]> git.karo-electronics.de Git - mv-sheeva.git/blob - sound/mips/hal2.c
Merge branches 'upstream-fixes', 'bkl-removal', 'debugfs-fixes' and 'hid-suspend...
[mv-sheeva.git] / sound / mips / hal2.c
1 /*
2  *  Driver for A2 audio system used in SGI machines
3  *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
4  *
5  *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
6  *  was based on code from Ulf Carlsson
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License version 2 as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29
30 #include <asm/sgi/hpc3.h>
31 #include <asm/sgi/ip22.h>
32
33 #include <sound/core.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/pcm-indirect.h>
37 #include <sound/initval.h>
38
39 #include "hal2.h"
40
41 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
42 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
43
44 module_param(index, int, 0444);
45 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
46 module_param(id, charp, 0444);
47 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
48 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
49 MODULE_AUTHOR("Thomas Bogendoerfer");
50 MODULE_LICENSE("GPL");
51
52
53 #define H2_BLOCK_SIZE   1024
54 #define H2_BUF_SIZE     16384
55
56 struct hal2_pbus {
57         struct hpc3_pbus_dmacregs *pbus;
58         int pbusnr;
59         unsigned int ctrl;              /* Current state of pbus->pbdma_ctrl */
60 };
61
62 struct hal2_desc {
63         struct hpc_dma_desc desc;
64         u32 pad;                        /* padding */
65 };
66
67 struct hal2_codec {
68         struct snd_pcm_indirect pcm_indirect;
69         struct snd_pcm_substream *substream;
70
71         unsigned char *buffer;
72         dma_addr_t buffer_dma;
73         struct hal2_desc *desc;
74         dma_addr_t desc_dma;
75         int desc_count;
76         struct hal2_pbus pbus;
77         int voices;                     /* mono/stereo */
78         unsigned int sample_rate;
79         unsigned int master;            /* Master frequency */
80         unsigned short mod;             /* MOD value */
81         unsigned short inc;             /* INC value */
82 };
83
84 #define H2_MIX_OUTPUT_ATT       0
85 #define H2_MIX_INPUT_GAIN       1
86
87 struct snd_hal2 {
88         struct snd_card *card;
89
90         struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
91         struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
92         struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
93         struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
94
95         struct hal2_codec dac;
96         struct hal2_codec adc;
97 };
98
99 #define H2_INDIRECT_WAIT(regs)  while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
100
101 #define H2_READ_ADDR(addr)      (addr | (1<<7))
102 #define H2_WRITE_ADDR(addr)     (addr)
103
104 static inline u32 hal2_read(u32 *reg)
105 {
106         return __raw_readl(reg);
107 }
108
109 static inline void hal2_write(u32 val, u32 *reg)
110 {
111         __raw_writel(val, reg);
112 }
113
114
115 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
116 {
117         u32 ret;
118         struct hal2_ctl_regs *regs = hal2->ctl_regs;
119
120         hal2_write(H2_READ_ADDR(addr), &regs->iar);
121         H2_INDIRECT_WAIT(regs);
122         ret = hal2_read(&regs->idr0) & 0xffff;
123         hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
124         H2_INDIRECT_WAIT(regs);
125         ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
126         return ret;
127 }
128
129 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
130 {
131         struct hal2_ctl_regs *regs = hal2->ctl_regs;
132
133         hal2_write(val, &regs->idr0);
134         hal2_write(0, &regs->idr1);
135         hal2_write(0, &regs->idr2);
136         hal2_write(0, &regs->idr3);
137         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
138         H2_INDIRECT_WAIT(regs);
139 }
140
141 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
142 {
143         struct hal2_ctl_regs *regs = hal2->ctl_regs;
144
145         hal2_write(val & 0xffff, &regs->idr0);
146         hal2_write(val >> 16, &regs->idr1);
147         hal2_write(0, &regs->idr2);
