]> git.karo-electronics.de Git - karo-tx-linux.git/blob - sound/core/pcm_lib.c
ALSA: pcm: use helper function to refer parameter as read-only
[karo-tx-linux.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
37 #define CREATE_TRACE_POINTS
38 #include "pcm_trace.h"
39 #else
40 #define trace_hwptr(substream, pos, in_interrupt)
41 #define trace_xrun(substream)
42 #define trace_hw_ptr_error(substream, reason)
43 #endif
44
45 /*
46  * fill ring buffer with silence
47  * runtime->silence_start: starting pointer to silence area
48  * runtime->silence_filled: size filled with silence
49  * runtime->silence_threshold: threshold from application
50  * runtime->silence_size: maximal size from application
51  *
52  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
53  */
54 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
55 {
56         struct snd_pcm_runtime *runtime = substream->runtime;
57         snd_pcm_uframes_t frames, ofs, transfer;
58
59         if (runtime->silence_size < runtime->boundary) {
60                 snd_pcm_sframes_t noise_dist, n;
61                 if (runtime->silence_start != runtime->control->appl_ptr) {
62                         n = runtime->control->appl_ptr - runtime->silence_start;
63                         if (n < 0)
64                                 n += runtime->boundary;
65                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
66                                 runtime->silence_filled -= n;
67                         else
68                                 runtime->silence_filled = 0;
69                         runtime->silence_start = runtime->control->appl_ptr;
70                 }
71                 if (runtime->silence_filled >= runtime->buffer_size)
72                         return;
73                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
74                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
75                         return;
76                 frames = runtime->silence_threshold - noise_dist;
77                 if (frames > runtime->silence_size)
78                         frames = runtime->silence_size;
79         } else {
80                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
81                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
82                         if (avail > runtime->buffer_size)
83                                 avail = runtime->buffer_size;
84                         runtime->silence_filled = avail > 0 ? avail : 0;
85                         runtime->silence_start = (runtime->status->hw_ptr +
86                                                   runtime->silence_filled) %
87                                                  runtime->boundary;
88                 } else {
89                         ofs = runtime->status->hw_ptr;
90                         frames = new_hw_ptr - ofs;
91                         if ((snd_pcm_sframes_t)frames < 0)
92                                 frames += runtime->boundary;
93                         runtime->silence_filled -= frames;
94                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
95                                 runtime->silence_filled = 0;
96                                 runtime->silence_start = new_hw_ptr;
97                         } else {
98                                 runtime->silence_start = ofs;
99                         }
100                 }
101                 frames = runtime->buffer_size - runtime->silence_filled;
102         }
103         if (snd_BUG_ON(frames > runtime->buffer_size))
104                 return;
105         if (frames == 0)
106                 return;
107         ofs = runtime->silence_start % runtime->buffer_size;
108         while (frames > 0) {
109                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
110                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
111                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
112                         if (substream->ops->silence) {
113                                 int err;
114                                 err = substream->ops->silence(substream, -1, ofs, transfer);
115                                 snd_BUG_ON(err < 0);
116                         } else {
117                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
118                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
119                         }
120                 } else {
121                         unsigned int c;
122                         unsigned int channels = runtime->channels;
123                         if (substream->ops->silence) {
124                                 for (c = 0; c < channels; ++c) {
125                                         int err;
126                                         err = substream->ops->silence(substream, c, ofs, transfer);
127                                         snd_BUG_ON(err < 0);
128                                 }
129                         } else {
130                                 size_t dma_csize = runtime->dma_bytes / channels;
131                                 for (c = 0; c < channels; ++c) {
132                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
133                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
134                                 }
135                         }
136                 }
137                 runtime->silence_filled += transfer;
138                 frames -= transfer;
139                 ofs = 0;
140         }
141 }
142
143 #ifdef CONFIG_SND_DEBUG
144 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
145                            char *name, size_t len)
146 {
147         snprintf(name, len, "pcmC%dD%d%c:%d",
148                  substream->pcm->card->number,
149                  substream->pcm->device,
150                  substream->stream ? 'c' : 'p',
151                  substream->number);
152 }
153 EXPORT_SYMBOL(snd_pcm_debug_name);
154 #endif
155
156 #define XRUN_DEBUG_BASIC        (1<<0)
157 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
158 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
159
160 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
161
162 #define xrun_debug(substream, mask) \
163                         ((substream)->pstr->xrun_debug & (mask))
164 #else
165 #define xrun_debug(substream, mask)     0
166 #endif
167
168 #define dump_stack_on_xrun(substream) do {                      \
169                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
170                         dump_stack();                           \
171         } while (0)
172
173 static void xrun(struct snd_pcm_substream *substream)
174 {
175         struct snd_pcm_runtime *runtime = substream->runtime;
176
177         trace_xrun(substream);
178         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
179                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
180         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182                 char name[16];
183                 snd_pcm_debug_name(substream, name, sizeof(name));
184                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
185                 dump_stack_on_xrun(substream);
186         }
187 }
188
189 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
190 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
191         do {                                                            \
192                 trace_hw_ptr_error(substream, reason);  \
193                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
194                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
195                                            (in_interrupt) ? 'Q' : 'P', ##args); \
196                         dump_stack_on_xrun(substream);                  \
197                 }                                                       \
198         } while (0)
199
200 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201
202 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
203
204 #endif
205
206 int snd_pcm_update_state(struct snd_pcm_substream *substream,
207                          struct snd_pcm_runtime *runtime)
208 {
209         snd_pcm_uframes_t avail;
210
211         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
212                 avail = snd_pcm_playback_avail(runtime);
213         else
214                 avail = snd_pcm_capture_avail(runtime);
215         if (avail > runtime->avail_max)
216                 runtime->avail_max = avail;
217         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
218                 if (avail >= runtime->buffer_size) {
219                         snd_pcm_drain_done(substream);
220                         return -EPIPE;
221                 }
222         } else {
223                 if (avail >= runtime->stop_threshold) {
224                         xrun(substream);
225                         return -EPIPE;
226                 }
227         }
228         if (runtime->twake) {
229                 if (avail >= runtime->twake)
230                         wake_up(&runtime->tsleep);
231         } else if (avail >= runtime->control->avail_min)
232                 wake_up(&runtime->sleep);
233         return 0;
234 }
235
236 static void update_audio_tstamp(struct snd_pcm_substream *substream,
237                                 struct timespec *curr_tstamp,
238                                 struct timespec *audio_tstamp)
239 {
240         struct snd_pcm_runtime *runtime = substream->runtime;
241         u64 audio_frames, audio_nsecs;
242         struct timespec driver_tstamp;
243
244         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
245                 return;
246
247         if (!(substream->ops->get_time_info) ||
248                 (runtime->audio_tstamp_report.actual_type ==
249                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
250
251                 /*
252                  * provide audio timestamp derived from pointer position
253                  * add delay only if requested
254                  */
255
256                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
257
258                 if (runtime->audio_tstamp_config.report_delay) {
259                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
260                                 audio_frames -=  runtime->delay;
261                         else
262                                 audio_frames +=  runtime->delay;
263                 }
264                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
265                                 runtime->rate);
266                 *audio_tstamp = ns_to_timespec(audio_nsecs);
267         }
268         runtime->status->audio_tstamp = *audio_tstamp;
269         runtime->status->tstamp = *curr_tstamp;
270
271         /*
272          * re-take a driver timestamp to let apps detect if the reference tstamp
273          * read by low-level hardware was provided with a delay
274          */
275         snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
276         runtime->driver_tstamp = driver_tstamp;
277 }
278
279 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
280                                   unsigned int in_interrupt)
281 {
282         struct snd_pcm_runtime *runtime = substream->runtime;
283         snd_pcm_uframes_t pos;
284         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
285         snd_pcm_sframes_t hdelta, delta;
286         unsigned long jdelta;
287         unsigned long curr_jiffies;
288         struct timespec curr_tstamp;
289         struct timespec audio_tstamp;
290         int crossed_boundary = 0;
291
292         old_hw_ptr = runtime->status->hw_ptr;
293
294         /*
295          * group pointer, time and jiffies reads to allow for more
296          * accurate correlations/corrections.
297          * The values are stored at the end of this routine after
298          * corrections for hw_ptr position
299          */
300         pos = substream->ops->pointer(substream);
301         curr_jiffies = jiffies;
302         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
303                 if ((substream->ops->get_time_info) &&
304                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
305                         substream->ops->get_time_info(substream, &curr_tstamp,
306                                                 &audio_tstamp,
307                                                 &runtime->audio_tstamp_config,
308                                                 &runtime->audio_tstamp_report);
309
310                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
311                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
312                                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
313                 } else
314                         snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
315         }
316
317         if (pos == SNDRV_PCM_POS_XRUN) {
318                 xrun(substream);
319                 return -EPIPE;
320         }
321         if (pos >= runtime->buffer_size) {
322                 if (printk_ratelimit()) {
323                         char name[16];
324                         snd_pcm_debug_name(substream, name, sizeof(name));
325                         pcm_err(substream->pcm,
326                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
327                                 name, pos, runtime->buffer_size,
328                                 runtime->period_size);
329                 }
330                 pos = 0;
331         }
332         pos -= pos % runtime->min_align;
333         trace_hwptr(substream, pos, in_interrupt);
334         hw_base = runtime->hw_ptr_base;
335         new_hw_ptr = hw_base + pos;
336         if (in_interrupt) {
337                 /* we know that one period was processed */
338                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
339                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
340                 if (delta > new_hw_ptr) {
341                         /* check for double acknowledged interrupts */
342                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
343                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
344                                 hw_base += runtime->buffer_size;
345                                 if (hw_base >= runtime->boundary) {
346                                         hw_base = 0;
347                                         crossed_boundary++;
348                                 }
349                                 new_hw_ptr = hw_base + pos;
350                                 goto __delta;
351                         }
352                 }
353         }
354         /* new_hw_ptr might be lower than old_hw_ptr in case when */
355         /* pointer crosses the end of the ring buffer */
356         if (new_hw_ptr < old_hw_ptr) {
357                 hw_base += runtime->buffer_size;
358                 if (hw_base >= runtime->boundary) {
359                         hw_base = 0;
360                         crossed_boundary++;
361                 }
362                 new_hw_ptr = hw_base + pos;
363         }
364       __delta:
365         delta = new_hw_ptr - old_hw_ptr;
366         if (delta < 0)
367                 delta += runtime->boundary;
368
369         if (runtime->no_period_wakeup) {
370                 snd_pcm_sframes_t xrun_threshold;
371                 /*
372                  * Without regular period interrupts, we have to check
373                  * the elapsed time to detect xruns.
