]> git.karo-electronics.de Git - karo-tx-linux.git/blob - sound/soc/soc-core.c
68edc693a8a528d0067517bc2c9edaf6d50c5371
[karo-tx-linux.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE       32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 static struct dentry *debugfs_root;
52 #endif
53
54 static DEFINE_MUTEX(client_mutex);
55 static LIST_HEAD(card_list);
56 static LIST_HEAD(dai_list);
57 static LIST_HEAD(platform_list);
58 static LIST_HEAD(codec_list);
59
60 static int snd_soc_register_card(struct snd_soc_card *card);
61 static int snd_soc_unregister_card(struct snd_soc_card *card);
62 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
63
64 /*
65  * This is a timeout to do a DAPM powerdown after a stream is closed().
66  * It can be used to eliminate pops between different playback streams, e.g.
67  * between two audio tracks.
68  */
69 static int pmdown_time = 5000;
70 module_param(pmdown_time, int, 0);
71 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
72
73 /* codec register dump */
74 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
75 {
76         int ret, i, step = 1, count = 0;
77
78         if (!codec->driver->reg_cache_size)
79                 return 0;
80
81         if (codec->driver->reg_cache_step)
82                 step = codec->driver->reg_cache_step;
83
84         count += sprintf(buf, "%s registers\n", codec->name);
85         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
86                 if (codec->driver->readable_register && !codec->driver->readable_register(i))
87                         continue;
88
89                 count += sprintf(buf + count, "%2x: ", i);
90                 if (count >= PAGE_SIZE - 1)
91                         break;
92
93                 if (codec->driver->display_register) {
94                         count += codec->driver->display_register(codec, buf + count,
95                                                          PAGE_SIZE - count, i);
96                 } else {
97                         /* If the read fails it's almost certainly due to
98                          * the register being volatile and the device being
99                          * powered off.
100                          */
101                         ret = snd_soc_read(codec, i);
102                         if (ret >= 0)
103                                 count += snprintf(buf + count,
104                                                   PAGE_SIZE - count,
105                                                   "%4x", ret);
106                         else
107                                 count += snprintf(buf + count,
108                                                   PAGE_SIZE - count,
109                                                   "<no data: %d>", ret);
110                 }
111
112                 if (count >= PAGE_SIZE - 1)
113                         break;
114
115                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
116                 if (count >= PAGE_SIZE - 1)
117                         break;
118         }
119
120         /* Truncate count; min() would cause a warning */
121         if (count >= PAGE_SIZE)
122                 count = PAGE_SIZE - 1;
123
124         return count;
125 }
126 static ssize_t codec_reg_show(struct device *dev,
127         struct device_attribute *attr, char *buf)
128 {
129         struct snd_soc_pcm_runtime *rtd =
130                         container_of(dev, struct snd_soc_pcm_runtime, dev);
131
132         return soc_codec_reg_show(rtd->codec, buf);
133 }
134
135 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
136
137 static ssize_t pmdown_time_show(struct device *dev,
138                                 struct device_attribute *attr, char *buf)
139 {
140         struct snd_soc_pcm_runtime *rtd =
141                         container_of(dev, struct snd_soc_pcm_runtime, dev);
142
143         return sprintf(buf, "%ld\n", rtd->pmdown_time);
144 }
145
146 static ssize_t pmdown_time_set(struct device *dev,
147                                struct device_attribute *attr,
148                                const char *buf, size_t count)
149 {
150         struct snd_soc_pcm_runtime *rtd =
151                         container_of(dev, struct snd_soc_pcm_runtime, dev);
152         int ret;
153
154         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
155         if (ret)
156                 return ret;
157
158         return count;
159 }
160
161 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
162
163 #ifdef CONFIG_DEBUG_FS
164 static int codec_reg_open_file(struct inode *inode, struct file *file)
165 {
166         file->private_data = inode->i_private;
167         return 0;
168 }
169
170 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
171                                size_t count, loff_t *ppos)
172 {
173         ssize_t ret;
174         struct snd_soc_codec *codec = file->private_data;
175         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
176         if (!buf)
177                 return -ENOMEM;
178         ret = soc_codec_reg_show(codec, buf);
179         if (ret >= 0)
180                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
181         kfree(buf);
182         return ret;
183 }
184
185 static ssize_t codec_reg_write_file(struct file *file,
186                 const char __user *user_buf, size_t count, loff_t *ppos)
187 {
188         char buf[32];
189         int buf_size;
190         char *start = buf;
191         unsigned long reg, value;
192         int step = 1;
193         struct snd_soc_codec *codec = file->private_data;
194
195         buf_size = min(count, (sizeof(buf)-1));
196         if (copy_from_user(buf, user_buf, buf_size))
197                 return -EFAULT;
198         buf[buf_size] = 0;
199
200         if (codec->driver->reg_cache_step)
201                 step = codec->driver->reg_cache_step;
202
203         while (*start == ' ')
204                 start++;
205         reg = simple_strtoul(start, &start, 16);
206         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
207                 return -EINVAL;
208         while (*start == ' ')
209                 start++;
210         if (strict_strtoul(start, 16, &value))
211                 return -EINVAL;
212         snd_soc_write(codec, reg, value);
213         return buf_size;
214 }
215
216 static const struct file_operations codec_reg_fops = {
217         .open = codec_reg_open_file,
218         .read = codec_reg_read_file,
219         .write = codec_reg_write_file,
220         .llseek = default_llseek,
221 };
222
223 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
224 {
225         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
226
227         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
228                                                        debugfs_card_root);
229         if (!codec->debugfs_codec_root) {
230                 printk(KERN_WARNING
231                        "ASoC: Failed to create codec debugfs directory\n");
232                 return;
233         }
234
235         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
236                                                  codec->debugfs_codec_root,
237                                                  codec, &codec_reg_fops);
238         if (!codec->debugfs_reg)
239                 printk(KERN_WARNING
240                        "ASoC: Failed to create codec register debugfs file\n");
241
242         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
243                                                  codec->debugfs_codec_root);
244         if (!codec->dapm.debugfs_dapm)
245                 printk(KERN_WARNING
246                        "Failed to create DAPM debugfs directory\n");
247
248         snd_soc_dapm_debugfs_init(&codec->dapm);
249 }
250
251 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
252 {
253         debugfs_remove_recursive(codec->debugfs_codec_root);
254 }
255
256 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
257                                     size_t count, loff_t *ppos)
258 {
259         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
260         ssize_t len, ret = 0;
261         struct snd_soc_codec *codec;
262
263         if (!buf)
264                 return -ENOMEM;
265
266         list_for_each_entry(codec, &codec_list, list) {
267                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
268                                codec->name);
269                 if (len >= 0)
270                         ret += len;
271                 if (ret > PAGE_SIZE) {
272                         ret = PAGE_SIZE;
273                         break;
274                 }
275         }
276
277         if (ret >= 0)
278                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
279
280         kfree(buf);
281
282         return ret;
283 }
284
285 static const struct file_operations codec_list_fops = {
286         .read = codec_list_read_file,
287         .llseek = default_llseek,/* read accesses f_pos */
288 };
289
290 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
291                                   size_t count, loff_t *ppos)
292 {
293         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
294         ssize_t len, ret = 0;
295         struct snd_soc_dai *dai;
296
297         if (!buf)
298                 return -ENOMEM;
299
300         list_for_each_entry(dai, &dai_list, list) {
301                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
302                 if (len >= 0)
303                         ret += len;
304                 if (ret > PAGE_SIZE) {
305                         ret = PAGE_SIZE;
306                         break;
307                 }
308         }
309
310         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
311
312         kfree(buf);
313
314         return ret;
315 }
316
317 static const struct file_operations dai_list_fops = {
318         .read = dai_list_read_file,
319         .llseek = default_llseek,/* read accesses f_pos */
320 };
321
322 static ssize_t platform_list_read_file(struct file *file,
323                                        char __user *user_buf,
324                                        size_t count, loff_t *ppos)
325 {
326         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
327         ssize_t len, ret = 0;
328         struct snd_soc_platform *platform;
329
330         if (!buf)
331                 return -ENOMEM;
332
333         list_for_each_entry(platform, &platform_list, list) {
334                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
335                                platform->name);
336                 if (len >= 0)
337                         ret += len;
338                 if (ret > PAGE_SIZE) {
339                         ret = PAGE_SIZE;
340                         break;
341                 }
342         }
343
344         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
345
346         kfree(buf);
347
348         return ret;
349 }
350
351 static const struct file_operations platform_list_fops = {
352         .read = platform_list_read_file,
353         .llseek = default_llseek,/* read accesses f_pos */
354 };
355
