]> git.karo-electronics.de Git - karo-tx-linux.git/blob - sound/pci/hda/hda_controller.c
Merge tag 'for-4.12/dm-fixes-5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / sound / pci / hda / hda_controller.c
1 /*
2  *
3  *  Implementation of primary alsa driver code base for Intel HD Audio.
4  *
5  *  Copyright(c) 2004 Intel Corporation. All rights reserved.
6  *
7  *  Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
8  *                     PeiSen Hou <pshou@realtek.com.tw>
9  *
10  *  This program is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the Free
12  *  Software Foundation; either version 2 of the License, or (at your option)
13  *  any later version.
14  *
15  *  This program is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  *  more details.
19  *
20  *
21  */
22
23 #include <linux/clocksource.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30
31 #ifdef CONFIG_X86
32 /* for art-tsc conversion */
33 #include <asm/tsc.h>
34 #endif
35
36 #include <sound/core.h>
37 #include <sound/initval.h>
38 #include "hda_controller.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "hda_controller_trace.h"
42
43 /* DSP lock helpers */
44 #define dsp_lock(dev)           snd_hdac_dsp_lock(azx_stream(dev))
45 #define dsp_unlock(dev)         snd_hdac_dsp_unlock(azx_stream(dev))
46 #define dsp_is_locked(dev)      snd_hdac_stream_is_locked(azx_stream(dev))
47
48 /* assign a stream for the PCM */
49 static inline struct azx_dev *
50 azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream)
51 {
52         struct hdac_stream *s;
53
54         s = snd_hdac_stream_assign(azx_bus(chip), substream);
55         if (!s)
56                 return NULL;
57         return stream_to_azx_dev(s);
58 }
59
60 /* release the assigned stream */
61 static inline void azx_release_device(struct azx_dev *azx_dev)
62 {
63         snd_hdac_stream_release(azx_stream(azx_dev));
64 }
65
66 static inline struct hda_pcm_stream *
67 to_hda_pcm_stream(struct snd_pcm_substream *substream)
68 {
69         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
70         return &apcm->info->stream[substream->stream];
71 }
72
73 static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream,
74                                 u64 nsec)
75 {
76         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
77         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
78         u64 codec_frames, codec_nsecs;
79
80         if (!hinfo->ops.get_delay)
81                 return nsec;
82
83         codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream);
84         codec_nsecs = div_u64(codec_frames * 1000000000LL,
85                               substream->runtime->rate);
86
87         if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
88                 return nsec + codec_nsecs;
89
90         return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0;
91 }
92
93 /*
94  * PCM ops
95  */
96
97 static int azx_pcm_close(struct snd_pcm_substream *substream)
98 {
99         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
100         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
101         struct azx *chip = apcm->chip;
102         struct azx_dev *azx_dev = get_azx_dev(substream);
103
104         trace_azx_pcm_close(chip, azx_dev);
105         mutex_lock(&chip->open_mutex);
106         azx_release_device(azx_dev);
107         if (hinfo->ops.close)
108                 hinfo->ops.close(hinfo, apcm->codec, substream);
109         snd_hda_power_down(apcm->codec);
110         mutex_unlock(&chip->open_mutex);
111         snd_hda_codec_pcm_put(apcm->info);
112         return 0;
113 }
114
115 static int azx_pcm_hw_params(struct snd_pcm_substream *substream,
116                              struct snd_pcm_hw_params *hw_params)
117 {
118         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
119         struct azx *chip = apcm->chip;
120         struct azx_dev *azx_dev = get_azx_dev(substream);
121         int ret;
122
123         trace_azx_pcm_hw_params(chip, azx_dev);
124         dsp_lock(azx_dev);
125         if (dsp_is_locked(azx_dev)) {
126                 ret = -EBUSY;
127                 goto unlock;
128         }
129
130         azx_dev->core.bufsize = 0;
131         azx_dev->core.period_bytes = 0;
132         azx_dev->core.format_val = 0;
133         ret = chip->ops->substream_alloc_pages(chip, substream,
134                                           params_buffer_bytes(hw_params));
135 unlock:
136         dsp_unlock(azx_dev);
137         return ret;
138 }
139
140 static int azx_pcm_hw_free(struct snd_pcm_substream *substream)
141 {
142         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
143         struct azx_dev *azx_dev = get_azx_dev(substream);
144         struct azx *chip = apcm->chip;
145         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
146         int err;
147
148         /* reset BDL address */
149         dsp_lock(azx_dev);
150         if (!dsp_is_locked(azx_dev))
151                 snd_hdac_stream_cleanup(azx_stream(azx_dev));
152
153         snd_hda_codec_cleanup(apcm->codec, hinfo, substream);
154
155         err = chip->ops->substream_free_pages(chip, substream);
156         azx_stream(azx_dev)->prepared = 0;
157         dsp_unlock(azx_dev);
158         return err;
159 }
160
161 static int azx_pcm_prepare(struct snd_pcm_substream *substream)
162 {
163         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
164         struct azx *chip = apcm->chip;
165         struct azx_dev *azx_dev = get_azx_dev(substream);
166         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
167         struct snd_pcm_runtime *runtime = substream->runtime;
168         unsigned int format_val, stream_tag;
169         int err;
170         struct hda_spdif_out *spdif =
171                 snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid);
172         unsigned short ctls = spdif ? spdif->ctls : 0;
173
174         trace_azx_pcm_prepare(chip, azx_dev);
175         dsp_lock(azx_dev);
176         if (dsp_is_locked(azx_dev)) {
177                 err = -EBUSY;
178                 goto unlock;
179         }
180
181         snd_hdac_stream_reset(azx_stream(azx_dev));
182         format_val = snd_hdac_calc_stream_format(runtime->rate,
183                                                 runtime->channels,
184                                                 runtime->format,
185                                                 hinfo->maxbps,
