]> git.karo-electronics.de Git - karo-tx-linux.git/blob - sound/ppc/pmac.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/joern/logfs
[karo-tx-linux.git] / sound / ppc / pmac.c
1 /*
2  * PMac DBDMA lowlevel functions
3  *
4  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
5  * code based on dmasound.c.
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21
22
23 #include <asm/io.h>
24 #include <asm/irq.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <sound/core.h>
32 #include "pmac.h"
33 #include <sound/pcm_params.h>
34 #include <asm/pmac_feature.h>
35 #include <asm/pci-bridge.h>
36
37
38 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
39 static int awacs_freqs[8] = {
40         44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
41 };
42 /* fixed frequency table for tumbler */
43 static int tumbler_freqs[1] = {
44         44100
45 };
46
47
48 /*
49  * we will allocate a single 'emergency' dbdma cmd block to use if the
50  * tx status comes up "DEAD".  This happens on some PowerComputing Pmac
51  * clones, either owing to a bug in dbdma or some interaction between
52  * IDE and sound.  However, this measure would deal with DEAD status if
53  * it appeared elsewhere.
54  */
55 static struct pmac_dbdma emergency_dbdma;
56 static int emergency_in_use;
57
58
59 /*
60  * allocate DBDMA command arrays
61  */
62 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
63 {
64         unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
65
66         rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
67                                         &rec->dma_base, GFP_KERNEL);
68         if (rec->space == NULL)
69                 return -ENOMEM;
70         rec->size = size;
71         memset(rec->space, 0, rsize);
72         rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
73         rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
74
75         return 0;
76 }
77
78 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
79 {
80         if (rec->space) {
81                 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
82
83                 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
84         }
85 }
86
87
88 /*
89  * pcm stuff
90  */
91
92 /*
93  * look up frequency table
94  */
95
96 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
97 {
98         int i, ok, found;
99
100         ok = rec->cur_freqs;
101         if (rate > chip->freq_table[0])
102                 return 0;
103         found = 0;
104         for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
105                 if (! (ok & 1)) continue;
106                 found = i;
107                 if (rate >= chip->freq_table[i])
108                         break;
109         }
110         return found;
111 }
112
113 /*
114  * check whether another stream is active
115  */
116 static inline int another_stream(int stream)
117 {
118         return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
119                 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
120 }
121
122 /*
123  * allocate buffers
124  */
125 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
126                                   struct snd_pcm_hw_params *hw_params)
127 {
128         return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
129 }
130
131 /*
132  * release buffers
133  */
134 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
135 {
136         snd_pcm_lib_free_pages(subs);
137         return 0;
138 }
139
140 /*
141  * get a stream of the opposite direction
142  */
143 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
144 {
145         switch (stream) {
146         case SNDRV_PCM_STREAM_PLAYBACK:
147                 return &chip->playback;
148         case SNDRV_PCM_STREAM_CAPTURE:
149                 return &chip->capture;
150         default:
151                 snd_BUG();
152                 return NULL;
153         }
154 }
155
156 /*
157  * wait while run status is on
158  */
159 static inline void
160 snd_pmac_wait_ack(struct pmac_stream *rec)
161 {
162         int timeout = 50000;
163         while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
164                 udelay(1);
165 }
166
167 /*
168  * set the format and rate to the chip.
169  * call the lowlevel function if defined (e.g. for AWACS).
170  */
171 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
172 {
173         /* set up frequency and format */
174         out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
175         out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
176         if (chip->set_format)
177                 chip->set_format(chip);
178 }
179
180 /*
181  * stop the DMA transfer
182  */
183 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
184 {
185         out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
186         snd_pmac_wait_ack(rec);
187 }
188
189 /*
190  * set the command pointer address
191  */
192 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
193 {
194         out_le32(&rec->dma->cmdptr, cmd->addr);
195 }
196
197 /*
198  * start the DMA
199  */
200 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
201 {
202         out_le32(&rec->dma->control, status | (status << 16));
203 }
204
205
206 /*
207  * prepare playback/capture stream
208  */
209 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
210 {
211         int i;
212         volatile struct dbdma_cmd __iomem *cp;
213         struct snd_pcm_runtime *runtime = subs->runtime;
214         int rate_index;
215         long offset;
216         struct pmac_stream *astr;
217
218         rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
219         rec->period_size = snd_pcm_lib_period_bytes(subs);
220         rec->nperiods = rec->dma_size / rec->period_size;
221         rec->cur_period = 0;
222         rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
223
224         /* set up constraints */
225         astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
226         if (! astr)
227                 return -EINVAL;
228         astr->cur_freqs = 1 << rate_index;
229         astr->cur_formats = 1 << runtime->format;
230         chip->rate_index = rate_index;
231         chip->format = runtime->format;
232
233         /* We really want to execute a DMA stop command, after the AWACS
234          * is initialized.
235          * For reasons I don't understand, it stops the hissing noise
236          * common to many PowerBook G3 systems and random noise otherwise
237          * captured on iBook2's about every third time. -ReneR
238          */
239         spin_lock_irq(&chip->reg_lock);
240         snd_pmac_dma_stop(rec);
241         st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
242         snd_pmac_dma_set_command(rec, &chip->extra_dma);
243         snd_pmac_dma_run(rec, RUN);
244         spin_unlock_irq(&chip->reg_lock);
245         mdelay(5);
246         spin_lock_irq(&chip->reg_lock);
247         /* continuous DMA memory type doesn't provide the physical address,
248          * so we need to resolve the address here...