374                  */
375                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
376                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
377                         goto no_delta_check;
378                 hdelta = jdelta - delta * HZ / runtime->rate;
379                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
380                 while (hdelta > xrun_threshold) {
381                         delta += runtime->buffer_size;
382                         hw_base += runtime->buffer_size;
383                         if (hw_base >= runtime->boundary) {
384                                 hw_base = 0;
385                                 crossed_boundary++;
386                         }
387                         new_hw_ptr = hw_base + pos;
388                         hdelta -= runtime->hw_ptr_buffer_jiffies;
389                 }
390                 goto no_delta_check;
391         }
392
393         /* something must be really wrong */
394         if (delta >= runtime->buffer_size + runtime->period_size) {
395                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
396                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
397                              substream->stream, (long)pos,
398                              (long)new_hw_ptr, (long)old_hw_ptr);
399                 return 0;
400         }
401
402         /* Do jiffies check only in xrun_debug mode */
403         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
404                 goto no_jiffies_check;
405
406         /* Skip the jiffies check for hardwares with BATCH flag.
407          * Such hardware usually just increases the position at each IRQ,
408          * thus it can't give any strange position.
409          */
410         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
411                 goto no_jiffies_check;
412         hdelta = delta;
413         if (hdelta < runtime->delay)
414                 goto no_jiffies_check;
415         hdelta -= runtime->delay;
416         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
417         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
418                 delta = jdelta /
419                         (((runtime->period_size * HZ) / runtime->rate)
420                                                                 + HZ/100);
421                 /* move new_hw_ptr according jiffies not pos variable */
422                 new_hw_ptr = old_hw_ptr;
423                 hw_base = delta;
424                 /* use loop to avoid checks for delta overflows */
425                 /* the delta value is small or zero in most cases */
426                 while (delta > 0) {
427                         new_hw_ptr += runtime->period_size;
428                         if (new_hw_ptr >= runtime->boundary) {
429                                 new_hw_ptr -= runtime->boundary;
430                                 crossed_boundary--;
431                         }
432                         delta--;
433                 }
434                 /* align hw_base to buffer_size */
435                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
436                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
437                              (long)pos, (long)hdelta,
438                              (long)runtime->period_size, jdelta,
439                              ((hdelta * HZ) / runtime->rate), hw_base,
440                              (unsigned long)old_hw_ptr,
441                              (unsigned long)new_hw_ptr);
442                 /* reset values to proper state */
443                 delta = 0;
444                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
445         }
446  no_jiffies_check:
447         if (delta > runtime->period_size + runtime->period_size / 2) {
448                 hw_ptr_error(substream, in_interrupt,
449                              "Lost interrupts?",
450                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
451                              substream->stream, (long)delta,
452                              (long)new_hw_ptr,
453                              (long)old_hw_ptr);
454         }
455
456  no_delta_check:
457         if (runtime->status->hw_ptr == new_hw_ptr) {
458                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
459                 return 0;
460         }
461
462         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
463             runtime->silence_size > 0)
464                 snd_pcm_playback_silence(substream, new_hw_ptr);
465
466         if (in_interrupt) {
467                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
468                 if (delta < 0)
469                         delta += runtime->boundary;
470                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
471                 runtime->hw_ptr_interrupt += delta;
472                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
473                         runtime->hw_ptr_interrupt -= runtime->boundary;
474         }
475         runtime->hw_ptr_base = hw_base;
476         runtime->status->hw_ptr = new_hw_ptr;
477         runtime->hw_ptr_jiffies = curr_jiffies;
478         if (crossed_boundary) {
479                 snd_BUG_ON(crossed_boundary != 1);
480                 runtime->hw_ptr_wrap += runtime->boundary;
481         }
482
483         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
484
485         return snd_pcm_update_state(substream, runtime);
486 }
487
488 /* CAUTION: call it with irq disabled */
489 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
490 {
491         return snd_pcm_update_hw_ptr0(substream, 0);
492 }
493
494 /**
495  * snd_pcm_set_ops - set the PCM operators
496  * @pcm: the pcm instance
497  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
498  * @ops: the operator table
499  *
500  * Sets the given PCM operators to the pcm instance.
501  */
502 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
503                      const struct snd_pcm_ops *ops)
504 {
505         struct snd_pcm_str *stream = &pcm->streams[direction];
506         struct snd_pcm_substream *substream;
507         
508         for (substream = stream->substream; substream != NULL; substream = substream->next)
509                 substream->ops = ops;
510 }
511
512 EXPORT_SYMBOL(snd_pcm_set_ops);
513
514 /**
515  * snd_pcm_sync - set the PCM sync id
516  * @substream: the pcm substream
517  *
518  * Sets the PCM sync identifier for the card.
519  */
520 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
521 {
522         struct snd_pcm_runtime *runtime = substream->runtime;
523         
524         runtime->sync.id32[0] = substream->pcm->card->number;
525         runtime->sync.id32[1] = -1;
526         runtime->sync.id32[2] = -1;
527         runtime->sync.id32[3] = -1;
528 }
529
530 EXPORT_SYMBOL(snd_pcm_set_sync);
531
532 /*
533  *  Standard ioctl routine
534  */
535
536 static inline unsigned int div32(unsigned int a, unsigned int b, 
537                                  unsigned int *r)
538 {
539         if (b == 0) {
540                 *r = 0;
541                 return UINT_MAX;
542         }
543         *r = a % b;
544         return a / b;
545 }
546
547 static inline unsigned int div_down(unsigned int a, unsigned int b)
548 {
549         if (b == 0)
550                 return UINT_MAX;
551         return a / b;
552 }
553
554 static inline unsigned int div_up(unsigned int a, unsigned int b)
555 {
556         unsigned int r;
557         unsigned int q;
558         if (b == 0)
559                 return UINT_MAX;
560         q = div32(a, b, &r);
561         if (r)
562                 ++q;
563         return q;
564 }
565
566 static inline unsigned int mul(unsigned int a, unsigned int b)
567 {
568         if (a == 0)
569                 return 0;
570         if (div_down(UINT_MAX, a) < b)
571                 return UINT_MAX;
572         return a * b;
573 }
574
575 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
576                                     unsigned int c, unsigned int *r)
577 {
578         u_int64_t n = (u_int64_t) a * b;
579         if (c == 0) {
580                 snd_BUG_ON(!n);
581                 *r = 0;
582                 return UINT_MAX;
583         }
584         n = div_u64_rem(n, c, r);
585         if (n >= UINT_MAX) {
586                 *r = 0;
587                 return UINT_MAX;
588         }
589         return n;
590 }
591
592 /**
593  * snd_interval_refine - refine the interval value of configurator
594  * @i: the interval value to refine
595  * @v: the interval value to refer to
596  *
597  * Refines the interval value with the reference value.
598  * The interval is changed to the range satisfying both intervals.
599  * The interval status (min, max, integer, etc.) are evaluated.
600  *
601  * Return: Positive if the value is changed, zero if it's not changed, or a
602  * negative error code.
603  */
604 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
605 {
606         int changed = 0;
607         if (snd_BUG_ON(snd_interval_empty(i)))
608                 return -EINVAL;
609         if (i->min < v->min) {
610                 i->min = v->min;
611                 i->openmin = v->openmin;
612                 changed = 1;
613         } else if (i->min == v->min && !i->openmin && v->openmin) {
614                 i->openmin = 1;
615                 changed = 1;
616         }
617         if (i->max > v->max) {
618                 i->max = v->max;
619                 i->openmax = v->openmax;
620                 changed = 1;
621         } else if (i->max == v->max && !i->openmax && v->openmax) {
622                 i->openmax = 1;
623                 changed = 1;
624         }
625         if (!i->integer && v->integer) {
626                 i->integer = 1;
627                 changed = 1;
628         }
629         if (i->integer) {
630                 if (i->openmin) {
631                         i->min++;
632                         i->openmin = 0;
633                 }
634                 if (i->openmax) {
635                         i->max--;
636                         i->openmax = 0;
637                 }
638         } else if (!i->openmin && !i->openmax && i->min == i->max)
639                 i->integer = 1;
640         if (snd_interval_checkempty(i)) {
641                 snd_interval_none(i);
642                 return -EINVAL;
643         }
644         return changed;
645 }
646
647 EXPORT_SYMBOL(snd_interval_refine);
648
649 static int snd_interval_refine_first(struct snd_interval *i)
650 {
651         if (snd_BUG_ON(snd_interval_empty(i)))
652                 return -EINVAL;
653         if (snd_interval_single(i))
654                 return 0;
655         i->max = i->min;
656         i->openmax = i->openmin;
657         if (i->openmax)
658                 i->max++;
659         return 1;
660 }
661
662 static int snd_interval_refine_last(struct snd_interval *i)
663 {
664         if (snd_BUG_ON(snd_interval_empty(i)))
665                 return -EINVAL;
666         if (snd_interval_single(i))
667                 return 0;
668         i->min = i->max;
669         i->openmin = i->openmax;
670         if (i->openmin)
671                 i->min--;
672         return 1;
673 }
674
675 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
676 {
677         if (a->empty || b->empty) {
678                 snd_interval_none(c);
679                 return;
680         }
681         c->empty = 0;
682         c->min = mul(a->min, b->min);
683         c->openmin = (a->openmin || b->openmin);
684         c->max = mul(a->max,  b->max);
685         c->openmax = (a->openmax || b->openmax);
686         c->integer = (a->integer && b->integer);
687 }
688
689 /**
690  * snd_interval_div - refine the interval value with division
691  * @a: dividend
692  * @b: divisor
693  * @c: quotient
694  *
695  * c = a / b
696  *
697  * Returns non-zero if the value is changed, zero if not changed.
