtime->rate;
381                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
382                 while (hdelta > xrun_threshold) {
383                         delta += runtime->buffer_size;
384                         hw_base += runtime->buffer_size;
385                         if (hw_base >= runtime->boundary) {
386                                 hw_base = 0;
387                                 crossed_boundary++;
388                         }
389                         new_hw_ptr = hw_base + pos;
390                         hdelta -= runtime->hw_ptr_buffer_jiffies;
391                 }
392                 goto no_delta_check;
393         }
394
395         /* something must be really wrong */
396         if (delta >= runtime->buffer_size + runtime->period_size) {
397                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
398                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
399                              substream->stream, (long)pos,
400                              (long)new_hw_ptr, (long)old_hw_ptr);
401                 return 0;
402         }
403
404         /* Do jiffies check only in xrun_debug mode */
405         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
406                 goto no_jiffies_check;
407
408         /* Skip the jiffies check for hardwares with BATCH flag.
409          * Such hardware usually just increases the position at each IRQ,
410          * thus it can't give any strange position.
411          */
412         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
413                 goto no_jiffies_check;
414         hdelta = delta;
415         if (hdelta < runtime->delay)
416                 goto no_jiffies_check;
417         hdelta -= runtime->delay;
418         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
419         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
420                 delta = jdelta /
421                         (((runtime->period_size * HZ) / runtime->rate)
422                                                                 + HZ/100);
423                 /* move new_hw_ptr according jiffies not pos variable */
424                 new_hw_ptr = old_hw_ptr;
425                 hw_base = delta;
426                 /* use loop to avoid checks for delta overflows */
427                 /* the delta value is small or zero in most cases */
428                 while (delta > 0) {
429                         new_hw_ptr += runtime->period_size;
430                         if (new_hw_ptr >= runtime->boundary) {
431                                 new_hw_ptr -= runtime->boundary;
432                                 crossed_boundary--;
433                         }
434                         delta--;
435                 }
436                 /* align hw_base to buffer_size */
437                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
438                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
439                              (long)pos, (long)hdelta,
440                              (long)runtime->period_size, jdelta,
441                              ((hdelta * HZ) / runtime->rate), hw_base,
442                              (unsigned long)old_hw_ptr,
443                              (unsigned long)new_hw_ptr);
444                 /* reset values to proper state */
445                 delta = 0;
446                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
447         }
448  no_jiffies_check:
449         if (delta > runtime->period_size + runtime->period_size / 2) {
450                 hw_ptr_error(substream, in_interrupt,
451                              "Lost interrupts?",
452                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
453                              substream->stream, (long)delta,
454                              (long)new_hw_ptr,
455                              (long)old_hw_ptr);
456         }
457
458  no_delta_check:
459         if (runtime->status->hw_ptr == new_hw_ptr) {
460                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
461                 return 0;
462         }
463
464         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
465             runtime->silence_size > 0)
466                 snd_pcm_playback_silence(substream, new_hw_ptr);
467
468         if (in_interrupt) {
469                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
470                 if (delta < 0)
471                         delta += runtime->boundary;
472                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
473                 runtime->hw_ptr_interrupt += delta;
474                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
475                         runtime->hw_ptr_interrupt -= runtime->boundary;
476         }
477         runtime->hw_ptr_base = hw_base;
478         runtime->status->hw_ptr = new_hw_ptr;
479         runtime->hw_ptr_jiffies = curr_jiffies;
480         if (crossed_boundary) {
481                 snd_BUG_ON(crossed_boundary != 1);
482                 runtime->hw_ptr_wrap += runtime->boundary;
483         }
484
485         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
486
487         return snd_pcm_update_state(substream, runtime);
488 }
489
490 /* CAUTION: call it with irq disabled */
491 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
492 {
493         return snd_pcm_update_hw_ptr0(substream, 0);
494 }
495
496 /**
497  * snd_pcm_set_ops - set the PCM operators
498  * @pcm: the pcm instance
499  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
500  * @ops: the operator table
501  *
502  * Sets the given PCM operators to the pcm instance.
503  */
504 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
505                      const struct snd_pcm_ops *ops)
506 {
507         struct snd_pcm_str *stream = &pcm->streams[direction];
508         struct snd_pcm_substream *substream;
509         
510         for (substream = stream->substream; substream != NULL; substream = substream->next)
511                 substream->ops = ops;
512 }
513
514 EXPORT_SYMBOL(snd_pcm_set_ops);
515
516 /**
517  * snd_pcm_sync - set the PCM sync id
518  * @substream: the pcm substream
519  *
520  * Sets the PCM sync identifier for the card.
521  */
522 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
523 {
524         struct snd_pcm_runtime *runtime = substream->runtime;
525         
526         runtime->sync.id32[0] = substream->pcm->card->number;
527         runtime->sync.id32[1] = -1;
528         runtime->sync.id32[2] = -1;
529         runtime->sync.id32[3] = -1;
530 }
531
532 EXPORT_SYMBOL(snd_pcm_set_sync);
533
534 /*
535  *  Standard ioctl routine
536  */
537
538 static inline unsigned int div32(unsigned int a, unsigned int b, 
539                                  unsigned int *r)
540 {
541         if (b == 0) {
542                 *r = 0;
543                 return UINT_MAX;
544         }
545         *r = a % b;
546         return a / b;
547 }
548
549 static inline unsigned int div_down(unsigned int a, unsigned int b)
550 {
551         if (b == 0)
552                 return UINT_MAX;
553         return a / b;
554 }
555
556 static inline unsigned int div_up(unsigned int a, unsigned int b)
557 {
558         unsigned int r;
559         unsigned int q;
560         if (b == 0)
561                 return UINT_MAX;
562         q = div32(a, b, &r);
563         if (r)
564                 ++q;
565         return q;
566 }
567
568 static inline unsigned int mul(unsigned int a, unsigned int b)
569 {
570         if (a == 0)
571                 return 0;
572         if (div_down(UINT_MAX, a) < b)
573                 return UINT_MAX;
574         return a * b;
575 }
576
577 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
578                                     unsigned int c, unsigned int *r)
579 {
580         u_int64_t n = (u_int64_t) a * b;
581         if (c == 0) {
582                 snd_BUG_ON(!n);
583                 *r = 0;
584                 return UINT_MAX;
585         }
586         n = div_u64_rem(n, c, r);
587         if (n >= UINT_MAX) {
588                 *r = 0;
589                 return UINT_MAX;
590         }
591         return n;
592 }
593
594 /**
595  * snd_interval_refine - refine the interval value of configurator
596  * @i: the interval value to refine
597  * @v: the interval value to refer to
598  *
599  * Refines the interval value with the reference value.
600  * The interval is changed to the range satisfying both intervals.
601  * The interval status (min, max, integer, etc.) are evaluated.
602  *
603  * Return: Positive if the value is changed, zero if it's not changed, or a
604  * negative error code.
605  */
606 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
607 {
608         int changed = 0;
609         if (snd_BUG_ON(snd_interval_empty(i)))
610                 return -EINVAL;
611         if (i->min < v->min) {
612                 i->min = v->min;
613                 i->openmin = v->openmin;
614                 changed = 1;
615         } else if (i->min == v->min && !i->openmin && v->openmin) {
616                 i->openmin = 1;
617                 changed = 1;
618         }
619         if (i->max > v->max) {
620                 i->max = v->max;
621                 i->openmax = v->openmax;
622                 changed = 1;
623         } else if (i->max == v->max && !i->openmax && v->openmax) {
624                 i->openmax = 1;
625                 changed = 1;
626         }
627         if (!i->integer && v->integer) {
628                 i->integer = 1;
629                 changed = 1;
630         }
631         if (i->integer) {
632                 if (i->openmin) {
633                         i->min++;
634                         i->openmin = 0;
635                 }
636                 if (i->openmax) {
637                         i->max--;
638                         i->openmax = 0;
639                 }
640         } else if (!i->openmin && !i->openmax && i->min == i->max)
641                 i->integer = 1;
642         if (snd_interval_checkempty(i)) {
643                 snd_interval_none(i);
644                 return -EINVAL;
645         }
646         return changed;
647 }
648
649 EXPORT_SYMBOL(snd_interval_refine);
650
651 static int snd_interval_refine_first(struct snd_interval *i)
652 {
653         if (snd_BUG_ON(snd_interval_empty(i)))
654                 return -EINVAL;
655         if (snd_interval_single(i))
656                 return 0;
657         i->max = i->min;
658         i->openmax = i->openmin;
659         if (i->openmax)
660                 i->max++;
661         return 1;
662 }
663
664 static int snd_interval_refine_last(struct snd_interval *i)
665 {
666         if (snd_BUG_ON(snd_interval_empty(i)))
667                 return -EINVAL;
668         if (snd_interval_single(i))
669                 return 0;
670         i->min = i->max;
671         i->openmin = i->openmax;
672         if (i->openmin)
673                 i->min--;
674         return 1;
675 }
676
677 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
678 {
679         if (a->empty || b->empty) {
680                 snd_interval_none(c);
681                 return;
682         }
683         c->empty = 0;
684         c->min = mul(a->min, b->min);
685         c->openmin = (a->openmin || b->openmin);
686         c->max = mul(a->max,  b->max);
687         c->openmax = (a->openmax || b->openmax);
688         c->integer = (a->integer && b->integer);
689 }
690
691 /**
692  * snd_interval_div - refine the interval value with division
693  * @a: dividend
694  * @b: divisor
695  * @c: quotient
696  *
697  * c = a / b
698  *
699  * Returns non-zero if the value is changed, zero if not changed.
