]> git.karo-electronics.de Git - mv-sheeva.git/blob - sound/core/pcm_lib.c
ALSA: pcm: detect xruns in no-period-wakeup mode
[mv-sheeva.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         if (avail > runtime->buffer_size)
71                                 avail = runtime->buffer_size;
72                         runtime->silence_filled = avail > 0 ? avail : 0;
73                         runtime->silence_start = (runtime->status->hw_ptr +
74                                                   runtime->silence_filled) %
75                                                  runtime->boundary;
76                 } else {
77                         ofs = runtime->status->hw_ptr;
78                         frames = new_hw_ptr - ofs;
79                         if ((snd_pcm_sframes_t)frames < 0)
80                                 frames += runtime->boundary;
81                         runtime->silence_filled -= frames;
82                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
83                                 runtime->silence_filled = 0;
84                                 runtime->silence_start = new_hw_ptr;
85                         } else {
86                                 runtime->silence_start = ofs;
87                         }
88                 }
89                 frames = runtime->buffer_size - runtime->silence_filled;
90         }
91         if (snd_BUG_ON(frames > runtime->buffer_size))
92                 return;
93         if (frames == 0)
94                 return;
95         ofs = runtime->silence_start % runtime->buffer_size;
96         while (frames > 0) {
97                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100                         if (substream->ops->silence) {
101                                 int err;
102                                 err = substream->ops->silence(substream, -1, ofs, transfer);
103                                 snd_BUG_ON(err < 0);
104                         } else {
105                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107                         }
108                 } else {
109                         unsigned int c;
110                         unsigned int channels = runtime->channels;
111                         if (substream->ops->silence) {
112                                 for (c = 0; c < channels; ++c) {
113                                         int err;
114                                         err = substream->ops->silence(substream, c, ofs, transfer);
115                                         snd_BUG_ON(err < 0);
116                                 }
117                         } else {
118                                 size_t dma_csize = runtime->dma_bytes / channels;
119                                 for (c = 0; c < channels; ++c) {
120                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122                                 }
123                         }
124                 }
125                 runtime->silence_filled += transfer;
126                 frames -= transfer;
127                 ofs = 0;
128         }
129 }
130
131 static void pcm_debug_name(struct snd_pcm_substream *substream,
132                            char *name, size_t len)
133 {
134         snprintf(name, len, "pcmC%dD%d%c:%d",
135                  substream->pcm->card->number,
136                  substream->pcm->device,
137                  substream->stream ? 'c' : 'p',
138                  substream->number);
139 }
140
141 #define XRUN_DEBUG_BASIC        (1<<0)
142 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
143 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
144 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
145 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
146 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
147 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
148
149 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
150
151 #define xrun_debug(substream, mask) \
152                         ((substream)->pstr->xrun_debug & (mask))
153 #else
154 #define xrun_debug(substream, mask)     0
155 #endif
156
157 #define dump_stack_on_xrun(substream) do {                      \
158                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
159                         dump_stack();                           \
160         } while (0)
161
162 static void xrun(struct snd_pcm_substream *substream)
163 {
164         struct snd_pcm_runtime *runtime = substream->runtime;
165
166         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
167                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
168         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
169         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
170                 char name[16];
171                 pcm_debug_name(substream, name, sizeof(name));
172                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
173                 dump_stack_on_xrun(substream);
174         }
175 }
176
177 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
178 #define hw_ptr_error(substream, fmt, args...)                           \
179         do {                                                            \
180                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
181                         xrun_log_show(substream);                       \
182                         if (printk_ratelimit()) {                       \
183                                 snd_printd("PCM: " fmt, ##args);        \
184                         }                                               \
185                         dump_stack_on_xrun(substream);                  \
186                 }                                                       \
187         } while (0)
188
189 #define XRUN_LOG_CNT    10
190
191 struct hwptr_log_entry {
192         unsigned long jiffies;
193         snd_pcm_uframes_t pos;
194         snd_pcm_uframes_t period_size;
195         snd_pcm_uframes_t buffer_size;
196         snd_pcm_uframes_t old_hw_ptr;
197         snd_pcm_uframes_t hw_ptr_base;
198 };
199
200 struct snd_pcm_hwptr_log {
201         unsigned int idx;
202         unsigned int hit: 1;
203         struct hwptr_log_entry entries[XRUN_LOG_CNT];
204 };
205
206 static void xrun_log(struct snd_pcm_substream *substream,
207                      snd_pcm_uframes_t pos)
208 {
209         struct snd_pcm_runtime *runtime = substream->runtime;
210         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
211         struct hwptr_log_entry *entry;
212
213         if (log == NULL) {
214                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
215                 if (log == NULL)
216                         return;
217                 runtime->hwptr_log = log;
218         } else {
219                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
220                         return;
221         }
222         entry = &log->entries[log->idx];
223         entry->jiffies = jiffies;
224         entry->pos = pos;
225         entry->period_size = runtime->period_size;
226         entry->buffer_size = runtime->buffer_size;
227         entry->old_hw_ptr = runtime->status->hw_ptr;
228         entry->hw_ptr_base = runtime->hw_ptr_base;
229         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
230 }
231
232 static void xrun_log_show(struct snd_pcm_substream *substream)
233 {
234         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
235         struct hwptr_log_entry *entry;
236         char name[16];
237         unsigned int idx;
238         int cnt;
239
240         if (log == NULL)
241                 return;
242         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
243                 return;
244         pcm_debug_name(substream, name, sizeof(name));
245         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
246                 entry = &log->entries[idx];
247                 if (entry->period_size == 0)
248                         break;
249                 snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
250                            "hwptr=%ld/%ld\n",
251                            name, entry->jiffies, (unsigned long)entry->pos,
252                            (unsigned long)entry->period_size,
253                            (unsigned long)entry->buffer_size,
254                            (unsigned long)entry->old_hw_ptr,
255                            (unsigned long)entry->hw_ptr_base);
256                 idx++;
257                 idx %= XRUN_LOG_CNT;
258         }
259         log->hit = 1;
260 }
261
262 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
263
264 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
265 #define xrun_log(substream, pos)        do { } while (0)
266 #define xrun_log_show(substream)        do { } while (0)
267
268 #endif
269
270 int snd_pcm_update_state(struct snd_pcm_substream *substream,
271                          struct snd_pcm_runtime *runtime)
272 {
273         snd_pcm_uframes_t avail;
274
275         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
276                 avail = snd_pcm_playback_avail(runtime);
277         else
278                 avail = snd_pcm_capture_avail(runtime);
279         if (avail > runtime->avail_max)
280                 runtime->avail_max = avail;
281         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
282                 if (avail >= runtime->buffer_size) {
283                         snd_pcm_drain_done(substream);
284                         return -EPIPE;
285                 }
286         } else {
287                 if (avail >= runtime->stop_threshold) {
288                         xrun(substream);
289                         return -EPIPE;
290                 }
291         }
292         if (runtime->twake) {
293                 if (avail >= runtime->twake)
294                         wake_up(&runtime->tsleep);
295         } else if (avail >= runtime->control->avail_min)
296                 wake_up(&runtime->sleep);
297         return 0;
298 }
299
300 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
301                                   unsigned int in_interrupt)
302 {
303         struct snd_pcm_runtime *runtime = substream->runtime;
304         snd_pcm_uframes_t pos;
305         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
306         snd_pcm_sframes_t hdelta, delta;
307         unsigned long jdelta;
308
309         old_hw_ptr = runtime->status->hw_ptr;
310         pos = substream->ops->pointer(substream);
311         if (pos == SNDRV_PCM_POS_XRUN) {
312                 xrun(substream);
313                 return -EPIPE;
314         }
315         if (pos >= runtime->buffer_size) {
316                 if (printk_ratelimit()) {
317                         char name[16];
318                         pcm_debug_name(substream, name, sizeof(name));
319                         xrun_log_show(substream);
320                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
321                                    "buffer size = %ld, period size = %ld\n",
322                                    name, pos, runtime->buffer_size,
323                                    runtime->period_size);
324                 }
325                 pos = 0;
326         }
327         pos -= pos % runtime->min_align;
328         if (xrun_debug(substream, XRUN_DEBUG_LOG))
329                 xrun_log(substream, pos);
330         hw_base = runtime->hw_ptr_base;
331         new_hw_ptr = hw_base + pos;
332         if (in_interrupt) {
333                 /* we know that one period was processed */
334                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
335                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
336                 if (delta > new_hw_ptr) {
337                         /* check for double acknowledged interrupts */
338                         hdelta = jiffies - runtime->hw_ptr_jiffies;
339                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
340                                 hw_base += runtime->buffer_size;
341                                 if (hw_base >= runtime->boundary)
342                                         hw_base = 0;
343                                 new_hw_ptr = hw_base + pos;
344                                 goto __delta;
345                         }
346                 }
347         }
348         /* new_hw_ptr might be lower than old_hw_ptr in case when */
349         /* pointer crosses the end of the ring buffer */
350         if (new_hw_ptr < old_hw_ptr) {
351                 hw_base += runtime->buffer_size;
352                 if (hw_base >= runtime->boundary)
353                         hw_base = 0;
354                 new_hw_ptr = hw_base + pos;
355         }
356       __delta:
357         delta = new_hw_ptr - old_hw_ptr;
358         if (delta < 0)
359                 delta += runtime->boundary;
360         if (xrun_debug(substream, in_interrupt ?