698  */
699 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
700 {
701         unsigned int r;
702         if (a->empty || b->empty) {
703                 snd_interval_none(c);
704                 return;
705         }
706         c->empty = 0;
707         c->min = div32(a->min, b->max, &r);
708         c->openmin = (r || a->openmin || b->openmax);
709         if (b->min > 0) {
710                 c->max = div32(a->max, b->min, &r);
711                 if (r) {
712                         c->max++;
713                         c->openmax = 1;
714                 } else
715                         c->openmax = (a->openmax || b->openmin);
716         } else {
717                 c->max = UINT_MAX;
718                 c->openmax = 0;
719         }
720         c->integer = 0;
721 }
722
723 /**
724  * snd_interval_muldivk - refine the interval value
725  * @a: dividend 1
726  * @b: dividend 2
727  * @k: divisor (as integer)
728  * @c: result
729   *
730  * c = a * b / k
731  *
732  * Returns non-zero if the value is changed, zero if not changed.
733  */
734 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
735                       unsigned int k, struct snd_interval *c)
736 {
737         unsigned int r;
738         if (a->empty || b->empty) {
739                 snd_interval_none(c);
740                 return;
741         }
742         c->empty = 0;
743         c->min = muldiv32(a->min, b->min, k, &r);
744         c->openmin = (r || a->openmin || b->openmin);
745         c->max = muldiv32(a->max, b->max, k, &r);
746         if (r) {
747                 c->max++;
748                 c->openmax = 1;
749         } else
750                 c->openmax = (a->openmax || b->openmax);
751         c->integer = 0;
752 }
753
754 /**
755  * snd_interval_mulkdiv - refine the interval value
756  * @a: dividend 1
757  * @k: dividend 2 (as integer)
758  * @b: divisor
759  * @c: result
760  *
761  * c = a * k / b
762  *
763  * Returns non-zero if the value is changed, zero if not changed.
764  */
765 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
766                       const struct snd_interval *b, struct snd_interval *c)
767 {
768         unsigned int r;
769         if (a->empty || b->empty) {
770                 snd_interval_none(c);
771                 return;
772         }
773         c->empty = 0;
774         c->min = muldiv32(a->min, k, b->max, &r);
775         c->openmin = (r || a->openmin || b->openmax);
776         if (b->min > 0) {
777                 c->max = muldiv32(a->max, k, b->min, &r);
778                 if (r) {
779                         c->max++;
780                         c->openmax = 1;
781                 } else
782                         c->openmax = (a->openmax || b->openmin);
783         } else {
784                 c->max = UINT_MAX;
785                 c->openmax = 0;
786         }
787         c->integer = 0;
788 }
789
790 /* ---- */
791
792
793 /**
794  * snd_interval_ratnum - refine the interval value
795  * @i: interval to refine
796  * @rats_count: number of ratnum_t 
797  * @rats: ratnum_t array
798  * @nump: pointer to store the resultant numerator
799  * @denp: pointer to store the resultant denominator
800  *
801  * Return: Positive if the value is changed, zero if it's not changed, or a
802  * negative error code.
803  */
804 int snd_interval_ratnum(struct snd_interval *i,
805                         unsigned int rats_count, const struct snd_ratnum *rats,
806                         unsigned int *nump, unsigned int *denp)
807 {
808         unsigned int best_num, best_den;
809         int best_diff;
810         unsigned int k;
811         struct snd_interval t;
812         int err;
813         unsigned int result_num, result_den;
814         int result_diff;
815
816         best_num = best_den = best_diff = 0;
817         for (k = 0; k < rats_count; ++k) {
818                 unsigned int num = rats[k].num;
819                 unsigned int den;
820                 unsigned int q = i->min;
821                 int diff;
822                 if (q == 0)
823                         q = 1;
824                 den = div_up(num, q);
825                 if (den < rats[k].den_min)
826                         continue;
827                 if (den > rats[k].den_max)
828                         den = rats[k].den_max;
829                 else {
830                         unsigned int r;
831                         r = (den - rats[k].den_min) % rats[k].den_step;
832                         if (r != 0)
833                                 den -= r;
834                 }
835                 diff = num - q * den;
836                 if (diff < 0)
837                         diff = -diff;
838                 if (best_num == 0 ||
839                     diff * best_den < best_diff * den) {
840                         best_diff = diff;
841                         best_den = den;
842                         best_num = num;
843                 }
844         }
845         if (best_den == 0) {
846                 i->empty = 1;
847                 return -EINVAL;
848         }
849         t.min = div_down(best_num, best_den);
850         t.openmin = !!(best_num % best_den);
851         
852         result_num = best_num;
853         result_diff = best_diff;
854         result_den = best_den;
855         best_num = best_den = best_diff = 0;
856         for (k = 0; k < rats_count; ++k) {
857                 unsigned int num = rats[k].num;
858                 unsigned int den;
859                 unsigned int q = i->max;
860                 int diff;
861                 if (q == 0) {
862                         i->empty = 1;
863                         return -EINVAL;
864                 }
865                 den = div_down(num, q);
866                 if (den > rats[k].den_max)
867                         continue;
868                 if (den < rats[k].den_min)
869                         den = rats[k].den_min;
870                 else {
871                         unsigned int r;
872                         r = (den - rats[k].den_min) % rats[k].den_step;
873                         if (r != 0)
874                                 den += rats[k].den_step - r;
875                 }
876                 diff = q * den - num;
877                 if (diff < 0)
878                         diff = -diff;
879                 if (best_num == 0 ||
880                     diff * best_den < best_diff * den) {
881                         best_diff = diff;
882                         best_den = den;
883                         best_num = num;
884                 }
885         }
886         if (best_den == 0) {
887                 i->empty = 1;
888                 return -EINVAL;
889         }
890         t.max = div_up(best_num, best_den);
891         t.openmax = !!(best_num % best_den);
892         t.integer = 0;
893         err = snd_interval_refine(i, &t);
894         if (err < 0)
895                 return err;
896
897         if (snd_interval_single(i)) {
898                 if (best_diff * result_den < result_diff * best_den) {
899                         result_num = best_num;
900                         result_den = best_den;
901                 }
902                 if (nump)
903                         *nump = result_num;
904                 if (denp)
905                         *denp = result_den;
906         }
907         return err;
908 }
909
910 EXPORT_SYMBOL(snd_interval_ratnum);
911
912 /**
913  * snd_interval_ratden - refine the interval value
914  * @i: interval to refine
915  * @rats_count: number of struct ratden
916  * @rats: struct ratden array
917  * @nump: pointer to store the resultant numerator
918  * @denp: pointer to store the resultant denominator
919  *
920  * Return: Positive if the value is changed, zero if it's not changed, or a
921  * negative error code.
922  */
923 static int snd_interval_ratden(struct snd_interval *i,
924                                unsigned int rats_count,
925                                const struct snd_ratden *rats,
926                                unsigned int *nump, unsigned int *denp)
927 {
928         unsigned int best_num, best_diff, best_den;
929         unsigned int k;
930         struct snd_interval t;
931         int err;
932
933         best_num = best_den = best_diff = 0;
934         for (k = 0; k < rats_count; ++k) {
935                 unsigned int num;
936                 unsigned int den = rats[k].den;
937                 unsigned int q = i->min;
938                 int diff;
939                 num = mul(q, den);
940                 if (num > rats[k].num_max)
941                         continue;
942                 if (num < rats[k].num_min)
943                         num = rats[k].num_max;
944                 else {
945                         unsigned int r;
946                         r = (num - rats[k].num_min) % rats[k].num_step;
947                         if (r != 0)
948                                 num += rats[k].num_step - r;
949                 }
950                 diff = num - q * den;
951                 if (best_num == 0 ||
952                     diff * best_den < best_diff * den) {
953                         best_diff = diff;
954                         best_den = den;
955                         best_num = num;
956                 }
957         }
958         if (best_den == 0) {
959                 i->empty = 1;
960                 return -EINVAL;
961         }
962         t.min = div_down(best_num, best_den);
963         t.openmin = !!(best_num % best_den);
964         
965         best_num = best_den = best_diff = 0;
966         for (k = 0; k < rats_count; ++k) {
967                 unsigned int num;
968                 unsigned int den = rats[k].den;
969                 unsigned int q = i->max;
970                 int diff;
971                 num = mul(q, den);
972                 if (num < rats[k].num_min)
973                         continue;
974                 if (num > rats[k].num_max)
975                         num = rats[k].num_max;
976                 else {
977                         unsigned int r;
978                         r = (num - rats[k].num_min) % rats[k].num_step;
979                         if (r != 0)
980                                 num -= r;
981                 }
982                 diff = q * den - num;
983                 if (best_num == 0 ||
984                     diff * best_den < best_diff * den) {
985                         best_diff = diff;
986                         best_den = den;
987                         best_num = num;
988                 }
989         }
990         if (best_den == 0) {
991                 i->empty = 1;
992                 return -EINVAL;
993         }
994         t.max = div_up(best_num, best_den);
995         t.openmax = !!(best_num % best_den);
996         t.integer = 0;
997         err = snd_interval_refine(i, &t);
998         if (err < 0)
999                 return err;
1000
1001         if (snd_interval_single(i)) {
1002                 if (nump)
1003                         *nump = best_num;
1004                 if (denp)
1005                         *denp = best_den;
1006         }
1007         return err;
1008 }
1009
1010 /**
1011  * snd_interval_list - refine the interval value from the list
1012  * @i: the interval value to refine
1013  * @count: the number of elements in the list
1014  * @list: the value list
1015  * @mask: the bit-mask to evaluate
1016  *
1017  * Refines the interval value from the list.