186                                                 ctls);
187         if (!format_val) {
188                 dev_err(chip->card->dev,
189                         "invalid format_val, rate=%d, ch=%d, format=%d\n",
190                         runtime->rate, runtime->channels, runtime->format);
191                 err = -EINVAL;
192                 goto unlock;
193         }
194
195         err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val);
196         if (err < 0)
197                 goto unlock;
198
199         snd_hdac_stream_setup(azx_stream(azx_dev));
200
201         stream_tag = azx_dev->core.stream_tag;
202         /* CA-IBG chips need the playback stream starting from 1 */
203         if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) &&
204             stream_tag > chip->capture_streams)
205                 stream_tag -= chip->capture_streams;
206         err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag,
207                                      azx_dev->core.format_val, substream);
208
209  unlock:
210         if (!err)
211                 azx_stream(azx_dev)->prepared = 1;
212         dsp_unlock(azx_dev);
213         return err;
214 }
215
216 static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
217 {
218         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
219         struct azx *chip = apcm->chip;
220         struct hdac_bus *bus = azx_bus(chip);
221         struct azx_dev *azx_dev;
222         struct snd_pcm_substream *s;
223         struct hdac_stream *hstr;
224         bool start;
225         int sbits = 0;
226         int sync_reg;
227
228         azx_dev = get_azx_dev(substream);
229         trace_azx_pcm_trigger(chip, azx_dev, cmd);
230
231         hstr = azx_stream(azx_dev);
232         if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC)
233                 sync_reg = AZX_REG_OLD_SSYNC;
234         else
235                 sync_reg = AZX_REG_SSYNC;
236
237         if (dsp_is_locked(azx_dev) || !hstr->prepared)
238                 return -EPIPE;
239
240         switch (cmd) {
241         case SNDRV_PCM_TRIGGER_START:
242         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
243         case SNDRV_PCM_TRIGGER_RESUME:
244                 start = true;
245                 break;
246         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
247         case SNDRV_PCM_TRIGGER_SUSPEND:
248         case SNDRV_PCM_TRIGGER_STOP:
249                 start = false;
250                 break;
251         default:
252                 return -EINVAL;
253         }
254
255         snd_pcm_group_for_each_entry(s, substream) {
256                 if (s->pcm->card != substream->pcm->card)
257                         continue;
258                 azx_dev = get_azx_dev(s);
259                 sbits |= 1 << azx_dev->core.index;
260                 snd_pcm_trigger_done(s, substream);
261         }
262
263         spin_lock(&bus->reg_lock);
264
265         /* first, set SYNC bits of corresponding streams */
266         snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg);
267
268         snd_pcm_group_for_each_entry(s, substream) {
269                 if (s->pcm->card != substream->pcm->card)
270                         continue;
271                 azx_dev = get_azx_dev(s);
272                 if (start) {
273                         azx_dev->insufficient = 1;
274                         snd_hdac_stream_start(azx_stream(azx_dev), true);
275                 } else {
276                         snd_hdac_stream_stop(azx_stream(azx_dev));
277                 }
278         }
279         spin_unlock(&bus->reg_lock);
280
281         snd_hdac_stream_sync(hstr, start, sbits);
282
283         spin_lock(&bus->reg_lock);
284         /* reset SYNC bits */
285         snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg);
286         if (start)
287                 snd_hdac_stream_timecounter_init(hstr, sbits);
288         spin_unlock(&bus->reg_lock);
289         return 0;
290 }
291
292 unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev)
293 {
294         return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev));
295 }
296 EXPORT_SYMBOL_GPL(azx_get_pos_lpib);
297
298 unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev)
299 {
300         return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev));
301 }
302 EXPORT_SYMBOL_GPL(azx_get_pos_posbuf);
303
304 unsigned int azx_get_position(struct azx *chip,
305                               struct azx_dev *azx_dev)
306 {
307         struct snd_pcm_substream *substream = azx_dev->core.substream;
308         unsigned int pos;
309         int stream = substream->stream;
310         int delay = 0;
311
312         if (chip->get_position[stream])
313                 pos = chip->get_position[stream](chip, azx_dev);
314         else /* use the position buffer as default */
315                 pos = azx_get_pos_posbuf(chip, azx_dev);
316
317         if (pos >= azx_dev->core.bufsize)
318                 pos = 0;
319
320         if (substream->runtime) {
321                 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
322                 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
323
324                 if (chip->get_delay[stream])
325                         delay += chip->get_delay[stream](chip, azx_dev, pos);
326                 if (hinfo->ops.get_delay)
327                         delay += hinfo->ops.get_delay(hinfo, apcm->codec,
328                                                       substream);
329                 substream->runtime->delay = delay;
330         }
331
332         trace_azx_get_position(chip, azx_dev, pos, delay);
333         return pos;
334 }
335 EXPORT_SYMBOL_GPL(azx_get_position);
336
337 static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream)
338 {
339         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
340         struct azx *chip = apcm->chip;
341         struct azx_dev *azx_dev = get_azx_dev(substream);
342         return bytes_to_frames(substream->runtime,
343                                azx_get_position(chip, azx_dev));
344 }
345
346 /*
347  * azx_scale64: Scale base by mult/div while not overflowing sanely
348  *
349  * Derived from scale64_check_overflow in kernel/time/timekeeping.c
350  *
351  * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which
352  * is about 384307 ie ~4.5 days.
353  *
354  * This scales the calculation so that overflow will happen but after 2^64 /
355  * 48000 secs, which is pretty large!