700  */
701 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
702 {
703         unsigned int r;
704         if (a->empty || b->empty) {
705                 snd_interval_none(c);
706                 return;
707         }
708         c->empty = 0;
709         c->min = div32(a->min, b->max, &r);
710         c->openmin = (r || a->openmin || b->openmax);
711         if (b->min > 0) {
712                 c->max = div32(a->max, b->min, &r);
713                 if (r) {
714                         c->max++;
715                         c->openmax = 1;
716                 } else
717                         c->openmax = (a->openmax || b->openmin);
718         } else {
719                 c->max = UINT_MAX;
720                 c->openmax = 0;
721         }
722         c->integer = 0;
723 }
724
725 /**
726  * snd_interval_muldivk - refine the interval value
727  * @a: dividend 1
728  * @b: dividend 2
729  * @k: divisor (as integer)
730  * @c: result
731   *
732  * c = a * b / k
733  *
734  * Returns non-zero if the value is changed, zero if not changed.
735  */
736 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
737                       unsigned int k, struct snd_interval *c)
738 {
739         unsigned int r;
740         if (a->empty || b->empty) {
741                 snd_interval_none(c);
742                 return;
743         }
744         c->empty = 0;
745         c->min = muldiv32(a->min, b->min, k, &r);
746         c->openmin = (r || a->openmin || b->openmin);
747         c->max = muldiv32(a->max, b->max, k, &r);
748         if (r) {
749                 c->max++;
750                 c->openmax = 1;
751         } else
752                 c->openmax = (a->openmax || b->openmax);
753         c->integer = 0;
754 }
755
756 /**
757  * snd_interval_mulkdiv - refine the interval value
758  * @a: dividend 1
759  * @k: dividend 2 (as integer)
760  * @b: divisor
761  * @c: result
762  *
763  * c = a * k / b
764  *
765  * Returns non-zero if the value is changed, zero if not changed.
766  */
767 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
768                       const struct snd_interval *b, struct snd_interval *c)
769 {
770         unsigned int r;
771         if (a->empty || b->empty) {
772                 snd_interval_none(c);
773                 return;
774         }
775         c->empty = 0;
776         c->min = muldiv32(a->min, k, b->max, &r);
777         c->openmin = (r || a->openmin || b->openmax);
778         if (b->min > 0) {
779                 c->max = muldiv32(a->max, k, b->min, &r);
780                 if (r) {
781                         c->max++;
782                         c->openmax = 1;
783                 } else
784                         c->openmax = (a->openmax || b->openmin);
785         } else {
786                 c->max = UINT_MAX;
787                 c->openmax = 0;
788         }
789         c->integer = 0;
790 }
791
792 /* ---- */
793
794
795 /**
796  * snd_interval_ratnum - refine the interval value
797  * @i: interval to refine
798  * @rats_count: number of ratnum_t 
799  * @rats: ratnum_t array
800  * @nump: pointer to store the resultant numerator
801  * @denp: pointer to store the resultant denominator
802  *
803  * Return: Positive if the value is changed, zero if it's not changed, or a
804  * negative error code.
805  */
806 int snd_interval_ratnum(struct snd_interval *i,
807                         unsigned int rats_count, const struct snd_ratnum *rats,
808                         unsigned int *nump, unsigned int *denp)
809 {
810         unsigned int best_num, best_den;
811         int best_diff;
812         unsigned int k;
813         struct snd_interval t;
814         int err;
815         unsigned int result_num, result_den;
816         int result_diff;
817
818         best_num = best_den = best_diff = 0;
819         for (k = 0; k < rats_count; ++k) {
820                 unsigned int num = rats[k].num;
821                 unsigned int den;
822                 unsigned int q = i->min;
823                 int diff;
824                 if (q == 0)
825                         q = 1;
826                 den = div_up(num, q);
827                 if (den < rats[k].den_min)
828                         continue;
829                 if (den > rats[k].den_max)
830                         den = rats[k].den_max;
831                 else {
832                         unsigned int r;
833                         r = (den - rats[k].den_min) % rats[k].den_step;
834                         if (r != 0)
835                                 den -= r;
836                 }
837                 diff = num - q * den;
838                 if (diff < 0)
839                         diff = -diff;
840                 if (best_num == 0 ||
841                     diff * best_den < best_diff * den) {
842                         best_diff = diff;
843                         best_den = den;
844                         best_num = num;
845                 }
846         }
847         if (best_den == 0) {
848                 i->empty = 1;
849                 return -EINVAL;
850         }
851         t.min = div_down(best_num, best_den);
852         t.openmin = !!(best_num % best_den);
853         
854         result_num = best_num;
855         result_diff = best_diff;
856         result_den = best_den;
857         best_num = best_den = best_diff = 0;
858         for (k = 0; k < rats_count; ++k) {
859                 unsigned int num = rats[k].num;
860                 unsigned int den;
861                 unsigned int q = i->max;
862                 int diff;
863                 if (q == 0) {
864                         i->empty = 1;
865                         return -EINVAL;
866                 }
867                 den = div_down(num, q);
868                 if (den > rats[k].den_max)
869                         continue;
870                 if (den < rats[k].den_min)
871                         den = rats[k].den_min;
872                 else {
873                         unsigned int r;
874                         r = (den - rats[k].den_min) % rats[k].den_step;
875                         if (r != 0)
876                                 den += rats[k].den_step - r;
877                 }
878                 diff = q * den - num;
879                 if (diff < 0)
880                         diff = -diff;
881                 if (best_num == 0 ||
882                     diff * best_den < best_diff * den) {
883                         best_diff = diff;
884                         best_den = den;
885                         best_num = num;
886                 }
887         }
888         if (best_den == 0) {
889                 i->empty = 1;
890                 return -EINVAL;
891         }
892         t.max = div_up(best_num, best_den);
893         t.openmax = !!(best_num % best_den);
894         t.integer = 0;
895         err = snd_interval_refine(i, &t);
896         if (err < 0)
897                 return err;
898
899         if (snd_interval_single(i)) {
900                 if (best_diff * result_den < result_diff * best_den) {
901                         result_num = best_num;
902                         result_den = best_den;
903                 }
904                 if (nump)
905                         *nump = result_num;
906                 if (denp)
907                         *denp = result_den;
908         }
909         return err;
910 }
911
912 EXPORT_SYMBOL(snd_interval_ratnum);
913
914 /**
915  * snd_interval_ratden - refine the interval value
916  * @i: interval to refine
917  * @rats_count: number of struct ratden
918  * @rats: struct ratden array
919  * @nump: pointer to store the resultant numerator
920  * @denp: pointer to store the resultant denominator
921  *
922  * Return: Positive if the value is changed, zero if it's not changed, or a
923  * negative error code.