1018  * When mask is non-zero, only the elements corresponding to bit 1 are
1019  * evaluated.
1020  *
1021  * Return: Positive if the value is changed, zero if it's not changed, or a
1022  * negative error code.
1023  */
1024 int snd_interval_list(struct snd_interval *i, unsigned int count,
1025                       const unsigned int *list, unsigned int mask)
1026 {
1027         unsigned int k;
1028         struct snd_interval list_range;
1029
1030         if (!count) {
1031                 i->empty = 1;
1032                 return -EINVAL;
1033         }
1034         snd_interval_any(&list_range);
1035         list_range.min = UINT_MAX;
1036         list_range.max = 0;
1037         for (k = 0; k < count; k++) {
1038                 if (mask && !(mask & (1 << k)))
1039                         continue;
1040                 if (!snd_interval_test(i, list[k]))
1041                         continue;
1042                 list_range.min = min(list_range.min, list[k]);
1043                 list_range.max = max(list_range.max, list[k]);
1044         }
1045         return snd_interval_refine(i, &list_range);
1046 }
1047
1048 EXPORT_SYMBOL(snd_interval_list);
1049
1050 /**
1051  * snd_interval_ranges - refine the interval value from the list of ranges
1052  * @i: the interval value to refine
1053  * @count: the number of elements in the list of ranges
1054  * @ranges: the ranges list
1055  * @mask: the bit-mask to evaluate
1056  *
1057  * Refines the interval value from the list of ranges.
1058  * When mask is non-zero, only the elements corresponding to bit 1 are
1059  * evaluated.
1060  *
1061  * Return: Positive if the value is changed, zero if it's not changed, or a
1062  * negative error code.
1063  */
1064 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1065                         const struct snd_interval *ranges, unsigned int mask)
1066 {
1067         unsigned int k;
1068         struct snd_interval range_union;
1069         struct snd_interval range;
1070
1071         if (!count) {
1072                 snd_interval_none(i);
1073                 return -EINVAL;
1074         }
1075         snd_interval_any(&range_union);
1076         range_union.min = UINT_MAX;
1077         range_union.max = 0;
1078         for (k = 0; k < count; k++) {
1079                 if (mask && !(mask & (1 << k)))
1080                         continue;
1081                 snd_interval_copy(&range, &ranges[k]);
1082                 if (snd_interval_refine(&range, i) < 0)
1083                         continue;
1084                 if (snd_interval_empty(&range))
1085                         continue;
1086
1087                 if (range.min < range_union.min) {
1088                         range_union.min = range.min;
1089                         range_union.openmin = 1;
1090                 }
1091                 if (range.min == range_union.min && !range.openmin)
1092                         range_union.openmin = 0;
1093                 if (range.max > range_union.max) {
1094                         range_union.max = range.max;
1095                         range_union.openmax = 1;
1096                 }
1097                 if (range.max == range_union.max && !range.openmax)
1098                         range_union.openmax = 0;
1099         }
1100         return snd_interval_refine(i, &range_union);
1101 }
1102 EXPORT_SYMBOL(snd_interval_ranges);
1103
1104 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1105 {
1106         unsigned int n;
1107         int changed = 0;
1108         n = i->min % step;
1109         if (n != 0 || i->openmin) {
1110                 i->min += step - n;
1111                 i->openmin = 0;
1112                 changed = 1;
1113         }
1114         n = i->max % step;
1115         if (n != 0 || i->openmax) {
1116                 i->max -= n;
1117                 i->openmax = 0;
1118                 changed = 1;
1119         }
1120         if (snd_interval_checkempty(i)) {
1121                 i->empty = 1;
1122                 return -EINVAL;
1123         }
1124         return changed;
1125 }
1126
1127 /* Info constraints helpers */
1128
1129 /**
1130  * snd_pcm_hw_rule_add - add the hw-constraint rule
1131  * @runtime: the pcm runtime instance
1132  * @cond: condition bits
1133  * @var: the variable to evaluate
1134  * @func: the evaluation function
1135  * @private: the private data pointer passed to function
1136  * @dep: the dependent variables
1137  *
1138  * Return: Zero if successful, or a negative error code on failure.
1139  */
1140 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1141                         int var,
1142                         snd_pcm_hw_rule_func_t func, void *private,
1143                         int dep, ...)
1144 {
1145         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1146         struct snd_pcm_hw_rule *c;
1147         unsigned int k;
1148         va_list args;
1149         va_start(args, dep);
1150         if (constrs->rules_num >= constrs->rules_all) {
1151                 struct snd_pcm_hw_rule *new;
1152                 unsigned int new_rules = constrs->rules_all + 16;
1153                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1154                 if (!new) {
1155                         va_end(args);
1156                         return -ENOMEM;
1157                 }
1158                 if (constrs->rules) {
1159                         memcpy(new, constrs->rules,
1160                                constrs->rules_num * sizeof(*c));
1161                         kfree(constrs->rules);
1162                 }
1163                 constrs->rules = new;
1164                 constrs->rules_all = new_rules;
1165         }
1166         c = &constrs->rules[constrs->rules_num];
1167         c->cond = cond;
1168         c->func = func;
1169         c->var = var;
1170         c->private = private;
1171         k = 0;
1172         while (1) {
1173                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1174                         va_end(args);
1175                         return -EINVAL;
1176                 }
1177                 c->deps[k++] = dep;
1178                 if (dep < 0)
1179                         break;
1180                 dep = va_arg(args, int);
1181         }
1182         constrs->rules_num++;
1183         va_end(args);
1184         return 0;
1185 }
1186
1187 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189 /**
1190  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191  * @runtime: PCM runtime instance
1192  * @var: hw_params variable to apply the mask
1193  * @mask: the bitmap mask
1194  *
1195  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196  *
1197  * Return: Zero if successful, or a negative error code on failure.
1198  */
1199 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200                                u_int32_t mask)
1201 {
1202         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203         struct snd_mask *maskp = constrs_mask(constrs, var);
1204         *maskp->bits &= mask;
1205         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206         if (*maskp->bits == 0)
1207                 return -EINVAL;
1208         return 0;
1209 }
1210
1211 /**
1212  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213  * @runtime: PCM runtime instance
1214  * @var: hw_params variable to apply the mask
1215  * @mask: the 64bit bitmap mask
1216  *
1217  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218  *
1219  * Return: Zero if successful, or a negative error code on failure.
1220  */
1221 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222                                  u_int64_t mask)
1223 {
1224         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225         struct snd_mask *maskp = constrs_mask(constrs, var);
1226         maskp->bits[0] &= (u_int32_t)mask;
1227         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229         if (! maskp->bits[0] && ! maskp->bits[1])
1230                 return -EINVAL;
1231         return 0;
1232 }
1233 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235 /**
1236  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237  * @runtime: PCM runtime instance
1238  * @var: hw_params variable to apply the integer constraint
1239  *
1240  * Apply the constraint of integer to an interval parameter.
1241  *
1242  * Return: Positive if the value is changed, zero if it's not changed, or a
1243  * negative error code.
1244  */
1245 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246 {
1247         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248         return snd_interval_setinteger(constrs_interval(constrs, var));
1249 }
1250
1251 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1252
1253 /**
1254  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1255  * @runtime: PCM runtime instance
1256  * @var: hw_params variable to apply the range
1257  * @min: the minimal value
1258  * @max: the maximal value
1259  * 
1260  * Apply the min/max range constraint to an interval parameter.
1261  *
1262  * Return: Positive if the value is changed, zero if it's not changed, or a
1263  * negative error code.
1264  */
1265 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1266                                  unsigned int min, unsigned int max)
1267 {
1268         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1269         struct snd_interval t;
1270         t.min = min;
1271         t.max = max;
1272         t.openmin = t.openmax = 0;
1273         t.integer = 0;
1274         return snd_interval_refine(constrs_interval(constrs, var), &t);
1275 }
1276
1277 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1278
1279 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1280                                 struct snd_pcm_hw_rule *rule)
1281 {
1282         struct snd_pcm_hw_constraint_list *list = rule->private;
1283         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1284 }               
1285
1286
1287 /**
1288  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1289  * @runtime: PCM runtime instance
1290  * @cond: condition bits
1291  * @var: hw_params variable to apply the list constraint
1292  * @l: list
1293  * 
1294  * Apply the list of constraints to an interval parameter.
1295  *
1296  * Return: Zero if successful, or a negative error code on failure.
1297  */
1298 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1299                                unsigned int cond,
1300                                snd_pcm_hw_param_t var,
1301                                const struct snd_pcm_hw_constraint_list *l)
1302 {
1303         return snd_pcm_hw_rule_add(runtime, cond, var,
1304                                    snd_pcm_hw_rule_list, (void *)l,
1305                                    var, -1);
1306 }
1307
1308 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1309
1310 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1311                                   struct snd_pcm_hw_rule *rule)
1312 {
1313         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1314         return snd_interval_ranges(hw_param_interval(params, rule->var),
1315                                    r->count, r->ranges, r->mask);
1316 }
1317
1318
1319 /**
1320  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1321  * @runtime: PCM runtime instance
1322  * @cond: condition bits
1323  * @var: hw_params variable to apply the list of range constraints
1324  * @r: ranges
1325  *
1326  * Apply the list of range constraints to an interval parameter.
1327  *
1328  * Return: Zero if successful, or a negative error code on failure.
