]> git.karo-electronics.de Git - karo-tx-linux.git/blob - sound/pci/au88x0/au88x0_pcm.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[karo-tx-linux.git] / sound / pci / au88x0 / au88x0_pcm.c
1 /*
2  *  This program is free software; you can redistribute it and/or modify
3  *  it under the terms of the GNU General Public License as published by
4  *  the Free Software Foundation; either version 2 of the License, or
5  *  (at your option) any later version.
6  *
7  *  This program is distributed in the hope that it will be useful,
8  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
9  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  *  GNU Library General Public License for more details.
11  *
12  *  You should have received a copy of the GNU General Public License
13  *  along with this program; if not, write to the Free Software
14  *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15  */
16  
17 /*
18  * Vortex PCM ALSA driver.
19  *
20  * Supports ADB and WT DMA. Unfortunately, WT channels do not run yet.
21  * It remains stuck,and DMA transfers do not happen. 
22  */
23 #include <sound/asoundef.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include "au88x0.h"
29
30 #define VORTEX_PCM_TYPE(x) (x->name[40])
31
32 /* hardware definition */
33 static struct snd_pcm_hardware snd_vortex_playback_hw_adb = {
34         .info =
35             (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
36              SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
37              SNDRV_PCM_INFO_MMAP_VALID),
38         .formats =
39             SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
40             SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
41         .rates = SNDRV_PCM_RATE_CONTINUOUS,
42         .rate_min = 5000,
43         .rate_max = 48000,
44         .channels_min = 1,
45         .channels_max = 2,
46         .buffer_bytes_max = 0x10000,
47         .period_bytes_min = 0x20,
48         .period_bytes_max = 0x1000,
49         .periods_min = 2,
50         .periods_max = 1024,
51 };
52
53 #ifndef CHIP_AU8820
54 static struct snd_pcm_hardware snd_vortex_playback_hw_a3d = {
55         .info =
56             (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
57              SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
58              SNDRV_PCM_INFO_MMAP_VALID),
59         .formats =
60             SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
61             SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
62         .rates = SNDRV_PCM_RATE_CONTINUOUS,
63         .rate_min = 5000,
64         .rate_max = 48000,
65         .channels_min = 1,
66         .channels_max = 1,
67         .buffer_bytes_max = 0x10000,
68         .period_bytes_min = 0x100,
69         .period_bytes_max = 0x1000,
70         .periods_min = 2,
71         .periods_max = 64,
72 };
73 #endif
74 static struct snd_pcm_hardware snd_vortex_playback_hw_spdif = {
75         .info =
76             (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
77              SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
78              SNDRV_PCM_INFO_MMAP_VALID),
79         .formats =
80             SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
81             SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW |
82             SNDRV_PCM_FMTBIT_A_LAW,
83         .rates =
84             SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
85         .rate_min = 32000,
86         .rate_max = 48000,
87         .channels_min = 1,
88         .channels_max = 2,
89         .buffer_bytes_max = 0x10000,
90         .period_bytes_min = 0x100,
91         .period_bytes_max = 0x1000,
92         .periods_min = 2,
93         .periods_max = 64,
94 };
95
96 #ifndef CHIP_AU8810
97 static struct snd_pcm_hardware snd_vortex_playback_hw_wt = {
98         .info = (SNDRV_PCM_INFO_MMAP |
99                  SNDRV_PCM_INFO_INTERLEAVED |
100                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID),
101         .formats = SNDRV_PCM_FMTBIT_S16_LE,
102         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, // SNDRV_PCM_RATE_48000,
103         .rate_min = 8000,
104         .rate_max = 48000,
105         .channels_min = 1,
106         .channels_max = 2,
107         .buffer_bytes_max = 0x10000,
108         .period_bytes_min = 0x0400,
109         .period_bytes_max = 0x1000,
110         .periods_min = 2,
111         .periods_max = 64,
112 };
113 #endif
114 #ifdef CHIP_AU8830
115 static unsigned int au8830_channels[3] = {
116         1, 2, 4,
117 };
118
119 static struct snd_pcm_hw_constraint_list hw_constraints_au8830_channels = {
120         .count = ARRAY_SIZE(au8830_channels),
121         .list = au8830_channels,
122         .mask = 0,
123 };
124 #endif
125 /* open callback */
126 static int snd_vortex_pcm_open(struct snd_pcm_substream *substream)
127 {
128         vortex_t *vortex = snd_pcm_substream_chip(substream);
129         struct snd_pcm_runtime *runtime = substream->runtime;
130         int err;
131         
132         /* Force equal size periods */
133         if ((err =
134              snd_pcm_hw_constraint_integer(runtime,
135                                            SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
136                 return err;
137         /* Avoid PAGE_SIZE boundary to fall inside of a period. */
138         if ((err =
139              snd_pcm_hw_constraint_pow2(runtime, 0,
140                                         SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0)
141                 return err;
142
143         snd_pcm_hw_constraint_step(runtime, 0,
144                                         SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 64);
145
146         if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
147 #ifndef CHIP_AU8820