249          */
250         offset = runtime->dma_addr;
251         for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
252                 st_le32(&cp->phy_addr, offset);
253                 st_le16(&cp->req_count, rec->period_size);
254                 /*st_le16(&cp->res_count, 0);*/
255                 st_le16(&cp->xfer_status, 0);
256                 offset += rec->period_size;
257         }
258         /* make loop */
259         st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
260         st_le32(&cp->cmd_dep, rec->cmd.addr);
261
262         snd_pmac_dma_stop(rec);
263         snd_pmac_dma_set_command(rec, &rec->cmd);
264         spin_unlock_irq(&chip->reg_lock);
265
266         return 0;
267 }
268
269
270 /*
271  * PCM trigger/stop
272  */
273 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
274                                 struct snd_pcm_substream *subs, int cmd)
275 {
276         volatile struct dbdma_cmd __iomem *cp;
277         int i, command;
278
279         switch (cmd) {
280         case SNDRV_PCM_TRIGGER_START:
281         case SNDRV_PCM_TRIGGER_RESUME:
282                 if (rec->running)
283                         return -EBUSY;
284                 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
285                            OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
286                 spin_lock(&chip->reg_lock);
287                 snd_pmac_beep_stop(chip);
288                 snd_pmac_pcm_set_format(chip);
289                 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
290                         out_le16(&cp->command, command);
291                 snd_pmac_dma_set_command(rec, &rec->cmd);
292                 (void)in_le32(&rec->dma->status);
293                 snd_pmac_dma_run(rec, RUN|WAKE);
294                 rec->running = 1;
295                 spin_unlock(&chip->reg_lock);
296                 break;
297
298         case SNDRV_PCM_TRIGGER_STOP:
299         case SNDRV_PCM_TRIGGER_SUSPEND:
300                 spin_lock(&chip->reg_lock);
301                 rec->running = 0;
302                 /*printk(KERN_DEBUG "stopped!!\n");*/
303                 snd_pmac_dma_stop(rec);
304                 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
305                         out_le16(&cp->command, DBDMA_STOP);
306                 spin_unlock(&chip->reg_lock);
307                 break;
308
309         default:
310                 return -EINVAL;
311         }
312
313         return 0;
314 }
315
316 /*
317  * return the current pointer
318  */
319 inline
320 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
321                                               struct pmac_stream *rec,
322                                               struct snd_pcm_substream *subs)
323 {
324         int count = 0;
325
326 #if 1 /* hmm.. how can we get the current dma pointer?? */
327         int stat;
328         volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
329         stat = ld_le16(&cp->xfer_status);
330         if (stat & (ACTIVE|DEAD)) {
331                 count = in_le16(&cp->res_count);
332                 if (count)
333                         count = rec->period_size - count;
334         }
335 #endif
336         count += rec->cur_period * rec->period_size;
337         /*printk(KERN_DEBUG "pointer=%d\n", count);*/
338         return bytes_to_frames(subs->runtime, count);
339 }
340
341 /*
342  * playback
343  */
344
345 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
346 {
347         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
348         return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
349 }
350
351 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
352                                      int cmd)
353 {
354         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
355         return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
356 }
357
358 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
359 {
360         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
361         return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
362 }
363
364
365 /*
366  * capture
367  */
368
369 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
370 {
371         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
372         return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
373 }
374
375 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
376                                     int cmd)
377 {
378         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
379         return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
380 }
381
382 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
383 {
384         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
385         return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
386 }
387
388
389 /*
390  * Handle DEAD DMA transfers:
391  * if the TX status comes up "DEAD" - reported on some Power Computing machines
392  * we need to re-start the dbdma - but from a different physical start address
393  * and with a different transfer length.  It would get very messy to do this
394  * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
395  * addresses each time.  So, we will keep a single dbdma_cmd block which can be
396  * fiddled with.
397  * When DEAD status is first reported the content of the faulted dbdma block is
398  * copied into the emergency buffer and we note that the buffer is in use.
399  * we then bump the start physical address by the amount that was successfully
400  * output before it died.
401  * On any subsequent DEAD result we just do the bump-ups (we know that we are
402  * already using the emergency dbdma_cmd).
403  * CHECK: this just tries to "do it".  It is possible that we should abandon
404  * xfers when the number of residual bytes gets below a certain value - I can
405  * see that this might cause a loop-forever if a too small transfer causes
406  * DEAD status.  However this is a TODO for now - we'll see what gets reported.
407  * When we get a successful transfer result with the emergency buffer we just
408  * pretend that it completed using the original dmdma_cmd and carry on.  The
409  * 'next_cmd' field will already point back to the original loop of blocks.