1329  */
1330 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1331                                  unsigned int cond,
1332                                  snd_pcm_hw_param_t var,
1333                                  const struct snd_pcm_hw_constraint_ranges *r)
1334 {
1335         return snd_pcm_hw_rule_add(runtime, cond, var,
1336                                    snd_pcm_hw_rule_ranges, (void *)r,
1337                                    var, -1);
1338 }
1339 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1340
1341 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1342                                    struct snd_pcm_hw_rule *rule)
1343 {
1344         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1345         unsigned int num = 0, den = 0;
1346         int err;
1347         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1348                                   r->nrats, r->rats, &num, &den);
1349         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1350                 params->rate_num = num;
1351                 params->rate_den = den;
1352         }
1353         return err;
1354 }
1355
1356 /**
1357  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1358  * @runtime: PCM runtime instance
1359  * @cond: condition bits
1360  * @var: hw_params variable to apply the ratnums constraint
1361  * @r: struct snd_ratnums constriants
1362  *
1363  * Return: Zero if successful, or a negative error code on failure.
1364  */
1365 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1366                                   unsigned int cond,
1367                                   snd_pcm_hw_param_t var,
1368                                   const struct snd_pcm_hw_constraint_ratnums *r)
1369 {
1370         return snd_pcm_hw_rule_add(runtime, cond, var,
1371                                    snd_pcm_hw_rule_ratnums, (void *)r,
1372                                    var, -1);
1373 }
1374
1375 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1376
1377 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1378                                    struct snd_pcm_hw_rule *rule)
1379 {
1380         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1381         unsigned int num = 0, den = 0;
1382         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1383                                   r->nrats, r->rats, &num, &den);
1384         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1385                 params->rate_num = num;
1386                 params->rate_den = den;
1387         }
1388         return err;
1389 }
1390
1391 /**
1392  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1393  * @runtime: PCM runtime instance
1394  * @cond: condition bits
1395  * @var: hw_params variable to apply the ratdens constraint
1396  * @r: struct snd_ratdens constriants
1397  *
1398  * Return: Zero if successful, or a negative error code on failure.
1399  */
1400 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1401                                   unsigned int cond,
1402                                   snd_pcm_hw_param_t var,
1403                                   const struct snd_pcm_hw_constraint_ratdens *r)
1404 {
1405         return snd_pcm_hw_rule_add(runtime, cond, var,
1406                                    snd_pcm_hw_rule_ratdens, (void *)r,
1407                                    var, -1);
1408 }
1409
1410 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1411
1412 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1413                                   struct snd_pcm_hw_rule *rule)
1414 {
1415         unsigned int l = (unsigned long) rule->private;
1416         int width = l & 0xffff;
1417         unsigned int msbits = l >> 16;
1418         const struct snd_interval *i =
1419                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1420
1421         if (!snd_interval_single(i))
1422                 return 0;
1423
1424         if ((snd_interval_value(i) == width) ||
1425             (width == 0 && snd_interval_value(i) > msbits))
1426                 params->msbits = min_not_zero(params->msbits, msbits);
1427
1428         return 0;
1429 }
1430
1431 /**
1432  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1433  * @runtime: PCM runtime instance
1434  * @cond: condition bits
1435  * @width: sample bits width
1436  * @msbits: msbits width
1437  *
1438  * This constraint will set the number of most significant bits (msbits) if a
1439  * sample format with the specified width has been select. If width is set to 0
1440  * the msbits will be set for any sample format with a width larger than the
1441  * specified msbits.
1442  *
1443  * Return: Zero if successful, or a negative error code on failure.
1444  */
1445 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1446                                  unsigned int cond,
1447                                  unsigned int width,
1448                                  unsigned int msbits)
1449 {
1450         unsigned long l = (msbits << 16) | width;
1451         return snd_pcm_hw_rule_add(runtime, cond, -1,
1452                                     snd_pcm_hw_rule_msbits,
1453                                     (void*) l,
1454                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1455 }
1456
1457 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1458
1459 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1460                                 struct snd_pcm_hw_rule *rule)
1461 {
1462         unsigned long step = (unsigned long) rule->private;
1463         return snd_interval_step(hw_param_interval(params, rule->var), step);
1464 }
1465
1466 /**
1467  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1468  * @runtime: PCM runtime instance
1469  * @cond: condition bits
1470  * @var: hw_params variable to apply the step constraint
1471  * @step: step size
1472  *
1473  * Return: Zero if successful, or a negative error code on failure.
1474  */
1475 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1476                                unsigned int cond,
1477                                snd_pcm_hw_param_t var,
1478                                unsigned long step)
1479 {
1480         return snd_pcm_hw_rule_add(runtime, cond, var, 
1481                                    snd_pcm_hw_rule_step, (void *) step,
1482                                    var, -1);
1483 }
1484
1485 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1486
1487 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1488 {
1489         static unsigned int pow2_sizes[] = {
1490                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1491                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1492                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1493                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1494         };
1495         return snd_interval_list(hw_param_interval(params, rule->var),
1496                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1497 }               
1498
1499 /**
1500  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1501  * @runtime: PCM runtime instance
1502  * @cond: condition bits
1503  * @var: hw_params variable to apply the power-of-2 constraint
1504  *
1505  * Return: Zero if successful, or a negative error code on failure.
1506  */
1507 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1508                                unsigned int cond,
1509                                snd_pcm_hw_param_t var)
1510 {
1511         return snd_pcm_hw_rule_add(runtime, cond, var, 
1512                                    snd_pcm_hw_rule_pow2, NULL,
1513                                    var, -1);
1514 }
1515
1516 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1517
1518 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1519                                            struct snd_pcm_hw_rule *rule)
1520 {
1521         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1522         struct snd_interval *rate;
1523
1524         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1525         return snd_interval_list(rate, 1, &base_rate, 0);
1526 }
1527
1528 /**
1529  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1530  * @runtime: PCM runtime instance
1531  * @base_rate: the rate at which the hardware does not resample
1532  *
1533  * Return: Zero if successful, or a negative error code on failure.
1534  */
1535 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1536                                unsigned int base_rate)
1537 {
1538         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1539                                    SNDRV_PCM_HW_PARAM_RATE,
1540                                    snd_pcm_hw_rule_noresample_func,
1541                                    (void *)(uintptr_t)base_rate,
1542                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1543 }
1544 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1545
1546 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1547                                   snd_pcm_hw_param_t var)
1548 {
1549         if (hw_is_mask(var)) {
1550                 snd_mask_any(hw_param_mask(params, var));
1551                 params->cmask |= 1 << var;
1552                 params->rmask |= 1 << var;
1553                 return;
1554         }
1555         if (hw_is_interval(var)) {
1556                 snd_interval_any(hw_param_interval(params, var));
1557                 params->cmask |= 1 << var;
1558                 params->rmask |= 1 << var;
1559                 return;
1560         }
1561         snd_BUG();
1562 }
1563
1564 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1565 {
1566         unsigned int k;
1567         memset(params, 0, sizeof(*params));
1568         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1569                 _snd_pcm_hw_param_any(params, k);
1570         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1571                 _snd_pcm_hw_param_any(params, k);
1572         params->info = ~0U;
1573 }
1574
1575 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1576
1577 /**
1578  * snd_pcm_hw_param_value - return @params field @var value
1579  * @params: the hw_params instance
1580  * @var: parameter to retrieve
1581  * @dir: pointer to the direction (-1,0,1) or %NULL
1582  *
1583  * Return: The value for field @var if it's fixed in configuration space
1584  * defined by @params. -%EINVAL otherwise.
1585  */
1586 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1587                            snd_pcm_hw_param_t var, int *dir)
1588 {
1589         if (hw_is_mask(var)) {
1590                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1591                 if (!snd_mask_single(mask))
1592                         return -EINVAL;
1593                 if (dir)
1594                         *dir = 0;
1595                 return snd_mask_value(mask);
1596         }
1597         if (hw_is_interval(var)) {
1598                 const struct snd_interval *i = hw_param_interval_c(params, var);
1599                 if (!snd_interval_single(i))
1600                         return -EINVAL;
1601                 if (dir)
1602                         *dir = i->openmin;
1603                 return snd_interval_value(i);
1604         }
1605         return -EINVAL;
1606 }
1607
1608 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1609
1610 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1611                                 snd_pcm_hw_param_t var)
1612 {
1613         if (hw_is_mask(var)) {
1614                 snd_mask_none(hw_param_mask(params, var));
1615                 params->cmask |= 1 << var;
1616                 params->rmask |= 1 << var;
1617         } else if (hw_is_interval(var)) {
1618                 snd_interval_none(hw_param_interval(params, var));
1619                 params->cmask |= 1 << var;
1620                 params->rmask |= 1 << var;
1621         } else {
1622                 snd_BUG();
1623         }
1624 }
1625
1626 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1627
1628 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1629                                    snd_pcm_hw_param_t var)
1630 {
1631         int changed;
1632         if (hw_is_mask(var))
1633                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1634         else if (hw_is_interval(var))
1635                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1636         else
1637                 return -EINVAL;
1638         if (changed) {
1639                 params->cmask |= 1 << var;
1640                 params->rmask |= 1 << var;
1641         }
1642         return changed;
1643 }
1644
1645
1646 /**
1647  * snd_pcm_hw_param_first - refine config space and return minimum value
1648  * @pcm: PCM instance
1649  * @params: the hw_params instance
1650  * @var: parameter to retrieve
1651  * @dir: pointer to the direction (-1,0,1) or %NULL
1652  *
1653  * Inside configuration space defined by @params remove from @var all
1654  * values > minimum. Reduce configuration space accordingly.
1655  *
1656  * Return: The minimum, or a negative error code on failure.
1657  */
1658 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1659                            struct snd_pcm_hw_params *params, 
1660                            snd_pcm_hw_param_t var, int *dir)
1661 {
1662         int changed = _snd_pcm_hw_param_first(params, var);
1663         if (changed < 0)
1664                 return changed;
1665         if (params->rmask) {
1666                 int err = snd_pcm_hw_refine(pcm, params);
1667                 if (snd_BUG_ON(err < 0))
1668                         return err;
1669         }
1670         return snd_pcm_hw_param_value(params, var, dir);
1671 }
1672
1673 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1674
1675 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1676                                   snd_pcm_hw_param_t var)
1677 {
1678         int changed;
1679         if (hw_is_mask(var))
1680                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1681         else if (hw_is_interval(var))
1682                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1683         else
1684                 return -EINVAL;
1685         if (changed) {
1686                 params->cmask |= 1 << var;
1687                 params->rmask |= 1 << var;
1688         }
1689         return changed;
1690 }
1691
1692
1693 /**
1694  * snd_pcm_hw_param_last - refine config space and return maximum value
1695  * @pcm: PCM instance
1696  * @params: the hw_params instance
1697  * @var: parameter to retrieve
1698  * @dir: pointer to the direction (-1,0,1) or %NULL
1699  *
1700  * Inside configuration space defined by @params remove from @var all
1701  * values < maximum. Reduce configuration space accordingly.