924  */
925 static int snd_interval_ratden(struct snd_interval *i,
926                                unsigned int rats_count,
927                                const struct snd_ratden *rats,
928                                unsigned int *nump, unsigned int *denp)
929 {
930         unsigned int best_num, best_diff, best_den;
931         unsigned int k;
932         struct snd_interval t;
933         int err;
934
935         best_num = best_den = best_diff = 0;
936         for (k = 0; k < rats_count; ++k) {
937                 unsigned int num;
938                 unsigned int den = rats[k].den;
939                 unsigned int q = i->min;
940                 int diff;
941                 num = mul(q, den);
942                 if (num > rats[k].num_max)
943                         continue;
944                 if (num < rats[k].num_min)
945                         num = rats[k].num_max;
946                 else {
947                         unsigned int r;
948                         r = (num - rats[k].num_min) % rats[k].num_step;
949                         if (r != 0)
950                                 num += rats[k].num_step - r;
951                 }
952                 diff = num - q * den;
953                 if (best_num == 0 ||
954                     diff * best_den < best_diff * den) {
955                         best_diff = diff;
956                         best_den = den;
957                         best_num = num;
958                 }
959         }
960         if (best_den == 0) {
961                 i->empty = 1;
962                 return -EINVAL;
963         }
964         t.min = div_down(best_num, best_den);
965         t.openmin = !!(best_num % best_den);
966         
967         best_num = best_den = best_diff = 0;
968         for (k = 0; k < rats_count; ++k) {
969                 unsigned int num;
970                 unsigned int den = rats[k].den;
971                 unsigned int q = i->max;
972                 int diff;
973                 num = mul(q, den);
974                 if (num < rats[k].num_min)
975                         continue;
976                 if (num > rats[k].num_max)
977                         num = rats[k].num_max;
978                 else {
979                         unsigned int r;
980                         r = (num - rats[k].num_min) % rats[k].num_step;
981                         if (r != 0)
982                                 num -= r;
983                 }
984                 diff = q * den - num;
985                 if (best_num == 0 ||
986                     diff * best_den < best_diff * den) {
987                         best_diff = diff;
988                         best_den = den;
989                         best_num = num;
990                 }
991         }
992         if (best_den == 0) {
993                 i->empty = 1;
994                 return -EINVAL;
995         }
996         t.max = div_up(best_num, best_den);
997         t.openmax = !!(best_num % best_den);
998         t.integer = 0;
999         err = snd_interval_refine(i, &t);
1000         if (err < 0)
1001                 return err;
1002
1003         if (snd_interval_single(i)) {
1004                 if (nump)
1005                         *nump = best_num;
1006                 if (denp)
1007                         *denp = best_den;
1008         }
1009         return err;
1010 }
1011
1012 /**
1013  * snd_interval_list - refine the interval value from the list
1014  * @i: the interval value to refine
1015  * @count: the number of elements in the list
1016  * @list: the value list
1017  * @mask: the bit-mask to evaluate
1018  *
1019  * Refines the interval value from the list.
1020  * When mask is non-zero, only the elements corresponding to bit 1 are
1021  * evaluated.
1022  *
1023  * Return: Positive if the value is changed, zero if it's not changed, or a
1024  * negative error code.
1025  */
1026 int snd_interval_list(struct snd_interval *i, unsigned int count,
1027                       const unsigned int *list, unsigned int mask)
1028 {
1029         unsigned int k;
1030         struct snd_interval list_range;
1031
1032         if (!count) {
1033                 i->empty = 1;
1034                 return -EINVAL;
1035         }
1036         snd_interval_any(&list_range);
1037         list_range.min = UINT_MAX;
1038         list_range.max = 0;
1039         for (k = 0; k < count; k++) {
1040                 if (mask && !(mask & (1 << k)))
1041                         continue;
1042                 if (!snd_interval_test(i, list[k]))
1043                         continue;
1044                 list_range.min = min(list_range.min, list[k]);
1045                 list_range.max = max(list_range.max, list[k]);
1046         }
1047         return snd_interval_refine(i, &list_range);
1048 }
1049
1050 EXPORT_SYMBOL(snd_interval_list);
1051
1052 /**
1053  * snd_interval_ranges - refine the interval value from the list of ranges
1054  * @i: the interval value to refine
1055  * @count: the number of elements in the list of ranges
1056  * @ranges: the ranges list
1057  * @mask: the bit-mask to evaluate
1058  *
1059  * Refines the interval value from the list of ranges.
1060  * When mask is non-zero, only the elements corresponding to bit 1 are
1061  * evaluated.
1062  *
1063  * Return: Positive if the value is changed, zero if it's not changed, or a
1064  * negative error code.
1065  */
1066 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1067                         const struct snd_interval *ranges, unsigned int mask)
1068 {
1069         unsigned int k;
1070         struct snd_interval range_union;
1071         struct snd_interval range;
1072
1073         if (!count) {
1074                 snd_interval_none(i);
1075                 return -EINVAL;
1076         }
1077         snd_interval_any(&range_union);
1078         range_union.min = UINT_MAX;
1079         range_union.max = 0;
1080         for (k = 0; k < count; k++) {
1081                 if (mask && !(mask & (1 << k)))
1082                         continue;
1083                 snd_interval_copy(&range, &ranges[k]);
1084                 if (snd_interval_refine(&range, i) < 0)
1085                         continue;
1086                 if (snd_interval_empty(&range))
1087                         continue;
1088
1089                 if (range.min < range_union.min) {
1090                         range_union.min = range.min;
1091                         range_union.openmin = 1;
1092                 }
1093                 if (range.min == range_union.min && !range.openmin)
1094                         range_union.openmin = 0;
1095                 if (range.max > range_union.max) {
1096                         range_union.max = range.max;
1097                         range_union.openmax = 1;
1098                 }
1099                 if (range.max == range_union.max && !range.openmax)
1100                         range_union.openmax = 0;
1101         }
1102         return snd_interval_refine(i, &range_union);
1103 }
1104 EXPORT_SYMBOL(snd_interval_ranges);
1105
1106 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1107 {
1108         unsigned int n;
1109         int changed = 0;
1110         n = i->min % step;
1111         if (n != 0 || i->openmin) {
1112                 i->min += step - n;
1113                 i->openmin = 0;
1114                 changed = 1;
1115         }
1116         n = i->max % step;
1117         if (n != 0 || i->openmax) {
1118                 i->max -= n;
1119                 i->openmax = 0;
1120                 changed = 1;
1121         }
1122         if (snd_interval_checkempty(i)) {
1123                 i->empty = 1;
1124                 return -EINVAL;
1125         }
1126         return changed;
1127 }
1128
1129 /* Info constraints helpers */
1130
1131 /**
1132  * snd_pcm_hw_rule_add - add the hw-constraint rule
1133  * @runtime: the pcm runtime instance
1134  * @cond: condition bits
1135  * @var: the variable to evaluate
1136  * @func: the evaluation function
1137  * @private: the private data pointer passed to function
1138  * @dep: the dependent variables
1139  *
1140  * Return: Zero if successful, or a negative error code on failure.
1141  */
1142 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1143                         int var,
1144                         snd_pcm_hw_rule_func_t func, void *private,
1145                         int dep, ...)
1146 {
1147         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1148         struct snd_pcm_hw_rule *c;
1149         unsigned int k;
1150         va_list args;
1151         va_start(args, dep);
1152         if (constrs->rules_num >= constrs->rules_all) {
1153                 struct snd_pcm_hw_rule *new;
1154                 unsigned int new_rules = constrs->rules_all + 16;
1155                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1156                 if (!new) {
1157                         va_end(args);
1158                         return -ENOMEM;
1159                 }
1160                 if (constrs->rules) {
1161                         memcpy(new, constrs->rules,
1162                                constrs->rules_num * sizeof(*c));
1163                         kfree(constrs->rules);
1164                 }
1165                 constrs->rules = new;
1166                 constrs->rules_all = new_rules;
1167         }
1168         c = &constrs->rules[constrs->rules_num];
1169         c->cond = cond;
1170         c->func = func;
1171         c->var = var;
1172         c->private = private;
1173         k = 0;
1174         while (1) {
1175                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1176                         va_end(args);
1177                         return -EINVAL;
1178                 }
1179                 c->deps[k++] = dep;
1180                 if (dep < 0)
1181                         break;
1182                 dep = va_arg(args, int);
1183         }
1184         constrs->rules_num++;
1185         va_end(args);
1186         return 0;
1187 }
1188
1189 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1190
1191 /**
1192  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1193  * @runtime: PCM runtime instance
1194  * @var: hw_params variable to apply the mask
1195  * @mask: the bitmap mask
1196  *
1197  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1198  *
1199  * Return: Zero if successful, or a negative error code on failure.
1200  */
1201 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1202                                u_int32_t mask)
1203 {
1204         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205         struct snd_mask *maskp = constrs_mask(constrs, var);
1206         *maskp->bits &= mask;
1207         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1208         if (*maskp->bits == 0)
1209                 return -EINVAL;
1210         return 0;
1211 }
1212
1213 /**
1214  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1215  * @runtime: PCM runtime instance
1216  * @var: hw_params variable to apply the mask
1217  * @mask: the 64bit bitmap mask
1218  *
1219  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1220  *
1221  * Return: Zero if successful, or a negative error code on failure.