361                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
362                 char name[16];
363                 pcm_debug_name(substream, name, sizeof(name));
364                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
365                            "hwptr=%ld/%ld/%ld/%ld\n",
366                            in_interrupt ? "period" : "hwptr",
367                            name,
368                            (unsigned int)pos,
369                            (unsigned int)runtime->period_size,
370                            (unsigned int)runtime->buffer_size,
371                            (unsigned long)delta,
372                            (unsigned long)old_hw_ptr,
373                            (unsigned long)new_hw_ptr,
374                            (unsigned long)runtime->hw_ptr_base);
375         }
376
377         if (runtime->no_period_wakeup) {
378                 /*
379                  * Without regular period interrupts, we have to check
380                  * the elapsed time to detect xruns.
381                  */
382                 jdelta = jiffies - runtime->hw_ptr_jiffies;
383                 hdelta = jdelta - delta * HZ / runtime->rate;
384                 while (hdelta > runtime->hw_ptr_buffer_jiffies / 2 + 1) {
385                         delta += runtime->buffer_size;
386                         hw_base += runtime->buffer_size;
387                         if (hw_base >= runtime->boundary)
388                                 hw_base = 0;
389                         new_hw_ptr = hw_base + pos;
390                         hdelta -= runtime->hw_ptr_buffer_jiffies;
391                 }
392                 goto no_delta_check;
393         }
394
395         /* something must be really wrong */
396         if (delta >= runtime->buffer_size + runtime->period_size) {
397                 hw_ptr_error(substream,
398                                "Unexpected hw_pointer value %s"
399                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
400                                "old_hw_ptr=%ld)\n",
401                                      in_interrupt ? "[Q] " : "[P]",
402                                      substream->stream, (long)pos,
403                                      (long)new_hw_ptr, (long)old_hw_ptr);
404                 return 0;
405         }
406
407         /* Do jiffies check only in xrun_debug mode */
408         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
409                 goto no_jiffies_check;
410
411         /* Skip the jiffies check for hardwares with BATCH flag.
412          * Such hardware usually just increases the position at each IRQ,
413          * thus it can't give any strange position.
414          */
415         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
416                 goto no_jiffies_check;
417         hdelta = delta;
418         if (hdelta < runtime->delay)
419                 goto no_jiffies_check;
420         hdelta -= runtime->delay;
421         jdelta = jiffies - runtime->hw_ptr_jiffies;
422         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
423                 delta = jdelta /
424                         (((runtime->period_size * HZ) / runtime->rate)
425                                                                 + HZ/100);
426                 /* move new_hw_ptr according jiffies not pos variable */
427                 new_hw_ptr = old_hw_ptr;
428                 hw_base = delta;
429                 /* use loop to avoid checks for delta overflows */
430                 /* the delta value is small or zero in most cases */
431                 while (delta > 0) {
432                         new_hw_ptr += runtime->period_size;
433                         if (new_hw_ptr >= runtime->boundary)
434                                 new_hw_ptr -= runtime->boundary;
435                         delta--;
436                 }
437                 /* align hw_base to buffer_size */
438                 hw_ptr_error(substream,
439                              "hw_ptr skipping! %s"
440                              "(pos=%ld, delta=%ld, period=%ld, "
441                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
442                              in_interrupt ? "[Q] " : "",
443                              (long)pos, (long)hdelta,
444                              (long)runtime->period_size, jdelta,
445                              ((hdelta * HZ) / runtime->rate), hw_base,
446                              (unsigned long)old_hw_ptr,
447                              (unsigned long)new_hw_ptr);
448                 /* reset values to proper state */
449                 delta = 0;
450                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
451         }
452  no_jiffies_check:
453         if (delta > runtime->period_size + runtime->period_size / 2) {
454                 hw_ptr_error(substream,
455                              "Lost interrupts? %s"
456                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
457                              "old_hw_ptr=%ld)\n",
458                              in_interrupt ? "[Q] " : "",
459                              substream->stream, (long)delta,
460                              (long)new_hw_ptr,
461                              (long)old_hw_ptr);
462         }
463
464  no_delta_check:
465         if (runtime->status->hw_ptr == new_hw_ptr)
466                 return 0;
467
468         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
469             runtime->silence_size > 0)
470                 snd_pcm_playback_silence(substream, new_hw_ptr);
471
472         if (in_interrupt) {
473                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
474                 if (delta < 0)
475                         delta += runtime->boundary;
476                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
477                 runtime->hw_ptr_interrupt += delta;
478                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
479                         runtime->hw_ptr_interrupt -= runtime->boundary;
480         }
481         runtime->hw_ptr_base = hw_base;
482         runtime->status->hw_ptr = new_hw_ptr;
483         runtime->hw_ptr_jiffies = jiffies;
484         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
485                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
486
487         return snd_pcm_update_state(substream, runtime);
488 }
489
490 /* CAUTION: call it with irq disabled */
491 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
492 {
493         return snd_pcm_update_hw_ptr0(substream, 0);
494 }
495
496 /**
497  * snd_pcm_set_ops - set the PCM operators
498  * @pcm: the pcm instance
499  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
500  * @ops: the operator table
501  *
502  * Sets the given PCM operators to the pcm instance.
503  */
504 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
505 {
506         struct snd_pcm_str *stream = &pcm->streams[direction];
507         struct snd_pcm_substream *substream;
508         
509         for (substream = stream->substream; substream != NULL; substream = substream->next)
510                 substream->ops = ops;
511 }
512
513 EXPORT_SYMBOL(snd_pcm_set_ops);
514
515 /**
516  * snd_pcm_sync - set the PCM sync id
517  * @substream: the pcm substream
518  *
519  * Sets the PCM sync identifier for the card.
520  */
521 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
522 {
523         struct snd_pcm_runtime *runtime = substream->runtime;
524         
525         runtime->sync.id32[0] = substream->pcm->card->number;
526         runtime->sync.id32[1] = -1;
527         runtime->sync.id32[2] = -1;
528         runtime->sync.id32[3] = -1;
529 }
530
531 EXPORT_SYMBOL(snd_pcm_set_sync);
532
533 /*
534  *  Standard ioctl routine
535  */
536
537 static inline unsigned int div32(unsigned int a, unsigned int b, 
538                                  unsigned int *r)
539 {
540         if (b == 0) {
541                 *r = 0;
542                 return UINT_MAX;
543         }
544         *r = a % b;
545         return a / b;
546 }
547
548 static inline unsigned int div_down(unsigned int a, unsigned int b)
549 {
550         if (b == 0)
551                 return UINT_MAX;
552         return a / b;
553 }
554
555 static inline unsigned int div_up(unsigned int a, unsigned int b)
556 {
557         unsigned int r;
558         unsigned int q;
559         if (b == 0)
560                 return UINT_MAX;
561         q = div32(a, b, &r);
562         if (r)
563                 ++q;
564         return q;
565 }
566
567 static inline unsigned int mul(unsigned int a, unsigned int b)
568 {
569         if (a == 0)
570                 return 0;
571         if (div_down(UINT_MAX, a) < b)
572                 return UINT_MAX;
573         return a * b;
574 }
575
576 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
577                                     unsigned int c, unsigned int *r)
578 {
579         u_int64_t n = (u_int64_t) a * b;
580         if (c == 0) {
581                 snd_BUG_ON(!n);
582                 *r = 0;
583                 return UINT_MAX;
584         }
585         n = div_u64_rem(n, c, r);
586         if (n >= UINT_MAX) {
587                 *r = 0;
588                 return UINT_MAX;
589         }
590         return n;
591 }
592
593 /**
594  * snd_interval_refine - refine the interval value of configurator
595  * @i: the interval value to refine
596  * @v: the interval value to refer to
597  *
598  * Refines the interval value with the reference value.