148         hal2_write(0, &regs->idr3);
149         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
150         H2_INDIRECT_WAIT(regs);
151 }
152
153 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
154 {
155         struct hal2_ctl_regs *regs = hal2->ctl_regs;
156
157         hal2_write(H2_READ_ADDR(addr), &regs->iar);
158         H2_INDIRECT_WAIT(regs);
159         hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
160         hal2_write(0, &regs->idr1);
161         hal2_write(0, &regs->idr2);
162         hal2_write(0, &regs->idr3);
163         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
164         H2_INDIRECT_WAIT(regs);
165 }
166
167 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
168 {
169         struct hal2_ctl_regs *regs = hal2->ctl_regs;
170
171         hal2_write(H2_READ_ADDR(addr), &regs->iar);
172         H2_INDIRECT_WAIT(regs);
173         hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
174         hal2_write(0, &regs->idr1);
175         hal2_write(0, &regs->idr2);
176         hal2_write(0, &regs->idr3);
177         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
178         H2_INDIRECT_WAIT(regs);
179 }
180
181 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
182                                struct snd_ctl_elem_info *uinfo)
183 {
184         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
185         uinfo->count = 2;
186         uinfo->value.integer.min = 0;
187         switch ((int)kcontrol->private_value) {
188         case H2_MIX_OUTPUT_ATT:
189                 uinfo->value.integer.max = 31;
190                 break;
191         case H2_MIX_INPUT_GAIN:
192                 uinfo->value.integer.max = 15;
193                 break;
194         }
195         return 0;
196 }
197
198 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
199                                struct snd_ctl_elem_value *ucontrol)
200 {
201         struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
202         u32 tmp;
203         int l, r;
204
205         switch ((int)kcontrol->private_value) {
206         case H2_MIX_OUTPUT_ATT:
207                 tmp = hal2_i_read32(hal2, H2I_DAC_C2);
208                 if (tmp & H2I_C2_MUTE) {
209                         l = 0;
210                         r = 0;
211                 } else {
212                         l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
213                         r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
214                 }
215                 break;
216         case H2_MIX_INPUT_GAIN:
217                 tmp = hal2_i_read32(hal2, H2I_ADC_C2);
218                 l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
219                 r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
220                 break;
221         }
222         ucontrol->value.integer.value[0] = l;
223         ucontrol->value.integer.value[1] = r;
224
225         return 0;
226 }
227
228 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
229                          struct snd_ctl_elem_value *ucontrol)
230 {
231         struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
232         u32 old, new;
233         int l, r;
234
235         l = ucontrol->value.integer.value[0];
236         r = ucontrol->value.integer.value[1];
237
238         switch ((int)kcontrol->private_value) {
239         case H2_MIX_OUTPUT_ATT:
240                 old = hal2_i_read32(hal2, H2I_DAC_C2);
241                 new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
242                 if (l | r) {
243                         l = 31 - l;
244                         r = 31 - r;
245                         new |= (l << H2I_C2_L_ATT_SHIFT);
246                         new |= (r << H2I_C2_R_ATT_SHIFT);
247                 } else
248                         new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
249                 hal2_i_write32(hal2, H2I_DAC_C2, new);
250                 break;
251         case H2_MIX_INPUT_GAIN:
252                 old = hal2_i_read32(hal2, H2I_ADC_C2);
253                 new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
254                 new |= (l << H2I_C2_L_GAIN_SHIFT);