1222  */
1223 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1224                                  u_int64_t mask)
1225 {
1226         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1227         struct snd_mask *maskp = constrs_mask(constrs, var);
1228         maskp->bits[0] &= (u_int32_t)mask;
1229         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1230         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1231         if (! maskp->bits[0] && ! maskp->bits[1])
1232                 return -EINVAL;
1233         return 0;
1234 }
1235 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1236
1237 /**
1238  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1239  * @runtime: PCM runtime instance
1240  * @var: hw_params variable to apply the integer constraint
1241  *
1242  * Apply the constraint of integer to an interval parameter.
1243  *
1244  * Return: Positive if the value is changed, zero if it's not changed, or a
1245  * negative error code.
1246  */
1247 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1248 {
1249         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1250         return snd_interval_setinteger(constrs_interval(constrs, var));
1251 }
1252
1253 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1254
1255 /**
1256  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1257  * @runtime: PCM runtime instance
1258  * @var: hw_params variable to apply the range
1259  * @min: the minimal value
1260  * @max: the maximal value
1261  * 
1262  * Apply the min/max range constraint to an interval parameter.
1263  *
1264  * Return: Positive if the value is changed, zero if it's not changed, or a
1265  * negative error code.
1266  */
1267 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1268                                  unsigned int min, unsigned int max)
1269 {
1270         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1271         struct snd_interval t;
1272         t.min = min;
1273         t.max = max;
1274         t.openmin = t.openmax = 0;
1275         t.integer = 0;
1276         return snd_interval_refine(constrs_interval(constrs, var), &t);
1277 }
1278
1279 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1280
1281 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1282                                 struct snd_pcm_hw_rule *rule)
1283 {
1284         struct snd_pcm_hw_constraint_list *list = rule->private;
1285         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1286 }               
1287
1288
1289 /**
1290  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1291  * @runtime: PCM runtime instance
1292  * @cond: condition bits
1293  * @var: hw_params variable to apply the list constraint
1294  * @l: list
1295  * 
1296  * Apply the list of constraints to an interval parameter.
1297  *
1298  * Return: Zero if successful, or a negative error code on failure.
1299  */
1300 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1301                                unsigned int cond,
1302                                snd_pcm_hw_param_t var,
1303                                const struct snd_pcm_hw_constraint_list *l)
1304 {
1305         return snd_pcm_hw_rule_add(runtime, cond, var,
1306                                    snd_pcm_hw_rule_list, (void *)l,
1307                                    var, -1);
1308 }
1309
1310 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1311
1312 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1313                                   struct snd_pcm_hw_rule *rule)
1314 {
1315         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1316         return snd_interval_ranges(hw_param_interval(params, rule->var),
1317                                    r->count, r->ranges, r->mask);
1318 }
1319
1320
1321 /**
1322  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1323  * @runtime: PCM runtime instance
1324  * @cond: condition bits
1325  * @var: hw_params variable to apply the list of range constraints
1326  * @r: ranges
1327  *
1328  * Apply the list of range constraints to an interval parameter.
1329  *
1330  * Return: Zero if successful, or a negative error code on failure.
1331  */
1332 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1333                                  unsigned int cond,
1334                                  snd_pcm_hw_param_t var,
1335                                  const struct snd_pcm_hw_constraint_ranges *r)
1336 {
1337         return snd_pcm_hw_rule_add(runtime, cond, var,
1338                                    snd_pcm_hw_rule_ranges, (void *)r,
1339                                    var, -1);
1340 }
1341 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1342
1343 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1344                                    struct snd_pcm_hw_rule *rule)
1345 {
1346         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1347         unsigned int num = 0, den = 0;
1348         int err;
1349         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1350                                   r->nrats, r->rats, &num, &den);
1351         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1352                 params->rate_num = num;
1353                 params->rate_den = den;
1354         }
1355         return err;
1356 }
1357
1358 /**
1359  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1360  * @runtime: PCM runtime instance
1361  * @cond: condition bits
1362  * @var: hw_params variable to apply the ratnums constraint
1363  * @r: struct snd_ratnums constriants
1364  *
1365  * Return: Zero if successful, or a negative error code on failure.
1366  */
1367 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1368                                   unsigned int cond,
1369                                   snd_pcm_hw_param_t var,
1370                                   const struct snd_pcm_hw_constraint_ratnums *r)
1371 {
1372         return snd_pcm_hw_rule_add(runtime, cond, var,
1373                                    snd_pcm_hw_rule_ratnums, (void *)r,
1374                                    var, -1);
1375 }
1376
1377 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1378
1379 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1380                                    struct snd_pcm_hw_rule *rule)
1381 {
1382         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1383         unsigned int num = 0, den = 0;
1384         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1385                                   r->nrats, r->rats, &num, &den);
1386         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1387                 params->rate_num = num;
1388                 params->rate_den = den;
1389         }
1390         return err;
1391 }
1392
1393 /**
1394  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1395  * @runtime: PCM runtime instance
1396  * @cond: condition bits
1397  * @var: hw_params variable to apply the ratdens constraint
1398  * @r: struct snd_ratdens constriants
1399  *
1400  * Return: Zero if successful, or a negative error code on failure.
1401  */
1402 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1403                                   unsigned int cond,
1404                                   snd_pcm_hw_param_t var,
1405                                   const struct snd_pcm_hw_constraint_ratdens *r)
1406 {
1407         return snd_pcm_hw_rule_add(runtime, cond, var,
1408                                    snd_pcm_hw_rule_ratdens, (void *)r,
1409                                    var, -1);
1410 }
1411
1412 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1413
1414 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1415                                   struct snd_pcm_hw_rule *rule)
1416 {
1417         unsigned int l = (unsigned long) rule->private;
1418         int width = l & 0xffff;
1419         unsigned int msbits = l >> 16;
1420         const struct snd_interval *i =
1421                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1422
1423         if (!snd_interval_single(i))
1424                 return 0;
1425
1426         if ((snd_interval_value(i) == width) ||
1427             (width == 0 && snd_interval_value(i) > msbits))
1428                 params->msbits = min_not_zero(params->msbits, msbits);
1429
1430         return 0;
1431 }
1432
1433 /**
1434  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1435  * @runtime: PCM runtime instance
1436  * @cond: condition bits
1437  * @width: sample bits width
1438  * @msbits: msbits width
1439  *
1440  * This constraint will set the number of most significant bits (msbits) if a
1441  * sample format with the specified width has been select. If width is set to 0
1442  * the msbits will be set for any sample format with a width larger than the
1443  * specified msbits.
1444  *
1445  * Return: Zero if successful, or a negative error code on failure.
1446  */
1447 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1448                                  unsigned int cond,
1449                                  unsigned int width,
1450                                  unsigned int msbits)
1451 {
1452         unsigned long l = (msbits << 16) | width;
1453         return snd_pcm_hw_rule_add(runtime, cond, -1,
1454                                     snd_pcm_hw_rule_msbits,
1455                                     (void*) l,
1456                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1457 }
1458
1459 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1460
1461 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1462                                 struct snd_pcm_hw_rule *rule)
1463 {
1464         unsigned long step = (unsigned long) rule->private;
1465         return snd_interval_step(hw_param_interval(params, rule->var), step);
1466 }
1467
1468 /**
1469  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1470  * @runtime: PCM runtime instance
1471  * @cond: condition bits
1472  * @var: hw_params variable to apply the step constraint
1473  * @step: step size
1474  *
1475  * Return: Zero if successful, or a negative error code on failure.
1476  */
1477 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1478                                unsigned int cond,
1479                                snd_pcm_hw_param_t var,
1480                                unsigned long step)
1481 {
1482         return snd_pcm_hw_rule_add(runtime, cond, var, 
1483                                    snd_pcm_hw_rule_step, (void *) step,
1484                                    var, -1);
1485 }
1486
1487 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1488
1489 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1490 {
1491         static unsigned int pow2_sizes[] = {
1492                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1493                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1494                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1495                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1496         };
1497         return snd_interval_list(hw_param_interval(params, rule->var),
1498                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1499 }               
1500
1501 /**
1502  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1503  * @runtime: PCM runtime instance
1504  * @cond: condition bits
1505  * @var: hw_params variable to apply the power-of-2 constraint
1506  *
1507  * Return: Zero if successful, or a negative error code on failure.
1508  */
1509 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1510                                unsigned int cond,
1511                                snd_pcm_hw_param_t var)
1512 {
1513         return snd_pcm_hw_rule_add(runtime, cond, var, 
1514                                    snd_pcm_hw_rule_pow2, NULL,
1515                                    var, -1);
1516 }
1517
1518 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1519
1520 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1521                                            struct snd_pcm_hw_rule *rule)
1522 {
1523         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1524         struct snd_interval *rate;
1525
1526         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1527         return snd_interval_list(rate, 1, &base_rate, 0);
1528 }
1529
1530 /**
1531  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1532  * @runtime: PCM runtime instance
1533  * @base_rate: the rate at which the hardware does not resample
1534  *
1535  * Return: Zero if successful, or a negative error code on failure.