599  * The interval is changed to the range satisfying both intervals.
600  * The interval status (min, max, integer, etc.) are evaluated.
601  *
602  * Returns non-zero if the value is changed, zero if not changed.
603  */
604 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
605 {
606         int changed = 0;
607         if (snd_BUG_ON(snd_interval_empty(i)))
608                 return -EINVAL;
609         if (i->min < v->min) {
610                 i->min = v->min;
611                 i->openmin = v->openmin;
612                 changed = 1;
613         } else if (i->min == v->min && !i->openmin && v->openmin) {
614                 i->openmin = 1;
615                 changed = 1;
616         }
617         if (i->max > v->max) {
618                 i->max = v->max;
619                 i->openmax = v->openmax;
620                 changed = 1;
621         } else if (i->max == v->max && !i->openmax && v->openmax) {
622                 i->openmax = 1;
623                 changed = 1;
624         }
625         if (!i->integer && v->integer) {
626                 i->integer = 1;
627                 changed = 1;
628         }
629         if (i->integer) {
630                 if (i->openmin) {
631                         i->min++;
632                         i->openmin = 0;
633                 }
634                 if (i->openmax) {
635                         i->max--;
636                         i->openmax = 0;
637                 }
638         } else if (!i->openmin && !i->openmax && i->min == i->max)
639                 i->integer = 1;
640         if (snd_interval_checkempty(i)) {
641                 snd_interval_none(i);
642                 return -EINVAL;
643         }
644         return changed;
645 }
646
647 EXPORT_SYMBOL(snd_interval_refine);
648
649 static int snd_interval_refine_first(struct snd_interval *i)
650 {
651         if (snd_BUG_ON(snd_interval_empty(i)))
652                 return -EINVAL;
653         if (snd_interval_single(i))
654                 return 0;
655         i->max = i->min;
656         i->openmax = i->openmin;
657         if (i->openmax)
658                 i->max++;
659         return 1;
660 }
661
662 static int snd_interval_refine_last(struct snd_interval *i)
663 {
664         if (snd_BUG_ON(snd_interval_empty(i)))
665                 return -EINVAL;
666         if (snd_interval_single(i))
667                 return 0;
668         i->min = i->max;
669         i->openmin = i->openmax;
670         if (i->openmin)
671                 i->min--;
672         return 1;
673 }
674
675 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
676 {
677         if (a->empty || b->empty) {
678                 snd_interval_none(c);
679                 return;
680         }
681         c->empty = 0;
682         c->min = mul(a->min, b->min);
683         c->openmin = (a->openmin || b->openmin);
684         c->max = mul(a->max,  b->max);
685         c->openmax = (a->openmax || b->openmax);
686         c->integer = (a->integer && b->integer);
687 }
688
689 /**
690  * snd_interval_div - refine the interval value with division
691  * @a: dividend
692  * @b: divisor
693  * @c: quotient
694  *
695  * c = a / b
696  *
697  * Returns non-zero if the value is changed, zero if not changed.
698  */
699 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
700 {
701         unsigned int r;
702         if (a->empty || b->empty) {
703                 snd_interval_none(c);
704                 return;
705         }
706         c->empty = 0;
707         c->min = div32(a->min, b->max, &r);
708         c->openmin = (r || a->openmin || b->openmax);
709         if (b->min > 0) {
710                 c->max = div32(a->max, b->min, &r);
711                 if (r) {
712                         c->max++;
713                         c->openmax = 1;
714                 } else
715                         c->openmax = (a->openmax || b->openmin);
716         } else {
717                 c->max = UINT_MAX;
718                 c->openmax = 0;
719         }
720         c->integer = 0;
721 }
722
723 /**
724  * snd_interval_muldivk - refine the interval value
725  * @a: dividend 1
726  * @b: dividend 2
727  * @k: divisor (as integer)
728  * @c: result
729   *
730  * c = a * b / k
731  *
732  * Returns non-zero if the value is changed, zero if not changed.
733  */
734 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
735                       unsigned int k, struct snd_interval *c)
736 {
737         unsigned int r;
738         if (a->empty || b->empty) {
739                 snd_interval_none(c);
740                 return;
741         }
742         c->empty = 0;
743         c->min = muldiv32(a->min, b->min, k, &r);
744         c->openmin = (r || a->openmin || b->openmin);
745         c->max = muldiv32(a->max, b->max, k, &r);
746         if (r) {
747                 c->max++;
748                 c->openmax = 1;
749         } else
750                 c->openmax = (a->openmax || b->openmax);
751         c->integer = 0;
752 }
753
754 /**
755  * snd_interval_mulkdiv - refine the interval value
756  * @a: dividend 1
757  * @k: dividend 2 (as integer)
758  * @b: divisor
759  * @c: result
760  *
761  * c = a * k / b
762  *
763  * Returns non-zero if the value is changed, zero if not changed.
764  */
765 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
766                       const struct snd_interval *b, struct snd_interval *c)
767 {
768         unsigned int r;
769         if (a->empty || b->empty) {
770                 snd_interval_none(c);
771                 return;
772         }
773         c->empty = 0;
774         c->min = muldiv32(a->min, k, b->max, &r);
775         c->openmin = (r || a->openmin || b->openmax);
776         if (b->min > 0) {
777                 c->max = muldiv32(a->max, k, b->min, &r);
778                 if (r) {
779                         c->max++;
780                         c->openmax = 1;
781                 } else
782                         c->openmax = (a->openmax || b->openmin);
783         } else {
784                 c->max = UINT_MAX;
785                 c->openmax = 0;
786         }
787         c->integer = 0;
788 }
789
790 /* ---- */
791
792
793 /**
794  * snd_interval_ratnum - refine the interval value
795  * @i: interval to refine
796  * @rats_count: number of ratnum_t 
797  * @rats: ratnum_t array
798  * @nump: pointer to store the resultant numerator
799  * @denp: pointer to store the resultant denominator
800  *
801  * Returns non-zero if the value is changed, zero if not changed.
802  */
803 int snd_interval_ratnum(struct snd_interval *i,
804                         unsigned int rats_count, struct snd_ratnum *rats,
805                         unsigned int *nump, unsigned int *denp)
806 {
807         unsigned int best_num, best_den;
808         int best_diff;
809         unsigned int k;
810         struct snd_interval t;
811         int err;
812         unsigned int result_num, result_den;
813         int result_diff;
814
815         best_num = best_den = best_diff = 0;
816         for (k = 0; k < rats_count; ++k) {
817                 unsigned int num = rats[k].num;
818                 unsigned int den;
819                 unsigned int q = i->min;
820                 int diff;
821                 if (q == 0)
822                         q = 1;
823                 den = div_up(num, q);
824                 if (den < rats[k].den_min)
825                         continue;
826                 if (den > rats[k].den_max)
827                         den = rats[k].den_max;
828                 else {
829                         unsigned int r;
830                         r = (den - rats[k].den_min) % rats[k].den_step;
831                         if (r != 0)
832                                 den -= r;
833                 }
834                 diff = num - q * den;
835                 if (diff < 0)
836                         diff = -diff;
837                 if (best_num == 0 ||
838                     diff * best_den < best_diff * den) {
839                         best_diff = diff;
840                         best_den = den;
841                         best_num = num;
842                 }
843         }
844         if (best_den == 0) {
845                 i->empty = 1;
846                 return -EINVAL;
847         }
848         t.min = div_down(best_num, best_den);
849         t.openmin = !!(best_num % best_den);
850         
851         result_num = best_num;
852         result_diff = best_diff;
853         result_den = best_den;
854         best_num = best_den = best_diff = 0;
855         for (k = 0; k < rats_count; ++k) {
856                 unsigned int num = rats[k].num;
857                 unsigned int den;
858                 unsigned int q = i->max;
859                 int diff;
860                 if (q == 0) {
861                         i->empty = 1;
862                         return -EINVAL;
863                 }
864                 den = div_down(num, q);
865                 if (den > rats[k].den_max)
866                         continue;
867                 if (den < rats[k].den_min)
868                         den = rats[k].den_min;
869                 else {
870                         unsigned int r;
871                         r = (den - rats[k].den_min) % rats[k].den_step;
872                         if (r != 0)
873                                 den += rats[k].den_step - r;
874                 }
875                 diff = q * den - num;
876                 if (diff < 0)
877                         diff = -diff;
878                 if (best_num == 0 ||
879                     diff * best_den < best_diff * den) {
880                         best_diff = diff;
881                         best_den = den;
882                         best_num = num;
883                 }
884         }
885         if (best_den == 0) {
886                 i->empty = 1;
887                 return -EINVAL;
888         }
889         t.max = div_up(best_num, best_den);
890         t.openmax = !!(best_num % best_den);
891         t.integer = 0;
892         err = snd_interval_refine(i, &t);
893         if (err < 0)
894                 return err;
895
896         if (snd_interval_single(i)) {
897                 if (best_diff * result_den < result_diff * best_den) {
898                         result_num = best_num;
899                         result_den = best_den;
900                 }
901                 if (nump)
902                         *nump = result_num;
903                 if (denp)
904                         *denp = result_den;
905         }
906         return err;
907 }
908
909 EXPORT_SYMBOL(snd_interval_ratnum);
910
911 /**
912  * snd_interval_ratden - refine the interval value
913  * @i: interval to refine
914  * @rats_count: number of struct ratden
915  * @rats: struct ratden array
916  * @nump: pointer to store the resultant numerator
917  * @denp: pointer to store the resultant denominator
918  *
919  * Returns non-zero if the value is changed, zero if not changed.