255                 new |= (r << H2I_C2_R_GAIN_SHIFT);
256                 hal2_i_write32(hal2, H2I_ADC_C2, new);
257                 break;
258         }
259         return old != new;
260 }
261
262 static struct snd_kcontrol_new hal2_ctrl_headphone __devinitdata = {
263         .iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
264         .name           = "Headphone Playback Volume",
265         .access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
266         .private_value  = H2_MIX_OUTPUT_ATT,
267         .info           = hal2_gain_info,
268         .get            = hal2_gain_get,
269         .put            = hal2_gain_put,
270 };
271
272 static struct snd_kcontrol_new hal2_ctrl_mic __devinitdata = {
273         .iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
274         .name           = "Mic Capture Volume",
275         .access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
276         .private_value  = H2_MIX_INPUT_GAIN,
277         .info           = hal2_gain_info,
278         .get            = hal2_gain_get,
279         .put            = hal2_gain_put,
280 };
281
282 static int __devinit hal2_mixer_create(struct snd_hal2 *hal2)
283 {
284         int err;
285
286         /* mute DAC */
287         hal2_i_write32(hal2, H2I_DAC_C2,
288                        H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
289         /* mute ADC */
290         hal2_i_write32(hal2, H2I_ADC_C2, 0);
291
292         err = snd_ctl_add(hal2->card,
293                           snd_ctl_new1(&hal2_ctrl_headphone, hal2));
294         if (err < 0)
295                 return err;
296
297         err = snd_ctl_add(hal2->card,
298                           snd_ctl_new1(&hal2_ctrl_mic, hal2));
299         if (err < 0)
300                 return err;
301
302         return 0;
303 }
304
305 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
306 {
307         struct snd_hal2 *hal2 = dev_id;
308         irqreturn_t ret = IRQ_NONE;
309
310         /* decide what caused this interrupt */
311         if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
312                 snd_pcm_period_elapsed(hal2->dac.substream);
313                 ret = IRQ_HANDLED;
314         }
315         if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
316                 snd_pcm_period_elapsed(hal2->adc.substream);
317                 ret = IRQ_HANDLED;
318         }
319         return ret;
320 }
321
322 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
323 {
324         unsigned short mod;
325
326         if (44100 % rate < 48000 % rate) {
327                 mod = 4 * 44100 / rate;
328                 codec->master = 44100;
329         } else {
330                 mod = 4 * 48000 / rate;
331                 codec->master = 48000;
332         }
333
334         codec->inc = 4;
335         codec->mod = mod;
336         rate = 4 * codec->master / mod;
337
338         return rate;
339 }
340
341 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
342 {
343         unsigned int master = hal2->dac.master;
344         int inc = hal2->dac.inc;
345         int mod = hal2->dac.mod;
346
347         hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
348         hal2_i_write32(hal2, H2I_BRES1_C2,
349                        ((0xffff & (inc - mod - 1)) << 16) | inc);
350 }
351
352 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
353 {
354         unsigned int master = hal2->adc.master;
355         int inc = hal2->adc.inc;
356         int mod = hal2->adc.mod;
357
358         hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
359         hal2_i_write32(hal2, H2I_BRES2_C2,
360                        ((0xffff & (inc - mod - 1)) << 16) | inc);
361 }
362
363 static void hal2_setup_dac(struct snd_hal2 *hal2)
364 {
365         unsigned int fifobeg, fifoend, highwater, sample_size;
366         struct hal2_pbus *pbus = &hal2->dac.pbus;
367
368         /* Now we set up some PBUS information. The PBUS needs information about
369          * what portion of the fifo it will use. If it's receiving or
370          * transmitting, and finally whether the stream is little endian or big
371          * endian. The information is written later, on the start call.