1536  */
1537 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1538                                unsigned int base_rate)
1539 {
1540         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1541                                    SNDRV_PCM_HW_PARAM_RATE,
1542                                    snd_pcm_hw_rule_noresample_func,
1543                                    (void *)(uintptr_t)base_rate,
1544                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1545 }
1546 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1547
1548 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1549                                   snd_pcm_hw_param_t var)
1550 {
1551         if (hw_is_mask(var)) {
1552                 snd_mask_any(hw_param_mask(params, var));
1553                 params->cmask |= 1 << var;
1554                 params->rmask |= 1 << var;
1555                 return;
1556         }
1557         if (hw_is_interval(var)) {
1558                 snd_interval_any(hw_param_interval(params, var));
1559                 params->cmask |= 1 << var;
1560                 params->rmask |= 1 << var;
1561                 return;
1562         }
1563         snd_BUG();
1564 }
1565
1566 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1567 {
1568         unsigned int k;
1569         memset(params, 0, sizeof(*params));
1570         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1571                 _snd_pcm_hw_param_any(params, k);
1572         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1573                 _snd_pcm_hw_param_any(params, k);
1574         params->info = ~0U;
1575 }
1576
1577 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1578
1579 /**
1580  * snd_pcm_hw_param_value - return @params field @var value
1581  * @params: the hw_params instance
1582  * @var: parameter to retrieve
1583  * @dir: pointer to the direction (-1,0,1) or %NULL
1584  *
1585  * Return: The value for field @var if it's fixed in configuration space
1586  * defined by @params. -%EINVAL otherwise.
1587  */
1588 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1589                            snd_pcm_hw_param_t var, int *dir)
1590 {
1591         if (hw_is_mask(var)) {
1592                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1593                 if (!snd_mask_single(mask))
1594                         return -EINVAL;
1595                 if (dir)
1596                         *dir = 0;
1597                 return snd_mask_value(mask);
1598         }
1599         if (hw_is_interval(var)) {
1600                 const struct snd_interval *i = hw_param_interval_c(params, var);
1601                 if (!snd_interval_single(i))
1602                         return -EINVAL;
1603                 if (dir)
1604                         *dir = i->openmin;
1605                 return snd_interval_value(i);
1606         }
1607         return -EINVAL;
1608 }
1609
1610 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1611
1612 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1613                                 snd_pcm_hw_param_t var)
1614 {
1615         if (hw_is_mask(var)) {
1616                 snd_mask_none(hw_param_mask(params, var));
1617                 params->cmask |= 1 << var;
1618                 params->rmask |= 1 << var;
1619         } else if (hw_is_interval(var)) {
1620                 snd_interval_none(hw_param_interval(params, var));
1621                 params->cmask |= 1 << var;
1622                 params->rmask |= 1 << var;
1623         } else {
1624                 snd_BUG();
1625         }
1626 }
1627
1628 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1629
1630 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1631                                    snd_pcm_hw_param_t var)
1632 {
1633         int changed;
1634         if (hw_is_mask(var))
1635                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1636         else if (hw_is_interval(var))
1637                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1638         else
1639                 return -EINVAL;
1640         if (changed) {
1641                 params->cmask |= 1 << var;
1642                 params->rmask |= 1 << var;
1643         }
1644         return changed;
1645 }
1646
1647
1648 /**
1649  * snd_pcm_hw_param_first - refine config space and return minimum value
1650  * @pcm: PCM instance
1651  * @params: the hw_params instance
1652  * @var: parameter to retrieve
1653  * @dir: pointer to the direction (-1,0,1) or %NULL
1654  *
1655  * Inside configuration space defined by @params remove from @var all
1656  * values > minimum. Reduce configuration space accordingly.
1657  *
1658  * Return: The minimum, or a negative error code on failure.
1659  */
1660 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1661                            struct snd_pcm_hw_params *params, 
1662                            snd_pcm_hw_param_t var, int *dir)
1663 {
1664         int changed = _snd_pcm_hw_param_first(params, var);
1665         if (changed < 0)
1666                 return changed;
1667         if (params->rmask) {
1668                 int err = snd_pcm_hw_refine(pcm, params);
1669                 if (snd_BUG_ON(err < 0))
1670                         return err;
1671         }
1672         return snd_pcm_hw_param_value(params, var, dir);
1673 }
1674
1675 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1676
1677 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1678                                   snd_pcm_hw_param_t var)
1679 {
1680         int changed;
1681         if (hw_is_mask(var))
1682                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1683         else if (hw_is_interval(var))
1684                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1685         else
1686                 return -EINVAL;
1687         if (changed) {
1688                 params->cmask |= 1 << var;
1689                 params->rmask |= 1 << var;
1690         }
1691         return changed;
1692 }
1693
1694
1695 /**
1696  * snd_pcm_hw_param_last - refine config space and return maximum value
1697  * @pcm: PCM instance
1698  * @params: the hw_params instance
1699  * @var: parameter to retrieve
1700  * @dir: pointer to the direction (-1,0,1) or %NULL
1701  *
1702  * Inside configuration space defined by @params remove from @var all
1703  * values < maximum. Reduce configuration space accordingly.
1704  *
1705  * Return: The maximum, or a negative error code on failure.
1706  */
1707 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1708                           struct snd_pcm_hw_params *params,
1709                           snd_pcm_hw_param_t var, int *dir)
1710 {
1711         int changed = _snd_pcm_hw_param_last(params, var);
1712         if (changed < 0)
1713                 return changed;
1714         if (params->rmask) {
1715                 int err = snd_pcm_hw_refine(pcm, params);
1716                 if (snd_BUG_ON(err < 0))
1717                         return err;
1718         }
1719         return snd_pcm_hw_param_value(params, var, dir);
1720 }
1721
1722 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1723
1724 /**
1725  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1726  * @pcm: PCM instance
1727  * @params: the hw_params instance
1728  *
1729  * Choose one configuration from configuration space defined by @params.
1730  * The configuration chosen is that obtained fixing in this order:
1731  * first access, first format, first subformat, min channels,
1732  * min rate, min period time, max buffer size, min tick time
1733  *
1734  * Return: Zero if successful, or a negative error code on failure.
1735  */
1736 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1737                              struct snd_pcm_hw_params *params)
1738 {
1739         static const int vars[] = {
1740                 SNDRV_PCM_HW_PARAM_ACCESS,
1741                 SNDRV_PCM_HW_PARAM_FORMAT,
1742                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1743                 SNDRV_PCM_HW_PARAM_CHANNELS,
1744                 SNDRV_PCM_HW_PARAM_RATE,
1745                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1746                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1747                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1748                 -1
1749         };
1750         const int *v;
1751         int err;
1752
1753         for (v = vars; *v != -1; v++) {
1754                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1755                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1756                 else
1757                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1758                 if (snd_BUG_ON(err < 0))
1759                         return err;
1760         }
1761         return 0;
1762 }
1763
1764 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1765                                    void *arg)
1766 {
1767         struct snd_pcm_runtime *runtime = substream->runtime;
1768         unsigned long flags;
1769         snd_pcm_stream_lock_irqsave(substream, flags);
1770         if (snd_pcm_running(substream) &&
1771             snd_pcm_update_hw_ptr(substream) >= 0)
1772                 runtime->status->hw_ptr %= runtime->buffer_size;
1773         else {
1774                 runtime->status->hw_ptr = 0;
1775                 runtime->hw_ptr_wrap = 0;
1776         }
1777         snd_pcm_stream_unlock_irqrestore(substream, flags);
1778         return 0;
1779 }
1780
1781 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1782                                           void *arg)
1783 {
1784         struct snd_pcm_channel_info *info = arg;
1785         struct snd_pcm_runtime *runtime = substream->runtime;
1786         int width;
1787         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1788                 info->offset = -1;
1789                 return 0;
1790         }
1791         width = snd_pcm_format_physical_width(runtime->format);
1792         if (width < 0)
1793                 return width;
1794         info->offset = 0;
1795         switch (runtime->access) {
1796         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1797         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1798                 info->first = info->channel * width;
1799                 info->step = runtime->channels * width;
1800                 break;
1801         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1802         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1803         {
1804                 size_t size = runtime->dma_bytes / runtime->channels;
1805                 info->first = info->channel * size * 8;
1806                 info->step = width;
1807                 break;
1808         }
1809         default:
1810                 snd_BUG();
1811                 break;
1812         }
1813         return 0;
1814 }
1815
1816 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1817                                        void *arg)
1818 {
1819         struct snd_pcm_hw_params *params = arg;
1820         snd_pcm_format_t format;
1821         int channels;
1822         ssize_t frame_size;
1823
1824         params->fifo_size = substream->runtime->hw.fifo_size;
1825         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1826                 format = params_format(params);
1827                 channels = params_channels(params);
1828                 frame_size = snd_pcm_format_size(format, channels);
1829                 if (frame_size > 0)
1830                         params->fifo_size /= (unsigned)frame_size;
1831         }
1832         return 0;
1833 }
1834
1835 /**
1836  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1837  * @substream: the pcm substream instance
1838  * @cmd: ioctl command
1839  * @arg: ioctl argument
1840  *
1841  * Processes the generic ioctl commands for PCM.