920  */
921 static int snd_interval_ratden(struct snd_interval *i,
922                                unsigned int rats_count, struct snd_ratden *rats,
923                                unsigned int *nump, unsigned int *denp)
924 {
925         unsigned int best_num, best_diff, best_den;
926         unsigned int k;
927         struct snd_interval t;
928         int err;
929
930         best_num = best_den = best_diff = 0;
931         for (k = 0; k < rats_count; ++k) {
932                 unsigned int num;
933                 unsigned int den = rats[k].den;
934                 unsigned int q = i->min;
935                 int diff;
936                 num = mul(q, den);
937                 if (num > rats[k].num_max)
938                         continue;
939                 if (num < rats[k].num_min)
940                         num = rats[k].num_max;
941                 else {
942                         unsigned int r;
943                         r = (num - rats[k].num_min) % rats[k].num_step;
944                         if (r != 0)
945                                 num += rats[k].num_step - r;
946                 }
947                 diff = num - q * den;
948                 if (best_num == 0 ||
949                     diff * best_den < best_diff * den) {
950                         best_diff = diff;
951                         best_den = den;
952                         best_num = num;
953                 }
954         }
955         if (best_den == 0) {
956                 i->empty = 1;
957                 return -EINVAL;
958         }
959         t.min = div_down(best_num, best_den);
960         t.openmin = !!(best_num % best_den);
961         
962         best_num = best_den = best_diff = 0;
963         for (k = 0; k < rats_count; ++k) {
964                 unsigned int num;
965                 unsigned int den = rats[k].den;
966                 unsigned int q = i->max;
967                 int diff;
968                 num = mul(q, den);
969                 if (num < rats[k].num_min)
970                         continue;
971                 if (num > rats[k].num_max)
972                         num = rats[k].num_max;
973                 else {
974                         unsigned int r;
975                         r = (num - rats[k].num_min) % rats[k].num_step;
976                         if (r != 0)
977                                 num -= r;
978                 }
979                 diff = q * den - num;
980                 if (best_num == 0 ||
981                     diff * best_den < best_diff * den) {
982                         best_diff = diff;
983                         best_den = den;
984                         best_num = num;
985                 }
986         }
987         if (best_den == 0) {
988                 i->empty = 1;
989                 return -EINVAL;
990         }
991         t.max = div_up(best_num, best_den);
992         t.openmax = !!(best_num % best_den);
993         t.integer = 0;
994         err = snd_interval_refine(i, &t);
995         if (err < 0)
996                 return err;
997
998         if (snd_interval_single(i)) {
999                 if (nump)
1000                         *nump = best_num;
1001                 if (denp)
1002                         *denp = best_den;
1003         }
1004         return err;
1005 }
1006
1007 /**
1008  * snd_interval_list - refine the interval value from the list
1009  * @i: the interval value to refine
1010  * @count: the number of elements in the list
1011  * @list: the value list
1012  * @mask: the bit-mask to evaluate
1013  *
1014  * Refines the interval value from the list.
1015  * When mask is non-zero, only the elements corresponding to bit 1 are
1016  * evaluated.
1017  *
1018  * Returns non-zero if the value is changed, zero if not changed.
1019  */
1020 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1021 {
1022         unsigned int k;
1023         struct snd_interval list_range;
1024
1025         if (!count) {
1026                 i->empty = 1;
1027                 return -EINVAL;
1028         }
1029         snd_interval_any(&list_range);
1030         list_range.min = UINT_MAX;
1031         list_range.max = 0;
1032         for (k = 0; k < count; k++) {
1033                 if (mask && !(mask & (1 << k)))
1034                         continue;
1035                 if (!snd_interval_test(i, list[k]))
1036                         continue;
1037                 list_range.min = min(list_range.min, list[k]);
1038                 list_range.max = max(list_range.max, list[k]);
1039         }
1040         return snd_interval_refine(i, &list_range);
1041 }
1042
1043 EXPORT_SYMBOL(snd_interval_list);
1044
1045 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1046 {
1047         unsigned int n;
1048         int changed = 0;
1049         n = (i->min - min) % step;
1050         if (n != 0 || i->openmin) {
1051                 i->min += step - n;
1052                 changed = 1;
1053         }
1054         n = (i->max - min) % step;
1055         if (n != 0 || i->openmax) {
1056                 i->max -= n;
1057                 changed = 1;
1058         }
1059         if (snd_interval_checkempty(i)) {
1060                 i->empty = 1;
1061                 return -EINVAL;
1062         }
1063         return changed;
1064 }
1065
1066 /* Info constraints helpers */
1067
1068 /**
1069  * snd_pcm_hw_rule_add - add the hw-constraint rule
1070  * @runtime: the pcm runtime instance
1071  * @cond: condition bits
1072  * @var: the variable to evaluate
1073  * @func: the evaluation function
1074  * @private: the private data pointer passed to function
1075  * @dep: the dependent variables
1076  *
1077  * Returns zero if successful, or a negative error code on failure.
1078  */
1079 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1080                         int var,
1081                         snd_pcm_hw_rule_func_t func, void *private,
1082                         int dep, ...)
1083 {
1084         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1085         struct snd_pcm_hw_rule *c;
1086         unsigned int k;
1087         va_list args;
1088         va_start(args, dep);
1089         if (constrs->rules_num >= constrs->rules_all) {
1090                 struct snd_pcm_hw_rule *new;
1091                 unsigned int new_rules = constrs->rules_all + 16;
1092                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1093                 if (!new)
1094                         return -ENOMEM;
1095                 if (constrs->rules) {
1096                         memcpy(new, constrs->rules,
1097                                constrs->rules_num * sizeof(*c));
1098                         kfree(constrs->rules);
1099                 }
1100                 constrs->rules = new;
1101                 constrs->rules_all = new_rules;
1102         }
1103         c = &constrs->rules[constrs->rules_num];
1104         c->cond = cond;
1105         c->func = func;
1106         c->var = var;
1107         c->private = private;
1108         k = 0;
1109         while (1) {
1110                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1111                         return -EINVAL;
1112                 c->deps[k++] = dep;
1113                 if (dep < 0)
1114                         break;
1115                 dep = va_arg(args, int);
1116         }
1117         constrs->rules_num++;
1118         va_end(args);
1119         return 0;
1120 }                                   
1121
1122 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1123
1124 /**
1125  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1126  * @runtime: PCM runtime instance
1127  * @var: hw_params variable to apply the mask
1128  * @mask: the bitmap mask
1129  *
1130  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1131  */
1132 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1133                                u_int32_t mask)
1134 {
1135         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1136         struct snd_mask *maskp = constrs_mask(constrs, var);
1137         *maskp->bits &= mask;
1138         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1139         if (*maskp->bits == 0)
1140                 return -EINVAL;
1141         return 0;
1142 }
1143
1144 /**
1145  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1146  * @runtime: PCM runtime instance
1147  * @var: hw_params variable to apply the mask
1148  * @mask: the 64bit bitmap mask
1149  *
1150  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1151  */
1152 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1153                                  u_int64_t mask)
1154 {
1155         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1156         struct snd_mask *maskp = constrs_mask(constrs, var);
1157         maskp->bits[0] &= (u_int32_t)mask;
1158         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1159         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1160         if (! maskp->bits[0] && ! maskp->bits[1])
1161                 return -EINVAL;
1162         return 0;
1163 }
1164
1165 /**
1166  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1167  * @runtime: PCM runtime instance
1168  * @var: hw_params variable to apply the integer constraint
1169  *
1170  * Apply the constraint of integer to an interval parameter.