356  *
357  * In caln below:
358  *      base may overflow, but since there isn’t any additional division
359  *      performed on base it’s OK
360  *      rem can’t overflow because both are 32-bit values
361  */
362
363 #ifdef CONFIG_X86
364 static u64 azx_scale64(u64 base, u32 num, u32 den)
365 {
366         u64 rem;
367
368         rem = do_div(base, den);
369
370         base *= num;
371         rem *= num;
372
373         do_div(rem, den);
374
375         return base + rem;
376 }
377
378 static int azx_get_sync_time(ktime_t *device,
379                 struct system_counterval_t *system, void *ctx)
380 {
381         struct snd_pcm_substream *substream = ctx;
382         struct azx_dev *azx_dev = get_azx_dev(substream);
383         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
384         struct azx *chip = apcm->chip;
385         struct snd_pcm_runtime *runtime;
386         u64 ll_counter, ll_counter_l, ll_counter_h;
387         u64 tsc_counter, tsc_counter_l, tsc_counter_h;
388         u32 wallclk_ctr, wallclk_cycles;
389         bool direction;
390         u32 dma_select;
391         u32 timeout = 200;
392         u32 retry_count = 0;
393
394         runtime = substream->runtime;
395
396         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
397                 direction = 1;
398         else
399                 direction = 0;
400
401         /* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */
402         do {
403                 timeout = 100;
404                 dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) |
405                                         (azx_dev->core.stream_tag - 1);
406                 snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select);
407
408                 /* Enable the capture */
409                 snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK);
410
411                 while (timeout) {
412                         if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) &
413                                                 GTSCC_TSCCD_MASK)
414                                 break;
415
416                         timeout--;
417                 }
418
419                 if (!timeout) {
420                         dev_err(chip->card->dev, "GTSCC capture Timedout!\n");
421                         return -EIO;
422                 }
423
424                 /* Read wall clock counter */
425                 wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC);
426
427                 /* Read TSC counter */
428                 tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL);
429                 tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU);
430
431                 /* Read Link counter */
432                 ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL);
433                 ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU);
434
435                 /* Ack: registers read done */
436                 snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT);
437
438                 tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) |
439                                                 tsc_counter_l;
440
441                 ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) | ll_counter_l;
442                 wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK;
443
444                 /*
445                  * An error occurs near frame "rollover". The clocks in
446                  * frame value indicates whether this error may have
447                  * occurred. Here we use the value of 10 i.e.,
448                  * HDA_MAX_CYCLE_OFFSET
449                  */
450                 if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET
451                                         && wallclk_cycles > HDA_MAX_CYCLE_OFFSET)
452                         break;
453
454                 /*
455                  * Sleep before we read again, else we may again get
456                  * value near to MAX_CYCLE. Try to sleep for different
457                  * amount of time so we dont hit the same number again
458                  */
459                 udelay(retry_count++);
460
461         } while (retry_count != HDA_MAX_CYCLE_READ_RETRY);
462
463         if (retry_count == HDA_MAX_CYCLE_READ_RETRY) {
464                 dev_err_ratelimited(chip->card->dev,
465                         "Error in WALFCC cycle count\n");
466                 return -EIO;
467         }
468
469         *device = ns_to_ktime(azx_scale64(ll_counter,
470                                 NSEC_PER_SEC, runtime->rate));
471         *device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) /
472                                ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate));
473
474         *system = convert_art_to_tsc(tsc_counter);
475
476         return 0;
477 }
478
479 #else
480 static int azx_get_sync_time(ktime_t *device,
481                 struct system_counterval_t *system, void *ctx)
482 {
483         return -ENXIO;
484 }
485 #endif
486
487 static int azx_get_crosststamp(struct snd_pcm_substream *substream,
488                               struct system_device_crosststamp *xtstamp)
489 {
490         return get_device_system_crosststamp(azx_get_sync_time,
491                                         substream, NULL, xtstamp);
492 }
493
494 static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime,
495                                 struct snd_pcm_audio_tstamp_config *ts)
496 {
497         if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME)
498                 if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED)
499                         return true;
500
501         return false;
502 }
503
504 static int azx_get_time_info(struct snd_pcm_substream *substream,
505                         struct timespec *system_ts, struct timespec *audio_ts,
506                         struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
507                         struct snd_pcm_audio_tstamp_report *audio_tstamp_report)
508 {
509         struct azx_dev *azx_dev = get_azx_dev(substream);
510         struct snd_pcm_runtime *runtime = substream->runtime;
511         struct system_device_crosststamp xtstamp;
512         int ret;
513         u64 nsec;
514
515         if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) &&
516                 (audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) {
517
518                 snd_pcm_gettime(substream->runtime, system_ts);
519
520                 nsec = timecounter_read(&azx_dev->core.tc);
521                 nsec = div_u64(nsec, 3); /* can be optimized */
522                 if (audio_tstamp_config->report_delay)
523                         nsec = azx_adjust_codec_delay(substream, nsec);
524
525                 *audio_ts = ns_to_timespec(nsec);
526
527                 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK;
528                 audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */
529                 audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */
530
531         } else if (is_link_time_supported(runtime, audio_tstamp_config)) {
532
533                 ret = azx_get_crosststamp(substream, &xtstamp);
534                 if (ret)
535                         return ret;