356 static void soc_init_card_debugfs(struct snd_soc_card *card)
357 {
358         card->debugfs_card_root = debugfs_create_dir(card->name,
359                                                      debugfs_root);
360         if (!card->debugfs_card_root) {
361                 dev_warn(card->dev,
362                          "ASoC: Failed to create codec debugfs directory\n");
363                 return;
364         }
365
366         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
367                                                     card->debugfs_card_root,
368                                                     &card->pop_time);
369         if (!card->debugfs_pop_time)
370                 dev_warn(card->dev,
371                        "Failed to create pop time debugfs file\n");
372 }
373
374 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
375 {
376         debugfs_remove_recursive(card->debugfs_card_root);
377 }
378
379 #else
380
381 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
382 {
383 }
384
385 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
386 {
387 }
388
389 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
390 {
391 }
392
393 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
394 {
395 }
396 #endif
397
398 #ifdef CONFIG_SND_SOC_AC97_BUS
399 /* unregister ac97 codec */
400 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
401 {
402         if (codec->ac97->dev.bus)
403                 device_unregister(&codec->ac97->dev);
404         return 0;
405 }
406
407 /* stop no dev release warning */
408 static void soc_ac97_device_release(struct device *dev){}
409
410 /* register ac97 codec to bus */
411 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
412 {
413         int err;
414
415         codec->ac97->dev.bus = &ac97_bus_type;
416         codec->ac97->dev.parent = codec->card->dev;
417         codec->ac97->dev.release = soc_ac97_device_release;
418
419         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
420                      codec->card->snd_card->number, 0, codec->name);
421         err = device_register(&codec->ac97->dev);
422         if (err < 0) {
423                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
424                 codec->ac97->dev.bus = NULL;
425                 return err;
426         }
427         return 0;
428 }
429 #endif
430
431 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
432 {
433         struct snd_soc_pcm_runtime *rtd = substream->private_data;
434         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
435         struct snd_soc_dai *codec_dai = rtd->codec_dai;
436         int ret;
437
438         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
439                         rtd->dai_link->symmetric_rates) {
440                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
441                                 rtd->rate);
442
443                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
444                                                    SNDRV_PCM_HW_PARAM_RATE,
445                                                    rtd->rate,
446                                                    rtd->rate);
447                 if (ret < 0) {
448                         dev_err(&rtd->dev,
449                                 "Unable to apply rate symmetry constraint: %d\n", ret);
450                         return ret;
451                 }
452         }
453
454         return 0;
455 }
456
457 /*
458  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
459  * then initialized and any private data can be allocated. This also calls
460  * startup for the cpu DAI, platform, machine and codec DAI.
461  */
462 static int soc_pcm_open(struct snd_pcm_substream *substream)
463 {
464         struct snd_soc_pcm_runtime *rtd = substream->private_data;
465         struct snd_pcm_runtime *runtime = substream->runtime;
466         struct snd_soc_platform *platform = rtd->platform;
467         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
468         struct snd_soc_dai *codec_dai = rtd->codec_dai;
469         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
470         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
471         int ret = 0;
472
473         mutex_lock(&pcm_mutex);
474
475         /* startup the audio subsystem */
476         if (cpu_dai->driver->ops->startup) {
477                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
478                 if (ret < 0) {
479                         printk(KERN_ERR "asoc: can't open interface %s\n",
480                                 cpu_dai->name);
481                         goto out;
482                 }
483         }
484
485         if (platform->driver->ops->open) {
486                 ret = platform->driver->ops->open(substream);
487                 if (ret < 0) {
488                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
489                         goto platform_err;
490                 }
491         }
492
493         if (codec_dai->driver->ops->startup) {
494                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
495                 if (ret < 0) {
496                         printk(KERN_ERR "asoc: can't open codec %s\n",
497                                 codec_dai->name);
498                         goto codec_dai_err;
499                 }
500         }
501
502         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
503                 ret = rtd->dai_link->ops->startup(substream);
504                 if (ret < 0) {
505                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
506                         goto machine_err;
507                 }
508         }
509
510         /* Check that the codec and cpu DAIs are compatible */
511         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
512                 runtime->hw.rate_min =
513                         max(codec_dai_drv->playback.rate_min,
514                             cpu_dai_drv->playback.rate_min);
515                 runtime->hw.rate_max =
516                         min(codec_dai_drv->playback.rate_max,
517                             cpu_dai_drv->playback.rate_max);
518                 runtime->hw.channels_min =
519                         max(codec_dai_drv->playback.channels_min,
520                                 cpu_dai_drv->playback.channels_min);
521                 runtime->hw.channels_max =
522                         min(codec_dai_drv->playback.channels_max,
523                                 cpu_dai_drv->playback.channels_max);
524                 runtime->hw.formats =
525                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
526                 runtime->hw.rates =
527                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
528                 if (codec_dai_drv->playback.rates
529                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
530                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
531                 if (cpu_dai_drv->playback.rates
532                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
533                         runtime->hw.rates |= codec_dai_drv->playback.rates;
534         } else {
535                 runtime->hw.rate_min =
536                         max(codec_dai_drv->capture.rate_min,
537                             cpu_dai_drv->capture.rate_min);
538                 runtime->hw.rate_max =
539                         min(codec_dai_drv->capture.rate_max,
540                             cpu_dai_drv->capture.rate_max);
541                 runtime->hw.channels_min =
542                         max(codec_dai_drv->capture.channels_min,
543                                 cpu_dai_drv->capture.channels_min);
544                 runtime->hw.channels_max =
545                         min(codec_dai_drv->capture.channels_max,
546                                 cpu_dai_drv->capture.channels_max);
547                 runtime->hw.formats =
548                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
549                 runtime->hw.rates =
550                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
551                 if (codec_dai_drv->capture.rates
552                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
553                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
554                 if (cpu_dai_drv->capture.rates
555                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
556                         runtime->hw.rates |= codec_dai_drv->capture.rates;
557         }
558
559         snd_pcm_limit_hw_rates(runtime);
560         if (!runtime->hw.rates) {
561                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
562                         codec_dai->name, cpu_dai->name);
563                 goto config_err;
564         }
565         if (!runtime->hw.formats) {
566                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
567                         codec_dai->name, cpu_dai->name);
568                 goto config_err;
569         }
570         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
571                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
572                                 codec_dai->name, cpu_dai->name);
573                 goto config_err;
574         }
575
576         /* Symmetry only applies if we've already got an active stream. */
577         if (cpu_dai->active || codec_dai->active) {
578                 ret = soc_pcm_apply_symmetry(substream);
579                 if (ret != 0)
580                         goto config_err;
581         }
582
583         pr_debug("asoc: %s <-> %s info:\n",
584                         codec_dai->name, cpu_dai->name);
585         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
586         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
587                  runtime->hw.channels_max);
588         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
589                  runtime->hw.rate_max);
590
591         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
592                 cpu_dai->playback_active++;
593                 codec_dai->playback_active++;
594         } else {
595                 cpu_dai->capture_active++;
596                 codec_dai->capture_active++;
597         }
598         cpu_dai->active++;
599         codec_dai->active++;
600         rtd->codec->active++;
601         mutex_unlock(&pcm_mutex);
602         return 0;
603
604 config_err:
605         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
606                 rtd->dai_link->ops->shutdown(substream);
607
608 machine_err:
609         if (codec_dai->driver->ops->shutdown)
610                 codec_dai->driver->ops->shutdown(substream, codec_dai);
611
612 codec_dai_err:
613         if (platform->driver->ops->close)
614                 platform->driver->ops->close(substream);
615
616 platform_err:
617         if (cpu_dai->driver->ops->shutdown)
618                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
619 out:
620         mutex_unlock(&pcm_mutex);
621         return ret;
622 }
623
624 /*
625  * Power down the audio subsystem pmdown_time msecs after close is called.