1171  */
1172 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1173 {
1174         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1175         return snd_interval_setinteger(constrs_interval(constrs, var));
1176 }
1177
1178 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1179
1180 /**
1181  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1182  * @runtime: PCM runtime instance
1183  * @var: hw_params variable to apply the range
1184  * @min: the minimal value
1185  * @max: the maximal value
1186  * 
1187  * Apply the min/max range constraint to an interval parameter.
1188  */
1189 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1190                                  unsigned int min, unsigned int max)
1191 {
1192         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1193         struct snd_interval t;
1194         t.min = min;
1195         t.max = max;
1196         t.openmin = t.openmax = 0;
1197         t.integer = 0;
1198         return snd_interval_refine(constrs_interval(constrs, var), &t);
1199 }
1200
1201 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1202
1203 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1204                                 struct snd_pcm_hw_rule *rule)
1205 {
1206         struct snd_pcm_hw_constraint_list *list = rule->private;
1207         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1208 }               
1209
1210
1211 /**
1212  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1213  * @runtime: PCM runtime instance
1214  * @cond: condition bits
1215  * @var: hw_params variable to apply the list constraint
1216  * @l: list
1217  * 
1218  * Apply the list of constraints to an interval parameter.
1219  */
1220 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1221                                unsigned int cond,
1222                                snd_pcm_hw_param_t var,
1223                                struct snd_pcm_hw_constraint_list *l)
1224 {
1225         return snd_pcm_hw_rule_add(runtime, cond, var,
1226                                    snd_pcm_hw_rule_list, l,
1227                                    var, -1);
1228 }
1229
1230 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1231
1232 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1233                                    struct snd_pcm_hw_rule *rule)
1234 {
1235         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1236         unsigned int num = 0, den = 0;
1237         int err;
1238         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1239                                   r->nrats, r->rats, &num, &den);
1240         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1241                 params->rate_num = num;
1242                 params->rate_den = den;
1243         }
1244         return err;
1245 }
1246
1247 /**
1248  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1249  * @runtime: PCM runtime instance
1250  * @cond: condition bits
1251  * @var: hw_params variable to apply the ratnums constraint
1252  * @r: struct snd_ratnums constriants
1253  */
1254 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1255                                   unsigned int cond,
1256                                   snd_pcm_hw_param_t var,
1257                                   struct snd_pcm_hw_constraint_ratnums *r)
1258 {
1259         return snd_pcm_hw_rule_add(runtime, cond, var,
1260                                    snd_pcm_hw_rule_ratnums, r,
1261                                    var, -1);
1262 }
1263
1264 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1265
1266 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1267                                    struct snd_pcm_hw_rule *rule)
1268 {
1269         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1270         unsigned int num = 0, den = 0;
1271         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1272                                   r->nrats, r->rats, &num, &den);
1273         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1274                 params->rate_num = num;
1275                 params->rate_den = den;
1276         }
1277         return err;
1278 }
1279
1280 /**
1281  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1282  * @runtime: PCM runtime instance
1283  * @cond: condition bits
1284  * @var: hw_params variable to apply the ratdens constraint
1285  * @r: struct snd_ratdens constriants
1286  */
1287 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1288                                   unsigned int cond,
1289                                   snd_pcm_hw_param_t var,
1290                                   struct snd_pcm_hw_constraint_ratdens *r)
1291 {
1292         return snd_pcm_hw_rule_add(runtime, cond, var,
1293                                    snd_pcm_hw_rule_ratdens, r,
1294                                    var, -1);
1295 }
1296
1297 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1298
1299 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1300                                   struct snd_pcm_hw_rule *rule)
1301 {
1302         unsigned int l = (unsigned long) rule->private;
1303         int width = l & 0xffff;
1304         unsigned int msbits = l >> 16;
1305         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1306         if (snd_interval_single(i) && snd_interval_value(i) == width)
1307                 params->msbits = msbits;
1308         return 0;
1309 }
1310
1311 /**
1312  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1313  * @runtime: PCM runtime instance
1314  * @cond: condition bits
1315  * @width: sample bits width
1316  * @msbits: msbits width
1317  */
1318 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1319                                  unsigned int cond,
1320                                  unsigned int width,
1321                                  unsigned int msbits)
1322 {
1323         unsigned long l = (msbits << 16) | width;
1324         return snd_pcm_hw_rule_add(runtime, cond, -1,
1325                                     snd_pcm_hw_rule_msbits,
1326                                     (void*) l,
1327                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1328 }
1329
1330 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1331
1332 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1333                                 struct snd_pcm_hw_rule *rule)
1334 {
1335         unsigned long step = (unsigned long) rule->private;
1336         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1337 }
1338
1339 /**
1340  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1341  * @runtime: PCM runtime instance
1342  * @cond: condition bits
1343  * @var: hw_params variable to apply the step constraint
1344  * @step: step size
1345  */
1346 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1347                                unsigned int cond,
1348                                snd_pcm_hw_param_t var,
1349                                unsigned long step)
1350 {
1351         return snd_pcm_hw_rule_add(runtime, cond, var, 
1352                                    snd_pcm_hw_rule_step, (void *) step,
1353                                    var, -1);
1354 }
1355
1356 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1357
1358 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1359 {
1360         static unsigned int pow2_sizes[] = {
1361                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1362                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1363                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1364                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1365         };
1366         return snd_interval_list(hw_param_interval(params, rule->var),
1367                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1368 }               
1369
1370 /**
1371  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1372  * @runtime: PCM runtime instance
1373  * @cond: condition bits
1374  * @var: hw_params variable to apply the power-of-2 constraint
1375  */
1376 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1377                                unsigned int cond,
1378                                snd_pcm_hw_param_t var)
1379 {
1380         return snd_pcm_hw_rule_add(runtime, cond, var, 
1381                                    snd_pcm_hw_rule_pow2, NULL,
1382                                    var, -1);
1383 }
1384
1385 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1386
1387 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1388                                   snd_pcm_hw_param_t var)
1389 {
1390         if (hw_is_mask(var)) {
1391                 snd_mask_any(hw_param_mask(params, var));
1392                 params->cmask |= 1 << var;
1393                 params->rmask |= 1 << var;
1394                 return;
1395         }
1396         if (hw_is_interval(var)) {
1397                 snd_interval_any(hw_param_interval(params, var));
1398                 params->cmask |= 1 << var;
1399                 params->rmask |= 1 << var;
1400                 return;
1401         }
1402         snd_BUG();
1403 }
1404
1405 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1406 {
1407         unsigned int k;
1408         memset(params, 0, sizeof(*params));
1409         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1410                 _snd_pcm_hw_param_any(params, k);
1411         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1412                 _snd_pcm_hw_param_any(params, k);
1413         params->info = ~0U;
1414 }
1415
1416 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1417
1418 /**
1419  * snd_pcm_hw_param_value - return @params field @var value
1420  * @params: the hw_params instance
1421  * @var: parameter to retrieve
1422  * @dir: pointer to the direction (-1,0,1) or %NULL
1423  *
1424  * Return the value for field @var if it's fixed in configuration space
1425  * defined by @params. Return -%EINVAL otherwise.