536
537                 switch (runtime->tstamp_type) {
538                 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
539                         return -EINVAL;
540
541                 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
542                         *system_ts = ktime_to_timespec(xtstamp.sys_monoraw);
543                         break;
544
545                 default:
546                         *system_ts = ktime_to_timespec(xtstamp.sys_realtime);
547                         break;
548
549                 }
550
551                 *audio_ts = ktime_to_timespec(xtstamp.device);
552
553                 audio_tstamp_report->actual_type =
554                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED;
555                 audio_tstamp_report->accuracy_report = 1;
556                 /* 24 MHz WallClock == 42ns resolution */
557                 audio_tstamp_report->accuracy = 42;
558
559         } else {
560                 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT;
561         }
562
563         return 0;
564 }
565
566 static struct snd_pcm_hardware azx_pcm_hw = {
567         .info =                 (SNDRV_PCM_INFO_MMAP |
568                                  SNDRV_PCM_INFO_INTERLEAVED |
569                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
570                                  SNDRV_PCM_INFO_MMAP_VALID |
571                                  /* No full-resume yet implemented */
572                                  /* SNDRV_PCM_INFO_RESUME |*/
573                                  SNDRV_PCM_INFO_PAUSE |
574                                  SNDRV_PCM_INFO_SYNC_START |
575                                  SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */
576                                  SNDRV_PCM_INFO_HAS_LINK_ATIME |
577                                  SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
578         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
579         .rates =                SNDRV_PCM_RATE_48000,
580         .rate_min =             48000,
581         .rate_max =             48000,
582         .channels_min =         2,
583         .channels_max =         2,
584         .buffer_bytes_max =     AZX_MAX_BUF_SIZE,
585         .period_bytes_min =     128,
586         .period_bytes_max =     AZX_MAX_BUF_SIZE / 2,
587         .periods_min =          2,
588         .periods_max =          AZX_MAX_FRAG,
589         .fifo_size =            0,
590 };
591
592 static int azx_pcm_open(struct snd_pcm_substream *substream)
593 {
594         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
595         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
596         struct azx *chip = apcm->chip;
597         struct azx_dev *azx_dev;
598         struct snd_pcm_runtime *runtime = substream->runtime;
599         int err;
600         int buff_step;
601
602         snd_hda_codec_pcm_get(apcm->info);
603         mutex_lock(&chip->open_mutex);
604         azx_dev = azx_assign_device(chip, substream);
605         trace_azx_pcm_open(chip, azx_dev);
606         if (azx_dev == NULL) {
607                 err = -EBUSY;
608                 goto unlock;
609         }
610         runtime->private_data = azx_dev;
611
612         if (chip->gts_present)
613                 azx_pcm_hw.info = azx_pcm_hw.info |
614                         SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME;
615
616         runtime->hw = azx_pcm_hw;
617         runtime->hw.channels_min = hinfo->channels_min;
618         runtime->hw.channels_max = hinfo->channels_max;
619         runtime->hw.formats = hinfo->formats;
620         runtime->hw.rates = hinfo->rates;
621         snd_pcm_limit_hw_rates(runtime);
622         snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
623
624         /* avoid wrap-around with wall-clock */
625         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME,
626                                      20,
627                                      178000000);
628
629         if (chip->align_buffer_size)
630                 /* constrain buffer sizes to be multiple of 128
631                    bytes. This is more efficient in terms of memory
632                    access but isn't required by the HDA spec and
633                    prevents users from specifying exact period/buffer
634                    sizes. For example for 44.1kHz, a period size set
635                    to 20ms will be rounded to 19.59ms. */
636                 buff_step = 128;
637         else
638                 /* Don't enforce steps on buffer sizes, still need to
639                    be multiple of 4 bytes (HDA spec). Tested on Intel
640                    HDA controllers, may not work on all devices where
641                    option needs to be disabled */
642                 buff_step = 4;
643
644         snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
645                                    buff_step);
646         snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
647                                    buff_step);
648         snd_hda_power_up(apcm->codec);
649         if (hinfo->ops.open)
650                 err = hinfo->ops.open(hinfo, apcm->codec, substream);
651         else
652                 err = -ENODEV;
653         if (err < 0) {
654                 azx_release_device(azx_dev);
655                 goto powerdown;
656         }
657         snd_pcm_limit_hw_rates(runtime);
658         /* sanity check */
659         if (snd_BUG_ON(!runtime->hw.channels_min) ||
660             snd_BUG_ON(!runtime->hw.channels_max) ||
661             snd_BUG_ON(!runtime->hw.formats) ||
662             snd_BUG_ON(!runtime->hw.rates)) {
663                 azx_release_device(azx_dev);
664                 if (hinfo->ops.close)
665                         hinfo->ops.close(hinfo, apcm->codec, substream);
666                 err = -EINVAL;
667                 goto powerdown;
668         }
669
670         /* disable LINK_ATIME timestamps for capture streams
671            until we figure out how to handle digital inputs */
672         if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
673                 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */
674                 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME;
675         }
676
677         snd_pcm_set_sync(substream);
678         mutex_unlock(&chip->open_mutex);
679         return 0;
680
681  powerdown:
682         snd_hda_power_down(apcm->codec);
683  unlock:
684         mutex_unlock(&chip->open_mutex);
685         snd_hda_codec_pcm_put(apcm->info);
686         return err;
687 }
688
689 static int azx_pcm_mmap(struct snd_pcm_substream *substream,
690                         struct vm_area_struct *area)
691 {
692         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
693         struct azx *chip = apcm->chip;
694         if (chip->ops->pcm_mmap_prepare)
695                 chip->ops->pcm_mmap_prepare(substream, area);
696         return snd_pcm_lib_default_mmap(substream, area);
697 }
698
699 static const struct snd_pcm_ops azx_pcm_ops = {
700         .open = azx_pcm_open,
701         .close = azx_pcm_close,
702         .ioctl = snd_pcm_lib_ioctl,
703         .hw_params = azx_pcm_hw_params,
704         .hw_free = azx_pcm_hw_free,