1702  *
1703  * Return: The maximum, or a negative error code on failure.
1704  */
1705 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1706                           struct snd_pcm_hw_params *params,
1707                           snd_pcm_hw_param_t var, int *dir)
1708 {
1709         int changed = _snd_pcm_hw_param_last(params, var);
1710         if (changed < 0)
1711                 return changed;
1712         if (params->rmask) {
1713                 int err = snd_pcm_hw_refine(pcm, params);
1714                 if (snd_BUG_ON(err < 0))
1715                         return err;
1716         }
1717         return snd_pcm_hw_param_value(params, var, dir);
1718 }
1719
1720 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1721
1722 /**
1723  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1724  * @pcm: PCM instance
1725  * @params: the hw_params instance
1726  *
1727  * Choose one configuration from configuration space defined by @params.
1728  * The configuration chosen is that obtained fixing in this order:
1729  * first access, first format, first subformat, min channels,
1730  * min rate, min period time, max buffer size, min tick time
1731  *
1732  * Return: Zero if successful, or a negative error code on failure.
1733  */
1734 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1735                              struct snd_pcm_hw_params *params)
1736 {
1737         static int vars[] = {
1738                 SNDRV_PCM_HW_PARAM_ACCESS,
1739                 SNDRV_PCM_HW_PARAM_FORMAT,
1740                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1741                 SNDRV_PCM_HW_PARAM_CHANNELS,
1742                 SNDRV_PCM_HW_PARAM_RATE,
1743                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1744                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1745                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1746                 -1
1747         };
1748         int err, *v;
1749
1750         for (v = vars; *v != -1; v++) {
1751                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1752                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1753                 else
1754                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1755                 if (snd_BUG_ON(err < 0))
1756                         return err;
1757         }
1758         return 0;
1759 }
1760
1761 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1762                                    void *arg)
1763 {
1764         struct snd_pcm_runtime *runtime = substream->runtime;
1765         unsigned long flags;
1766         snd_pcm_stream_lock_irqsave(substream, flags);
1767         if (snd_pcm_running(substream) &&
1768             snd_pcm_update_hw_ptr(substream) >= 0)
1769                 runtime->status->hw_ptr %= runtime->buffer_size;
1770         else {
1771                 runtime->status->hw_ptr = 0;
1772                 runtime->hw_ptr_wrap = 0;
1773         }
1774         snd_pcm_stream_unlock_irqrestore(substream, flags);
1775         return 0;
1776 }
1777
1778 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1779                                           void *arg)
1780 {
1781         struct snd_pcm_channel_info *info = arg;
1782         struct snd_pcm_runtime *runtime = substream->runtime;
1783         int width;
1784         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1785                 info->offset = -1;
1786                 return 0;
1787         }
1788         width = snd_pcm_format_physical_width(runtime->format);
1789         if (width < 0)
1790                 return width;
1791         info->offset = 0;
1792         switch (runtime->access) {
1793         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1794         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1795                 info->first = info->channel * width;
1796                 info->step = runtime->channels * width;
1797                 break;
1798         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1799         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1800         {
1801                 size_t size = runtime->dma_bytes / runtime->channels;
1802                 info->first = info->channel * size * 8;
1803                 info->step = width;
1804                 break;
1805         }
1806         default:
1807                 snd_BUG();
1808                 break;
1809         }
1810         return 0;
1811 }
1812
1813 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1814                                        void *arg)
1815 {
1816         struct snd_pcm_hw_params *params = arg;
1817         snd_pcm_format_t format;
1818         int channels;
1819         ssize_t frame_size;
1820
1821         params->fifo_size = substream->runtime->hw.fifo_size;
1822         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1823                 format = params_format(params);
1824                 channels = params_channels(params);
1825                 frame_size = snd_pcm_format_size(format, channels);
1826                 if (frame_size > 0)
1827                         params->fifo_size /= (unsigned)frame_size;
1828         }
1829         return 0;
1830 }
1831
1832 /**
1833  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1834  * @substream: the pcm substream instance
1835  * @cmd: ioctl command
1836  * @arg: ioctl argument
1837  *
1838  * Processes the generic ioctl commands for PCM.
1839  * Can be passed as the ioctl callback for PCM ops.
1840  *
1841  * Return: Zero if successful, or a negative error code on failure.
1842  */
1843 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1844                       unsigned int cmd, void *arg)
1845 {
1846         switch (cmd) {
1847         case SNDRV_PCM_IOCTL1_INFO:
1848                 return 0;
1849         case SNDRV_PCM_IOCTL1_RESET:
1850                 return snd_pcm_lib_ioctl_reset(substream, arg);
1851         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1852                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1853         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1854                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1855         }
1856         return -ENXIO;
1857 }
1858
1859 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1860
1861 /**
1862  * snd_pcm_period_elapsed - update the pcm status for the next period
1863  * @substream: the pcm substream instance
1864  *
1865  * This function is called from the interrupt handler when the
1866  * PCM has processed the period size.  It will update the current
1867  * pointer, wake up sleepers, etc.
1868  *
1869  * Even if more than one periods have elapsed since the last call, you
1870  * have to call this only once.
1871  */
1872 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1873 {
1874         struct snd_pcm_runtime *runtime;
1875         unsigned long flags;
1876
1877         if (PCM_RUNTIME_CHECK(substream))
1878                 return;
1879         runtime = substream->runtime;
1880
1881         snd_pcm_stream_lock_irqsave(substream, flags);
1882         if (!snd_pcm_running(substream) ||
1883             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1884                 goto _end;
1885
1886 #ifdef CONFIG_SND_PCM_TIMER
1887         if (substream->timer_running)
1888                 snd_timer_interrupt(substream->timer, 1);
1889 #endif
1890  _end:
1891         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1892         snd_pcm_stream_unlock_irqrestore(substream, flags);
1893 }
1894
1895 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1896
1897 /*
1898  * Wait until avail_min data becomes available
1899  * Returns a negative error code if any error occurs during operation.
1900  * The available space is stored on availp.  When err = 0 and avail = 0
1901  * on the capture stream, it indicates the stream is in DRAINING state.
1902  */
1903 static int wait_for_avail(struct snd_pcm_substream *substream,
1904                               snd_pcm_uframes_t *availp)
1905 {
1906         struct snd_pcm_runtime *runtime = substream->runtime;
1907         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1908         wait_queue_t wait;
1909         int err = 0;
1910         snd_pcm_uframes_t avail = 0;
1911         long wait_time, tout;
1912
1913         init_waitqueue_entry(&wait, current);
1914         set_current_state(TASK_INTERRUPTIBLE);
1915         add_wait_queue(&runtime->tsleep, &wait);
1916
1917         if (runtime->no_period_wakeup)
1918                 wait_time = MAX_SCHEDULE_TIMEOUT;
1919         else {
1920                 wait_time = 10;
1921                 if (runtime->rate) {
1922                         long t = runtime->period_size * 2 / runtime->rate;
1923                         wait_time = max(t, wait_time);
1924                 }
1925                 wait_time = msecs_to_jiffies(wait_time * 1000);
1926         }
1927
1928         for (;;) {
1929                 if (signal_pending(current)) {
1930                         err = -ERESTARTSYS;
1931                         break;
1932                 }
1933
1934                 /*
1935                  * We need to check if space became available already
1936                  * (and thus the wakeup happened already) first to close
1937                  * the race of space already having become available.
1938                  * This check must happen after been added to the waitqueue
1939                  * and having current state be INTERRUPTIBLE.