1426  */
1427 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1428                            snd_pcm_hw_param_t var, int *dir)
1429 {
1430         if (hw_is_mask(var)) {
1431                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1432                 if (!snd_mask_single(mask))
1433                         return -EINVAL;
1434                 if (dir)
1435                         *dir = 0;
1436                 return snd_mask_value(mask);
1437         }
1438         if (hw_is_interval(var)) {
1439                 const struct snd_interval *i = hw_param_interval_c(params, var);
1440                 if (!snd_interval_single(i))
1441                         return -EINVAL;
1442                 if (dir)
1443                         *dir = i->openmin;
1444                 return snd_interval_value(i);
1445         }
1446         return -EINVAL;
1447 }
1448
1449 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1450
1451 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1452                                 snd_pcm_hw_param_t var)
1453 {
1454         if (hw_is_mask(var)) {
1455                 snd_mask_none(hw_param_mask(params, var));
1456                 params->cmask |= 1 << var;
1457                 params->rmask |= 1 << var;
1458         } else if (hw_is_interval(var)) {
1459                 snd_interval_none(hw_param_interval(params, var));
1460                 params->cmask |= 1 << var;
1461                 params->rmask |= 1 << var;
1462         } else {
1463                 snd_BUG();
1464         }
1465 }
1466
1467 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1468
1469 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1470                                    snd_pcm_hw_param_t var)
1471 {
1472         int changed;
1473         if (hw_is_mask(var))
1474                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1475         else if (hw_is_interval(var))
1476                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1477         else
1478                 return -EINVAL;
1479         if (changed) {
1480                 params->cmask |= 1 << var;
1481                 params->rmask |= 1 << var;
1482         }
1483         return changed;
1484 }
1485
1486
1487 /**
1488  * snd_pcm_hw_param_first - refine config space and return minimum value
1489  * @pcm: PCM instance
1490  * @params: the hw_params instance
1491  * @var: parameter to retrieve
1492  * @dir: pointer to the direction (-1,0,1) or %NULL
1493  *
1494  * Inside configuration space defined by @params remove from @var all
1495  * values > minimum. Reduce configuration space accordingly.
1496  * Return the minimum.
1497  */
1498 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1499                            struct snd_pcm_hw_params *params, 
1500                            snd_pcm_hw_param_t var, int *dir)
1501 {
1502         int changed = _snd_pcm_hw_param_first(params, var);
1503         if (changed < 0)
1504                 return changed;
1505         if (params->rmask) {
1506                 int err = snd_pcm_hw_refine(pcm, params);
1507                 if (snd_BUG_ON(err < 0))
1508                         return err;
1509         }
1510         return snd_pcm_hw_param_value(params, var, dir);
1511 }
1512
1513 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1514
1515 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1516                                   snd_pcm_hw_param_t var)
1517 {
1518         int changed;
1519         if (hw_is_mask(var))
1520                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1521         else if (hw_is_interval(var))
1522                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1523         else
1524                 return -EINVAL;
1525         if (changed) {
1526                 params->cmask |= 1 << var;
1527                 params->rmask |= 1 << var;
1528         }
1529         return changed;
1530 }
1531
1532
1533 /**
1534  * snd_pcm_hw_param_last - refine config space and return maximum value
1535  * @pcm: PCM instance
1536  * @params: the hw_params instance
1537  * @var: parameter to retrieve
1538  * @dir: pointer to the direction (-1,0,1) or %NULL
1539  *
1540  * Inside configuration space defined by @params remove from @var all
1541  * values < maximum. Reduce configuration space accordingly.
1542  * Return the maximum.
1543  */
1544 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1545                           struct snd_pcm_hw_params *params,
1546                           snd_pcm_hw_param_t var, int *dir)
1547 {
1548         int changed = _snd_pcm_hw_param_last(params, var);
1549         if (changed < 0)
1550                 return changed;
1551         if (params->rmask) {
1552                 int err = snd_pcm_hw_refine(pcm, params);
1553                 if (snd_BUG_ON(err < 0))
1554                         return err;
1555         }
1556         return snd_pcm_hw_param_value(params, var, dir);
1557 }
1558
1559 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1560
1561 /**
1562  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1563  * @pcm: PCM instance
1564  * @params: the hw_params instance
1565  *
1566  * Choose one configuration from configuration space defined by @params.
1567  * The configuration chosen is that obtained fixing in this order:
1568  * first access, first format, first subformat, min channels,
1569  * min rate, min period time, max buffer size, min tick time
1570  */
1571 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1572                              struct snd_pcm_hw_params *params)
1573 {
1574         static int vars[] = {
1575                 SNDRV_PCM_HW_PARAM_ACCESS,
1576                 SNDRV_PCM_HW_PARAM_FORMAT,
1577                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1578                 SNDRV_PCM_HW_PARAM_CHANNELS,
1579                 SNDRV_PCM_HW_PARAM_RATE,
1580                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1581                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1582                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1583                 -1
1584         };
1585         int err, *v;
1586
1587         for (v = vars; *v != -1; v++) {
1588                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1589                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1590                 else
1591                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1592                 if (snd_BUG_ON(err < 0))
1593                         return err;
1594         }
1595         return 0;
1596 }
1597
1598 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1599                                    void *arg)
1600 {
1601         struct snd_pcm_runtime *runtime = substream->runtime;
1602         unsigned long flags;
1603         snd_pcm_stream_lock_irqsave(substream, flags);
1604         if (snd_pcm_running(substream) &&
1605             snd_pcm_update_hw_ptr(substream) >= 0)
1606                 runtime->status->hw_ptr %= runtime->buffer_size;
1607         else
1608                 runtime->status->hw_ptr = 0;
1609         snd_pcm_stream_unlock_irqrestore(substream, flags);
1610         return 0;
1611 }
1612
1613 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1614                                           void *arg)
1615 {
1616         struct snd_pcm_channel_info *info = arg;
1617         struct snd_pcm_runtime *runtime = substream->runtime;
1618         int width;
1619         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1620                 info->offset = -1;
1621                 return 0;
1622         }
1623         width = snd_pcm_format_physical_width(runtime->format);
1624         if (width < 0)
1625                 return width;
1626         info->offset = 0;
1627         switch (runtime->access) {
1628         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1629         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1630                 info->first = info->channel * width;
1631                 info->step = runtime->channels * width;
1632                 break;
1633         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1634         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1635         {
1636                 size_t size = runtime->dma_bytes / runtime->channels;
1637                 info->first = info->channel * size * 8;
1638                 info->step = width;
1639                 break;
1640         }
1641         default:
1642                 snd_BUG();
1643                 break;
1644         }
1645         return 0;
1646 }
1647
1648 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1649                                        void *arg)
1650 {
1651         struct snd_pcm_hw_params *params = arg;
1652         snd_pcm_format_t format;
1653         int channels, width;
1654
1655         params->fifo_size = substream->runtime->hw.fifo_size;
1656         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1657                 format = params_format(params);
1658                 channels = params_channels(params);
1659                 width = snd_pcm_format_physical_width(format);
1660                 params->fifo_size /= width * channels;
1661         }
1662         return 0;
1663 }
1664
1665 /**
1666  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1667  * @substream: the pcm substream instance
1668  * @cmd: ioctl command
1669  * @arg: ioctl argument
1670  *
1671  * Processes the generic ioctl commands for PCM.
1672  * Can be passed as the ioctl callback for PCM ops.
1673  *
1674  * Returns zero if successful, or a negative error code on failure.
1675  */
1676 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1677                       unsigned int cmd, void *arg)
1678 {
1679         switch (cmd) {
1680         case SNDRV_PCM_IOCTL1_INFO:
1681                 return 0;
1682         case SNDRV_PCM_IOCTL1_RESET:
1683                 return snd_pcm_lib_ioctl_reset(substream, arg);
1684         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1685                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1686         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1687                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1688         }
1689         return -ENXIO;
1690 }
1691
1692 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1693
1694 /**
1695  * snd_pcm_period_elapsed - update the pcm status for the next period
1696  * @substream: the pcm substream instance
1697  *
1698  * This function is called from the interrupt handler when the
1699  * PCM has processed the period size.  It will update the current
1700  * pointer, wake up sleepers, etc.
1701  *
1702  * Even if more than one periods have elapsed since the last call, you
1703  * have to call this only once.