1842  * Can be passed as the ioctl callback for PCM ops.
1843  *
1844  * Return: Zero if successful, or a negative error code on failure.
1845  */
1846 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1847                       unsigned int cmd, void *arg)
1848 {
1849         switch (cmd) {
1850         case SNDRV_PCM_IOCTL1_INFO:
1851                 return 0;
1852         case SNDRV_PCM_IOCTL1_RESET:
1853                 return snd_pcm_lib_ioctl_reset(substream, arg);
1854         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1855                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1856         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1857                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1858         }
1859         return -ENXIO;
1860 }
1861
1862 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1863
1864 /**
1865  * snd_pcm_period_elapsed - update the pcm status for the next period
1866  * @substream: the pcm substream instance
1867  *
1868  * This function is called from the interrupt handler when the
1869  * PCM has processed the period size.  It will update the current
1870  * pointer, wake up sleepers, etc.
1871  *
1872  * Even if more than one periods have elapsed since the last call, you
1873  * have to call this only once.
1874  */
1875 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1876 {
1877         struct snd_pcm_runtime *runtime;
1878         unsigned long flags;
1879
1880         if (PCM_RUNTIME_CHECK(substream))
1881                 return;
1882         runtime = substream->runtime;
1883
1884         snd_pcm_stream_lock_irqsave(substream, flags);
1885         if (!snd_pcm_running(substream) ||
1886             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1887                 goto _end;
1888
1889 #ifdef CONFIG_SND_PCM_TIMER
1890         if (substream->timer_running)
1891                 snd_timer_interrupt(substream->timer, 1);
1892 #endif
1893  _end:
1894         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1895         snd_pcm_stream_unlock_irqrestore(substream, flags);
1896 }
1897
1898 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1899
1900 /*
1901  * Wait until avail_min data becomes available
1902  * Returns a negative error code if any error occurs during operation.
1903  * The available space is stored on availp.  When err = 0 and avail = 0
1904  * on the capture stream, it indicates the stream is in DRAINING state.
1905  */
1906 static int wait_for_avail(struct snd_pcm_substream *substream,
1907                               snd_pcm_uframes_t *availp)
1908 {
1909         struct snd_pcm_runtime *runtime = substream->runtime;
1910         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1911         wait_queue_t wait;
1912         int err = 0;
1913         snd_pcm_uframes_t avail = 0;
1914         long wait_time, tout;
1915
1916         init_waitqueue_entry(&wait, current);
1917         set_current_state(TASK_INTERRUPTIBLE);
1918         add_wait_queue(&runtime->tsleep, &wait);
1919
1920         if (runtime->no_period_wakeup)
1921                 wait_time = MAX_SCHEDULE_TIMEOUT;
1922         else {
1923                 wait_time = 10;
1924                 if (runtime->rate) {
1925                         long t = runtime->period_size * 2 / runtime->rate;
1926                         wait_time = max(t, wait_time);
1927                 }
1928                 wait_time = msecs_to_jiffies(wait_time * 1000);
1929         }
1930
1931         for (;;) {
1932                 if (signal_pending(current)) {
1933                         err = -ERESTARTSYS;
1934                         break;
1935                 }
1936
1937                 /*
1938                  * We need to check if space became available already
1939                  * (and thus the wakeup happened already) first to close
1940                  * the race of space already having become available.
1941                  * This check must happen after been added to the waitqueue
1942                  * and having current state be INTERRUPTIBLE.
1943                  */
1944                 if (is_playback)
1945                         avail = snd_pcm_playback_avail(runtime);
1946                 else
1947                         avail = snd_pcm_capture_avail(runtime);
1948                 if (avail >= runtime->twake)
1949                         break;
1950                 snd_pcm_stream_unlock_irq(substream);
1951
1952                 tout = schedule_timeout(wait_time);
1953
1954                 snd_pcm_stream_lock_irq(substream);
1955                 set_current_state(TASK_INTERRUPTIBLE);
1956                 switch (runtime->status->state) {
1957                 case SNDRV_PCM_STATE_SUSPENDED:
1958                         err = -ESTRPIPE;
1959                         goto _endloop;
1960                 case SNDRV_PCM_STATE_XRUN:
1961                         err = -EPIPE;
1962                         goto _endloop;
1963                 case SNDRV_PCM_STATE_DRAINING:
1964                         if (is_playback)
1965                                 err = -EPIPE;
1966                         else 
1967                                 avail = 0; /* indicate draining */
1968                         goto _endloop;
1969                 case SNDRV_PCM_STATE_OPEN:
1970                 case SNDRV_PCM_STATE_SETUP:
1971                 case SNDRV_PCM_STATE_DISCONNECTED:
1972                         err = -EBADFD;
1973                         goto _endloop;
1974                 case SNDRV_PCM_STATE_PAUSED:
1975                         continue;
1976                 }
1977                 if (!tout) {
1978                         pcm_dbg(substream->pcm,
1979                                 "%s write error (DMA or IRQ trouble?)\n",
1980                                 is_playback ? "playback" : "capture");
1981                         err = -EIO;
1982                         break;
1983                 }
1984         }
1985  _endloop:
1986         set_current_state(TASK_RUNNING);
1987         remove_wait_queue(&runtime->tsleep, &wait);
1988         *availp = avail;
1989         return err;
1990 }
1991         
1992 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1993                                       unsigned int hwoff,
1994                                       unsigned long data, unsigned int off,
1995                                       snd_pcm_uframes_t frames)
1996 {
1997         struct snd_pcm_runtime *runtime = substream->runtime;
1998         int err;
1999         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2000         if (substream->ops->copy) {
2001                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2002                         return err;
2003         } else {
2004                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2005                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2006                         return -EFAULT;
2007         }
2008         return 0;
2009 }
2010  
2011 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2012                           unsigned long data, unsigned int off,
2013                           snd_pcm_uframes_t size);
2014
2015 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
2016                                             unsigned long data,
2017                                             snd_pcm_uframes_t size,
2018                                             int nonblock,
2019                                             transfer_f transfer)
2020 {
2021         struct snd_pcm_runtime *runtime = substream->runtime;
2022         snd_pcm_uframes_t xfer = 0;
2023         snd_pcm_uframes_t offset = 0;
2024         snd_pcm_uframes_t avail;
2025         int err = 0;
2026
2027         if (size == 0)
2028                 return 0;
2029
2030         snd_pcm_stream_lock_irq(substream);
2031         switch (runtime->status->state) {
2032         case SNDRV_PCM_STATE_PREPARED:
2033         case SNDRV_PCM_STATE_RUNNING:
2034         case SNDRV_PCM_STATE_PAUSED:
2035                 break;
2036         case SNDRV_PCM_STATE_XRUN:
2037                 err = -EPIPE;
2038                 goto _end_unlock;
2039         case SNDRV_PCM_STATE_SUSPENDED:
2040                 err = -ESTRPIPE;
2041                 goto _end_unlock;
2042         default:
2043                 err = -EBADFD;
2044                 goto _end_unlock;
2045         }
2046
2047         runtime->twake = runtime->control->avail_min ? : 1;
2048         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2049                 snd_pcm_update_hw_ptr(substream);
2050         avail = snd_pcm_playback_avail(runtime);
2051         while (size > 0) {
2052                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2053                 snd_pcm_uframes_t cont;
2054                 if (!avail) {
2055                         if (nonblock) {
2056                                 err = -EAGAIN;
2057                                 goto _end_unlock;
2058                         }
2059                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2060                                         runtime->control->avail_min ? : 1);
2061                         err = wait_for_avail(substream, &avail);
2062                         if (err < 0)
2063                                 goto _end_unlock;
2064                 }
2065                 frames = size > avail ? avail : size;
2066                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2067                 if (frames > cont)
2068                         frames = cont;
2069                 if (snd_BUG_ON(!frames)) {
2070                         runtime->twake = 0;
2071                         snd_pcm_stream_unlock_irq(substream);
2072                         return -EINVAL;
2073                 }
2074                 appl_ptr = runtime->control->appl_ptr;
2075                 appl_ofs = appl_ptr % runtime->buffer_size;
2076                 snd_pcm_stream_unlock_irq(substream);
2077                 err = transfer(substream, appl_ofs, data, offset, frames);
2078                 snd_pcm_stream_lock_irq(substream);
2079                 if (err < 0)
2080                         goto _end_unlock;
2081                 switch (runtime->status->state) {
2082                 case SNDRV_PCM_STATE_XRUN:
2083                         err = -EPIPE;
2084                         goto _end_unlock;
2085                 case SNDRV_PCM_STATE_SUSPENDED:
2086                         err = -ESTRPIPE;
2087                         goto _end_unlock;
2088                 default:
2089                         break;
2090                 }
2091                 appl_ptr += frames;
2092                 if (appl_ptr >= runtime->boundary)
2093                         appl_ptr -= runtime->boundary;
2094                 runtime->control->appl_ptr = appl_ptr;
2095                 if (substream->ops->ack)
2096                         substream->ops->ack(substream);
2097
2098                 offset += frames;
2099                 size -= frames;
2100                 xfer += frames;
2101                 avail -= frames;
2102                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2103                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2104                         err = snd_pcm_start(substream);