148                 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) {
149                         runtime->hw = snd_vortex_playback_hw_a3d;
150                 }
151 #endif
152                 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) {
153                         runtime->hw = snd_vortex_playback_hw_spdif;
154                         switch (vortex->spdif_sr) {
155                         case 32000:
156                                 runtime->hw.rates = SNDRV_PCM_RATE_32000;
157                                 break;
158                         case 44100:
159                                 runtime->hw.rates = SNDRV_PCM_RATE_44100;
160                                 break;
161                         case 48000:
162                                 runtime->hw.rates = SNDRV_PCM_RATE_48000;
163                                 break;
164                         }
165                 }
166                 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB
167                     || VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S)
168                         runtime->hw = snd_vortex_playback_hw_adb;
169 #ifdef CHIP_AU8830
170                 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
171                         VORTEX_IS_QUAD(vortex) &&
172                         VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) {
173                         runtime->hw.channels_max = 4;
174                         snd_pcm_hw_constraint_list(runtime, 0,
175                                 SNDRV_PCM_HW_PARAM_CHANNELS,
176                                 &hw_constraints_au8830_channels);
177                 }
178 #endif
179                 substream->runtime->private_data = NULL;
180         }
181 #ifndef CHIP_AU8810
182         else {
183                 runtime->hw = snd_vortex_playback_hw_wt;
184                 substream->runtime->private_data = NULL;
185         }
186 #endif
187         return 0;
188 }
189
190 /* close callback */
191 static int snd_vortex_pcm_close(struct snd_pcm_substream *substream)
192 {
193         //vortex_t *chip = snd_pcm_substream_chip(substream);
194         stream_t *stream = (stream_t *) substream->runtime->private_data;
195
196         // the hardware-specific codes will be here
197         if (stream != NULL) {
198                 stream->substream = NULL;
199                 stream->nr_ch = 0;
200         }
201         substream->runtime->private_data = NULL;
202         return 0;
203 }
204
205 /* hw_params callback */
206 static int
207 snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream,
208                          struct snd_pcm_hw_params *hw_params)
209 {
210         vortex_t *chip = snd_pcm_substream_chip(substream);
211         stream_t *stream = (stream_t *) (substream->runtime->private_data);
212         int err;
213
214         // Alloc buffer memory.
215         err =
216             snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
217         if (err < 0) {
218                 printk(KERN_ERR "Vortex: pcm page alloc failed!\n");
219                 return err;
220         }
221         /*
222            printk(KERN_INFO "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params),
223            params_period_bytes(hw_params), params_channels(hw_params));
224          */
225         spin_lock_irq(&chip->lock);
226         // Make audio routes and config buffer DMA.
227         if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
228                 int dma, type = VORTEX_PCM_TYPE(substream->pcm);
229                 /* Dealloc any routes. */
230                 if (stream != NULL)
231                         vortex_adb_allocroute(chip, stream->dma,
232                                               stream->nr_ch, stream->dir,
233                                               stream->type);
234                 /* Alloc routes. */
235                 dma =
236                     vortex_adb_allocroute(chip, -1,
237                                           params_channels(hw_params),
238                                           substream->stream, type);
239                 if (dma < 0) {
240                         spin_unlock_irq(&chip->lock);
241                         return dma;
242                 }
243                 stream = substream->runtime->private_data = &chip->dma_adb[dma];
244                 stream->substream = substream;
245                 /* Setup Buffers. */
246                 vortex_adbdma_setbuffers(chip, dma,
247                                          params_period_bytes(hw_params),
248                                          params_periods(hw_params));
249         }
250 #ifndef CHIP_AU8810
251         else {
252                 /* if (stream != NULL)
253                    vortex_wt_allocroute(chip, substream->number, 0); */
254                 vortex_wt_allocroute(chip, substream->number,
255                                      params_channels(hw_params));
256                 stream = substream->runtime->private_data =
257                     &chip->dma_wt[substream->number];
258                 stream->dma = substream->number;
259                 stream->substream = substream;
260                 vortex_wtdma_setbuffers(chip, substream->number,
261                                         params_period_bytes(hw_params),
262                                         params_periods(hw_params));
263         }
264 #endif
265         spin_unlock_irq(&chip->lock);
266         return 0;
267 }
268
269 /* hw_free callback */
270 static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream)
271 {
272         vortex_t *chip = snd_pcm_substream_chip(substream);
273         stream_t *stream = (stream_t *) (substream->runtime->private_data);
274
275         spin_lock_irq(&chip->lock);
276         // Delete audio routes.