1940                  */
1941                 if (is_playback)
1942                         avail = snd_pcm_playback_avail(runtime);
1943                 else
1944                         avail = snd_pcm_capture_avail(runtime);
1945                 if (avail >= runtime->twake)
1946                         break;
1947                 snd_pcm_stream_unlock_irq(substream);
1948
1949                 tout = schedule_timeout(wait_time);
1950
1951                 snd_pcm_stream_lock_irq(substream);
1952                 set_current_state(TASK_INTERRUPTIBLE);
1953                 switch (runtime->status->state) {
1954                 case SNDRV_PCM_STATE_SUSPENDED:
1955                         err = -ESTRPIPE;
1956                         goto _endloop;
1957                 case SNDRV_PCM_STATE_XRUN:
1958                         err = -EPIPE;
1959                         goto _endloop;
1960                 case SNDRV_PCM_STATE_DRAINING:
1961                         if (is_playback)
1962                                 err = -EPIPE;
1963                         else 
1964                                 avail = 0; /* indicate draining */
1965                         goto _endloop;
1966                 case SNDRV_PCM_STATE_OPEN:
1967                 case SNDRV_PCM_STATE_SETUP:
1968                 case SNDRV_PCM_STATE_DISCONNECTED:
1969                         err = -EBADFD;
1970                         goto _endloop;
1971                 case SNDRV_PCM_STATE_PAUSED:
1972                         continue;
1973                 }
1974                 if (!tout) {
1975                         pcm_dbg(substream->pcm,
1976                                 "%s write error (DMA or IRQ trouble?)\n",
1977                                 is_playback ? "playback" : "capture");
1978                         err = -EIO;
1979                         break;
1980                 }
1981         }
1982  _endloop:
1983         set_current_state(TASK_RUNNING);
1984         remove_wait_queue(&runtime->tsleep, &wait);
1985         *availp = avail;
1986         return err;
1987 }
1988         
1989 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1990                                       unsigned int hwoff,
1991                                       unsigned long data, unsigned int off,
1992                                       snd_pcm_uframes_t frames)
1993 {
1994         struct snd_pcm_runtime *runtime = substream->runtime;
1995         int err;
1996         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1997         if (substream->ops->copy) {
1998                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1999                         return err;
2000         } else {
2001                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2002                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2003                         return -EFAULT;
2004         }
2005         return 0;
2006 }
2007  
2008 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2009                           unsigned long data, unsigned int off,
2010                           snd_pcm_uframes_t size);
2011
2012 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
2013                                             unsigned long data,
2014                                             snd_pcm_uframes_t size,
2015                                             int nonblock,
2016                                             transfer_f transfer)
2017 {
2018         struct snd_pcm_runtime *runtime = substream->runtime;
2019         snd_pcm_uframes_t xfer = 0;
2020         snd_pcm_uframes_t offset = 0;
2021         snd_pcm_uframes_t avail;
2022         int err = 0;
2023
2024         if (size == 0)
2025                 return 0;
2026
2027         snd_pcm_stream_lock_irq(substream);
2028         switch (runtime->status->state) {
2029         case SNDRV_PCM_STATE_PREPARED:
2030         case SNDRV_PCM_STATE_RUNNING:
2031         case SNDRV_PCM_STATE_PAUSED:
2032                 break;
2033         case SNDRV_PCM_STATE_XRUN:
2034                 err = -EPIPE;
2035                 goto _end_unlock;
2036         case SNDRV_PCM_STATE_SUSPENDED:
2037                 err = -ESTRPIPE;
2038                 goto _end_unlock;
2039         default:
2040                 err = -EBADFD;
2041                 goto _end_unlock;
2042         }
2043
2044         runtime->twake = runtime->control->avail_min ? : 1;
2045         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2046                 snd_pcm_update_hw_ptr(substream);
2047         avail = snd_pcm_playback_avail(runtime);
2048         while (size > 0) {
2049                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2050                 snd_pcm_uframes_t cont;
2051                 if (!avail) {
2052                         if (nonblock) {
2053                                 err = -EAGAIN;
2054                                 goto _end_unlock;
2055                         }
2056                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2057                                         runtime->control->avail_min ? : 1);
2058                         err = wait_for_avail(substream, &avail);
2059                         if (err < 0)
2060                                 goto _end_unlock;
2061                 }
2062                 frames = size > avail ? avail : size;
2063                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2064                 if (frames > cont)
2065                         frames = cont;
2066                 if (snd_BUG_ON(!frames)) {
2067                         runtime->twake = 0;
2068                         snd_pcm_stream_unlock_irq(substream);
2069                         return -EINVAL;
2070                 }
2071                 appl_ptr = runtime->control->appl_ptr;
2072                 appl_ofs = appl_ptr % runtime->buffer_size;
2073                 snd_pcm_stream_unlock_irq(substream);
2074                 err = transfer(substream, appl_ofs, data, offset, frames);
2075                 snd_pcm_stream_lock_irq(substream);
2076                 if (err < 0)
2077                         goto _end_unlock;
2078                 switch (runtime->status->state) {
2079                 case SNDRV_PCM_STATE_XRUN:
2080                         err = -EPIPE;
2081                         goto _end_unlock;
2082                 case SNDRV_PCM_STATE_SUSPENDED:
2083                         err = -ESTRPIPE;
2084                         goto _end_unlock;
2085                 default:
2086                         break;
2087                 }
2088                 appl_ptr += frames;
2089                 if (appl_ptr >= runtime->boundary)
2090                         appl_ptr -= runtime->boundary;
2091                 runtime->control->appl_ptr = appl_ptr;
2092                 if (substream->ops->ack)
2093                         substream->ops->ack(substream);
2094
2095                 offset += frames;
2096                 size -= frames;
2097                 xfer += frames;
2098                 avail -= frames;
2099                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2100                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2101                         err = snd_pcm_start(substream);
2102                         if (err < 0)
2103                                 goto _end_unlock;
2104                 }
2105         }
2106  _end_unlock:
2107         runtime->twake = 0;
2108         if (xfer > 0 && err >= 0)
2109                 snd_pcm_update_state(substream, runtime);
2110         snd_pcm_stream_unlock_irq(substream);
2111         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2112 }
2113
2114 /* sanity-check for read/write methods */
2115 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2116 {
2117         struct snd_pcm_runtime *runtime;
2118         if (PCM_RUNTIME_CHECK(substream))
2119                 return -ENXIO;
2120         runtime = substream->runtime;
2121         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2122                 return -EINVAL;
2123         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2124                 return -EBADFD;
2125         return 0;
2126 }
2127
2128 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2129 {
2130         struct snd_pcm_runtime *runtime;
2131         int nonblock;
2132         int err;
2133
2134         err = pcm_sanity_check(substream);
2135         if (err < 0)
2136                 return err;
2137         runtime = substream->runtime;
2138         nonblock = !!(substream->f_flags & O_NONBLOCK);
2139
2140         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2141             runtime->channels > 1)
2142                 return -EINVAL;
2143         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2144                                   snd_pcm_lib_write_transfer);
2145 }
2146
2147 EXPORT_SYMBOL(snd_pcm_lib_write);
2148
2149 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2150                                        unsigned int hwoff,
2151                                        unsigned long data, unsigned int off,
2152                                        snd_pcm_uframes_t frames)
2153 {
2154         struct snd_pcm_runtime *runtime = substream->runtime;
2155         int err;
2156         void __user **bufs = (void __user **)data;
2157         int channels = runtime->channels;
2158         int c;
2159         if (substream->ops->copy) {
2160                 if (snd_BUG_ON(!substream->ops->silence))
2161                         return -EINVAL;
2162                 for (c = 0; c < channels; ++c, ++bufs) {
2163                         if (*bufs == NULL) {
2164                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2165                                         return err;
2166                         } else {
2167                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2168                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2169                                         return err;
2170                         }
2171                 }
2172         } else {
2173                 /* default transfer behaviour */
2174                 size_t dma_csize = runtime->dma_bytes / channels;
2175                 for (c = 0; c < channels; ++c, ++bufs) {
2176                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2177                         if (*bufs == NULL) {
2178                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2179                         } else {
2180                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2181                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2182                                         return -EFAULT;
2183                         }
2184                 }
2185         }
2186         return 0;
2187 }
2188  
2189 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2190                                      void __user **bufs,
2191                                      snd_pcm_uframes_t frames)
2192 {
2193         struct snd_pcm_runtime *runtime;
2194         int nonblock;
2195         int err;
2196
2197         err = pcm_sanity_check(substream);
2198         if (err < 0)
2199                 return err;
2200         runtime = substream->runtime;
2201         nonblock = !!(substream->f_flags & O_NONBLOCK);
2202
2203         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2204                 return -EINVAL;
2205         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2206                                   nonblock, snd_pcm_lib_writev_transfer);
2207 }
2208
2209 EXPORT_SYMBOL(snd_pcm_lib_writev);
2210
2211 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2212                                      unsigned int hwoff,
2213                                      unsigned long data, unsigned int off,
2214                                      snd_pcm_uframes_t frames)
2215 {
2216         struct snd_pcm_runtime *runtime = substream->runtime;
2217         int err;
2218         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2219         if (substream->ops->copy) {
2220                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2221                         return err;
2222         } else {
2223                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2224                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2225                         return -EFAULT;
2226         }
2227         return 0;
2228 }
2229
2230 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2231                                            unsigned long data,
2232                                            snd_pcm_uframes_t size,
2233                                            int nonblock,
2234                                            transfer_f transfer)
2235 {
2236         struct snd_pcm_runtime *runtime = substream->runtime;
2237         snd_pcm_uframes_t xfer = 0;
2238         snd_pcm_uframes_t offset = 0;
2239         snd_pcm_uframes_t avail;
2240         int err = 0;
2241
2242         if (size == 0)
2243                 return 0;
2244
2245         snd_pcm_stream_lock_irq(substream);
2246         switch (runtime->status->state) {
2247         case SNDRV_PCM_STATE_PREPARED:
2248                 if (size >= runtime->start_threshold) {
2249                         err = snd_pcm_start(substream);
2250                         if (err < 0)
2251                                 goto _end_unlock;
2252                 }
2253                 break;
2254         case SNDRV_PCM_STATE_DRAINING:
2255         case SNDRV_PCM_STATE_RUNNING:
2256         case SNDRV_PCM_STATE_PAUSED:
2257                 break;
2258         case SNDRV_PCM_STATE_XRUN:
2259                 err = -EPIPE;
2260                 goto _end_unlock;
2261         case SNDRV_PCM_STATE_SUSPENDED:
2262                 err = -ESTRPIPE;
2263                 goto _end_unlock;
2264         default:
2265                 err = -EBADFD;
2266                 goto _end_unlock;
2267         }
2268
2269         runtime->twake = runtime->control->avail_min ? : 1;
2270         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2271                 snd_pcm_update_hw_ptr(substream);
2272         avail = snd_pcm_capture_avail(runtime);
2273         while (size > 0) {
2274                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2275                 snd_pcm_uframes_t cont;
2276                 if (!avail) {
2277                         if (runtime->status->state ==
2278                             SNDRV_PCM_STATE_DRAINING) {
2279                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2280                                 goto _end_unlock;
2281                         }
2282                         if (nonblock) {
2283                                 err = -EAGAIN;
2284                                 goto _end_unlock;