410  */
411 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
412                                           volatile struct dbdma_cmd __iomem *cp)
413 {
414         unsigned short req, res ;
415         unsigned int phy ;
416
417         /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
418
419         /* to clear DEAD status we must first clear RUN
420            set it to quiescent to be on the safe side */
421         (void)in_le32(&rec->dma->status);
422         out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
423
424         if (!emergency_in_use) { /* new problem */
425                 memcpy((void *)emergency_dbdma.cmds, (void *)cp,
426                        sizeof(struct dbdma_cmd));
427                 emergency_in_use = 1;
428                 st_le16(&cp->xfer_status, 0);
429                 st_le16(&cp->req_count, rec->period_size);
430                 cp = emergency_dbdma.cmds;
431         }
432
433         /* now bump the values to reflect the amount
434            we haven't yet shifted */
435         req = ld_le16(&cp->req_count);
436         res = ld_le16(&cp->res_count);
437         phy = ld_le32(&cp->phy_addr);
438         phy += (req - res);
439         st_le16(&cp->req_count, res);
440         st_le16(&cp->res_count, 0);
441         st_le16(&cp->xfer_status, 0);
442         st_le32(&cp->phy_addr, phy);
443
444         st_le32(&cp->cmd_dep, rec->cmd.addr
445                 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
446
447         st_le16(&cp->command, OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
448
449         /* point at our patched up command block */
450         out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
451
452         /* we must re-start the controller */
453         (void)in_le32(&rec->dma->status);
454         /* should complete clearing the DEAD status */
455         out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
456 }
457
458 /*
459  * update playback/capture pointer from interrupts
460  */
461 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
462 {
463         volatile struct dbdma_cmd __iomem *cp;
464         int c;
465         int stat;
466
467         spin_lock(&chip->reg_lock);
468         if (rec->running) {
469                 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
470
471                         if (emergency_in_use)   /* already using DEAD xfer? */
472                                 cp = emergency_dbdma.cmds;
473                         else
474                                 cp = &rec->cmd.cmds[rec->cur_period];
475
476                         stat = ld_le16(&cp->xfer_status);
477
478                         if (stat & DEAD) {
479                                 snd_pmac_pcm_dead_xfer(rec, cp);
480                                 break; /* this block is still going */
481                         }
482
483                         if (emergency_in_use)
484                                 emergency_in_use = 0 ; /* done that */
485
486                         if (! (stat & ACTIVE))
487                                 break;
488
489                         /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/
490                         st_le16(&cp->xfer_status, 0);
491                         st_le16(&cp->req_count, rec->period_size);
492                         /*st_le16(&cp->res_count, 0);*/
493                         rec->cur_period++;
494                         if (rec->cur_period >= rec->nperiods) {
495                                 rec->cur_period = 0;
496                         }
497
498                         spin_unlock(&chip->reg_lock);
499                         snd_pcm_period_elapsed(rec->substream);
500                         spin_lock(&chip->reg_lock);
501                 }
502         }
503         spin_unlock(&chip->reg_lock);
504 }
505
506
507 /*
508  * hw info
509  */
510
511 static struct snd_pcm_hardware snd_pmac_playback =
512 {
513         .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
514                                  SNDRV_PCM_INFO_MMAP |
515                                  SNDRV_PCM_INFO_MMAP_VALID |
516                                  SNDRV_PCM_INFO_RESUME),
517         .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
518         .rates =                SNDRV_PCM_RATE_8000_44100,
519         .rate_min =             7350,
520         .rate_max =             44100,
521         .channels_min =         2,
522         .channels_max =         2,
523         .buffer_bytes_max =     131072,
524         .period_bytes_min =     256,
525         .period_bytes_max =     16384,
526         .periods_min =          3,
527         .periods_max =          PMAC_MAX_FRAGS,
528 };
529
530 static struct snd_pcm_hardware snd_pmac_capture =
531 {
532         .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
533                                  SNDRV_PCM_INFO_MMAP |
534                                  SNDRV_PCM_INFO_MMAP_VALID |
535                                  SNDRV_PCM_INFO_RESUME),
536         .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
537         .rates =                SNDRV_PCM_RATE_8000_44100,
538         .rate_min =             7350,
539         .rate_max =             44100,
540         .channels_min =         2,
541         .channels_max =         2,
542         .buffer_bytes_max =     131072,
543         .period_bytes_min =     256,
544         .period_bytes_max =     16384,
545         .periods_min =          3,
546         .periods_max =          PMAC_MAX_FRAGS,
547 };
548
549
550 #if 0 // NYI
551 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
552                                  struct snd_pcm_hw_rule *rule)
553 {
554         struct snd_pmac *chip = rule->private;
555         struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
556         int i, freq_table[8], num_freqs;
557
558         if (! rec)
559                 return -EINVAL;
560         num_freqs = 0;
561         for (i = chip->num_freqs - 1; i >= 0; i--) {
562                 if (rec->cur_freqs & (1 << i))
563                         freq_table[num_freqs++] = chip->freq_table[i];
564         }
565
566         return snd_interval_list(hw_param_interval(params, rule->var),
567                                  num_freqs, freq_table, 0);
568 }
569
570 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
571                                    struct snd_pcm_hw_rule *rule)
572 {
573         struct snd_pmac *chip = rule->private;
574         struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
575
576         if (! rec)
577                 return -EINVAL;
578         return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
579                                    rec->cur_formats);
580 }
581 #endif // NYI
582
583 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