626  * This is to ensure there are no pops or clicks in between any music tracks
627  * due to DAPM power cycling.
628  */
629 static void close_delayed_work(struct work_struct *work)
630 {
631         struct snd_soc_pcm_runtime *rtd =
632                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
633         struct snd_soc_dai *codec_dai = rtd->codec_dai;
634
635         mutex_lock(&pcm_mutex);
636
637         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
638                  codec_dai->driver->playback.stream_name,
639                  codec_dai->playback_active ? "active" : "inactive",
640                  codec_dai->pop_wait ? "yes" : "no");
641
642         /* are we waiting on this codec DAI stream */
643         if (codec_dai->pop_wait == 1) {
644                 codec_dai->pop_wait = 0;
645                 snd_soc_dapm_stream_event(rtd,
646                         codec_dai->driver->playback.stream_name,
647                         SND_SOC_DAPM_STREAM_STOP);
648         }
649
650         mutex_unlock(&pcm_mutex);
651 }
652
653 /*
654  * Called by ALSA when a PCM substream is closed. Private data can be
655  * freed here. The cpu DAI, codec DAI, machine and platform are also
656  * shutdown.
657  */
658 static int soc_codec_close(struct snd_pcm_substream *substream)
659 {
660         struct snd_soc_pcm_runtime *rtd = substream->private_data;
661         struct snd_soc_platform *platform = rtd->platform;
662         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
663         struct snd_soc_dai *codec_dai = rtd->codec_dai;
664         struct snd_soc_codec *codec = rtd->codec;
665
666         mutex_lock(&pcm_mutex);
667
668         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
669                 cpu_dai->playback_active--;
670                 codec_dai->playback_active--;
671         } else {
672                 cpu_dai->capture_active--;
673                 codec_dai->capture_active--;
674         }
675
676         cpu_dai->active--;
677         codec_dai->active--;
678         codec->active--;
679
680         /* Muting the DAC suppresses artifacts caused during digital
681          * shutdown, for example from stopping clocks.
682          */
683         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
684                 snd_soc_dai_digital_mute(codec_dai, 1);
685
686         if (cpu_dai->driver->ops->shutdown)
687                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
688
689         if (codec_dai->driver->ops->shutdown)
690                 codec_dai->driver->ops->shutdown(substream, codec_dai);
691
692         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
693                 rtd->dai_link->ops->shutdown(substream);
694
695         if (platform->driver->ops->close)
696                 platform->driver->ops->close(substream);
697         cpu_dai->runtime = NULL;
698
699         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
700                 /* start delayed pop wq here for playback streams */
701                 codec_dai->pop_wait = 1;
702                 schedule_delayed_work(&rtd->delayed_work,
703                         msecs_to_jiffies(rtd->pmdown_time));
704         } else {
705                 /* capture streams can be powered down now */
706                 snd_soc_dapm_stream_event(rtd,
707                         codec_dai->driver->capture.stream_name,
708                         SND_SOC_DAPM_STREAM_STOP);
709         }
710
711         mutex_unlock(&pcm_mutex);
712         return 0;
713 }
714
715 /*
716  * Called by ALSA when the PCM substream is prepared, can set format, sample
717  * rate, etc.  This function is non atomic and can be called multiple times,
718  * it can refer to the runtime info.
719  */
720 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
721 {
722         struct snd_soc_pcm_runtime *rtd = substream->private_data;
723         struct snd_soc_platform *platform = rtd->platform;
724         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
725         struct snd_soc_dai *codec_dai = rtd->codec_dai;
726         int ret = 0;
727
728         mutex_lock(&pcm_mutex);
729
730         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
731                 ret = rtd->dai_link->ops->prepare(substream);
732                 if (ret < 0) {
733                         printk(KERN_ERR "asoc: machine prepare error\n");
734                         goto out;
735                 }
736         }
737
738         if (platform->driver->ops->prepare) {
739                 ret = platform->driver->ops->prepare(substream);
740                 if (ret < 0) {
741                         printk(KERN_ERR "asoc: platform prepare error\n");
742                         goto out;
743                 }
744         }
745
746         if (codec_dai->driver->ops->prepare) {
747                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
748                 if (ret < 0) {
749                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
750                         goto out;
751                 }
752         }
753
754         if (cpu_dai->driver->ops->prepare) {
755                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
756                 if (ret < 0) {
757                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
758                         goto out;
759                 }
760         }
761
762         /* cancel any delayed stream shutdown that is pending */
763         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
764             codec_dai->pop_wait) {
765                 codec_dai->pop_wait = 0;
766                 cancel_delayed_work(&rtd->delayed_work);
767         }
768
769         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
770                 snd_soc_dapm_stream_event(rtd,
771                                           codec_dai->driver->playback.stream_name,
772                                           SND_SOC_DAPM_STREAM_START);
773         else
774                 snd_soc_dapm_stream_event(rtd,
775                                           codec_dai->driver->capture.stream_name,
776                                           SND_SOC_DAPM_STREAM_START);
777
778         snd_soc_dai_digital_mute(codec_dai, 0);
779
780 out:
781         mutex_unlock(&pcm_mutex);
782         return ret;
783 }
784
785 /*
786  * Called by ALSA when the hardware params are set by application. This
787  * function can also be called multiple times and can allocate buffers
788  * (using snd_pcm_lib_* ). It's non-atomic.
