]> git.karo-electronics.de Git - karo-tx-linux.git/blob - sound/firewire/fireworks/fireworks_pcm.c
ALSA: firewire: process packets in 'struct snd_pcm_ops.ack' callback
[karo-tx-linux.git] / sound / firewire / fireworks / fireworks_pcm.c
1 /*
2  * fireworks_pcm.c - a part of driver for Fireworks based devices
3  *
4  * Copyright (c) 2009-2010 Clemens Ladisch
5  * Copyright (c) 2013-2014 Takashi Sakamoto
6  *
7  * Licensed under the terms of the GNU General Public License, version 2.
8  */
9 #include "./fireworks.h"
10
11 /*
12  * NOTE:
13  * Fireworks changes its AMDTP channels for PCM data according to its sampling
14  * rate. There are three modes. Here _XX is either _rx or _tx.
15  *  0:  32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied
16  *  1:  88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied
17  *  2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied
18  *
19  * The number of PCM channels for analog input and output are always fixed but
20  * the number of PCM channels for digital input and output are differed.
21  *
22  * Additionally, according to "AudioFire Owner's Manual Version 2.2", in some
23  * model, the number of PCM channels for digital input has more restriction
24  * depending on which digital interface is selected.
25  *  - S/PDIF coaxial and optical        : use input 1-2
26  *  - ADAT optical at 32.0-48.0 kHz     : use input 1-8
27  *  - ADAT optical at 88.2-96.0 kHz     : use input 1-4 (S/MUX format)
28  *
29  * The data in AMDTP channels for blank PCM channels are zero.
30  */
31 static const unsigned int freq_table[] = {
32         /* multiplier mode 0 */
33         [0] = 32000,
34         [1] = 44100,
35         [2] = 48000,
36         /* multiplier mode 1 */
37         [3] = 88200,
38         [4] = 96000,
39         /* multiplier mode 2 */
40         [5] = 176400,
41         [6] = 192000,
42 };
43
44 static inline unsigned int
45 get_multiplier_mode_with_index(unsigned int index)
46 {
47         return ((int)index - 1) / 2;
48 }
49
50 int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode)
51 {
52         unsigned int i;
53
54         for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
55                 if (freq_table[i] == sampling_rate) {
56                         *mode = get_multiplier_mode_with_index(i);
57                         return 0;
58                 }
59         }
60
61         return -EINVAL;
62 }
63
64 static int
65 hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
66 {
67         unsigned int *pcm_channels = rule->private;
68         struct snd_interval *r =
69                 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
70         const struct snd_interval *c =
71                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
72         struct snd_interval t = {
73                 .min = UINT_MAX, .max = 0, .integer = 1
74         };
75         unsigned int i, mode;
76
77         for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
78                 mode = get_multiplier_mode_with_index(i);
79                 if (!snd_interval_test(c, pcm_channels[mode]))
80                         continue;
81
82                 t.min = min(t.min, freq_table[i]);
83                 t.max = max(t.max, freq_table[i]);
84         }
85
86         return snd_interval_refine(r, &t);
87 }
88
89 static int
90 hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
91 {
92         unsigned int *pcm_channels = rule->private;
93         struct snd_interval *c =
94                 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
95         const struct snd_interval *r =
96                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
97         struct snd_interval t = {
98                 .min = UINT_MAX, .max = 0, .integer = 1
99         };
100         unsigned int i, mode;
101
102         for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
103                 mode = get_multiplier_mode_with_index(i);
104                 if (!snd_interval_test(r, freq_table[i]))
105                         continue;
106
107                 t.min = min(t.min, pcm_channels[mode]);
108                 t.max = max(t.max, pcm_channels[mode]);
109         }
110
111         return snd_interval_refine(c, &t);
112 }
113
114 static void
115 limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels)
116 {
117         unsigned int i, mode;
118
119         hw->channels_min = UINT_MAX;
120         hw->channels_max = 0;
121
122         for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
123                 mode = get_multiplier_mode_with_index(i);
124                 if (pcm_channels[mode] == 0)
125                         continue;
126
127                 hw->channels_min = min(hw->channels_min, pcm_channels[mode]);
128                 hw->channels_max = max(hw->channels_max, pcm_channels[mode]);
129         }
130 }
131
132 static void
133 limit_period_and_buffer(struct snd_pcm_hardware *hw)
134 {
135         hw->periods_min = 2;            /* SNDRV_PCM_INFO_BATCH */
136         hw->periods_max = UINT_MAX;
137
138         hw->period_bytes_min = 4 * hw->channels_max;    /* bytes for a frame */
139
140         /* Just to prevent from allocating much pages. */
141         hw->period_bytes_max = hw->period_bytes_min * 2048;
142         hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
143 }
144
145 static int