705         .prepare = azx_pcm_prepare,
706         .trigger = azx_pcm_trigger,
707         .pointer = azx_pcm_pointer,
708         .get_time_info =  azx_get_time_info,
709         .mmap = azx_pcm_mmap,
710         .page = snd_pcm_sgbuf_ops_page,
711 };
712
713 static void azx_pcm_free(struct snd_pcm *pcm)
714 {
715         struct azx_pcm *apcm = pcm->private_data;
716         if (apcm) {
717                 list_del(&apcm->list);
718                 apcm->info->pcm = NULL;
719                 kfree(apcm);
720         }
721 }
722
723 #define MAX_PREALLOC_SIZE       (32 * 1024 * 1024)
724
725 int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec,
726                               struct hda_pcm *cpcm)
727 {
728         struct hdac_bus *bus = &_bus->core;
729         struct azx *chip = bus_to_azx(bus);
730         struct snd_pcm *pcm;
731         struct azx_pcm *apcm;
732         int pcm_dev = cpcm->device;
733         unsigned int size;
734         int s, err;
735
736         list_for_each_entry(apcm, &chip->pcm_list, list) {
737                 if (apcm->pcm->device == pcm_dev) {
738                         dev_err(chip->card->dev, "PCM %d already exists\n",
739                                 pcm_dev);
740                         return -EBUSY;
741                 }
742         }
743         err = snd_pcm_new(chip->card, cpcm->name, pcm_dev,
744                           cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams,
745                           cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams,
746                           &pcm);
747         if (err < 0)
748                 return err;
749         strlcpy(pcm->name, cpcm->name, sizeof(pcm->name));
750         apcm = kzalloc(sizeof(*apcm), GFP_KERNEL);
751         if (apcm == NULL)
752                 return -ENOMEM;
753         apcm->chip = chip;
754         apcm->pcm = pcm;
755         apcm->codec = codec;
756         apcm->info = cpcm;
757         pcm->private_data = apcm;
758         pcm->private_free = azx_pcm_free;
759         if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM)
760                 pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
761         list_add_tail(&apcm->list, &chip->pcm_list);
762         cpcm->pcm = pcm;
763         for (s = 0; s < 2; s++) {
764                 if (cpcm->stream[s].substreams)
765                         snd_pcm_set_ops(pcm, s, &azx_pcm_ops);
766         }
767         /* buffer pre-allocation */
768         size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024;
769         if (size > MAX_PREALLOC_SIZE)
770                 size = MAX_PREALLOC_SIZE;
771         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
772                                               chip->card->dev,
773                                               size, MAX_PREALLOC_SIZE);
774         return 0;
775 }
776
777 static unsigned int azx_command_addr(u32 cmd)
778 {
779         unsigned int addr = cmd >> 28;
780
781         if (addr >= AZX_MAX_CODECS) {
782                 snd_BUG();
783                 addr = 0;
784         }
785
786         return addr;
787 }
788
789 /* receive a response */
790 static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr,
791                                  unsigned int *res)
792 {
793         struct azx *chip = bus_to_azx(bus);
794         struct hda_bus *hbus = &chip->bus;
795         unsigned long timeout;
796         unsigned long loopcounter;
797         int do_poll = 0;
798
799  again:
800         timeout = jiffies + msecs_to_jiffies(1000);
801
802         for (loopcounter = 0;; loopcounter++) {
803                 spin_lock_irq(&bus->reg_lock);
804                 if (chip->polling_mode || do_poll)
805                         snd_hdac_bus_update_rirb(bus);
806                 if (!bus->rirb.cmds[addr]) {
807                         if (!do_poll)
808                                 chip->poll_count = 0;
809                         if (res)
810                                 *res = bus->rirb.res[addr]; /* the last value */
811                         spin_unlock_irq(&bus->reg_lock);
812                         return 0;
813                 }
814                 spin_unlock_irq(&bus->reg_lock);
815                 if (time_after(jiffies, timeout))
816                         break;
817                 if (hbus->needs_damn_long_delay || loopcounter > 3000)
818                         msleep(2); /* temporary workaround */
819                 else {
820                         udelay(10);
821                         cond_resched();
822                 }
823         }
824
825         if (hbus->no_response_fallback)
826                 return -EIO;
827
828         if (!chip->polling_mode && chip->poll_count < 2) {
829                 dev_dbg(chip->card->dev,
830                         "azx_get_response timeout, polling the codec once: last cmd=0x%08x\n",
831                         bus->last_cmd[addr]);
832                 do_poll = 1;
833                 chip->poll_count++;
834                 goto again;
835         }
836
837
838         if (!chip->polling_mode) {
839                 dev_warn(chip->card->dev,
840                          "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n",
841                          bus->last_cmd[addr]);
842                 chip->polling_mode = 1;
843                 goto again;
844         }
845
846         if (chip->msi) {
847                 dev_warn(chip->card->dev,
848                          "No response from codec, disabling MSI: last cmd=0x%08x\n",
849                          bus->last_cmd[addr]);
850                 if (chip->ops->disable_msi_reset_irq &&
851                     chip->ops->disable_msi_reset_irq(chip) < 0)
852                         return -EIO;
853                 goto again;
854         }
855
856         if (chip->probing) {
857                 /* If this critical timeout happens during the codec probing
858                  * phase, this is likely an access to a non-existing codec
859                  * slot.  Better to return an error and reset the system.
860                  */
861                 return -EIO;
862         }
863
864         /* no fallback mechanism? */
865         if (!chip->fallback_to_single_cmd)
866                 return -EIO;
867
868         /* a fatal communication error; need either to reset or to fallback
869          * to the single_cmd mode
870          */
871         if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) {
872                 hbus->response_reset = 1;
873                 return -EAGAIN; /* give a chance to retry */
874         }
875
876         dev_err(chip->card->dev,
877                 "azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n",
878                 bus->last_cmd[addr]);
879         chip->single_cmd = 1;
880         hbus->response_reset = 0;
881         snd_hdac_bus_stop_cmd_io(bus);
882         return -EIO;
883 }
884
885 /*
886  * Use the single immediate command instead of CORB/RIRB for simplicity
887  *
888  * Note: according to Intel, this is not preferred use.  The command was
889  *       intended for the BIOS only, and may get confused with unsolicited
890  *       responses.  So, we shouldn't use it for normal operation from the
891  *       driver.