372          */
373         sample_size = 2 * hal2->dac.voices;
374         /* Fifo should be set to hold exactly four samples. Highwater mark
375          * should be set to two samples. */
376         highwater = (sample_size * 2) >> 1;     /* halfwords */
377         fifobeg = 0;                            /* playback is first */
378         fifoend = (sample_size * 4) >> 3;       /* doublewords */
379         pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
380                      (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
381         /* We disable everything before we do anything at all */
382         pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
383         hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
384         /* Setup the HAL2 for playback */
385         hal2_set_dac_rate(hal2);
386         /* Set endianess */
387         hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
388         /* Set DMA bus */
389         hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
390         /* We are using 1st Bresenham clock generator for playback */
391         hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
392                         | (1 << H2I_C1_CLKID_SHIFT)
393                         | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
394 }
395
396 static void hal2_setup_adc(struct snd_hal2 *hal2)
397 {
398         unsigned int fifobeg, fifoend, highwater, sample_size;
399         struct hal2_pbus *pbus = &hal2->adc.pbus;
400
401         sample_size = 2 * hal2->adc.voices;
402         highwater = (sample_size * 2) >> 1;             /* halfwords */
403         fifobeg = (4 * 4) >> 3;                         /* record is second */
404         fifoend = (4 * 4 + sample_size * 4) >> 3;       /* doublewords */
405         pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
406                      (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
407         pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
408         hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
409         /* Setup the HAL2 for record */
410         hal2_set_adc_rate(hal2);
411         /* Set endianess */
412         hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
413         /* Set DMA bus */
414         hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
415         /* We are using 2nd Bresenham clock generator for record */
416         hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
417                         | (2 << H2I_C1_CLKID_SHIFT)
418                         | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
419 }
420
421 static void hal2_start_dac(struct snd_hal2 *hal2)
422 {
423         struct hal2_pbus *pbus = &hal2->dac.pbus;
424
425         pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
426         pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
427         /* enable DAC */
428         hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
429 }
430
431 static void hal2_start_adc(struct snd_hal2 *hal2)
432 {
433         struct hal2_pbus *pbus = &hal2->adc.pbus;
434
435         pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
436         pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
437         /* enable ADC */
438         hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
439 }
440
441 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
442 {
443         hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
444         /* The HAL2 itself may remain enabled safely */
445 }
446
447 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
448 {
449         hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
450 }
451
452 static int hal2_alloc_dmabuf(struct hal2_codec *codec)
453 {
454         struct hal2_desc *desc;
455         dma_addr_t desc_dma, buffer_dma;
456         int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
457         int i;
458
459         codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
460                                               &buffer_dma, GFP_KERNEL);
461         if (!codec->buffer)
462                 return -ENOMEM;
463         desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
464                                      &desc_dma, GFP_KERNEL);
465         if (!desc) {
466                 dma_free_noncoherent(NULL, H2_BUF_SIZE,
467                                      codec->buffer, buffer_dma);
468                 return -ENOMEM;
469         }
470         codec->buffer_dma = buffer_dma;
471         codec->desc_dma = desc_dma;
472         codec->desc = desc;
473         for (i = 0; i < count; i++) {
474                 desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
475                 desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
476                 desc->desc.pnext = (i == count - 1) ?
477                       desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
478                 desc++;
479         }
480         dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
481                        DMA_TO_DEVICE);
482         codec->desc_count = count;
483         return 0;
484 }
485
486 static void hal2_free_dmabuf(struct hal2_codec *codec)
487 {
488         dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
489                              codec->desc, codec->desc_dma);
490         dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