584                              struct snd_pcm_substream *subs)
585 {
586         struct snd_pcm_runtime *runtime = subs->runtime;
587         int i;
588
589         /* look up frequency table and fill bit mask */
590         runtime->hw.rates = 0;
591         for (i = 0; i < chip->num_freqs; i++)
592                 if (chip->freqs_ok & (1 << i))
593                         runtime->hw.rates |=
594                                 snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
595
596         /* check for minimum and maximum rates */
597         for (i = 0; i < chip->num_freqs; i++) {
598                 if (chip->freqs_ok & (1 << i)) {
599                         runtime->hw.rate_max = chip->freq_table[i];
600                         break;
601                 }
602         }
603         for (i = chip->num_freqs - 1; i >= 0; i--) {
604                 if (chip->freqs_ok & (1 << i)) {
605                         runtime->hw.rate_min = chip->freq_table[i];
606                         break;
607                 }
608         }
609         runtime->hw.formats = chip->formats_ok;
610         if (chip->can_capture) {
611                 if (! chip->can_duplex)
612                         runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
613                 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
614         }
615         runtime->private_data = rec;
616         rec->substream = subs;
617
618 #if 0 /* FIXME: still under development.. */
619         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
620                             snd_pmac_hw_rule_rate, chip, rec->stream, -1);
621         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
622                             snd_pmac_hw_rule_format, chip, rec->stream, -1);
623 #endif
624
625         runtime->hw.periods_max = rec->cmd.size - 1;
626
627         /* constraints to fix choppy sound */
628         snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
629         return 0;
630 }
631
632 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
633                               struct snd_pcm_substream *subs)
634 {
635         struct pmac_stream *astr;
636
637         snd_pmac_dma_stop(rec);
638
639         astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
640         if (! astr)
641                 return -EINVAL;
642
643         /* reset constraints */
644         astr->cur_freqs = chip->freqs_ok;
645         astr->cur_formats = chip->formats_ok;
646
647         return 0;
648 }
649
650 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
651 {
652         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
653
654         subs->runtime->hw = snd_pmac_playback;
655         return snd_pmac_pcm_open(chip, &chip->playback, subs);
656 }
657
658 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
659 {
660         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
661
662         subs->runtime->hw = snd_pmac_capture;
663         return snd_pmac_pcm_open(chip, &chip->capture, subs);
664 }
665
666 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
667 {
668         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
669
670         return snd_pmac_pcm_close(chip, &chip->playback, subs);
671 }
672
673 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
674 {
675         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
676
677         return snd_pmac_pcm_close(chip, &chip->capture, subs);
678 }
679
680 /*
681  */
682
683 static struct snd_pcm_ops snd_pmac_playback_ops = {
684         .open =         snd_pmac_playback_open,
685         .close =        snd_pmac_playback_close,
686         .ioctl =        snd_pcm_lib_ioctl,
687         .hw_params =    snd_pmac_pcm_hw_params,
688         .hw_free =      snd_pmac_pcm_hw_free,
689         .prepare =      snd_pmac_playback_prepare,
690         .trigger =      snd_pmac_playback_trigger,
691         .pointer =      snd_pmac_playback_pointer,
692 };
693
694 static struct snd_pcm_ops snd_pmac_capture_ops = {
695         .open =         snd_pmac_capture_open,
696         .close =        snd_pmac_capture_close,
697         .ioctl =        snd_pcm_lib_ioctl,
698         .hw_params =    snd_pmac_pcm_hw_params,
699         .hw_free =      snd_pmac_pcm_hw_free,
700         .prepare =      snd_pmac_capture_prepare,
701         .trigger =      snd_pmac_capture_trigger,
702         .pointer =      snd_pmac_capture_pointer,
703 };
704
705 int __devinit snd_pmac_pcm_new(struct snd_pmac *chip)
706 {
707         struct snd_pcm *pcm;
708         int err;
709         int num_captures = 1;
710
711         if (! chip->can_capture)
712                 num_captures = 0;
713         err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
714         if (err < 0)
715                 return err;
716
717         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
718         if (chip->can_capture)
719                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
720
721         pcm->private_data = chip;
722         pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
723         strcpy(pcm->name, chip->card->shortname);
724         chip->pcm = pcm;
725
726         chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
727         if (chip->can_byte_swap)
728                 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
729
730         chip->playback.cur_formats = chip->formats_ok;
731         chip->capture.cur_formats = chip->formats_ok;
732         chip->playback.cur_freqs = chip->freqs_ok;
733         chip->capture.cur_freqs = chip->freqs_ok;
734
735         /* preallocate 64k buffer */
736         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
737                                               &chip->pdev->dev,
738                                               64 * 1024, 64 * 1024);
739
740         return 0;
741 }
742
743
744 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
745 {
746         out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
747         snd_pmac_wait_ack(&chip->playback);
748         out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
749         snd_pmac_wait_ack(&chip->capture);
750 }
751
752
753 /*
754  * handling beep
755  */
756 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
757 {
758         struct pmac_stream *rec = &chip->playback;
759
760         snd_pmac_dma_stop(rec);
761         st_le16(&chip->extra_dma.cmds->req_count, bytes);
762         st_le16(&chip->extra_dma.cmds->xfer_status, 0);
763         st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
764         st_le32(&chip->extra_dma.cmds->phy_addr, addr);
765         st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
766         out_le32(&chip->awacs->control,
767                  (in_le32(&chip->awacs->control) & ~0x1f00)