146 pcm_init_hw_params(struct snd_efw *efw,
147                    struct snd_pcm_substream *substream)
148 {
149         struct snd_pcm_runtime *runtime = substream->runtime;
150         struct amdtp_stream *s;
151         unsigned int *pcm_channels;
152         int err;
153
154         runtime->hw.info = SNDRV_PCM_INFO_BATCH |
155                            SNDRV_PCM_INFO_BLOCK_TRANSFER |
156                            SNDRV_PCM_INFO_INTERLEAVED |
157                            SNDRV_PCM_INFO_JOINT_DUPLEX |
158                            SNDRV_PCM_INFO_MMAP |
159                            SNDRV_PCM_INFO_MMAP_VALID;
160
161         if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
162                 runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS;
163                 s = &efw->tx_stream;
164                 pcm_channels = efw->pcm_capture_channels;
165         } else {
166                 runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS;
167                 s = &efw->rx_stream;
168                 pcm_channels = efw->pcm_playback_channels;
169         }
170
171         /* limit rates */
172         runtime->hw.rates = efw->supported_sampling_rate,
173         snd_pcm_limit_hw_rates(runtime);
174
175         limit_channels(&runtime->hw, pcm_channels);
176         limit_period_and_buffer(&runtime->hw);
177
178         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
179                                   hw_rule_channels, pcm_channels,
180                                   SNDRV_PCM_HW_PARAM_RATE, -1);
181         if (err < 0)
182                 goto end;
183
184         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
185                                   hw_rule_rate, pcm_channels,
186                                   SNDRV_PCM_HW_PARAM_CHANNELS, -1);
187         if (err < 0)
188                 goto end;
189
190         err = amdtp_am824_add_pcm_hw_constraints(s, runtime);
191 end:
192         return err;
193 }
194
195 static int pcm_open(struct snd_pcm_substream *substream)
196 {
197         struct snd_efw *efw = substream->private_data;
198         unsigned int sampling_rate;
199         enum snd_efw_clock_source clock_source;
200         int err;
201
202         err = snd_efw_stream_lock_try(efw);
203         if (err < 0)
204                 goto end;
205
206         err = pcm_init_hw_params(efw, substream);
207         if (err < 0)
208                 goto err_locked;
209
210         err = snd_efw_command_get_clock_source(efw, &clock_source);
211         if (err < 0)
212                 goto err_locked;
213
214         /*
215          * When source of clock is not internal or any PCM streams are running,
216          * available sampling rate is limited at current sampling rate.
217          */
218         if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) ||
219             amdtp_stream_pcm_running(&efw->tx_stream) ||
220             amdtp_stream_pcm_running(&efw->rx_stream)) {
221                 err = snd_efw_command_get_sampling_rate(efw, &sampling_rate);
222                 if (err < 0)
223                         goto err_locked;
224                 substream->runtime->hw.rate_min = sampling_rate;
225                 substream->runtime->hw.rate_max = sampling_rate;
226         }
227
228         snd_pcm_set_sync(substream);
229 end:
230         return err;
231 err_locked:
232         snd_efw_stream_lock_release(efw);
233         return err;
234 }
235
236 static int pcm_close(struct snd_pcm_substream *substream)
237 {
238         struct snd_efw *efw = substream->private_data;
239         snd_efw_stream_lock_release(efw);
240         return 0;
241 }
242
243 static int pcm_capture_hw_params(struct snd_pcm_substream *substream,
244                                  struct snd_pcm_hw_params *hw_params)
245 {
246         struct snd_efw *efw = substream->private_data;
247         int err;
248
249         err = snd_pcm_lib_alloc_vmalloc_buffer(substream,
250                                                params_buffer_bytes(hw_params));
251         if (err < 0)
252                 return err;
253
254         if (substream->runtime->status->state == SNDRV_PCM_STATE_OPEN) {
255                 mutex_lock(&efw->mutex);
256                 efw->capture_substreams++;
257                 mutex_unlock(&efw->mutex);
258         }
259
260         return 0;
261 }
262 static int pcm_playback_hw_params(struct snd_pcm_substream *substream,
263                                   struct snd_pcm_hw_params *hw_params)
264 {
265         struct snd_efw *efw = substream->private_data;
266         int err;
267
268         err = snd_pcm_lib_alloc_vmalloc_buffer(substream,
269                                                params_buffer_bytes(hw_params));
270         if (err < 0)
271                 return err;
272
273         if (substream->runtime->status->state == SNDRV_PCM_STATE_OPEN) {
274                 mutex_lock(&efw->mutex);
275                 efw->playback_substreams++;
276                 mutex_unlock(&efw->mutex);
277         }
278
279         return 0;
280 }
281
282 static int pcm_capture_hw_free(struct snd_pcm_substream *substream)
283 {
284         struct snd_efw *efw = substream->private_data;
285
286         if (substream->runtime->status->state != SNDRV_PCM_STATE_OPEN) {
287                 mutex_lock(&efw->mutex);