491                              codec->buffer_dma);
492 }
493
494 static struct snd_pcm_hardware hal2_pcm_hw = {
495         .info = (SNDRV_PCM_INFO_MMAP |
496                  SNDRV_PCM_INFO_MMAP_VALID |
497                  SNDRV_PCM_INFO_INTERLEAVED |
498                  SNDRV_PCM_INFO_BLOCK_TRANSFER),
499         .formats =          SNDRV_PCM_FMTBIT_S16_BE,
500         .rates =            SNDRV_PCM_RATE_8000_48000,
501         .rate_min =         8000,
502         .rate_max =         48000,
503         .channels_min =     2,
504         .channels_max =     2,
505         .buffer_bytes_max = 65536,
506         .period_bytes_min = 1024,
507         .period_bytes_max = 65536,
508         .periods_min =      2,
509         .periods_max =      1024,
510 };
511
512 static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
513                               struct snd_pcm_hw_params *params)
514 {
515         int err;
516
517         err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
518         if (err < 0)
519                 return err;
520
521         return 0;
522 }
523
524 static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
525 {
526         return snd_pcm_lib_free_pages(substream);
527 }
528
529 static int hal2_playback_open(struct snd_pcm_substream *substream)
530 {
531         struct snd_pcm_runtime *runtime = substream->runtime;
532         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
533         int err;
534
535         runtime->hw = hal2_pcm_hw;
536
537         err = hal2_alloc_dmabuf(&hal2->dac);
538         if (err)
539                 return err;
540         return 0;
541 }
542
543 static int hal2_playback_close(struct snd_pcm_substream *substream)
544 {
545         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
546
547         hal2_free_dmabuf(&hal2->dac);
548         return 0;
549 }
550
551 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
552 {
553         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
554         struct snd_pcm_runtime *runtime = substream->runtime;
555         struct hal2_codec *dac = &hal2->dac;
556
557         dac->voices = runtime->channels;
558         dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
559         memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
560         dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
561         dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
562         dac->substream = substream;
563         hal2_setup_dac(hal2);
564         return 0;
565 }
566
567 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
568 {
569         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
570
571         switch (cmd) {
572         case SNDRV_PCM_TRIGGER_START:
573                 hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
574                 hal2->dac.pcm_indirect.hw_data = 0;
575                 substream->ops->ack(substream);
576                 hal2_start_dac(hal2);
577                 break;
578         case SNDRV_PCM_TRIGGER_STOP:
579                 hal2_stop_dac(hal2);
580                 break;
581         default:
582                 return -EINVAL;
583         }
584         return 0;
585 }
586
587 static snd_pcm_uframes_t
588 hal2_playback_pointer(struct snd_pcm_substream *substream)
589 {
590         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
591         struct hal2_codec *dac = &hal2->dac;
592
593         return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
594                                                  dac->pbus.pbus->pbdma_bptr);
595 }
596
597 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
598                                    struct snd_pcm_indirect *rec, size_t bytes)
599 {
600         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
601         unsigned char *buf = hal2->dac.buffer + rec->hw_data;
602
603         memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
604         dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
605
606 }
607
608 static int hal2_playback_ack(struct snd_pcm_substream *substream)
609 {
610         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
611         struct hal2_codec *dac = &hal2->dac;
612
613         dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
614         snd_pcm_indirect_playback_transfer(substream,
615                                            &dac->pcm_indirect,
616                                            hal2_playback_transfer);
617         return 0;
618 }
619
620 static int hal2_capture_open(struct snd_pcm_substream *substream)
621 {
622         struct snd_pcm_runtime *runtime = substream->runtime;
623         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
624         struct hal2_codec *adc = &hal2->adc;
625         int err;
626
627         runtime->hw = hal2_pcm_hw;
628
629         err = hal2_alloc_dmabuf(adc);
630         if (err)
631                 return err;
632         return 0;
633 }
634
635 static int hal2_capture_close(struct snd_pcm_substream *substream)
636 {
637         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
638
639         hal2_free_dmabuf(&hal2->adc);
640         return 0;
641 }
642
643 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
644 {
645         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
646         struct snd_pcm_runtime *runtime = substream->runtime;