892  *       I left the codes, however, for debugging/testing purposes.
893  */
894
895 /* receive a response */
896 static int azx_single_wait_for_response(struct azx *chip, unsigned int addr)
897 {
898         int timeout = 50;
899
900         while (timeout--) {
901                 /* check IRV busy bit */
902                 if (azx_readw(chip, IRS) & AZX_IRS_VALID) {
903                         /* reuse rirb.res as the response return value */
904                         azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR);
905                         return 0;
906                 }
907                 udelay(1);
908         }
909         if (printk_ratelimit())
910                 dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n",
911                         azx_readw(chip, IRS));
912         azx_bus(chip)->rirb.res[addr] = -1;
913         return -EIO;
914 }
915
916 /* send a command */
917 static int azx_single_send_cmd(struct hdac_bus *bus, u32 val)
918 {
919         struct azx *chip = bus_to_azx(bus);
920         unsigned int addr = azx_command_addr(val);
921         int timeout = 50;
922
923         bus->last_cmd[azx_command_addr(val)] = val;
924         while (timeout--) {
925                 /* check ICB busy bit */
926                 if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) {
927                         /* Clear IRV valid bit */
928                         azx_writew(chip, IRS, azx_readw(chip, IRS) |
929                                    AZX_IRS_VALID);
930                         azx_writel(chip, IC, val);
931                         azx_writew(chip, IRS, azx_readw(chip, IRS) |
932                                    AZX_IRS_BUSY);
933                         return azx_single_wait_for_response(chip, addr);
934                 }
935                 udelay(1);
936         }
937         if (printk_ratelimit())
938                 dev_dbg(chip->card->dev,
939                         "send_cmd timeout: IRS=0x%x, val=0x%x\n",
940                         azx_readw(chip, IRS), val);
941         return -EIO;
942 }
943
944 /* receive a response */
945 static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr,
946                                    unsigned int *res)
947 {
948         if (res)
949                 *res = bus->rirb.res[addr];
950         return 0;
951 }
952
953 /*
954  * The below are the main callbacks from hda_codec.
955  *
956  * They are just the skeleton to call sub-callbacks according to the
957  * current setting of chip->single_cmd.
958  */
959
960 /* send a command */
961 static int azx_send_cmd(struct hdac_bus *bus, unsigned int val)
962 {
963         struct azx *chip = bus_to_azx(bus);
964
965         if (chip->disabled)
966                 return 0;
967         if (chip->single_cmd)
968                 return azx_single_send_cmd(bus, val);
969         else
970                 return snd_hdac_bus_send_cmd(bus, val);
971 }
972
973 /* get a response */
974 static int azx_get_response(struct hdac_bus *bus, unsigned int addr,
975                             unsigned int *res)
976 {
977         struct azx *chip = bus_to_azx(bus);
978
979         if (chip->disabled)
980                 return 0;
981         if (chip->single_cmd)
982                 return azx_single_get_response(bus, addr, res);
983         else
984                 return azx_rirb_get_response(bus, addr, res);
985 }
986
987 static int azx_link_power(struct hdac_bus *bus, bool enable)
988 {
989         struct azx *chip = bus_to_azx(bus);
990
991         if (chip->ops->link_power)
992                 return chip->ops->link_power(chip, enable);
993         else
994                 return -EINVAL;
995 }
996
997 static const struct hdac_bus_ops bus_core_ops = {
998         .command = azx_send_cmd,
999         .get_response = azx_get_response,
1000         .link_power = azx_link_power,
1001 };
1002
1003 #ifdef CONFIG_SND_HDA_DSP_LOADER
1004 /*
1005  * DSP loading code (e.g. for CA0132)
1006  */
1007
1008 /* use the first stream for loading DSP */
1009 static struct azx_dev *
1010 azx_get_dsp_loader_dev(struct azx *chip)
1011 {
1012         struct hdac_bus *bus = azx_bus(chip);
1013         struct hdac_stream *s;
1014
1015         list_for_each_entry(s, &bus->stream_list, list)
1016                 if (s->index == chip->playback_index_offset)
1017                         return stream_to_azx_dev(s);
1018
1019         return NULL;
1020 }
1021
1022 int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format,
1023                                    unsigned int byte_size,
1024                                    struct snd_dma_buffer *bufp)
1025 {
1026         struct hdac_bus *bus = &codec->bus->core;
1027         struct azx *chip = bus_to_azx(bus);
1028         struct azx_dev *azx_dev;
1029         struct hdac_stream *hstr;
1030         bool saved = false;
1031         int err;
1032
1033         azx_dev = azx_get_dsp_loader_dev(chip);
1034         hstr = azx_stream(azx_dev);
1035         spin_lock_irq(&bus->reg_lock);
1036         if (hstr->opened) {
1037                 chip->saved_azx_dev = *azx_dev;
1038                 saved = true;
1039         }
1040         spin_unlock_irq(&bus->reg_lock);
1041
1042         err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp);
1043         if (err < 0) {
1044                 spin_lock_irq(&bus->reg_lock);
1045                 if (saved)
1046                         *azx_dev = chip->saved_azx_dev;
1047                 spin_unlock_irq(&bus->reg_lock);
1048                 return err;
1049         }
1050
1051         hstr->prepared = 0;
1052         return err;
1053 }
1054 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare);
1055
1056 void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start)
1057 {
1058         struct hdac_bus *bus = &codec->bus->core;
1059         struct azx *chip = bus_to_azx(bus);
1060         struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1061
1062         snd_hdac_dsp_trigger(azx_stream(azx_dev), start);
1063 }
1064 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger);
1065
1066 void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec,
1067                                     struct snd_dma_buffer *dmab)
1068 {
1069         struct hdac_bus *bus = &codec->bus->core;
1070         struct azx *chip = bus_to_azx(bus);
1071         struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1072         struct hdac_stream *hstr = azx_stream(azx_dev);
1073
1074         if (!dmab->area || !hstr->locked)
1075                 return;
1076
1077         snd_hdac_dsp_cleanup(hstr, dmab);
1078         spin_lock_irq(&bus->reg_lock);
1079         if (hstr->opened)
1080                 *azx_dev = chip->saved_azx_dev;