277         if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
278                 if (stream != NULL)
279                         vortex_adb_allocroute(chip, stream->dma,
280                                               stream->nr_ch, stream->dir,
281                                               stream->type);
282         }
283 #ifndef CHIP_AU8810
284         else {
285                 if (stream != NULL)
286                         vortex_wt_allocroute(chip, stream->dma, 0);
287         }
288 #endif
289         substream->runtime->private_data = NULL;
290         spin_unlock_irq(&chip->lock);
291
292         return snd_pcm_lib_free_pages(substream);
293 }
294
295 /* prepare callback */
296 static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream)
297 {
298         vortex_t *chip = snd_pcm_substream_chip(substream);
299         struct snd_pcm_runtime *runtime = substream->runtime;
300         stream_t *stream = (stream_t *) substream->runtime->private_data;
301         int dma = stream->dma, fmt, dir;
302
303         // set up the hardware with the current configuration.
304         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
305                 dir = 1;
306         else
307                 dir = 0;
308         fmt = vortex_alsafmt_aspfmt(runtime->format);
309         spin_lock_irq(&chip->lock);
310         if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
311                 vortex_adbdma_setmode(chip, dma, 1, dir, fmt,
312                                 runtime->channels == 1 ? 0 : 1, 0);
313                 vortex_adbdma_setstartbuffer(chip, dma, 0);
314                 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF)
315                         vortex_adb_setsrc(chip, dma, runtime->rate, dir);
316         }
317 #ifndef CHIP_AU8810
318         else {
319                 vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0);
320                 // FIXME: Set rate (i guess using vortex_wt_writereg() somehow).
321                 vortex_wtdma_setstartbuffer(chip, dma, 0);
322         }
323 #endif
324         spin_unlock_irq(&chip->lock);
325         return 0;
326 }
327
328 /* trigger callback */
329 static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
330 {
331         vortex_t *chip = snd_pcm_substream_chip(substream);
332         stream_t *stream = (stream_t *) substream->runtime->private_data;
333         int dma = stream->dma;
334
335         spin_lock(&chip->lock);
336         switch (cmd) {
337         case SNDRV_PCM_TRIGGER_START:
338                 // do something to start the PCM engine
339                 //printk(KERN_INFO "vortex: start %d\n", dma);
340                 stream->fifo_enabled = 1;
341                 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
342                         vortex_adbdma_resetup(chip, dma);
343                         vortex_adbdma_startfifo(chip, dma);
344                 }
345 #ifndef CHIP_AU8810
346                 else {
347                         printk(KERN_INFO "vortex: wt start %d\n", dma);
348                         vortex_wtdma_startfifo(chip, dma);
349                 }
350 #endif
351                 break;
352         case SNDRV_PCM_TRIGGER_STOP:
353                 // do something to stop the PCM engine
354                 //printk(KERN_INFO "vortex: stop %d\n", dma);
355                 stream->fifo_enabled = 0;
356                 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
357                         vortex_adbdma_stopfifo(chip, dma);
358 #ifndef CHIP_AU8810
359                 else {
360                         printk(KERN_INFO "vortex: wt stop %d\n", dma);
361                         vortex_wtdma_stopfifo(chip, dma);
362                 }
363 #endif
364                 break;
365         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
366                 //printk(KERN_INFO "vortex: pause %d\n", dma);
367                 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
368                         vortex_adbdma_pausefifo(chip, dma);
369 #ifndef CHIP_AU8810
370                 else
371                         vortex_wtdma_pausefifo(chip, dma);
372 #endif
373                 break;
374         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
375                 //printk(KERN_INFO "vortex: resume %d\n", dma);
376                 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
377                         vortex_adbdma_resumefifo(chip, dma);
378 #ifndef CHIP_AU8810
379                 else
380                         vortex_wtdma_resumefifo(chip, dma);
381 #endif
382                 break;
383         default:
384                 spin_unlock(&chip->lock);
385                 return -EINVAL;
386         }
387         spin_unlock(&chip->lock);
388         return 0;
389 }
390
391 /* pointer callback */
392 static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream)
393 {
394         vortex_t *chip = snd_pcm_substream_chip(substream);
395         stream_t *stream = (stream_t *) substream->runtime->private_data;
396         int dma = stream->dma;
397         snd_pcm_uframes_t current_ptr = 0;
398
399         spin_lock(&chip->lock);
400         if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
401                 current_ptr = vortex_adbdma_getlinearpos(chip, dma);
402 #ifndef CHIP_AU8810
403         else
404                 current_ptr = vortex_wtdma_getlinearpos(chip, dma);
405 #endif
406         //printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr);
407         spin_unlock(&chip->lock);
408         return (bytes_to_frames(substream->runtime, current_ptr));
409 }
410
411 /* operators */
412 static struct snd_pcm_ops snd_vortex_playback_ops = {
413         .open = snd_vortex_pcm_open,
414         .close = snd_vortex_pcm_close,
415         .ioctl = snd_pcm_lib_ioctl,
416         .hw_params = snd_vortex_pcm_hw_params,
417         .hw_free = snd_vortex_pcm_hw_free,
418         .prepare = snd_vortex_pcm_prepare,
419         .trigger = snd_vortex_pcm_trigger,
420         .pointer = snd_vortex_pcm_pointer,
421         .page = snd_pcm_sgbuf_ops_page,
422 };
423
424 /*
425 *  definitions of capture are omitted here...