768                  | (speed << 8));
769         out_le32(&chip->awacs->byteswap, 0);
770         snd_pmac_dma_set_command(rec, &chip->extra_dma);
771         snd_pmac_dma_run(rec, RUN);
772 }
773
774 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
775 {
776         snd_pmac_dma_stop(&chip->playback);
777         st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
778         snd_pmac_pcm_set_format(chip); /* reset format */
779 }
780
781
782 /*
783  * interrupt handlers
784  */
785 static irqreturn_t
786 snd_pmac_tx_intr(int irq, void *devid)
787 {
788         struct snd_pmac *chip = devid;
789         snd_pmac_pcm_update(chip, &chip->playback);
790         return IRQ_HANDLED;
791 }
792
793
794 static irqreturn_t
795 snd_pmac_rx_intr(int irq, void *devid)
796 {
797         struct snd_pmac *chip = devid;
798         snd_pmac_pcm_update(chip, &chip->capture);
799         return IRQ_HANDLED;
800 }
801
802
803 static irqreturn_t
804 snd_pmac_ctrl_intr(int irq, void *devid)
805 {
806         struct snd_pmac *chip = devid;
807         int ctrl = in_le32(&chip->awacs->control);
808
809         /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/
810         if (ctrl & MASK_PORTCHG) {
811                 /* do something when headphone is plugged/unplugged? */
812                 if (chip->update_automute)
813                         chip->update_automute(chip, 1);
814         }
815         if (ctrl & MASK_CNTLERR) {
816                 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
817                 if (err && chip->model <= PMAC_SCREAMER)
818                         snd_printk(KERN_DEBUG "error %x\n", err);
819         }
820         /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
821         out_le32(&chip->awacs->control, ctrl);
822         return IRQ_HANDLED;
823 }
824
825
826 /*
827  * a wrapper to feature call for compatibility
828  */
829 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
830 {
831         if (ppc_md.feature_call)
832                 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
833 }
834
835 /*
836  * release resources
837  */
838
839 static int snd_pmac_free(struct snd_pmac *chip)
840 {
841         /* stop sounds */
842         if (chip->initialized) {
843                 snd_pmac_dbdma_reset(chip);
844                 /* disable interrupts from awacs interface */
845                 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
846         }
847
848         if (chip->node)
849                 snd_pmac_sound_feature(chip, 0);
850
851         /* clean up mixer if any */
852         if (chip->mixer_free)
853                 chip->mixer_free(chip);
854
855         snd_pmac_detach_beep(chip);
856
857         /* release resources */
858         if (chip->irq >= 0)
859                 free_irq(chip->irq, (void*)chip);
860         if (chip->tx_irq >= 0)
861                 free_irq(chip->tx_irq, (void*)chip);
862         if (chip->rx_irq >= 0)
863                 free_irq(chip->rx_irq, (void*)chip);
864         snd_pmac_dbdma_free(chip, &chip->playback.cmd);
865         snd_pmac_dbdma_free(chip, &chip->capture.cmd);
866         snd_pmac_dbdma_free(chip, &chip->extra_dma);
867         snd_pmac_dbdma_free(chip, &emergency_dbdma);
868         if (chip->macio_base)
869                 iounmap(chip->macio_base);
870         if (chip->latch_base)
871                 iounmap(chip->latch_base);
872         if (chip->awacs)
873                 iounmap(chip->awacs);
874         if (chip->playback.dma)
875                 iounmap(chip->playback.dma);
876         if (chip->capture.dma)
877                 iounmap(chip->capture.dma);
878
879         if (chip->node) {
880                 int i;
881                 for (i = 0; i < 3; i++) {
882                         if (chip->requested & (1 << i))
883                                 release_mem_region(chip->rsrc[i].start,
884                                                    chip->rsrc[i].end -
885                                                    chip->rsrc[i].start + 1);
886                 }
887         }
888
889         if (chip->pdev)
890                 pci_dev_put(chip->pdev);
891         of_node_put(chip->node);
892         kfree(chip);
893         return 0;
894 }
895
896
897 /*
898  * free the device
899  */
900 static int snd_pmac_dev_free(struct snd_device *device)
901 {
902         struct snd_pmac *chip = device->device_data;
903         return snd_pmac_free(chip);
904 }
905
906
907 /*
908  * check the machine support byteswap (little-endian)
909  */
910
911 static void __devinit detect_byte_swap(struct snd_pmac *chip)
912 {
913         struct device_node *mio;
914
915         /* if seems that Keylargo can't byte-swap  */
916         for (mio = chip->node->parent; mio; mio = mio->parent) {
917                 if (strcmp(mio->name, "mac-io") == 0) {
918                         if (of_device_is_compatible(mio, "Keylargo"))
919                                 chip->can_byte_swap = 0;
920                         break;
921                 }
922         }
923
924         /* it seems the Pismo & iBook can't byte-swap in hardware. */
925         if (of_machine_is_compatible("PowerBook3,1") ||
926             of_machine_is_compatible("PowerBook2,1"))
927                 chip->can_byte_swap = 0 ;
928
929         if (of_machine_is_compatible("PowerBook2,1"))
930                 chip->can_duplex = 0;
931 }
932
933
934 /*
935  * detect a sound chip
936  */
937 static int __devinit snd_pmac_detect(struct snd_pmac *chip)
938 {
939         struct device_node *sound;
940         struct device_node *dn;
941         const unsigned int *prop;
942         unsigned int l;
943         struct macio_chip* macio;
944
945         if (!machine_is(powermac))
946                 return -ENODEV;
947
948         chip->subframe = 0;
949         chip->revision = 0;
950         chip->freqs_ok = 0xff; /* all ok */
951         chip->model = PMAC_AWACS;
952         chip->can_byte_swap = 1;
953         chip->can_duplex = 1;
954         chip->can_capture = 1;
955         chip->num_freqs = ARRAY_SIZE(awacs_freqs);
956         chip->freq_table = awacs_freqs;
957         chip->pdev = NULL;
958
959         chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
960
961         /* check machine type */
962         if (of_machine_is_compatible("AAPL,3400/2400")
963             || of_machine_is_compatible("AAPL,3500"))
964                 chip->is_pbook_3400 = 1;
965         else if (of_machine_is_compatible("PowerBook1,1")
966                  || of_machine_is_compatible("AAPL,PowerBook1998"))
967                 chip->is_pbook_G3 = 1;
968         chip->node = of_find_node_by_name(NULL, "awacs");
969         sound = of_node_get(chip->node);
970
971         /*
972          * powermac G3 models have a node called "davbus"
973          * with a child called "sound".