789  */
790 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
791                                 struct snd_pcm_hw_params *params)
792 {
793         struct snd_soc_pcm_runtime *rtd = substream->private_data;
794         struct snd_soc_platform *platform = rtd->platform;
795         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
796         struct snd_soc_dai *codec_dai = rtd->codec_dai;
797         int ret = 0;
798
799         mutex_lock(&pcm_mutex);
800
801         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
802                 ret = rtd->dai_link->ops->hw_params(substream, params);
803                 if (ret < 0) {
804                         printk(KERN_ERR "asoc: machine hw_params failed\n");
805                         goto out;
806                 }
807         }
808
809         if (codec_dai->driver->ops->hw_params) {
810                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
811                 if (ret < 0) {
812                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
813                                 codec_dai->name);
814                         goto codec_err;
815                 }
816         }
817
818         if (cpu_dai->driver->ops->hw_params) {
819                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
820                 if (ret < 0) {
821                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
822                                 cpu_dai->name);
823                         goto interface_err;
824                 }
825         }
826
827         if (platform->driver->ops->hw_params) {
828                 ret = platform->driver->ops->hw_params(substream, params);
829                 if (ret < 0) {
830                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
831                                 platform->name);
832                         goto platform_err;
833                 }
834         }
835
836         rtd->rate = params_rate(params);
837
838 out:
839         mutex_unlock(&pcm_mutex);
840         return ret;
841
842 platform_err:
843         if (cpu_dai->driver->ops->hw_free)
844                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
845
846 interface_err:
847         if (codec_dai->driver->ops->hw_free)
848                 codec_dai->driver->ops->hw_free(substream, codec_dai);
849
850 codec_err:
851         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
852                 rtd->dai_link->ops->hw_free(substream);
853
854         mutex_unlock(&pcm_mutex);
855         return ret;
856 }
857
858 /*
859  * Frees resources allocated by hw_params, can be called multiple times
860  */
861 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
862 {
863         struct snd_soc_pcm_runtime *rtd = substream->private_data;
864         struct snd_soc_platform *platform = rtd->platform;
865         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
866         struct snd_soc_dai *codec_dai = rtd->codec_dai;
867         struct snd_soc_codec *codec = rtd->codec;
868
869         mutex_lock(&pcm_mutex);
870
871         /* apply codec digital mute */
872         if (!codec->active)
873                 snd_soc_dai_digital_mute(codec_dai, 1);
874
875         /* free any machine hw params */
876         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
877                 rtd->dai_link->ops->hw_free(substream);
878
879         /* free any DMA resources */
880         if (platform->driver->ops->hw_free)
881                 platform->driver->ops->hw_free(substream);
882
883         /* now free hw params for the DAIs  */
884         if (codec_dai->driver->ops->hw_free)
885                 codec_dai->driver->ops->hw_free(substream, codec_dai);
886
887         if (cpu_dai->driver->ops->hw_free)
888                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
889
890         mutex_unlock(&pcm_mutex);
891         return 0;
892 }
893
894 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
895 {
896         struct snd_soc_pcm_runtime *rtd = substream->private_data;
897         struct snd_soc_platform *platform = rtd->platform;
898         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
899         struct snd_soc_dai *codec_dai = rtd->codec_dai;
900         int ret;
901
902         if (codec_dai->driver->ops->trigger) {
903                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
904                 if (ret < 0)
905                         return ret;
906         }
907
908         if (platform->driver->ops->trigger) {
909                 ret = platform->driver->ops->trigger(substream, cmd);
910                 if (ret < 0)
911                         return ret;
912         }
913
914         if (cpu_dai->driver->ops->trigger) {
915                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
916                 if (ret < 0)
917                         return ret;
918         }
919         return 0;
920 }
921
922 /*
923  * soc level wrapper for pointer callback
924  * If cpu_dai, codec_dai, platform driver has the delay callback, than
925  * the runtime->delay will be updated accordingly.
926  */
927 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
928 {
929         struct snd_soc_pcm_runtime *rtd = substream->private_data;
930         struct snd_soc_platform *platform = rtd->platform;
931         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
932         struct snd_soc_dai *codec_dai = rtd->codec_dai;
933         struct snd_pcm_runtime *runtime = substream->runtime;
934         snd_pcm_uframes_t offset = 0;
935         snd_pcm_sframes_t delay = 0;
936
937         if (platform->driver->ops->pointer)
938                 offset = platform->driver->ops->pointer(substream);
939
940         if (cpu_dai->driver->ops->delay)
941                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
942
943         if (codec_dai->driver->ops->delay)
944                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
945
946         if (platform->driver->delay)
947                 delay += platform->driver->delay(substream, codec_dai);
948
949         runtime->delay = delay;
950
951         return offset;
952 }
953
954 /* ASoC PCM operations */
955 static struct snd_pcm_ops soc_pcm_ops = {
956         .open           = soc_pcm_open,
957         .close          = soc_codec_close,
958         .hw_params      = soc_pcm_hw_params,
959         .hw_free        = soc_pcm_hw_free,
960         .prepare        = soc_pcm_prepare,
961         .trigger        = soc_pcm_trigger,
962         .pointer        = soc_pcm_pointer,
963 };
964
965 #ifdef CONFIG_PM
966 /* powers down audio subsystem for suspend */
967 static int soc_suspend(struct device *dev)
968 {
969         struct platform_device *pdev = to_platform_device(dev);
970         struct snd_soc_card *card = platform_get_drvdata(pdev);
971         struct snd_soc_codec *codec;
972         int i;
973
974         /* If the initialization of this soc device failed, there is no codec
975          * associated with it. Just bail out in this case.
976          */
977         if (list_empty(&card->codec_dev_list))
978                 return 0;
979
980         /* Due to the resume being scheduled into a workqueue we could
981         * suspend before that's finished - wait for it to complete.
982          */
983         snd_power_lock(card->snd_card);
984         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
985         snd_power_unlock(card->snd_card);
986
987         /* we're going to block userspace touching us until resume completes */
988         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
989
990         /* mute any active DACs */
991         for (i = 0; i < card->num_rtd; i++) {
992                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
993                 struct snd_soc_dai_driver *drv = dai->driver;
994
995                 if (card->rtd[i].dai_link->ignore_suspend)
996                         continue;
997
998                 if (drv->ops->digital_mute && dai->playback_active)
999                         drv->ops->digital_mute(dai, 1);
1000         }
1001
1002         /* suspend all pcms */
1003         for (i = 0; i < card->num_rtd; i++) {
1004                 if (card->rtd[i].dai_link->ignore_suspend)
1005                         continue;
1006
1007                 snd_pcm_suspend_all(card->rtd[i].pcm);
1008         }
1009
1010         if (card->suspend_pre)
1011                 card->suspend_pre(pdev, PMSG_SUSPEND);
1012
1013         for (i = 0; i < card->num_rtd; i++) {
1014                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1015                 struct snd_soc_platform *platform = card->rtd[i].platform;
1016
1017                 if (card->rtd[i].dai_link->ignore_suspend)
1018                         continue;
1019
1020                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1021                         cpu_dai->driver->suspend(cpu_dai);
1022                 if (platform->driver->suspend && !platform->suspended) {
1023                         platform->driver->suspend(cpu_dai);
1024                         platform->suspended = 1;
1025                 }
1026         }
1027
1028         /* close any waiting streams and save state */
1029         for (i = 0; i < card->num_rtd; i++) {
1030                 flush_delayed_work_sync(&card->rtd[i].delayed_work);
1031                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1032         }
1033
1034         for (i = 0; i < card->num_rtd; i++) {
1035                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1036
1037                 if (card->rtd[i].dai_link->ignore_suspend)
1038                         continue;
1039
1040                 if (driver->playback.stream_name != NULL)
1041                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1042                                 SND_SOC_DAPM_STREAM_SUSPEND);
1043
1044                 if (driver->capture.stream_name != NULL)
1045                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1046                                 SND_SOC_DAPM_STREAM_SUSPEND);
1047         }
1048
1049         /* suspend all CODECs */
1050         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1051                 /* If there are paths active then the CODEC will be held with
1052                  * bias _ON and should not be suspended. */
1053                 if (!codec->suspended && codec->driver->suspend) {
1054                         switch (codec->dapm.bias_level) {
1055                         case SND_SOC_BIAS_STANDBY:
1056                         case SND_SOC_BIAS_OFF:
1057                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1058                                 codec->suspended = 1;
1059                                 break;
1060                         default:
1061                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1062                                 break;
1063                         }
1064                 }
1065         }
1066
1067         for (i = 0; i < card->num_rtd; i++) {
1068                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1069
1070                 if (card->rtd[i].dai_link->ignore_suspend)
1071                         continue;
1072
1073                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1074                         cpu_dai->driver->suspend(cpu_dai);
1075         }
1076
1077         if (card->suspend_post)
1078                 card->suspend_post(pdev, PMSG_SUSPEND);
1079
1080         return 0;
1081 }
1082
1083 /* deferred resume work, so resume can complete before we finished
1084  * setting our codec back up, which can be very slow on I2C
1085  */
1086 static void soc_resume_deferred(struct work_struct *work)
1087 {
1088         struct snd_soc_card *card =
1089                         container_of(work, struct snd_soc_card, deferred_resume_work);
1090         struct platform_device *pdev = to_platform_device(card->dev);
1091         struct snd_soc_codec *codec;
1092         int i;
1093
1094         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1095          * so userspace apps are blocked from touching us
1096          */
1097
1098         dev_dbg(card->dev, "starting resume work\n");
1099
1100         /* Bring us up into D2 so that DAPM starts enabling things */
1101         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1102
1103         if (card->resume_pre)
1104                 card->resume_pre(pdev);
1105
1106         /* resume AC97 DAIs */
1107         for (i = 0; i < card->num_rtd; i++) {
1108                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1109
1110                 if (card->rtd[i].dai_link->ignore_suspend)
1111                         continue;
1112
1113                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1114                         cpu_dai->driver->resume(cpu_dai);
1115         }
1116
1117         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1118                 /* If the CODEC was idle over suspend then it will have been
1119                  * left with bias OFF or STANDBY and suspended so we must now
1120                  * resume.  Otherwise the suspend was suppressed.