1704  */
1705 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1706 {
1707         struct snd_pcm_runtime *runtime;
1708         unsigned long flags;
1709
1710         if (PCM_RUNTIME_CHECK(substream))
1711                 return;
1712         runtime = substream->runtime;
1713
1714         if (runtime->transfer_ack_begin)
1715                 runtime->transfer_ack_begin(substream);
1716
1717         snd_pcm_stream_lock_irqsave(substream, flags);
1718         if (!snd_pcm_running(substream) ||
1719             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1720                 goto _end;
1721
1722         if (substream->timer_running)
1723                 snd_timer_interrupt(substream->timer, 1);
1724  _end:
1725         snd_pcm_stream_unlock_irqrestore(substream, flags);
1726         if (runtime->transfer_ack_end)
1727                 runtime->transfer_ack_end(substream);
1728         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1729 }
1730
1731 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1732
1733 /*
1734  * Wait until avail_min data becomes available
1735  * Returns a negative error code if any error occurs during operation.
1736  * The available space is stored on availp.  When err = 0 and avail = 0
1737  * on the capture stream, it indicates the stream is in DRAINING state.
1738  */
1739 static int wait_for_avail(struct snd_pcm_substream *substream,
1740                               snd_pcm_uframes_t *availp)
1741 {
1742         struct snd_pcm_runtime *runtime = substream->runtime;
1743         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1744         wait_queue_t wait;
1745         int err = 0;
1746         snd_pcm_uframes_t avail = 0;
1747         long tout;
1748
1749         init_waitqueue_entry(&wait, current);
1750         add_wait_queue(&runtime->tsleep, &wait);
1751         for (;;) {
1752                 if (signal_pending(current)) {
1753                         err = -ERESTARTSYS;
1754                         break;
1755                 }
1756                 set_current_state(TASK_INTERRUPTIBLE);
1757                 snd_pcm_stream_unlock_irq(substream);
1758                 tout = schedule_timeout(msecs_to_jiffies(10000));
1759                 snd_pcm_stream_lock_irq(substream);
1760                 switch (runtime->status->state) {
1761                 case SNDRV_PCM_STATE_SUSPENDED:
1762                         err = -ESTRPIPE;
1763                         goto _endloop;
1764                 case SNDRV_PCM_STATE_XRUN:
1765                         err = -EPIPE;
1766                         goto _endloop;
1767                 case SNDRV_PCM_STATE_DRAINING:
1768                         if (is_playback)
1769                                 err = -EPIPE;
1770                         else 
1771                                 avail = 0; /* indicate draining */
1772                         goto _endloop;
1773                 case SNDRV_PCM_STATE_OPEN:
1774                 case SNDRV_PCM_STATE_SETUP:
1775                 case SNDRV_PCM_STATE_DISCONNECTED:
1776                         err = -EBADFD;
1777                         goto _endloop;
1778                 }
1779                 if (!tout) {
1780                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1781                                    is_playback ? "playback" : "capture");
1782                         err = -EIO;
1783                         break;
1784                 }
1785                 if (is_playback)
1786                         avail = snd_pcm_playback_avail(runtime);
1787                 else
1788                         avail = snd_pcm_capture_avail(runtime);
1789                 if (avail >= runtime->twake)
1790                         break;
1791         }
1792  _endloop:
1793         remove_wait_queue(&runtime->tsleep, &wait);
1794         *availp = avail;
1795         return err;
1796 }
1797         
1798 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1799                                       unsigned int hwoff,
1800                                       unsigned long data, unsigned int off,
1801                                       snd_pcm_uframes_t frames)
1802 {
1803         struct snd_pcm_runtime *runtime = substream->runtime;
1804         int err;
1805         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1806         if (substream->ops->copy) {
1807                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1808                         return err;
1809         } else {
1810                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1811                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1812                         return -EFAULT;
1813         }
1814         return 0;
1815 }
1816  
1817 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1818                           unsigned long data, unsigned int off,
1819                           snd_pcm_uframes_t size);
1820
1821 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1822                                             unsigned long data,
1823                                             snd_pcm_uframes_t size,
1824                                             int nonblock,
1825                                             transfer_f transfer)
1826 {
1827         struct snd_pcm_runtime *runtime = substream->runtime;
1828         snd_pcm_uframes_t xfer = 0;
1829         snd_pcm_uframes_t offset = 0;
1830         int err = 0;
1831
1832         if (size == 0)
1833                 return 0;
1834
1835         snd_pcm_stream_lock_irq(substream);
1836         switch (runtime->status->state) {
1837         case SNDRV_PCM_STATE_PREPARED:
1838         case SNDRV_PCM_STATE_RUNNING:
1839         case SNDRV_PCM_STATE_PAUSED:
1840                 break;
1841         case SNDRV_PCM_STATE_XRUN:
1842                 err = -EPIPE;
1843                 goto _end_unlock;
1844         case SNDRV_PCM_STATE_SUSPENDED:
1845                 err = -ESTRPIPE;
1846                 goto _end_unlock;
1847         default:
1848                 err = -EBADFD;
1849                 goto _end_unlock;
1850         }
1851
1852         runtime->twake = runtime->control->avail_min ? : 1;
1853         while (size > 0) {
1854                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1855                 snd_pcm_uframes_t avail;
1856                 snd_pcm_uframes_t cont;
1857                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1858                         snd_pcm_update_hw_ptr(substream);
1859                 avail = snd_pcm_playback_avail(runtime);
1860                 if (!avail) {
1861                         if (nonblock) {
1862                                 err = -EAGAIN;
1863                                 goto _end_unlock;
1864                         }
1865                         runtime->twake = min_t(snd_pcm_uframes_t, size,
1866                                         runtime->control->avail_min ? : 1);
1867                         err = wait_for_avail(substream, &avail);
1868                         if (err < 0)
1869                                 goto _end_unlock;
1870                 }
1871                 frames = size > avail ? avail : size;
1872                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1873                 if (frames > cont)
1874                         frames = cont;
1875                 if (snd_BUG_ON(!frames)) {
1876                         runtime->twake = 0;
1877                         snd_pcm_stream_unlock_irq(substream);
1878                         return -EINVAL;
1879                 }
1880                 appl_ptr = runtime->control->appl_ptr;
1881                 appl_ofs = appl_ptr % runtime->buffer_size;
1882                 snd_pcm_stream_unlock_irq(substream);
1883                 err = transfer(substream, appl_ofs, data, offset, frames);
1884                 snd_pcm_stream_lock_irq(substream);
1885                 if (err < 0)
1886                         goto _end_unlock;
1887                 switch (runtime->status->state) {
1888                 case SNDRV_PCM_STATE_XRUN:
1889                         err = -EPIPE;
1890                         goto _end_unlock;
1891                 case SNDRV_PCM_STATE_SUSPENDED:
1892                         err = -ESTRPIPE;
1893                         goto _end_unlock;
1894                 default:
1895                         break;
1896                 }
1897                 appl_ptr += frames;
1898                 if (appl_ptr >= runtime->boundary)
1899                         appl_ptr -= runtime->boundary;
1900                 runtime->control->appl_ptr = appl_ptr;
1901                 if (substream->ops->ack)
1902                         substream->ops->ack(substream);
1903
1904                 offset += frames;
1905                 size -= frames;
1906                 xfer += frames;
1907                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1908                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1909                         err = snd_pcm_start(substream);
1910                         if (err < 0)
1911                                 goto _end_unlock;
1912                 }
1913         }
1914  _end_unlock:
1915         runtime->twake = 0;
1916         if (xfer > 0 && err >= 0)
1917                 snd_pcm_update_state(substream, runtime);
1918         snd_pcm_stream_unlock_irq(substream);
1919         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1920 }
1921
1922 /* sanity-check for read/write methods */
1923 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1924 {
1925         struct snd_pcm_runtime *runtime;
1926         if (PCM_RUNTIME_CHECK(substream))
1927                 return -ENXIO;
1928         runtime = substream->runtime;
1929         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1930                 return -EINVAL;
1931         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1932                 return -EBADFD;
1933         return 0;
1934 }
1935
1936 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1937 {
1938         struct snd_pcm_runtime *runtime;
1939         int nonblock;
1940         int err;
1941
1942         err = pcm_sanity_check(substream);
1943         if (err < 0)
1944                 return err;
1945         runtime = substream->runtime;
1946         nonblock = !!(substream->f_flags & O_NONBLOCK);
1947
1948         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1949             runtime->channels > 1)
1950                 return -EINVAL;
1951         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1952                                   snd_pcm_lib_write_transfer);
1953 }
1954
1955 EXPORT_SYMBOL(snd_pcm_lib_write);
1956
1957 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1958                                        unsigned int hwoff,
1959                                        unsigned long data, unsigned int off,
1960                                        snd_pcm_uframes_t frames)
1961 {
1962         struct snd_pcm_runtime *runtime = substream->runtime;
1963         int err;
1964         void __user **bufs = (void __user **)data;