2285                         }
2286                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2287                                         runtime->control->avail_min ? : 1);
2288                         err = wait_for_avail(substream, &avail);
2289                         if (err < 0)
2290                                 goto _end_unlock;
2291                         if (!avail)
2292                                 continue; /* draining */
2293                 }
2294                 frames = size > avail ? avail : size;
2295                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2296                 if (frames > cont)
2297                         frames = cont;
2298                 if (snd_BUG_ON(!frames)) {
2299                         runtime->twake = 0;
2300                         snd_pcm_stream_unlock_irq(substream);
2301                         return -EINVAL;
2302                 }
2303                 appl_ptr = runtime->control->appl_ptr;
2304                 appl_ofs = appl_ptr % runtime->buffer_size;
2305                 snd_pcm_stream_unlock_irq(substream);
2306                 err = transfer(substream, appl_ofs, data, offset, frames);
2307                 snd_pcm_stream_lock_irq(substream);
2308                 if (err < 0)
2309                         goto _end_unlock;
2310                 switch (runtime->status->state) {
2311                 case SNDRV_PCM_STATE_XRUN:
2312                         err = -EPIPE;
2313                         goto _end_unlock;
2314                 case SNDRV_PCM_STATE_SUSPENDED:
2315                         err = -ESTRPIPE;
2316                         goto _end_unlock;
2317                 default:
2318                         break;
2319                 }
2320                 appl_ptr += frames;
2321                 if (appl_ptr >= runtime->boundary)
2322                         appl_ptr -= runtime->boundary;
2323                 runtime->control->appl_ptr = appl_ptr;
2324                 if (substream->ops->ack)
2325                         substream->ops->ack(substream);
2326
2327                 offset += frames;
2328                 size -= frames;
2329                 xfer += frames;
2330                 avail -= frames;
2331         }
2332  _end_unlock:
2333         runtime->twake = 0;
2334         if (xfer > 0 && err >= 0)
2335                 snd_pcm_update_state(substream, runtime);
2336         snd_pcm_stream_unlock_irq(substream);
2337         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2338 }
2339
2340 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2341 {
2342         struct snd_pcm_runtime *runtime;
2343         int nonblock;
2344         int err;
2345         
2346         err = pcm_sanity_check(substream);
2347         if (err < 0)
2348                 return err;
2349         runtime = substream->runtime;
2350         nonblock = !!(substream->f_flags & O_NONBLOCK);
2351         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2352                 return -EINVAL;
2353         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2354 }
2355
2356 EXPORT_SYMBOL(snd_pcm_lib_read);
2357
2358 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2359                                       unsigned int hwoff,
2360                                       unsigned long data, unsigned int off,
2361                                       snd_pcm_uframes_t frames)
2362 {
2363         struct snd_pcm_runtime *runtime = substream->runtime;
2364         int err;
2365         void __user **bufs = (void __user **)data;
2366         int channels = runtime->channels;
2367         int c;
2368         if (substream->ops->copy) {
2369                 for (c = 0; c < channels; ++c, ++bufs) {
2370                         char __user *buf;
2371                         if (*bufs == NULL)
2372                                 continue;
2373                         buf = *bufs + samples_to_bytes(runtime, off);
2374                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2375                                 return err;
2376                 }
2377         } else {
2378                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2379                 for (c = 0; c < channels; ++c, ++bufs) {
2380                         char *hwbuf;
2381                         char __user *buf;
2382                         if (*bufs == NULL)
2383                                 continue;
2384
2385                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2386                         buf = *bufs + samples_to_bytes(runtime, off);
2387                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2388                                 return -EFAULT;
2389                 }
2390         }
2391         return 0;
2392 }
2393  
2394 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2395                                     void __user **bufs,
2396                                     snd_pcm_uframes_t frames)
2397 {
2398         struct snd_pcm_runtime *runtime;
2399         int nonblock;
2400         int err;
2401
2402         err = pcm_sanity_check(substream);
2403         if (err < 0)
2404                 return err;
2405         runtime = substream->runtime;
2406         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2407                 return -EBADFD;
2408
2409         nonblock = !!(substream->f_flags & O_NONBLOCK);
2410         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2411                 return -EINVAL;
2412         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2413 }
2414
2415 EXPORT_SYMBOL(snd_pcm_lib_readv);
2416
2417 /*
2418  * standard channel mapping helpers
2419  */
2420
2421 /* default channel maps for multi-channel playbacks, up to 8 channels */
2422 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2423         { .channels = 1,
2424           .map = { SNDRV_CHMAP_MONO } },
2425         { .channels = 2,
2426           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2427         { .channels = 4,
2428           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2429                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2430         { .channels = 6,
2431           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2432                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2433                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2434         { .channels = 8,
2435           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2436                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2437                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2438                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2439         { }
2440 };
2441 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2442
2443 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2444 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2445         { .channels = 1,
2446           .map = { SNDRV_CHMAP_MONO } },
2447         { .channels = 2,
2448           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2449         { .channels = 4,
2450           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2451                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2452         { .channels = 6,
2453           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2454                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2455                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2456         { .channels = 8,
2457           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2458                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2459                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2460                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2461         { }
2462 };
2463 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2464
2465 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2466 {
2467         if (ch > info->max_channels)
2468                 return false;
2469         return !info->channel_mask || (info->channel_mask & (1U << ch));
2470 }
2471
2472 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2473                               struct snd_ctl_elem_info *uinfo)
2474 {
2475         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2476
2477         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2478         uinfo->count = 0;
2479         uinfo->count = info->max_channels;
2480         uinfo->value.integer.min = 0;
2481         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2482         return 0;
2483 }
2484
2485 /* get callback for channel map ctl element
2486  * stores the channel position firstly matching with the current channels
2487  */
2488 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2489                              struct snd_ctl_elem_value *ucontrol)
2490 {
2491         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2492         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2493         struct snd_pcm_substream *substream;
2494         const struct snd_pcm_chmap_elem *map;
2495
2496         if (snd_BUG_ON(!info->chmap))
2497                 return -EINVAL;
2498         substream = snd_pcm_chmap_substream(info, idx);
2499         if (!substream)
2500                 return -ENODEV;
2501         memset(ucontrol->value.integer.value, 0,
2502                sizeof(ucontrol->value.integer.value));
2503         if (!substream->runtime)
2504                 return 0; /* no channels set */
2505         for (map = info->chmap; map->channels; map++) {
2506                 int i;
2507                 if (map->channels == substream->runtime->channels &&
2508                     valid_chmap_channels(info, map->channels)) {
2509                         for (i = 0; i < map->channels; i++)
2510                                 ucontrol->value.integer.value[i] = map->map[i];
2511                         return 0;
2512                 }
2513         }
2514         return -EINVAL;
2515 }
2516
2517 /* tlv callback for channel map ctl element
2518  * expands the pre-defined channel maps in a form of TLV
2519  */
2520 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2521                              unsigned int size, unsigned int __user *tlv)
2522 {
2523         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2524         const struct snd_pcm_chmap_elem *map;
2525         unsigned int __user *dst;
2526         int c, count = 0;
2527
2528         if (snd_BUG_ON(!info->chmap))
2529                 return -EINVAL;
2530         if (size < 8)
2531                 return -ENOMEM;
2532         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2533                 return -EFAULT;
2534         size -= 8;
2535         dst = tlv + 2;
2536         for (map = info->chmap; map->channels; map++) {
2537                 int chs_bytes = map->channels * 4;
2538                 if (!valid_chmap_channels(info, map->channels))
2539                         continue;
2540                 if (size < 8)
2541                         return -ENOMEM;
2542                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2543                     put_user(chs_bytes, dst + 1))
2544                         return -EFAULT;
2545                 dst += 2;
2546                 size -= 8;
2547                 count += 8;
2548                 if (size < chs_bytes)
2549                         return -ENOMEM;
2550                 size -= chs_bytes;
2551                 count += chs_bytes;
2552                 for (c = 0; c < map->channels; c++) {
2553                         if (put_user(map->map[c], dst))
2554                                 return -EFAULT;
2555                         dst++;
2556                 }
2557         }
2558         if (put_user(count, tlv + 1))
2559                 return -EFAULT;
2560         return 0;
2561 }
2562
2563 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2564 {
2565         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2566         info->pcm->streams[info->stream].chmap_kctl = NULL;
2567         kfree(info);
2568 }
2569
2570 /**
2571  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2572  * @pcm: the assigned PCM instance
2573  * @stream: stream direction
2574  * @chmap: channel map elements (for query)
2575  * @max_channels: the max number of channels for the stream
2576  * @private_value: the value passed to each kcontrol's private_value field
2577  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2578  *
2579  * Create channel-mapping control elements assigned to the given PCM stream(s).
2580  * Return: Zero if successful, or a negative error value.
2581  */
2582 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2583                            const struct snd_pcm_chmap_elem *chmap,
2584                            int max_channels,
2585                            unsigned long private_value,
2586                            struct snd_pcm_chmap **info_ret)
2587 {
2588         struct snd_pcm_chmap *info;
2589         struct snd_kcontrol_new knew = {
2590                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2591                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2592                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2593                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2594                 .info = pcm_chmap_ctl_info,
2595                 .get = pcm_chmap_ctl_get,
2596                 .tlv.c = pcm_chmap_ctl_tlv,
2597         };
2598         int err;
2599
2600         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2601                 return -EBUSY;
2602         info = kzalloc(sizeof(*info), GFP_KERNEL);
2603         if (!info)
2604                 return -ENOMEM;
2605         info->pcm = pcm;
2606         info->stream = stream;
2607         info->chmap = chmap;
2608         info->max_channels = max_channels;
2609         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2610                 knew.name = "Playback Channel Map";
2611         else
2612                 knew.name = "Capture Channel Map";
2613         knew.device = pcm->device;
2614         knew.count = pcm->streams[stream].substream_count;
2615         knew.private_value = private_value;
2616         info->kctl = snd_ctl_new1(&knew, info);
2617         if (!info->kctl) {
2618                 kfree(info);
2619                 return -ENOMEM;
2620         }
2621         info->kctl->private_free = pcm_chmap_ctl_private_free;
2622         err = snd_ctl_add(pcm->card, info->kctl);
2623         if (err < 0)
2624                 return err;
2625         pcm->streams[stream].chmap_kctl = info->kctl;
2626         if (info_ret)
2627                 *info_ret = info;
2628         return 0;
2629 }
2630 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);