1121                  */
1122                 if (codec->driver->resume && codec->suspended) {
1123                         switch (codec->dapm.bias_level) {
1124                         case SND_SOC_BIAS_STANDBY:
1125                         case SND_SOC_BIAS_OFF:
1126                                 codec->driver->resume(codec);
1127                                 codec->suspended = 0;
1128                                 break;
1129                         default:
1130                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1131                                 break;
1132                         }
1133                 }
1134         }
1135
1136         for (i = 0; i < card->num_rtd; i++) {
1137                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1138
1139                 if (card->rtd[i].dai_link->ignore_suspend)
1140                         continue;
1141
1142                 if (driver->playback.stream_name != NULL)
1143                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1144                                 SND_SOC_DAPM_STREAM_RESUME);
1145
1146                 if (driver->capture.stream_name != NULL)
1147                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1148                                 SND_SOC_DAPM_STREAM_RESUME);
1149         }
1150
1151         /* unmute any active DACs */
1152         for (i = 0; i < card->num_rtd; i++) {
1153                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1154                 struct snd_soc_dai_driver *drv = dai->driver;
1155
1156                 if (card->rtd[i].dai_link->ignore_suspend)
1157                         continue;
1158
1159                 if (drv->ops->digital_mute && dai->playback_active)
1160                         drv->ops->digital_mute(dai, 0);
1161         }
1162
1163         for (i = 0; i < card->num_rtd; i++) {
1164                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1165                 struct snd_soc_platform *platform = card->rtd[i].platform;
1166
1167                 if (card->rtd[i].dai_link->ignore_suspend)
1168                         continue;
1169
1170                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1171                         cpu_dai->driver->resume(cpu_dai);
1172                 if (platform->driver->resume && platform->suspended) {
1173                         platform->driver->resume(cpu_dai);
1174                         platform->suspended = 0;
1175                 }
1176         }
1177
1178         if (card->resume_post)
1179                 card->resume_post(pdev);
1180
1181         dev_dbg(card->dev, "resume work completed\n");
1182
1183         /* userspace can access us now we are back as we were before */
1184         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1185 }
1186
1187 /* powers up audio subsystem after a suspend */
1188 static int soc_resume(struct device *dev)
1189 {
1190         struct platform_device *pdev = to_platform_device(dev);
1191         struct snd_soc_card *card = platform_get_drvdata(pdev);
1192         int i;
1193
1194         /* AC97 devices might have other drivers hanging off them so
1195          * need to resume immediately.  Other drivers don't have that
1196          * problem and may take a substantial amount of time to resume
1197          * due to I/O costs and anti-pop so handle them out of line.
1198          */
1199         for (i = 0; i < card->num_rtd; i++) {
1200                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1201                 if (cpu_dai->driver->ac97_control) {
1202                         dev_dbg(dev, "Resuming AC97 immediately\n");
1203                         soc_resume_deferred(&card->deferred_resume_work);
1204                 } else {
1205                         dev_dbg(dev, "Scheduling resume work\n");
1206                         if (!schedule_work(&card->deferred_resume_work))
1207                                 dev_err(dev, "resume work item may be lost\n");
1208                 }
1209         }
1210
1211         return 0;
1212 }
1213 #else
1214 #define soc_suspend     NULL
1215 #define soc_resume      NULL
1216 #endif
1217
1218 static struct snd_soc_dai_ops null_dai_ops = {
1219 };
1220
1221 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1222 {
1223         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1224         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1225         struct snd_soc_codec *codec;
1226         struct snd_soc_platform *platform;
1227         struct snd_soc_dai *codec_dai, *cpu_dai;
1228
1229         if (rtd->complete)
1230                 return 1;
1231         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1232
1233         /* do we already have the CPU DAI for this link ? */
1234         if (rtd->cpu_dai) {
1235                 goto find_codec;
1236         }
1237         /* no, then find CPU DAI from registered DAIs*/
1238         list_for_each_entry(cpu_dai, &dai_list, list) {
1239                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1240
1241                         if (!try_module_get(cpu_dai->dev->driver->owner))
1242                                 return -ENODEV;
1243
1244                         rtd->cpu_dai = cpu_dai;
1245                         goto find_codec;
1246                 }
1247         }
1248         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1249                         dai_link->cpu_dai_name);
1250
1251 find_codec:
1252         /* do we already have the CODEC for this link ? */
1253         if (rtd->codec) {
1254                 goto find_platform;
1255         }
1256
1257         /* no, then find CODEC from registered CODECs*/
1258         list_for_each_entry(codec, &codec_list, list) {
1259                 if (!strcmp(codec->name, dai_link->codec_name)) {
1260                         rtd->codec = codec;
1261
1262                         if (!try_module_get(codec->dev->driver->owner))
1263                                 return -ENODEV;
1264
1265                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1266                         list_for_each_entry(codec_dai, &dai_list, list) {
1267                                 if (codec->dev == codec_dai->dev &&
1268                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1269                                         rtd->codec_dai = codec_dai;
1270                                         goto find_platform;
1271                                 }
1272                         }
1273                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1274                                         dai_link->codec_dai_name);
1275
1276                         goto find_platform;
1277                 }
1278         }
1279         dev_dbg(card->dev, "CODEC %s not registered\n",
1280                         dai_link->codec_name);
1281
1282 find_platform:
1283         /* do we already have the CODEC DAI for this link ? */
1284         if (rtd->platform) {
1285                 goto out;
1286         }
1287         /* no, then find CPU DAI from registered DAIs*/
1288         list_for_each_entry(platform, &platform_list, list) {
1289                 if (!strcmp(platform->name, dai_link->platform_name)) {
1290
1291                         if (!try_module_get(platform->dev->driver->owner))
1292                                 return -ENODEV;
1293
1294                         rtd->platform = platform;
1295                         goto out;
1296                 }
1297         }
1298
1299         dev_dbg(card->dev, "platform %s not registered\n",
1300                         dai_link->platform_name);
1301         return 0;
1302
1303 out:
1304         /* mark rtd as complete if we found all 4 of our client devices */
1305         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1306                 rtd->complete = 1;
1307                 card->num_rtd++;
1308         }
1309         return 1;
1310 }
1311
1312 static void soc_remove_codec(struct snd_soc_codec *codec)
1313 {
1314         int err;
1315
1316         if (codec->driver->remove) {
1317                 err = codec->driver->remove(codec);
1318                 if (err < 0)
1319                         dev_err(codec->dev,
1320                                 "asoc: failed to remove %s: %d\n",
1321                                 codec->name, err);
1322         }
1323
1324         /* Make sure all DAPM widgets are freed */
1325         snd_soc_dapm_free(&codec->dapm);
1326
1327         soc_cleanup_codec_debugfs(codec);
1328         codec->probed = 0;
1329         list_del(&codec->card_list);
1330         module_put(codec->dev->driver->owner);
1331 }
1332
1333 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1334 {
1335         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1336         struct snd_soc_codec *codec = rtd->codec;
1337         struct snd_soc_platform *platform = rtd->platform;
1338         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1339         int err;
1340
1341         /* unregister the rtd device */
1342         if (rtd->dev_registered) {
1343                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1344                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1345                 device_unregister(&rtd->dev);
1346                 rtd->dev_registered = 0;
1347         }
1348
1349         /* remove the CODEC DAI */
1350         if (codec_dai && codec_dai->probed) {
1351                 if (codec_dai->driver->remove) {
1352                         err = codec_dai->driver->remove(codec_dai);
1353                         if (err < 0)
1354                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1355                 }
1356                 codec_dai->probed = 0;