1081         hstr->locked = false;
1082         spin_unlock_irq(&bus->reg_lock);
1083 }
1084 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup);
1085 #endif /* CONFIG_SND_HDA_DSP_LOADER */
1086
1087 /*
1088  * reset and start the controller registers
1089  */
1090 void azx_init_chip(struct azx *chip, bool full_reset)
1091 {
1092         if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) {
1093                 /* correct RINTCNT for CXT */
1094                 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1095                         azx_writew(chip, RINTCNT, 0xc0);
1096         }
1097 }
1098 EXPORT_SYMBOL_GPL(azx_init_chip);
1099
1100 void azx_stop_all_streams(struct azx *chip)
1101 {
1102         struct hdac_bus *bus = azx_bus(chip);
1103         struct hdac_stream *s;
1104
1105         list_for_each_entry(s, &bus->stream_list, list)
1106                 snd_hdac_stream_stop(s);
1107 }
1108 EXPORT_SYMBOL_GPL(azx_stop_all_streams);
1109
1110 void azx_stop_chip(struct azx *chip)
1111 {
1112         snd_hdac_bus_stop_chip(azx_bus(chip));
1113 }
1114 EXPORT_SYMBOL_GPL(azx_stop_chip);
1115
1116 /*
1117  * interrupt handler
1118  */
1119 static void stream_update(struct hdac_bus *bus, struct hdac_stream *s)
1120 {
1121         struct azx *chip = bus_to_azx(bus);
1122         struct azx_dev *azx_dev = stream_to_azx_dev(s);
1123
1124         /* check whether this IRQ is really acceptable */
1125         if (!chip->ops->position_check ||
1126             chip->ops->position_check(chip, azx_dev)) {
1127                 spin_unlock(&bus->reg_lock);
1128                 snd_pcm_period_elapsed(azx_stream(azx_dev)->substream);
1129                 spin_lock(&bus->reg_lock);
1130         }
1131 }
1132
1133 irqreturn_t azx_interrupt(int irq, void *dev_id)
1134 {
1135         struct azx *chip = dev_id;
1136         struct hdac_bus *bus = azx_bus(chip);
1137         u32 status;
1138         bool active, handled = false;
1139         int repeat = 0; /* count for avoiding endless loop */
1140
1141 #ifdef CONFIG_PM
1142         if (azx_has_pm_runtime(chip))
1143                 if (!pm_runtime_active(chip->card->dev))
1144                         return IRQ_NONE;
1145 #endif
1146
1147         spin_lock(&bus->reg_lock);
1148
1149         if (chip->disabled)
1150                 goto unlock;
1151
1152         do {
1153                 status = azx_readl(chip, INTSTS);
1154                 if (status == 0 || status == 0xffffffff)
1155                         break;
1156
1157                 handled = true;
1158                 active = false;
1159                 if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update))
1160                         active = true;
1161
1162                 /* clear rirb int */
1163                 status = azx_readb(chip, RIRBSTS);
1164                 if (status & RIRB_INT_MASK) {
1165                         active = true;
1166                         if (status & RIRB_INT_RESPONSE) {
1167                                 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1168                                         udelay(80);
1169                                 snd_hdac_bus_update_rirb(bus);
1170                         }
1171                         azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
1172                 }
1173         } while (active && ++repeat < 10);
1174
1175  unlock:
1176         spin_unlock(&bus->reg_lock);
1177
1178         return IRQ_RETVAL(handled);
1179 }
1180 EXPORT_SYMBOL_GPL(azx_interrupt);
1181
1182 /*
1183  * Codec initerface
1184  */
1185
1186 /*
1187  * Probe the given codec address
1188  */
1189 static int probe_codec(struct azx *chip, int addr)
1190 {
1191         unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) |
1192                 (AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID;
1193         struct hdac_bus *bus = azx_bus(chip);
1194         int err;
1195         unsigned int res = -1;
1196
1197         mutex_lock(&bus->cmd_mutex);
1198         chip->probing = 1;
1199         azx_send_cmd(bus, cmd);
1200         err = azx_get_response(bus, addr, &res);
1201         chip->probing = 0;
1202         mutex_unlock(&bus->cmd_mutex);
1203         if (err < 0 || res == -1)
1204                 return -EIO;
1205         dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr);
1206         return 0;
1207 }
1208
1209 void snd_hda_bus_reset(struct hda_bus *bus)
1210 {
1211         struct azx *chip = bus_to_azx(&bus->core);
1212
1213         bus->in_reset = 1;
1214         azx_stop_chip(chip);
1215         azx_init_chip(chip, true);
1216         if (bus->core.chip_init)
1217                 snd_hda_bus_reset_codecs(bus);
1218         bus->in_reset = 0;
1219 }
1220
1221 static int get_jackpoll_interval(struct azx *chip)
1222 {
1223         int i;
1224         unsigned int j;
1225
1226         if (!chip->jackpoll_ms)
1227                 return 0;
1228
1229         i = chip->jackpoll_ms[chip->dev_index];
1230         if (i == 0)
1231                 return 0;
1232         if (i < 50 || i > 60000)
1233                 j = 0;
1234         else
1235                 j = msecs_to_jiffies(i);
1236         if (j == 0)
1237                 dev_warn(chip->card->dev,
1238                          "jackpoll_ms value out of range: %d\n", i);
1239         return j;
1240 }
1241
1242 /* HD-audio bus initialization */
1243 int azx_bus_init(struct azx *chip, const char *model,
1244                  const struct hdac_io_ops *io_ops)
1245 {
1246         struct hda_bus *bus = &chip->bus;
1247         int err;
1248
1249         err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops,
1250                                 io_ops);
1251         if (err < 0)
1252                 return err;
1253
1254         bus->card = chip->card;
1255         mutex_init(&bus->prepare_mutex);
1256         bus->pci = chip->pci;
1257         bus->modelname = model;
1258         bus->mixer_assigned = -1;
1259         bus->core.snoop = azx_snoop(chip);
1260         if (chip->get_position[0] != azx_get_pos_lpib ||
1261             chip->get_position[1] != azx_get_pos_lpib)
1262                 bus->core.use_posbuf = true;
1263         bus->core.bdl_pos_adj = chip->bdl_pos_adj;
1264         if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR)
1265                 bus->core.corbrp_self_clear = true;
1266
1267         if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY)
1268                 bus->core.align_bdle_4k = true;
1269
1270         /* AMD chipsets often cause the communication stalls upon certain
1271          * sequence like the pin-detection.  It seems that forcing the synced
1272          * access works around the stall.  Grrr...