974          */
975         if (!chip->node)
976                 chip->node = of_find_node_by_name(NULL, "davbus");
977         /*
978          * if we didn't find a davbus device, try 'i2s-a' since
979          * this seems to be what iBooks have
980          */
981         if (! chip->node) {
982                 chip->node = of_find_node_by_name(NULL, "i2s-a");
983                 if (chip->node && chip->node->parent &&
984                     chip->node->parent->parent) {
985                         if (of_device_is_compatible(chip->node->parent->parent,
986                                                  "K2-Keylargo"))
987                                 chip->is_k2 = 1;
988                 }
989         }
990         if (! chip->node)
991                 return -ENODEV;
992
993         if (!sound) {
994                 sound = of_find_node_by_name(NULL, "sound");
995                 while (sound && sound->parent != chip->node)
996                         sound = of_find_node_by_name(sound, "sound");
997         }
998         if (! sound) {
999                 of_node_put(chip->node);
1000                 chip->node = NULL;
1001                 return -ENODEV;
1002         }
1003         prop = of_get_property(sound, "sub-frame", NULL);
1004         if (prop && *prop < 16)
1005                 chip->subframe = *prop;
1006         prop = of_get_property(sound, "layout-id", NULL);
1007         if (prop) {
1008                 /* partly deprecate snd-powermac, for those machines
1009                  * that have a layout-id property for now */
1010                 printk(KERN_INFO "snd-powermac no longer handles any "
1011                                  "machines with a layout-id property "
1012                                  "in the device-tree, use snd-aoa.\n");
1013                 of_node_put(sound);
1014                 of_node_put(chip->node);
1015                 chip->node = NULL;
1016                 return -ENODEV;
1017         }
1018         /* This should be verified on older screamers */
1019         if (of_device_is_compatible(sound, "screamer")) {
1020                 chip->model = PMAC_SCREAMER;
1021                 // chip->can_byte_swap = 0; /* FIXME: check this */
1022         }
1023         if (of_device_is_compatible(sound, "burgundy")) {
1024                 chip->model = PMAC_BURGUNDY;
1025                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1026         }
1027         if (of_device_is_compatible(sound, "daca")) {
1028                 chip->model = PMAC_DACA;
1029                 chip->can_capture = 0;  /* no capture */
1030                 chip->can_duplex = 0;
1031                 // chip->can_byte_swap = 0; /* FIXME: check this */
1032                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1033         }
1034         if (of_device_is_compatible(sound, "tumbler")) {
1035                 chip->model = PMAC_TUMBLER;
1036                 chip->can_capture = of_machine_is_compatible("PowerMac4,2")
1037                                 || of_machine_is_compatible("PowerBook4,1");
1038                 chip->can_duplex = 0;
1039                 // chip->can_byte_swap = 0; /* FIXME: check this */
1040                 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1041                 chip->freq_table = tumbler_freqs;
1042                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1043         }
1044         if (of_device_is_compatible(sound, "snapper")) {
1045                 chip->model = PMAC_SNAPPER;
1046                 // chip->can_byte_swap = 0; /* FIXME: check this */
1047                 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1048                 chip->freq_table = tumbler_freqs;
1049                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1050         }
1051         prop = of_get_property(sound, "device-id", NULL);
1052         if (prop)
1053                 chip->device_id = *prop;
1054         dn = of_find_node_by_name(NULL, "perch");
1055         chip->has_iic = (dn != NULL);
1056         of_node_put(dn);
1057
1058         /* We need the PCI device for DMA allocations, let's use a crude method
1059          * for now ...