1357                 list_del(&codec_dai->card_list);
1358         }
1359
1360         /* remove the platform */
1361         if (platform && platform->probed) {
1362                 if (platform->driver->remove) {
1363                         err = platform->driver->remove(platform);
1364                         if (err < 0)
1365                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1366                 }
1367                 platform->probed = 0;
1368                 list_del(&platform->card_list);
1369                 module_put(platform->dev->driver->owner);
1370         }
1371
1372         /* remove the CODEC */
1373         if (codec && codec->probed)
1374                 soc_remove_codec(codec);
1375
1376         /* remove the cpu_dai */
1377         if (cpu_dai && cpu_dai->probed) {
1378                 if (cpu_dai->driver->remove) {
1379                         err = cpu_dai->driver->remove(cpu_dai);
1380                         if (err < 0)
1381                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1382                 }
1383                 cpu_dai->probed = 0;
1384                 list_del(&cpu_dai->card_list);
1385                 module_put(cpu_dai->dev->driver->owner);
1386         }
1387 }
1388
1389 static void soc_set_name_prefix(struct snd_soc_card *card,
1390                                 struct snd_soc_codec *codec)
1391 {
1392         int i;
1393
1394         if (card->codec_conf == NULL)
1395                 return;
1396
1397         for (i = 0; i < card->num_configs; i++) {
1398                 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1399                 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1400                         codec->name_prefix = map->name_prefix;
1401                         break;
1402                 }
1403         }
1404 }
1405
1406 static int soc_probe_codec(struct snd_soc_card *card,
1407                            struct snd_soc_codec *codec)
1408 {
1409         int ret = 0;
1410
1411         codec->card = card;
1412         codec->dapm.card = card;
1413         soc_set_name_prefix(card, codec);
1414
1415         if (codec->driver->probe) {
1416                 ret = codec->driver->probe(codec);
1417                 if (ret < 0) {
1418                         dev_err(codec->dev,
1419                                 "asoc: failed to probe CODEC %s: %d\n",
1420                                 codec->name, ret);
1421                         return ret;
1422                 }
1423         }
1424
1425         soc_init_codec_debugfs(codec);
1426
1427         /* mark codec as probed and add to card codec list */
1428         codec->probed = 1;
1429         list_add(&codec->card_list, &card->codec_dev_list);
1430
1431         return ret;
1432 }
1433
1434 static void rtd_release(struct device *dev) {}
1435
1436 static int soc_post_component_init(struct snd_soc_card *card,
1437                                    struct snd_soc_codec *codec,
1438                                    int num, int dailess)
1439 {
1440         struct snd_soc_dai_link *dai_link = NULL;
1441         struct snd_soc_aux_dev *aux_dev = NULL;
1442         struct snd_soc_pcm_runtime *rtd;
1443         const char *temp, *name;
1444         int ret = 0;
1445
1446         if (!dailess) {
1447                 dai_link = &card->dai_link[num];
1448                 rtd = &card->rtd[num];
1449                 name = dai_link->name;
1450         } else {
1451                 aux_dev = &card->aux_dev[num];
1452                 rtd = &card->rtd_aux[num];
1453                 name = aux_dev->name;
1454         }
1455
1456         /* machine controls, routes and widgets are not prefixed */
1457         temp = codec->name_prefix;
1458         codec->name_prefix = NULL;
1459
1460         /* do machine specific initialization */
1461         if (!dailess && dai_link->init)
1462                 ret = dai_link->init(rtd);
1463         else if (dailess && aux_dev->init)
1464                 ret = aux_dev->init(&codec->dapm);
1465         if (ret < 0) {
1466                 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1467                 return ret;
1468         }
1469         codec->name_prefix = temp;
1470
1471         /* Make sure all DAPM widgets are instantiated */
1472         snd_soc_dapm_new_widgets(&codec->dapm);
1473         snd_soc_dapm_sync(&codec->dapm);
1474
1475         /* register the rtd device */
1476         rtd->codec = codec;
1477         rtd->card = card;
1478         rtd->dev.parent = card->dev;
1479         rtd->dev.release = rtd_release;
1480         rtd->dev.init_name = name;
1481         ret = device_register(&rtd->dev);
1482         if (ret < 0) {
1483                 dev_err(card->dev,
1484                         "asoc: failed to register runtime device: %d\n", ret);
1485                 return ret;
1486         }
1487         rtd->dev_registered = 1;
1488
1489         /* add DAPM sysfs entries for this codec */
1490         ret = snd_soc_dapm_sys_add(&rtd->dev);
1491         if (ret < 0)
1492                 dev_err(codec->dev,
1493                         "asoc: failed to add codec dapm sysfs entries: %d\n",
1494                         ret);
1495
1496         /* add codec sysfs entries */
1497         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1498         if (ret < 0)
1499                 dev_err(codec->dev,
1500                         "asoc: failed to add codec sysfs files: %d\n", ret);
1501
1502         return 0;
1503 }
1504
1505 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1506 {
1507         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1508         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1509         struct snd_soc_codec *codec = rtd->codec;
1510         struct snd_soc_platform *platform = rtd->platform;
1511         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1512         int ret;
1513
1514         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1515
1516         /* config components */
1517         codec_dai->codec = codec;
1518         cpu_dai->platform = platform;
1519         codec_dai->card = card;
1520         cpu_dai->card = card;
1521
1522         /* set default power off timeout */
1523         rtd->pmdown_time = pmdown_time;
1524
1525         /* probe the cpu_dai */
1526         if (!cpu_dai->probed) {
1527                 if (cpu_dai->driver->probe) {
1528                         ret = cpu_dai->driver->probe(cpu_dai);
1529                         if (ret < 0) {
1530                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1531                                                 cpu_dai->name);
1532                                 return ret;
1533                         }
1534                 }
1535                 cpu_dai->probed = 1;
1536                 /* mark cpu_dai as probed and add to card cpu_dai list */
1537                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1538         }
1539
1540         /* probe the CODEC */
1541         if (!codec->probed) {
1542                 ret = soc_probe_codec(card, codec);
1543                 if (ret < 0)
1544                         return ret;
1545         }
1546
1547         /* probe the platform */
1548         if (!platform->probed) {
1549                 if (platform->driver->probe) {
1550                         ret = platform->driver->probe(platform);
1551                         if (ret < 0) {
1552                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1553                                                 platform->name);
1554                                 return ret;
1555                         }
1556                 }
1557                 /* mark platform as probed and add to card platform list */
1558                 platform->probed = 1;
1559                 list_add(&platform->card_list, &card->platform_dev_list);
1560         }
1561
1562         /* probe the CODEC DAI */
1563         if (!codec_dai->probed) {
1564                 if (codec_dai->driver->probe) {
1565                         ret = codec_dai->driver->probe(codec_dai);
1566                         if (ret < 0) {
1567                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1568                                                 codec_dai->name);
1569                                 return ret;
1570                         }
1571                 }
1572
1573                 /* mark cpu_dai as probed and add to card cpu_dai list */
1574                 codec_dai->probed = 1;
1575                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1576         }
1577
1578         /* DAPM dai link stream work */
1579         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1580
1581         ret = soc_post_component_init(card, codec, num, 0);
1582         if (ret)
1583                 return ret;
1584
1585         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1586         if (ret < 0)
1587                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1588
1589         /* create the pcm */
1590         ret = soc_new_pcm(rtd, num);
1591         if (ret < 0) {
1592                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1593                 return ret;
1594         }
1595
1596         /* add platform data for AC97 devices */
1597         if (rtd->codec_dai->driver->ac97_control)
1598                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1599
1600         return 0;
1601 }
1602
1603 #ifdef CONFIG_SND_SOC_AC97_BUS
1604 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1605 {
1606         int ret;
1607
1608         /* Only instantiate AC97 if not already done by the adaptor
1609          * for the generic AC97 subsystem.