1273          */
1274         if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) {
1275                 dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n");
1276                 bus->core.sync_write = 1;
1277                 bus->allow_bus_reset = 1;
1278         }
1279
1280         return 0;
1281 }
1282 EXPORT_SYMBOL_GPL(azx_bus_init);
1283
1284 /* Probe codecs */
1285 int azx_probe_codecs(struct azx *chip, unsigned int max_slots)
1286 {
1287         struct hdac_bus *bus = azx_bus(chip);
1288         int c, codecs, err;
1289
1290         codecs = 0;
1291         if (!max_slots)
1292                 max_slots = AZX_DEFAULT_CODECS;
1293
1294         /* First try to probe all given codec slots */
1295         for (c = 0; c < max_slots; c++) {
1296                 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1297                         if (probe_codec(chip, c) < 0) {
1298                                 /* Some BIOSen give you wrong codec addresses
1299                                  * that don't exist
1300                                  */
1301                                 dev_warn(chip->card->dev,
1302                                          "Codec #%d probe error; disabling it...\n", c);
1303                                 bus->codec_mask &= ~(1 << c);
1304                                 /* More badly, accessing to a non-existing
1305                                  * codec often screws up the controller chip,
1306                                  * and disturbs the further communications.
1307                                  * Thus if an error occurs during probing,
1308                                  * better to reset the controller chip to
1309                                  * get back to the sanity state.
1310                                  */
1311                                 azx_stop_chip(chip);
1312                                 azx_init_chip(chip, true);
1313                         }
1314                 }
1315         }
1316
1317         /* Then create codec instances */
1318         for (c = 0; c < max_slots; c++) {
1319                 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1320                         struct hda_codec *codec;
1321                         err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec);
1322                         if (err < 0)
1323                                 continue;
1324                         codec->jackpoll_interval = get_jackpoll_interval(chip);
1325                         codec->beep_mode = chip->beep_mode;
1326                         codecs++;
1327                 }
1328         }
1329         if (!codecs) {
1330                 dev_err(chip->card->dev, "no codecs initialized\n");
1331                 return -ENXIO;
1332         }
1333         return 0;
1334 }
1335 EXPORT_SYMBOL_GPL(azx_probe_codecs);
1336
1337 /* configure each codec instance */
1338 int azx_codec_configure(struct azx *chip)
1339 {
1340         struct hda_codec *codec;
1341         list_for_each_codec(codec, &chip->bus) {
1342                 snd_hda_codec_configure(codec);
1343         }
1344         return 0;
1345 }
1346 EXPORT_SYMBOL_GPL(azx_codec_configure);
1347
1348 static int stream_direction(struct azx *chip, unsigned char index)
1349 {
1350         if (index >= chip->capture_index_offset &&
1351             index < chip->capture_index_offset + chip->capture_streams)
1352                 return SNDRV_PCM_STREAM_CAPTURE;
1353         return SNDRV_PCM_STREAM_PLAYBACK;
1354 }
1355
1356 /* initialize SD streams */
1357 int azx_init_streams(struct azx *chip)
1358 {
1359         int i;
1360         int stream_tags[2] = { 0, 0 };
1361
1362         /* initialize each stream (aka device)
1363          * assign the starting bdl address to each stream (device)
1364          * and initialize
1365          */
1366         for (i = 0; i < chip->num_streams; i++) {
1367                 struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL);
1368                 int dir, tag;
1369
1370                 if (!azx_dev)
1371                         return -ENOMEM;
1372
1373                 dir = stream_direction(chip, i);
1374                 /* stream tag must be unique throughout
1375                  * the stream direction group,
1376                  * valid values 1...15
1377                  * use separate stream tag if the flag
1378                  * AZX_DCAPS_SEPARATE_STREAM_TAG is used
1379                  */
1380                 if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG)
1381                         tag = ++stream_tags[dir];
1382                 else
1383                         tag = i + 1;
1384                 snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev),
1385                                      i, dir, tag);
1386         }
1387
1388         return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(azx_init_streams);
1391
1392 void azx_free_streams(struct azx *chip)
1393 {
1394         struct hdac_bus *bus = azx_bus(chip);
1395         struct hdac_stream *s;
1396
1397         while (!list_empty(&bus->stream_list)) {
1398                 s = list_first_entry(&bus->stream_list, struct hdac_stream, list);
1399                 list_del(&s->list);
1400                 kfree(stream_to_azx_dev(s));
1401         }
1402 }
1403 EXPORT_SYMBOL_GPL(azx_free_streams);