1060          */
1061         macio = macio_find(chip->node, macio_unknown);
1062         if (macio == NULL)
1063                 printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1064         else {
1065                 struct pci_dev *pdev = NULL;
1066
1067                 for_each_pci_dev(pdev) {
1068                         struct device_node *np = pci_device_to_OF_node(pdev);
1069                         if (np && np == macio->of_node) {
1070                                 chip->pdev = pdev;
1071                                 break;
1072                         }
1073                 }
1074         }
1075         if (chip->pdev == NULL)
1076                 printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1077                        " device !\n");
1078
1079         detect_byte_swap(chip);
1080
1081         /* look for a property saying what sample rates
1082            are available */
1083         prop = of_get_property(sound, "sample-rates", &l);
1084         if (! prop)
1085                 prop = of_get_property(sound, "output-frame-rates", &l);
1086         if (prop) {
1087                 int i;
1088                 chip->freqs_ok = 0;
1089                 for (l /= sizeof(int); l > 0; --l) {
1090                         unsigned int r = *prop++;
1091                         /* Apple 'Fixed' format */
1092                         if (r >= 0x10000)
1093                                 r >>= 16;
1094                         for (i = 0; i < chip->num_freqs; ++i) {
1095                                 if (r == chip->freq_table[i]) {
1096                                         chip->freqs_ok |= (1 << i);
1097                                         break;
1098                                 }
1099                         }
1100                 }
1101         } else {
1102                 /* assume only 44.1khz */
1103                 chip->freqs_ok = 1;
1104         }
1105
1106         of_node_put(sound);
1107         return 0;
1108 }
1109
1110 #ifdef PMAC_SUPPORT_AUTOMUTE
1111 /*
1112  * auto-mute
1113  */
1114 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1115                               struct snd_ctl_elem_value *ucontrol)
1116 {
1117         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1118         ucontrol->value.integer.value[0] = chip->auto_mute;
1119         return 0;
1120 }
1121
1122 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1123                               struct snd_ctl_elem_value *ucontrol)
1124 {
1125         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1126         if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1127                 chip->auto_mute = !!ucontrol->value.integer.value[0];
1128                 if (chip->update_automute)
1129                         chip->update_automute(chip, 1);
1130                 return 1;
1131         }
1132         return 0;
1133 }
1134
1135 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1136                               struct snd_ctl_elem_value *ucontrol)
1137 {
1138         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1139         if (chip->detect_headphone)
1140                 ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1141         else
1142                 ucontrol->value.integer.value[0] = 0;
1143         return 0;
1144 }
1145
1146 static struct snd_kcontrol_new auto_mute_controls[] __devinitdata = {
1147         { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1148           .name = "Auto Mute Switch",
1149           .info = snd_pmac_boolean_mono_info,
1150           .get = pmac_auto_mute_get,
1151           .put = pmac_auto_mute_put,
1152         },
1153         { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1154           .name = "Headphone Detection",
1155           .access = SNDRV_CTL_ELEM_ACCESS_READ,
1156           .info = snd_pmac_boolean_mono_info,
1157           .get = pmac_hp_detect_get,
1158         },
1159 };
1160
1161 int __devinit snd_pmac_add_automute(struct snd_pmac *chip)
1162 {
1163         int err;
1164         chip->auto_mute = 1;
1165         err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1166         if (err < 0) {
1167                 printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1168                 return err;
1169         }
1170         chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1171         return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1172 }
1173 #endif /* PMAC_SUPPORT_AUTOMUTE */
1174
1175 /*
1176  * create and detect a pmac chip record
1177  */
1178 int __devinit snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1179 {
1180         struct snd_pmac *chip;
1181         struct device_node *np;
1182         int i, err;
1183         unsigned int irq;
1184         unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1185         static struct snd_device_ops ops = {
1186                 .dev_free =     snd_pmac_dev_free,
1187         };
1188
1189         *chip_return = NULL;
1190
1191         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1192         if (chip == NULL)
1193                 return -ENOMEM;
1194         chip->card = card;
1195
1196         spin_lock_init(&chip->reg_lock);
1197         chip->irq = chip->tx_irq = chip->rx_irq = -1;
1198
1199         chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1200         chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1201
1202         if ((err = snd_pmac_detect(chip)) < 0)
1203                 goto __error;
1204
1205         if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1206             snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1207             snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1208             snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1209                 err = -ENOMEM;
1210                 goto __error;
1211         }
1212
1213         np = chip->node;
1214         chip->requested = 0;
1215         if (chip->is_k2) {
1216                 static char *rnames[] = {
1217                         "Sound Control", "Sound DMA" };
1218                 for (i = 0; i < 2; i ++) {
1219                         if (of_address_to_resource(np->parent, i,
1220                                                    &chip->rsrc[i])) {
1221                                 printk(KERN_ERR "snd: can't translate rsrc "
1222                                        " %d (%s)\n", i, rnames[i]);
1223                                 err = -ENODEV;
1224                                 goto __error;
1225                         }
1226                         if (request_mem_region(chip->rsrc[i].start,
1227                                                chip->rsrc[i].end -
1228                                                chip->rsrc[i].start + 1,
1229                                                rnames[i]) == NULL) {
1230                                 printk(KERN_ERR "snd: can't request rsrc "
1231                                        " %d (%s: 0x%016llx:%016llx)\n",
1232                                        i, rnames[i],
1233                                        (unsigned long long)chip->rsrc[i].start,
1234                                        (unsigned long long)chip->rsrc[i].end);
1235                                 err = -ENODEV;
1236                                 goto __error;
1237                         }
1238                         chip->requested |= (1 << i);
1239                 }