1965         int channels = runtime->channels;
1966         int c;
1967         if (substream->ops->copy) {
1968                 if (snd_BUG_ON(!substream->ops->silence))
1969                         return -EINVAL;
1970                 for (c = 0; c < channels; ++c, ++bufs) {
1971                         if (*bufs == NULL) {
1972                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1973                                         return err;
1974                         } else {
1975                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1976                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1977                                         return err;
1978                         }
1979                 }
1980         } else {
1981                 /* default transfer behaviour */
1982                 size_t dma_csize = runtime->dma_bytes / channels;
1983                 for (c = 0; c < channels; ++c, ++bufs) {
1984                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1985                         if (*bufs == NULL) {
1986                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1987                         } else {
1988                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1989                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1990                                         return -EFAULT;
1991                         }
1992                 }
1993         }
1994         return 0;
1995 }
1996  
1997 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1998                                      void __user **bufs,
1999                                      snd_pcm_uframes_t frames)
2000 {
2001         struct snd_pcm_runtime *runtime;
2002         int nonblock;
2003         int err;
2004
2005         err = pcm_sanity_check(substream);
2006         if (err < 0)
2007                 return err;
2008         runtime = substream->runtime;
2009         nonblock = !!(substream->f_flags & O_NONBLOCK);
2010
2011         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2012                 return -EINVAL;
2013         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2014                                   nonblock, snd_pcm_lib_writev_transfer);
2015 }
2016
2017 EXPORT_SYMBOL(snd_pcm_lib_writev);
2018
2019 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2020                                      unsigned int hwoff,
2021                                      unsigned long data, unsigned int off,
2022                                      snd_pcm_uframes_t frames)
2023 {
2024         struct snd_pcm_runtime *runtime = substream->runtime;
2025         int err;
2026         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2027         if (substream->ops->copy) {
2028                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2029                         return err;
2030         } else {
2031                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2032                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2033                         return -EFAULT;
2034         }
2035         return 0;
2036 }
2037
2038 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2039                                            unsigned long data,
2040                                            snd_pcm_uframes_t size,
2041                                            int nonblock,
2042                                            transfer_f transfer)
2043 {
2044         struct snd_pcm_runtime *runtime = substream->runtime;
2045         snd_pcm_uframes_t xfer = 0;
2046         snd_pcm_uframes_t offset = 0;
2047         int err = 0;
2048
2049         if (size == 0)
2050                 return 0;
2051
2052         snd_pcm_stream_lock_irq(substream);
2053         switch (runtime->status->state) {
2054         case SNDRV_PCM_STATE_PREPARED:
2055                 if (size >= runtime->start_threshold) {
2056                         err = snd_pcm_start(substream);
2057                         if (err < 0)
2058                                 goto _end_unlock;
2059                 }
2060                 break;
2061         case SNDRV_PCM_STATE_DRAINING:
2062         case SNDRV_PCM_STATE_RUNNING:
2063         case SNDRV_PCM_STATE_PAUSED:
2064                 break;
2065         case SNDRV_PCM_STATE_XRUN:
2066                 err = -EPIPE;
2067                 goto _end_unlock;
2068         case SNDRV_PCM_STATE_SUSPENDED:
2069                 err = -ESTRPIPE;
2070                 goto _end_unlock;
2071         default:
2072                 err = -EBADFD;
2073                 goto _end_unlock;
2074         }
2075
2076         runtime->twake = runtime->control->avail_min ? : 1;
2077         while (size > 0) {
2078                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2079                 snd_pcm_uframes_t avail;
2080                 snd_pcm_uframes_t cont;
2081                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2082                         snd_pcm_update_hw_ptr(substream);
2083                 avail = snd_pcm_capture_avail(runtime);
2084                 if (!avail) {
2085                         if (runtime->status->state ==
2086                             SNDRV_PCM_STATE_DRAINING) {
2087                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2088                                 goto _end_unlock;
2089                         }
2090                         if (nonblock) {
2091                                 err = -EAGAIN;
2092                                 goto _end_unlock;
2093                         }
2094                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2095                                         runtime->control->avail_min ? : 1);
2096                         err = wait_for_avail(substream, &avail);
2097                         if (err < 0)
2098                                 goto _end_unlock;
2099                         if (!avail)
2100                                 continue; /* draining */
2101                 }
2102                 frames = size > avail ? avail : size;
2103                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2104                 if (frames > cont)
2105                         frames = cont;
2106                 if (snd_BUG_ON(!frames)) {
2107                         runtime->twake = 0;
2108                         snd_pcm_stream_unlock_irq(substream);
2109                         return -EINVAL;
2110                 }
2111                 appl_ptr = runtime->control->appl_ptr;
2112                 appl_ofs = appl_ptr % runtime->buffer_size;
2113                 snd_pcm_stream_unlock_irq(substream);
2114                 err = transfer(substream, appl_ofs, data, offset, frames);
2115                 snd_pcm_stream_lock_irq(substream);
2116                 if (err < 0)
2117                         goto _end_unlock;
2118                 switch (runtime->status->state) {
2119                 case SNDRV_PCM_STATE_XRUN:
2120                         err = -EPIPE;
2121                         goto _end_unlock;
2122                 case SNDRV_PCM_STATE_SUSPENDED:
2123                         err = -ESTRPIPE;
2124                         goto _end_unlock;
2125                 default:
2126                         break;
2127                 }
2128                 appl_ptr += frames;
2129                 if (appl_ptr >= runtime->boundary)
2130                         appl_ptr -= runtime->boundary;
2131                 runtime->control->appl_ptr = appl_ptr;
2132                 if (substream->ops->ack)
2133                         substream->ops->ack(substream);
2134
2135                 offset += frames;
2136                 size -= frames;
2137                 xfer += frames;
2138         }
2139  _end_unlock:
2140         runtime->twake = 0;
2141         if (xfer > 0 && err >= 0)
2142                 snd_pcm_update_state(substream, runtime);
2143         snd_pcm_stream_unlock_irq(substream);
2144         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2145 }
2146
2147 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2148 {
2149         struct snd_pcm_runtime *runtime;
2150         int nonblock;
2151         int err;
2152         
2153         err = pcm_sanity_check(substream);
2154         if (err < 0)
2155                 return err;
2156         runtime = substream->runtime;
2157         nonblock = !!(substream->f_flags & O_NONBLOCK);
2158         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2159                 return -EINVAL;
2160         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2161 }
2162
2163 EXPORT_SYMBOL(snd_pcm_lib_read);
2164
2165 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2166                                       unsigned int hwoff,
2167                                       unsigned long data, unsigned int off,
2168                                       snd_pcm_uframes_t frames)
2169 {
2170         struct snd_pcm_runtime *runtime = substream->runtime;
2171         int err;
2172         void __user **bufs = (void __user **)data;
2173         int channels = runtime->channels;
2174         int c;
2175         if (substream->ops->copy) {
2176                 for (c = 0; c < channels; ++c, ++bufs) {
2177                         char __user *buf;
2178                         if (*bufs == NULL)
2179                                 continue;
2180                         buf = *bufs + samples_to_bytes(runtime, off);
2181                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2182                                 return err;
2183                 }
2184         } else {
2185                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2186                 for (c = 0; c < channels; ++c, ++bufs) {
2187                         char *hwbuf;
2188                         char __user *buf;
2189                         if (*bufs == NULL)
2190                                 continue;
2191
2192                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2193                         buf = *bufs + samples_to_bytes(runtime, off);
2194                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2195                                 return -EFAULT;
2196                 }
2197         }
2198         return 0;
2199 }
2200  
2201 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2202                                     void __user **bufs,
2203                                     snd_pcm_uframes_t frames)
2204 {
2205         struct snd_pcm_runtime *runtime;
2206         int nonblock;
2207         int err;
2208
2209         err = pcm_sanity_check(substream);
2210         if (err < 0)
2211                 return err;
2212         runtime = substream->runtime;
2213         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2214                 return -EBADFD;
2215
2216         nonblock = !!(substream->f_flags & O_NONBLOCK);
2217         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2218                 return -EINVAL;
2219         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2220 }
2221
2222 EXPORT_SYMBOL(snd_pcm_lib_readv);