1610          */
1611         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1612                 /*
1613                  * It is possible that the AC97 device is already registered to
1614                  * the device subsystem. This happens when the device is created
1615                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1616                  * is the generic AC97 glue but others migh emerge.
1617                  *
1618                  * In those cases we don't try to register the device again.
1619                  */
1620                 if (!rtd->codec->ac97_created)
1621                         return 0;
1622
1623                 ret = soc_ac97_dev_register(rtd->codec);
1624                 if (ret < 0) {
1625                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1626                         return ret;
1627                 }
1628
1629                 rtd->codec->ac97_registered = 1;
1630         }
1631         return 0;
1632 }
1633
1634 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1635 {
1636         if (codec->ac97_registered) {
1637                 soc_ac97_dev_unregister(codec);
1638                 codec->ac97_registered = 0;
1639         }
1640 }
1641 #endif
1642
1643 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1644 {
1645         struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1646         struct snd_soc_codec *codec;
1647         int ret = -ENODEV;
1648
1649         /* find CODEC from registered CODECs*/
1650         list_for_each_entry(codec, &codec_list, list) {
1651                 if (!strcmp(codec->name, aux_dev->codec_name)) {
1652                         if (codec->probed) {
1653                                 dev_err(codec->dev,
1654                                         "asoc: codec already probed");
1655                                 ret = -EBUSY;
1656                                 goto out;
1657                         }
1658                         goto found;
1659                 }
1660         }
1661         /* codec not found */
1662         dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1663         goto out;
1664
1665 found:
1666         if (!try_module_get(codec->dev->driver->owner))
1667                 return -ENODEV;
1668
1669         ret = soc_probe_codec(card, codec);
1670         if (ret < 0)
1671                 return ret;
1672
1673         ret = soc_post_component_init(card, codec, num, 1);
1674
1675 out:
1676         return ret;
1677 }
1678
1679 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1680 {
1681         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1682         struct snd_soc_codec *codec = rtd->codec;
1683
1684         /* unregister the rtd device */
1685         if (rtd->dev_registered) {
1686                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1687                 device_unregister(&rtd->dev);
1688                 rtd->dev_registered = 0;
1689         }
1690
1691         if (codec && codec->probed)
1692                 soc_remove_codec(codec);
1693 }
1694
1695 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1696                                     enum snd_soc_compress_type compress_type)
1697 {
1698         int ret;
1699
1700         if (codec->cache_init)
1701                 return 0;
1702
1703         /* override the compress_type if necessary */
1704         if (compress_type && codec->compress_type != compress_type)
1705                 codec->compress_type = compress_type;
1706         ret = snd_soc_cache_init(codec);
1707         if (ret < 0) {
1708                 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1709                         ret);
1710                 return ret;
1711         }
1712         codec->cache_init = 1;
1713         return 0;
1714 }
1715
1716 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1717 {
1718         struct platform_device *pdev = to_platform_device(card->dev);
1719         struct snd_soc_codec *codec;
1720         struct snd_soc_codec_conf *codec_conf;
1721         enum snd_soc_compress_type compress_type;
1722         int ret, i;
1723
1724         mutex_lock(&card->mutex);
1725
1726         if (card->instantiated) {
1727                 mutex_unlock(&card->mutex);
1728                 return;
1729         }
1730
1731         /* bind DAIs */
1732         for (i = 0; i < card->num_links; i++)
1733                 soc_bind_dai_link(card, i);
1734
1735         /* bind completed ? */
1736         if (card->num_rtd != card->num_links) {
1737                 mutex_unlock(&card->mutex);
1738                 return;
1739         }
1740
1741         /* initialize the register cache for each available codec */
1742         list_for_each_entry(codec, &codec_list, list) {
1743                 if (codec->cache_init)
1744                         continue;
1745                 /* check to see if we need to override the compress_type */
1746                 for (i = 0; i < card->num_configs; ++i) {
1747                         codec_conf = &card->codec_conf[i];
1748                         if (!strcmp(codec->name, codec_conf->dev_name)) {
1749                                 compress_type = codec_conf->compress_type;
1750                                 if (compress_type && compress_type
1751                                     != codec->compress_type)
1752                                         break;
1753                         }
1754                 }
1755                 if (i == card->num_configs) {
1756                         /* no need to override the compress_type so
1757                          * go ahead and do the standard thing */
1758                         ret = snd_soc_init_codec_cache(codec, 0);
1759                         if (ret < 0) {
1760                                 mutex_unlock(&card->mutex);
1761                                 return;
1762                         }
1763                         continue;
1764                 }
1765                 /* override the compress_type with the one supplied in
1766                  * the machine driver */
1767                 ret = snd_soc_init_codec_cache(codec, compress_type);
1768                 if (ret < 0) {
1769                         mutex_unlock(&card->mutex);
1770                         return;
1771                 }
1772         }
1773
1774         /* card bind complete so register a sound card */
1775         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1776                         card->owner, 0, &card->snd_card);
1777         if (ret < 0) {
1778                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1779                         card->name);
1780                 mutex_unlock(&card->mutex);
1781                 return;
1782         }
1783         card->snd_card->dev = card->dev;
1784
1785 #ifdef CONFIG_PM
1786         /* deferred resume work */
1787         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1788 #endif
1789
1790         /* initialise the sound card only once */
1791         if (card->probe) {
1792                 ret = card->probe(pdev);
1793                 if (ret < 0)
1794                         goto card_probe_error;
1795         }
1796
1797         for (i = 0; i < card->num_links; i++) {
1798                 ret = soc_probe_dai_link(card, i);
1799                 if (ret < 0) {
1800                         pr_err("asoc: failed to instantiate card %s: %d\n",
1801                                card->name, ret);
1802                         goto probe_dai_err;
1803                 }
1804         }
1805
1806         for (i = 0; i < card->num_aux_devs; i++) {
1807                 ret = soc_probe_aux_dev(card, i);
1808                 if (ret < 0) {
1809                         pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1810                                card->name, ret);
1811                         goto probe_aux_dev_err;
1812                 }
1813         }
1814
1815         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1816                  "%s",  card->name);
1817         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1818                  "%s", card->name);
1819
1820         ret = snd_card_register(card->snd_card);
1821         if (ret < 0) {
1822                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1823                 goto probe_aux_dev_err;
1824         }
1825
1826 #ifdef CONFIG_SND_SOC_AC97_BUS
1827         /* register any AC97 codecs */
1828         for (i = 0; i < card->num_rtd; i++) {
1829                 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1830                 if (ret < 0) {
1831                         printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1832                         while (--i >= 0)
1833                                 soc_unregister_ac97_dai_link(&card->rtd[i]);
1834                         goto probe_aux_dev_err;
1835                 }
1836         }
1837 #endif
1838
1839         card->instantiated = 1;
1840         mutex_unlock(&card->mutex);
1841         return;
1842
1843 probe_aux_dev_err:
1844         for (i = 0; i < card->num_aux_devs; i++)
1845                 soc_remove_aux_dev(card, i);
1846
1847 probe_dai_err:
1848         for (i = 0; i < card->num_links; i++)
1849                 soc_remove_dai_link(card, i);
1850
1851 card_probe_error:
1852         if (card->remove)
1853                 card->remove(pdev);
1854
1855         snd_card_free(card->snd_card);
1856
1857         mutex_unlock(&card->mutex);
1858 }
1859
1860 /*
1861  * Attempt to initialise any uninitialised cards.  Must be called with
1862  * client_mutex.