2105                         if (err < 0)
2106                                 goto _end_unlock;
2107                 }
2108         }
2109  _end_unlock:
2110         runtime->twake = 0;
2111         if (xfer > 0 && err >= 0)
2112                 snd_pcm_update_state(substream, runtime);
2113         snd_pcm_stream_unlock_irq(substream);
2114         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2115 }
2116
2117 /* sanity-check for read/write methods */
2118 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2119 {
2120         struct snd_pcm_runtime *runtime;
2121         if (PCM_RUNTIME_CHECK(substream))
2122                 return -ENXIO;
2123         runtime = substream->runtime;
2124         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2125                 return -EINVAL;
2126         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2127                 return -EBADFD;
2128         return 0;
2129 }
2130
2131 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2132 {
2133         struct snd_pcm_runtime *runtime;
2134         int nonblock;
2135         int err;
2136
2137         err = pcm_sanity_check(substream);
2138         if (err < 0)
2139                 return err;
2140         runtime = substream->runtime;
2141         nonblock = !!(substream->f_flags & O_NONBLOCK);
2142
2143         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2144             runtime->channels > 1)
2145                 return -EINVAL;
2146         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2147                                   snd_pcm_lib_write_transfer);
2148 }
2149
2150 EXPORT_SYMBOL(snd_pcm_lib_write);
2151
2152 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2153                                        unsigned int hwoff,
2154                                        unsigned long data, unsigned int off,
2155                                        snd_pcm_uframes_t frames)
2156 {
2157         struct snd_pcm_runtime *runtime = substream->runtime;
2158         int err;
2159         void __user **bufs = (void __user **)data;
2160         int channels = runtime->channels;
2161         int c;
2162         if (substream->ops->copy) {
2163                 if (snd_BUG_ON(!substream->ops->silence))
2164                         return -EINVAL;
2165                 for (c = 0; c < channels; ++c, ++bufs) {
2166                         if (*bufs == NULL) {
2167                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2168                                         return err;
2169                         } else {
2170                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2171                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2172                                         return err;
2173                         }
2174                 }
2175         } else {
2176                 /* default transfer behaviour */
2177                 size_t dma_csize = runtime->dma_bytes / channels;
2178                 for (c = 0; c < channels; ++c, ++bufs) {
2179                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2180                         if (*bufs == NULL) {
2181                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2182                         } else {
2183                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2184                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2185                                         return -EFAULT;
2186                         }
2187                 }
2188         }
2189         return 0;
2190 }
2191  
2192 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2193                                      void __user **bufs,
2194                                      snd_pcm_uframes_t frames)
2195 {
2196         struct snd_pcm_runtime *runtime;
2197         int nonblock;
2198         int err;
2199
2200         err = pcm_sanity_check(substream);
2201         if (err < 0)
2202                 return err;
2203         runtime = substream->runtime;
2204         nonblock = !!(substream->f_flags & O_NONBLOCK);
2205
2206         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2207                 return -EINVAL;
2208         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2209                                   nonblock, snd_pcm_lib_writev_transfer);
2210 }
2211
2212 EXPORT_SYMBOL(snd_pcm_lib_writev);
2213
2214 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2215                                      unsigned int hwoff,
2216                                      unsigned long data, unsigned int off,
2217                                      snd_pcm_uframes_t frames)
2218 {
2219         struct snd_pcm_runtime *runtime = substream->runtime;
2220         int err;
2221         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2222         if (substream->ops->copy) {
2223                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2224                         return err;
2225         } else {
2226                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2227                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2228                         return -EFAULT;
2229         }
2230         return 0;
2231 }
2232
2233 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2234                                            unsigned long data,
2235                                            snd_pcm_uframes_t size,
2236                                            int nonblock,
2237                                            transfer_f transfer)
2238 {
2239         struct snd_pcm_runtime *runtime = substream->runtime;
2240         snd_pcm_uframes_t xfer = 0;
2241         snd_pcm_uframes_t offset = 0;
2242         snd_pcm_uframes_t avail;
2243         int err = 0;
2244
2245         if (size == 0)
2246                 return 0;
2247
2248         snd_pcm_stream_lock_irq(substream);
2249         switch (runtime->status->state) {
2250         case SNDRV_PCM_STATE_PREPARED:
2251                 if (size >= runtime->start_threshold) {
2252                         err = snd_pcm_start(substream);
2253                         if (err < 0)
2254                                 goto _end_unlock;
2255                 }
2256                 break;
2257         case SNDRV_PCM_STATE_DRAINING:
2258         case SNDRV_PCM_STATE_RUNNING:
2259         case SNDRV_PCM_STATE_PAUSED:
2260                 break;
2261         case SNDRV_PCM_STATE_XRUN:
2262                 err = -EPIPE;
2263                 goto _end_unlock;
2264         case SNDRV_PCM_STATE_SUSPENDED:
2265                 err = -ESTRPIPE;
2266                 goto _end_unlock;
2267         default:
2268                 err = -EBADFD;
2269                 goto _end_unlock;
2270         }
2271
2272         runtime->twake = runtime->control->avail_min ? : 1;
2273         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2274                 snd_pcm_update_hw_ptr(substream);
2275         avail = snd_pcm_capture_avail(runtime);
2276         while (size > 0) {
2277                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2278                 snd_pcm_uframes_t cont;
2279                 if (!avail) {
2280                         if (runtime->status->state ==
2281                             SNDRV_PCM_STATE_DRAINING) {
2282                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2283                                 goto _end_unlock;
2284                         }
2285                         if (nonblock) {
2286                                 err = -EAGAIN;
2287                                 goto _end_unlock;
2288                         }
2289                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2290                                         runtime->control->avail_min ? : 1);
2291                         err = wait_for_avail(substream, &avail);
2292                         if (err < 0)
2293                                 goto _end_unlock;
2294                         if (!avail)
2295                                 continue; /* draining */
2296                 }
2297                 frames = size > avail ? avail : size;
2298                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2299                 if (frames > cont)
2300                         frames = cont;
2301                 if (snd_BUG_ON(!frames)) {
2302                         runtime->twake = 0;
2303                         snd_pcm_stream_unlock_irq(substream);
2304                         return -EINVAL;
2305                 }
2306                 appl_ptr = runtime->control->appl_ptr;
2307                 appl_ofs = appl_ptr % runtime->buffer_size;
2308                 snd_pcm_stream_unlock_irq(substream);
2309                 err = transfer(substream, appl_ofs, data, offset, frames);
2310                 snd_pcm_stream_lock_irq(substream);
2311                 if (err < 0)
2312                         goto _end_unlock;
2313                 switch (runtime->status->state) {
2314                 case SNDRV_PCM_STATE_XRUN:
2315                         err = -EPIPE;
2316                         goto _end_unlock;
2317                 case SNDRV_PCM_STATE_SUSPENDED:
2318                         err = -ESTRPIPE;
2319                         goto _end_unlock;
2320                 default:
2321                         break;
2322                 }
2323                 appl_ptr += frames;
2324                 if (appl_ptr >= runtime->boundary)
2325                         appl_ptr -= runtime->boundary;
2326                 runtime->control->appl_ptr = appl_ptr;
2327                 if (substream->ops->ack)
2328                         substream->ops->ack(substream);
2329
2330                 offset += frames;
2331                 size -= frames;
2332                 xfer += frames;
2333                 avail -= frames;
2334         }
2335  _end_unlock:
2336         runtime->twake = 0;
2337         if (xfer > 0 && err >= 0)
2338                 snd_pcm_update_state(substream, runtime);
2339         snd_pcm_stream_unlock_irq(substream);
2340         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2341 }
2342
2343 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2344 {
2345         struct snd_pcm_runtime *runtime;
2346         int nonblock;
2347         int err;
2348         
2349         err = pcm_sanity_check(substream);
2350         if (err < 0)
2351                 return err;
2352         runtime = substream->runtime;
2353         nonblock = !!(substream->f_flags & O_NONBLOCK);
2354         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2355                 return -EINVAL;
2356         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2357 }
2358
2359 EXPORT_SYMBOL(snd_pcm_lib_read);
2360
2361 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2362                                       unsigned int hwoff,
2363                                       unsigned long data, unsigned int off,
2364                                       snd_pcm_uframes_t frames)
2365 {
2366         struct snd_pcm_runtime *runtime = substream->runtime;
2367         int err;
2368         void __user **bufs = (void __user **)data;
2369         int channels = runtime->channels;