426 */
427
428 static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = {
429         CARD_NAME " ADB",
430         CARD_NAME " SPDIF",
431         CARD_NAME " A3D",
432         CARD_NAME " WT",
433         CARD_NAME " I2S",
434 };
435 static char *vortex_pcm_name[VORTEX_PCM_LAST] = {
436         "adb",
437         "spdif",
438         "a3d",
439         "wt",
440         "i2s",
441 };
442
443 /* SPDIF kcontrol */
444
445 static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
446 {
447         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
448         uinfo->count = 1;
449         return 0;
450 }
451
452 static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
453 {
454         ucontrol->value.iec958.status[0] = 0xff;
455         ucontrol->value.iec958.status[1] = 0xff;
456         ucontrol->value.iec958.status[2] = 0xff;
457         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
458         return 0;
459 }
460
461 static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
462 {
463         vortex_t *vortex = snd_kcontrol_chip(kcontrol);
464         ucontrol->value.iec958.status[0] = 0x00;
465         ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID;
466         ucontrol->value.iec958.status[2] = 0x00;
467         switch (vortex->spdif_sr) {
468         case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break;
469         case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break;
470         case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break;
471         }
472         return 0;
473 }
474
475 static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
476 {
477         vortex_t *vortex = snd_kcontrol_chip(kcontrol);
478         int spdif_sr = 48000;
479         switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) {
480         case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break;
481         case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break;
482         case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break;
483         }
484         if (spdif_sr == vortex->spdif_sr)
485                 return 0;
486         vortex->spdif_sr = spdif_sr;
487         vortex_spdif_init(vortex, vortex->spdif_sr, 1);
488         return 1;
489 }
490
491 /* spdif controls */
492 static struct snd_kcontrol_new snd_vortex_mixer_spdif[] __devinitdata = {
493         {
494                 .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
495                 .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
496                 .info =         snd_vortex_spdif_info,
497                 .get =          snd_vortex_spdif_get,
498                 .put =          snd_vortex_spdif_put,
499         },
500         {
501                 .access =       SNDRV_CTL_ELEM_ACCESS_READ,
502                 .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
503                 .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
504                 .info =         snd_vortex_spdif_info,
505                 .get =          snd_vortex_spdif_mask_get
506         },
507 };
508
509 /* create a pcm device */
510 static int __devinit snd_vortex_new_pcm(vortex_t *chip, int idx, int nr)
511 {
512         struct snd_pcm *pcm;
513         struct snd_kcontrol *kctl;
514         int i;
515         int err, nr_capt;
516
517         if (!chip || idx < 0 || idx >= VORTEX_PCM_LAST)
518                 return -ENODEV;
519
520         /* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the 
521          * same dma engine. WT uses it own separate dma engine which can't capture. */
522         if (idx == VORTEX_PCM_ADB)
523                 nr_capt = nr;
524         else
525                 nr_capt = 0;
526         err = snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr,
527                           nr_capt, &pcm);
528         if (err < 0)
529                 return err;
530         snprintf(pcm->name, sizeof(pcm->name),
531                 "%s %s", CARD_NAME_SHORT, vortex_pcm_name[idx]);
532         chip->pcm[idx] = pcm;
533         // This is an evil hack, but it saves a lot of duplicated code.
534         VORTEX_PCM_TYPE(pcm) = idx;
535         pcm->private_data = chip;
536         /* set operators */
537         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
538                         &snd_vortex_playback_ops);
539         if (idx == VORTEX_PCM_ADB)
540                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
541                                 &snd_vortex_playback_ops);
542         
543         /* pre-allocation of Scatter-Gather buffers */
544         
545         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
546                                               snd_dma_pci_data(chip->pci_dev),
547                                               0x10000, 0x10000);
548
549         if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) {
550                 for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) {
551                         kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip);
552                         if (!kctl)
553                                 return -ENOMEM;
554                         if ((err = snd_ctl_add(chip->card, kctl)) < 0)
555                                 return err;
556                 }
557         }
558         return 0;
559 }