647         struct hal2_codec *adc = &hal2->adc;
648
649         adc->voices = runtime->channels;
650         adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
651         memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
652         adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
653         adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
654         adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
655         adc->substream = substream;
656         hal2_setup_adc(hal2);
657         return 0;
658 }
659
660 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
661 {
662         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
663
664         switch (cmd) {
665         case SNDRV_PCM_TRIGGER_START:
666                 hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
667                 hal2->adc.pcm_indirect.hw_data = 0;
668                 printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
669                 hal2_start_adc(hal2);
670                 break;
671         case SNDRV_PCM_TRIGGER_STOP:
672                 hal2_stop_adc(hal2);
673                 break;
674         default:
675                 return -EINVAL;
676         }
677         return 0;
678 }
679
680 static snd_pcm_uframes_t
681 hal2_capture_pointer(struct snd_pcm_substream *substream)
682 {
683         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
684         struct hal2_codec *adc = &hal2->adc;
685
686         return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
687                                                 adc->pbus.pbus->pbdma_bptr);
688 }
689
690 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
691                                   struct snd_pcm_indirect *rec, size_t bytes)
692 {
693         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
694         unsigned char *buf = hal2->adc.buffer + rec->hw_data;
695
696         dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
697         memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
698 }
699
700 static int hal2_capture_ack(struct snd_pcm_substream *substream)
701 {
702         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
703         struct hal2_codec *adc = &hal2->adc;
704
705         snd_pcm_indirect_capture_transfer(substream,
706                                           &adc->pcm_indirect,
707                                           hal2_capture_transfer);
708         return 0;
709 }
710
711 static struct snd_pcm_ops hal2_playback_ops = {
712         .open =        hal2_playback_open,
713         .close =       hal2_playback_close,
714         .ioctl =       snd_pcm_lib_ioctl,
715         .hw_params =   hal2_pcm_hw_params,
716         .hw_free =     hal2_pcm_hw_free,
717         .prepare =     hal2_playback_prepare,
718         .trigger =     hal2_playback_trigger,
719         .pointer =     hal2_playback_pointer,
720         .ack =         hal2_playback_ack,
721 };
722
723 static struct snd_pcm_ops hal2_capture_ops = {
724         .open =        hal2_capture_open,
725         .close =       hal2_capture_close,
726         .ioctl =       snd_pcm_lib_ioctl,
727         .hw_params =   hal2_pcm_hw_params,
728         .hw_free =     hal2_pcm_hw_free,
729         .prepare =     hal2_capture_prepare,
730         .trigger =     hal2_capture_trigger,
731         .pointer =     hal2_capture_pointer,
732         .ack =         hal2_capture_ack,
733 };
734
735 static int __devinit hal2_pcm_create(struct snd_hal2 *hal2)
736 {
737         struct snd_pcm *pcm;
738         int err;
739
740         /* create first pcm device with one outputs and one input */
741         err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
742         if (err < 0)
743                 return err;
744
745         pcm->private_data = hal2;
746         strcpy(pcm->name, "SGI HAL2");
747
748         /* set operators */
749         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
750                         &hal2_playback_ops);
751         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
752                         &hal2_capture_ops);
753         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
754                                            snd_dma_continuous_data(GFP_KERNEL),
755                                            0, 1024 * 1024);
756
757         return 0;
758 }
759
760 static int hal2_dev_free(struct snd_device *device)
761 {
762         struct snd_hal2 *hal2 = device->device_data;
763
764         free_irq(SGI_HPCDMA_IRQ, hal2);
765         kfree(hal2);
766         return 0;
767 }
768
769 static struct snd_device_ops hal2_ops = {
770         .dev_free = hal2_dev_free,
771 };
772
773 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
774                             int index)
775 {
776         codec->pbus.pbusnr = index;
777         codec->pbus.pbus = &hpc3->pbdma[index];
778 }
779
780 static int hal2_detect(struct snd_hal2 *hal2)
781 {
782         unsigned short board, major, minor;
783         unsigned short rev;
784
785         /* reset HAL2 */
786         hal2_write(0, &hal2->ctl_regs->isr);
787
788         /* release reset */
789         hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
790                    &hal2->ctl_regs->isr);
791
792
793         hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
794         rev = hal2_read(&hal2->ctl_regs->rev);