2370         int c;
2371         if (substream->ops->copy) {
2372                 for (c = 0; c < channels; ++c, ++bufs) {
2373                         char __user *buf;
2374                         if (*bufs == NULL)
2375                                 continue;
2376                         buf = *bufs + samples_to_bytes(runtime, off);
2377                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2378                                 return err;
2379                 }
2380         } else {
2381                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2382                 for (c = 0; c < channels; ++c, ++bufs) {
2383                         char *hwbuf;
2384                         char __user *buf;
2385                         if (*bufs == NULL)
2386                                 continue;
2387
2388                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2389                         buf = *bufs + samples_to_bytes(runtime, off);
2390                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2391                                 return -EFAULT;
2392                 }
2393         }
2394         return 0;
2395 }
2396  
2397 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2398                                     void __user **bufs,
2399                                     snd_pcm_uframes_t frames)
2400 {
2401         struct snd_pcm_runtime *runtime;
2402         int nonblock;
2403         int err;
2404
2405         err = pcm_sanity_check(substream);
2406         if (err < 0)
2407                 return err;
2408         runtime = substream->runtime;
2409         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2410                 return -EBADFD;
2411
2412         nonblock = !!(substream->f_flags & O_NONBLOCK);
2413         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2414                 return -EINVAL;
2415         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2416 }
2417
2418 EXPORT_SYMBOL(snd_pcm_lib_readv);
2419
2420 /*
2421  * standard channel mapping helpers
2422  */
2423
2424 /* default channel maps for multi-channel playbacks, up to 8 channels */
2425 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2426         { .channels = 1,
2427           .map = { SNDRV_CHMAP_MONO } },
2428         { .channels = 2,
2429           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2430         { .channels = 4,
2431           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2432                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2433         { .channels = 6,
2434           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2435                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2436                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2437         { .channels = 8,
2438           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2439                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2440                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2441                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2442         { }
2443 };
2444 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2445
2446 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2447 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2448         { .channels = 1,
2449           .map = { SNDRV_CHMAP_MONO } },
2450         { .channels = 2,
2451           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2452         { .channels = 4,
2453           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2454                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2455         { .channels = 6,
2456           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2457                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2458                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2459         { .channels = 8,
2460           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2461                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2462                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2463                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2464         { }
2465 };
2466 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2467
2468 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2469 {
2470         if (ch > info->max_channels)
2471                 return false;
2472         return !info->channel_mask || (info->channel_mask & (1U << ch));
2473 }
2474
2475 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2476                               struct snd_ctl_elem_info *uinfo)
2477 {
2478         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2479
2480         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2481         uinfo->count = 0;
2482         uinfo->count = info->max_channels;
2483         uinfo->value.integer.min = 0;
2484         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2485         return 0;
2486 }
2487
2488 /* get callback for channel map ctl element
2489  * stores the channel position firstly matching with the current channels
2490  */
2491 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2492                              struct snd_ctl_elem_value *ucontrol)
2493 {
2494         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2495         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2496         struct snd_pcm_substream *substream;
2497         const struct snd_pcm_chmap_elem *map;
2498
2499         if (snd_BUG_ON(!info->chmap))
2500                 return -EINVAL;
2501         substream = snd_pcm_chmap_substream(info, idx);
2502         if (!substream)
2503                 return -ENODEV;
2504         memset(ucontrol->value.integer.value, 0,
2505                sizeof(ucontrol->value.integer.value));
2506         if (!substream->runtime)
2507                 return 0; /* no channels set */
2508         for (map = info->chmap; map->channels; map++) {
2509                 int i;
2510                 if (map->channels == substream->runtime->channels &&
2511                     valid_chmap_channels(info, map->channels)) {
2512                         for (i = 0; i < map->channels; i++)
2513                                 ucontrol->value.integer.value[i] = map->map[i];
2514                         return 0;
2515                 }
2516         }
2517         return -EINVAL;
2518 }
2519
2520 /* tlv callback for channel map ctl element
2521  * expands the pre-defined channel maps in a form of TLV
2522  */
2523 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2524                              unsigned int size, unsigned int __user *tlv)
2525 {
2526         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2527         const struct snd_pcm_chmap_elem *map;
2528         unsigned int __user *dst;
2529         int c, count = 0;
2530
2531         if (snd_BUG_ON(!info->chmap))
2532                 return -EINVAL;
2533         if (size < 8)
2534                 return -ENOMEM;
2535         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2536                 return -EFAULT;
2537         size -= 8;
2538         dst = tlv + 2;
2539         for (map = info->chmap; map->channels; map++) {
2540                 int chs_bytes = map->channels * 4;
2541                 if (!valid_chmap_channels(info, map->channels))
2542                         continue;
2543                 if (size < 8)
2544                         return -ENOMEM;
2545                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2546                     put_user(chs_bytes, dst + 1))
2547                         return -EFAULT;
2548                 dst += 2;
2549                 size -= 8;
2550                 count += 8;
2551                 if (size < chs_bytes)
2552                         return -ENOMEM;
2553                 size -= chs_bytes;
2554                 count += chs_bytes;
2555                 for (c = 0; c < map->channels; c++) {
2556                         if (put_user(map->map[c], dst))
2557                                 return -EFAULT;
2558                         dst++;
2559                 }
2560         }
2561         if (put_user(count, tlv + 1))
2562                 return -EFAULT;
2563         return 0;
2564 }
2565
2566 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2567 {
2568         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2569         info->pcm->streams[info->stream].chmap_kctl = NULL;
2570         kfree(info);
2571 }
2572
2573 /**
2574  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2575  * @pcm: the assigned PCM instance
2576  * @stream: stream direction
2577  * @chmap: channel map elements (for query)
2578  * @max_channels: the max number of channels for the stream
2579  * @private_value: the value passed to each kcontrol's private_value field
2580  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2581  *
2582  * Create channel-mapping control elements assigned to the given PCM stream(s).
2583  * Return: Zero if successful, or a negative error value.
2584  */
2585 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2586                            const struct snd_pcm_chmap_elem *chmap,
2587                            int max_channels,
2588                            unsigned long private_value,
2589                            struct snd_pcm_chmap **info_ret)
2590 {
2591         struct snd_pcm_chmap *info;
2592         struct snd_kcontrol_new knew = {
2593                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2594                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2595                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2596                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2597                 .info = pcm_chmap_ctl_info,
2598                 .get = pcm_chmap_ctl_get,
2599                 .tlv.c = pcm_chmap_ctl_tlv,
2600         };
2601         int err;
2602
2603         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2604                 return -EBUSY;
2605         info = kzalloc(sizeof(*info), GFP_KERNEL);
2606         if (!info)
2607                 return -ENOMEM;
2608         info->pcm = pcm;
2609         info->stream = stream;
2610         info->chmap = chmap;
2611         info->max_channels = max_channels;
2612         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2613                 knew.name = "Playback Channel Map";
2614         else
2615                 knew.name = "Capture Channel Map";
2616         knew.device = pcm->device;
2617         knew.count = pcm->streams[stream].substream_count;
2618         knew.private_value = private_value;
2619         info->kctl = snd_ctl_new1(&knew, info);
2620         if (!info->kctl) {
2621                 kfree(info);
2622                 return -ENOMEM;
2623         }
2624         info->kctl->private_free = pcm_chmap_ctl_private_free;
2625         err = snd_ctl_add(pcm->card, info->kctl);
2626         if (err < 0)
2627                 return err;
2628         pcm->streams[stream].chmap_kctl = info->kctl;
2629         if (info_ret)
2630                 *info_ret = info;
2631         return 0;
2632 }
2633 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);