1240                 ctrl_addr = chip->rsrc[0].start;
1241                 txdma_addr = chip->rsrc[1].start;
1242                 rxdma_addr = txdma_addr + 0x100;
1243         } else {
1244                 static char *rnames[] = {
1245                         "Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1246                 for (i = 0; i < 3; i ++) {
1247                         if (of_address_to_resource(np, i,
1248                                                    &chip->rsrc[i])) {
1249                                 printk(KERN_ERR "snd: can't translate rsrc "
1250                                        " %d (%s)\n", i, rnames[i]);
1251                                 err = -ENODEV;
1252                                 goto __error;
1253                         }
1254                         if (request_mem_region(chip->rsrc[i].start,
1255                                                chip->rsrc[i].end -
1256                                                chip->rsrc[i].start + 1,
1257                                                rnames[i]) == NULL) {
1258                                 printk(KERN_ERR "snd: can't request rsrc "
1259                                        " %d (%s: 0x%016llx:%016llx)\n",
1260                                        i, rnames[i],
1261                                        (unsigned long long)chip->rsrc[i].start,
1262                                        (unsigned long long)chip->rsrc[i].end);
1263                                 err = -ENODEV;
1264                                 goto __error;
1265                         }
1266                         chip->requested |= (1 << i);
1267                 }
1268                 ctrl_addr = chip->rsrc[0].start;
1269                 txdma_addr = chip->rsrc[1].start;
1270                 rxdma_addr = chip->rsrc[2].start;
1271         }
1272
1273         chip->awacs = ioremap(ctrl_addr, 0x1000);
1274         chip->playback.dma = ioremap(txdma_addr, 0x100);
1275         chip->capture.dma = ioremap(rxdma_addr, 0x100);
1276         if (chip->model <= PMAC_BURGUNDY) {
1277                 irq = irq_of_parse_and_map(np, 0);
1278                 if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1279                                 "PMac", (void*)chip)) {
1280                         snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1281                                    irq);
1282                         err = -EBUSY;
1283                         goto __error;
1284                 }
1285                 chip->irq = irq;
1286         }
1287         irq = irq_of_parse_and_map(np, 1);
1288         if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1289                 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1290                 err = -EBUSY;
1291                 goto __error;
1292         }
1293         chip->tx_irq = irq;
1294         irq = irq_of_parse_and_map(np, 2);
1295         if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1296                 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1297                 err = -EBUSY;
1298                 goto __error;
1299         }
1300         chip->rx_irq = irq;
1301
1302         snd_pmac_sound_feature(chip, 1);
1303
1304         /* reset & enable interrupts */
1305         if (chip->model <= PMAC_BURGUNDY)
1306                 out_le32(&chip->awacs->control, chip->control_mask);
1307
1308         /* Powerbooks have odd ways of enabling inputs such as
1309            an expansion-bay CD or sound from an internal modem
1310            or a PC-card modem. */
1311         if (chip->is_pbook_3400) {
1312                 /* Enable CD and PC-card sound inputs. */
1313                 /* This is done by reading from address
1314                  * f301a000, + 0x10 to enable the expansion-bay
1315                  * CD sound input, + 0x80 to enable the PC-card
1316                  * sound input.  The 0x100 enables the SCSI bus
1317                  * terminator power.
1318                  */
1319                 chip->latch_base = ioremap (0xf301a000, 0x1000);
1320                 in_8(chip->latch_base + 0x190);
1321         } else if (chip->is_pbook_G3) {
1322                 struct device_node* mio;
1323                 for (mio = chip->node->parent; mio; mio = mio->parent) {
1324                         if (strcmp(mio->name, "mac-io") == 0) {
1325                                 struct resource r;
1326                                 if (of_address_to_resource(mio, 0, &r) == 0)
1327                                         chip->macio_base =
1328                                                 ioremap(r.start, 0x40);
1329                                 break;
1330                         }
1331                 }
1332                 /* Enable CD sound input. */
1333                 /* The relevant bits for writing to this byte are 0x8f.
1334                  * I haven't found out what the 0x80 bit does.
1335                  * For the 0xf bits, writing 3 or 7 enables the CD
1336                  * input, any other value disables it.  Values
1337                  * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1338                  * 4, 6, 8 - f enable the input from the modem.
1339                  */
1340                 if (chip->macio_base)
1341                         out_8(chip->macio_base + 0x37, 3);
1342         }
1343
1344         /* Reset dbdma channels */
1345         snd_pmac_dbdma_reset(chip);
1346
1347         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1348                 goto __error;
1349
1350         *chip_return = chip;
1351         return 0;
1352
1353  __error:
1354         snd_pmac_free(chip);
1355         return err;
1356 }
1357
1358
1359 /*
1360  * sleep notify for powerbook
1361  */
1362
1363 #ifdef CONFIG_PM
1364
1365 /*
1366  * Save state when going to sleep, restore it afterwards.
1367  */
1368
1369 void snd_pmac_suspend(struct snd_pmac *chip)
1370 {
1371         unsigned long flags;
1372
1373         snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1374         if (chip->suspend)
1375                 chip->suspend(chip);
1376         snd_pcm_suspend_all(chip->pcm);
1377         spin_lock_irqsave(&chip->reg_lock, flags);
1378         snd_pmac_beep_stop(chip);
1379         spin_unlock_irqrestore(&chip->reg_lock, flags);
1380         if (chip->irq >= 0)
1381                 disable_irq(chip->irq);
1382         if (chip->tx_irq >= 0)
1383                 disable_irq(chip->tx_irq);
1384         if (chip->rx_irq >= 0)
1385                 disable_irq(chip->rx_irq);
1386         snd_pmac_sound_feature(chip, 0);
1387 }
1388
1389 void snd_pmac_resume(struct snd_pmac *chip)
1390 {
1391         snd_pmac_sound_feature(chip, 1);
1392         if (chip->resume)
1393                 chip->resume(chip);
1394         /* enable CD sound input */
1395         if (chip->macio_base && chip->is_pbook_G3)
1396                 out_8(chip->macio_base + 0x37, 3);
1397         else if (chip->is_pbook_3400)
1398                 in_8(chip->latch_base + 0x190);
1399
1400         snd_pmac_pcm_set_format(chip);
1401
1402         if (chip->irq >= 0)
1403                 enable_irq(chip->irq);
1404         if (chip->tx_irq >= 0)
1405                 enable_irq(chip->tx_irq);
1406         if (chip->rx_irq >= 0)
1407                 enable_irq(chip->rx_irq);
1408
1409         snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1410 }
1411
1412 #endif /* CONFIG_PM */
1413