795         if (rev & H2_REV_AUDIO_PRESENT)
796                 return -ENODEV;
797
798         board = (rev & H2_REV_BOARD_M) >> 12;
799         major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
800         minor = (rev & H2_REV_MINOR_CHIP_M);
801
802         printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
803                board, major, minor);
804
805         return 0;
806 }
807
808 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
809 {
810         struct snd_hal2 *hal2;
811         struct hpc3_regs *hpc3 = hpc3c0;
812         int err;
813
814         hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
815         if (!hal2)
816                 return -ENOMEM;
817
818         hal2->card = card;
819
820         if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
821                         "SGI HAL2", hal2)) {
822                 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
823                 kfree(hal2);
824                 return -EAGAIN;
825         }
826
827         hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
828         hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
829         hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
830         hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
831
832         if (hal2_detect(hal2) < 0) {
833                 kfree(hal2);
834                 return -ENODEV;
835         }
836
837         hal2_init_codec(&hal2->dac, hpc3, 0);
838         hal2_init_codec(&hal2->adc, hpc3, 1);
839
840         /*
841          * All DMA channel interfaces in HAL2 are designed to operate with
842          * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
843          * in D5. HAL2 is a 16-bit device which can accept both big and little
844          * endian format. It assumes that even address bytes are on high
845          * portion of PBUS (15:8) and assumes that HPC3 is programmed to
846          * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
847          */
848 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
849                           (2 << HPC3_DMACFG_D4R_SHIFT) | \
850                           (2 << HPC3_DMACFG_D5R_SHIFT) | \
851                           (0 << HPC3_DMACFG_D3W_SHIFT) | \
852                           (2 << HPC3_DMACFG_D4W_SHIFT) | \
853                           (2 << HPC3_DMACFG_D5W_SHIFT) | \
854                                 HPC3_DMACFG_DS16 | \
855                                 HPC3_DMACFG_EVENHI | \
856                                 HPC3_DMACFG_RTIME | \
857                           (8 << HPC3_DMACFG_BURST_SHIFT) | \
858                                 HPC3_DMACFG_DRQLIVE)
859         /*
860          * Ignore what's mentioned in the specification and write value which
861          * works in The Real World (TM)
862          */
863         hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
864         hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
865
866         err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
867         if (err < 0) {
868                 free_irq(SGI_HPCDMA_IRQ, hal2);
869                 kfree(hal2);
870                 return err;
871         }
872         *rchip = hal2;
873         return 0;
874 }
875
876 static int __devinit hal2_probe(struct platform_device *pdev)
877 {
878         struct snd_card *card;
879         struct snd_hal2 *chip;
880         int err;
881
882         err = snd_card_create(index, id, THIS_MODULE, 0, &card);
883         if (err < 0)
884                 return err;
885
886         err = hal2_create(card, &chip);
887         if (err < 0) {
888                 snd_card_free(card);
889                 return err;
890         }
891         snd_card_set_dev(card, &pdev->dev);
892
893         err = hal2_pcm_create(chip);
894         if (err < 0) {
895                 snd_card_free(card);
896                 return err;
897         }
898         err = hal2_mixer_create(chip);
899         if (err < 0) {
900                 snd_card_free(card);
901                 return err;
902         }
903
904         strcpy(card->driver, "SGI HAL2 Audio");
905         strcpy(card->shortname, "SGI HAL2 Audio");
906         sprintf(card->longname, "%s irq %i",
907                 card->shortname,
908                 SGI_HPCDMA_IRQ);
909
910         err = snd_card_register(card);
911         if (err < 0) {
912                 snd_card_free(card);
913                 return err;
914         }
915         platform_set_drvdata(pdev, card);
916         return 0;
917 }
918
919 static int __devexit hal2_remove(struct platform_device *pdev)
920 {
921         struct snd_card *card = platform_get_drvdata(pdev);
922
923         snd_card_free(card);
924         platform_set_drvdata(pdev, NULL);
925         return 0;
926 }
927
928 static struct platform_driver hal2_driver = {
929         .probe  = hal2_probe,
930         .remove = __devexit_p(hal2_remove),
931         .driver = {
932                 .name   = "sgihal2",
933                 .owner  = THIS_MODULE,
934         }
935 };
936
937 static int __init alsa_card_hal2_init(void)
938 {
939         return platform_driver_register(&hal2_driver);
940 }
941
942 static void __exit alsa_card_hal2_exit(void)
943 {
944         platform_driver_unregister(&hal2_driver);
945 }
946
947 module_init(alsa_card_hal2_init);
948 module_exit(alsa_card_hal2_exit);