288                 efw->capture_substreams--;
289                 mutex_unlock(&efw->mutex);
290         }
291
292         snd_efw_stream_stop_duplex(efw);
293
294         return snd_pcm_lib_free_vmalloc_buffer(substream);
295 }
296 static int pcm_playback_hw_free(struct snd_pcm_substream *substream)
297 {
298         struct snd_efw *efw = substream->private_data;
299
300         if (substream->runtime->status->state != SNDRV_PCM_STATE_OPEN) {
301                 mutex_lock(&efw->mutex);
302                 efw->playback_substreams--;
303                 mutex_unlock(&efw->mutex);
304         }
305
306         snd_efw_stream_stop_duplex(efw);
307
308         return snd_pcm_lib_free_vmalloc_buffer(substream);
309 }
310
311 static int pcm_capture_prepare(struct snd_pcm_substream *substream)
312 {
313         struct snd_efw *efw = substream->private_data;
314         struct snd_pcm_runtime *runtime = substream->runtime;
315         int err;
316
317         err = snd_efw_stream_start_duplex(efw, runtime->rate);
318         if (err >= 0)
319                 amdtp_stream_pcm_prepare(&efw->tx_stream);
320
321         return err;
322 }
323 static int pcm_playback_prepare(struct snd_pcm_substream *substream)
324 {
325         struct snd_efw *efw = substream->private_data;
326         struct snd_pcm_runtime *runtime = substream->runtime;
327         int err;
328
329         err = snd_efw_stream_start_duplex(efw, runtime->rate);
330         if (err >= 0)
331                 amdtp_stream_pcm_prepare(&efw->rx_stream);
332
333         return err;
334 }
335
336 static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd)
337 {
338         struct snd_efw *efw = substream->private_data;
339
340         switch (cmd) {
341         case SNDRV_PCM_TRIGGER_START:
342                 amdtp_stream_pcm_trigger(&efw->tx_stream, substream);
343                 break;
344         case SNDRV_PCM_TRIGGER_STOP:
345                 amdtp_stream_pcm_trigger(&efw->tx_stream, NULL);
346                 break;
347         default:
348                 return -EINVAL;
349         }
350
351         return 0;
352 }
353 static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd)
354 {
355         struct snd_efw *efw = substream->private_data;
356
357         switch (cmd) {
358         case SNDRV_PCM_TRIGGER_START:
359                 amdtp_stream_pcm_trigger(&efw->rx_stream, substream);
360                 break;
361         case SNDRV_PCM_TRIGGER_STOP:
362                 amdtp_stream_pcm_trigger(&efw->rx_stream, NULL);
363                 break;
364         default:
365                 return -EINVAL;
366         }
367
368         return 0;
369 }
370
371 static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm)
372 {
373         struct snd_efw *efw = sbstrm->private_data;
374         return amdtp_stream_pcm_pointer(&efw->tx_stream);
375 }
376 static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm)
377 {
378         struct snd_efw *efw = sbstrm->private_data;
379         return amdtp_stream_pcm_pointer(&efw->rx_stream);
380 }
381
382 static int pcm_capture_ack(struct snd_pcm_substream *substream)
383 {
384         struct snd_efw *efw = substream->private_data;
385
386         return amdtp_stream_pcm_ack(&efw->tx_stream);
387 }
388
389 static int pcm_playback_ack(struct snd_pcm_substream *substream)
390 {
391         struct snd_efw *efw = substream->private_data;
392
393         return amdtp_stream_pcm_ack(&efw->rx_stream);
394 }
395
396 int snd_efw_create_pcm_devices(struct snd_efw *efw)
397 {
398         static const struct snd_pcm_ops capture_ops = {
399                 .open           = pcm_open,
400                 .close          = pcm_close,
401                 .ioctl          = snd_pcm_lib_ioctl,
402                 .hw_params      = pcm_capture_hw_params,
403                 .hw_free        = pcm_capture_hw_free,
404                 .prepare        = pcm_capture_prepare,
405                 .trigger        = pcm_capture_trigger,
406                 .pointer        = pcm_capture_pointer,
407                 .ack            = pcm_capture_ack,
408                 .page           = snd_pcm_lib_get_vmalloc_page,
409         };
410         static const struct snd_pcm_ops playback_ops = {
411                 .open           = pcm_open,
412                 .close          = pcm_close,
413                 .ioctl          = snd_pcm_lib_ioctl,
414                 .hw_params      = pcm_playback_hw_params,
415                 .hw_free        = pcm_playback_hw_free,
416                 .prepare        = pcm_playback_prepare,
417                 .trigger        = pcm_playback_trigger,
418                 .pointer        = pcm_playback_pointer,
419                 .ack            = pcm_playback_ack,
420                 .page           = snd_pcm_lib_get_vmalloc_page,
421                 .mmap           = snd_pcm_lib_mmap_vmalloc,
422         };
423         struct snd_pcm *pcm;
424         int err;
425
426         err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm);
427         if (err < 0)
428                 goto end;
429
430         pcm->private_data = efw;
431         snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname);
432         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops);
433         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops);
434 end:
435         return err;
436 }
437