1863  */
1864 static void snd_soc_instantiate_cards(void)
1865 {
1866         struct snd_soc_card *card;
1867         list_for_each_entry(card, &card_list, list)
1868                 snd_soc_instantiate_card(card);
1869 }
1870
1871 /* probes a new socdev */
1872 static int soc_probe(struct platform_device *pdev)
1873 {
1874         struct snd_soc_card *card = platform_get_drvdata(pdev);
1875         int ret = 0;
1876
1877         /* Bodge while we unpick instantiation */
1878         card->dev = &pdev->dev;
1879         INIT_LIST_HEAD(&card->dai_dev_list);
1880         INIT_LIST_HEAD(&card->codec_dev_list);
1881         INIT_LIST_HEAD(&card->platform_dev_list);
1882
1883         soc_init_card_debugfs(card);
1884
1885         ret = snd_soc_register_card(card);
1886         if (ret != 0) {
1887                 dev_err(&pdev->dev, "Failed to register card\n");
1888                 return ret;
1889         }
1890
1891         return 0;
1892 }
1893
1894 /* removes a socdev */
1895 static int soc_remove(struct platform_device *pdev)
1896 {
1897         struct snd_soc_card *card = platform_get_drvdata(pdev);
1898         int i;
1899
1900                 if (card->instantiated) {
1901
1902                 /* make sure any delayed work runs */
1903                 for (i = 0; i < card->num_rtd; i++) {
1904                         struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1905                         flush_delayed_work_sync(&rtd->delayed_work);
1906                 }
1907
1908                 /* remove auxiliary devices */
1909                 for (i = 0; i < card->num_aux_devs; i++)
1910                         soc_remove_aux_dev(card, i);
1911
1912                 /* remove and free each DAI */
1913                 for (i = 0; i < card->num_rtd; i++)
1914                         soc_remove_dai_link(card, i);
1915
1916                 soc_cleanup_card_debugfs(card);
1917
1918                 /* remove the card */
1919                 if (card->remove)
1920                         card->remove(pdev);
1921
1922                 kfree(card->rtd);
1923                 snd_card_free(card->snd_card);
1924         }
1925         snd_soc_unregister_card(card);
1926         return 0;
1927 }
1928
1929 static int soc_poweroff(struct device *dev)
1930 {
1931         struct platform_device *pdev = to_platform_device(dev);
1932         struct snd_soc_card *card = platform_get_drvdata(pdev);
1933         int i;
1934
1935         if (!card->instantiated)
1936                 return 0;
1937
1938         /* Flush out pmdown_time work - we actually do want to run it
1939          * now, we're shutting down so no imminent restart. */
1940         for (i = 0; i < card->num_rtd; i++) {
1941                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1942                 flush_delayed_work_sync(&rtd->delayed_work);
1943         }
1944
1945         snd_soc_dapm_shutdown(card);
1946
1947         return 0;
1948 }
1949
1950 static const struct dev_pm_ops soc_pm_ops = {
1951         .suspend = soc_suspend,
1952         .resume = soc_resume,
1953         .poweroff = soc_poweroff,
1954 };
1955
1956 /* ASoC platform driver */
1957 static struct platform_driver soc_driver = {
1958         .driver         = {
1959                 .name           = "soc-audio",
1960                 .owner          = THIS_MODULE,
1961                 .pm             = &soc_pm_ops,
1962         },
1963         .probe          = soc_probe,
1964         .remove         = soc_remove,
1965 };
1966
1967 /* create a new pcm */
1968 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1969 {
1970         struct snd_soc_codec *codec = rtd->codec;
1971         struct snd_soc_platform *platform = rtd->platform;
1972         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1973         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1974         struct snd_pcm *pcm;
1975         char new_name[64];
1976         int ret = 0, playback = 0, capture = 0;
1977
1978         /* check client and interface hw capabilities */
1979         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1980                         rtd->dai_link->stream_name, codec_dai->name, num);
1981
1982         if (codec_dai->driver->playback.channels_min)
1983                 playback = 1;
1984         if (codec_dai->driver->capture.channels_min)
1985                 capture = 1;
1986
1987         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1988         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1989                         num, playback, capture, &pcm);
1990         if (ret < 0) {
1991                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1992                 return ret;
1993         }
1994
1995         rtd->pcm = pcm;
1996         pcm->private_data = rtd;
1997         soc_pcm_ops.mmap = platform->driver->ops->mmap;
1998         soc_pcm_ops.pointer = platform->driver->ops->pointer;
1999         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2000         soc_pcm_ops.copy = platform->driver->ops->copy;
2001         soc_pcm_ops.silence = platform->driver->ops->silence;
2002         soc_pcm_ops.ack = platform->driver->ops->ack;
2003         soc_pcm_ops.page = platform->driver->ops->page;
2004
2005         if (playback)
2006                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2007
2008         if (capture)
2009                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2010
2011         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2012         if (ret < 0) {
2013                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2014                 return ret;
2015         }
2016
2017         pcm->private_free = platform->driver->pcm_free;
2018         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2019                 cpu_dai->name);
2020         return ret;
2021 }
2022
2023 /**
2024  * snd_soc_codec_volatile_register: Report if a register is volatile.
2025  *
2026  * @codec: CODEC to query.
2027  * @reg: Register to query.
2028  *
2029  * Boolean function indiciating if a CODEC register is volatile.
2030  */
2031 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
2032 {
2033         if (codec->driver->volatile_register)
2034                 return codec->driver->volatile_register(reg);
2035         else
2036                 return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2039
2040 /**
2041  * snd_soc_new_ac97_codec - initailise AC97 device
2042  * @codec: audio codec
2043  * @ops: AC97 bus operations
2044  * @num: AC97 codec number
2045  *
2046  * Initialises AC97 codec resources for use by ad-hoc devices only.
2047  */
2048 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2049         struct snd_ac97_bus_ops *ops, int num)
2050 {
2051         mutex_lock(&codec->mutex);
2052
2053         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2054         if (codec->ac97 == NULL) {
2055                 mutex_unlock(&codec->mutex);
2056                 return -ENOMEM;
2057         }
2058
2059         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2060         if (codec->ac97->bus == NULL) {
2061                 kfree(codec->ac97);
2062                 codec->ac97 = NULL;
2063                 mutex_unlock(&codec->mutex);
2064                 return -ENOMEM;
2065         }
2066
2067         codec->ac97->bus->ops = ops;
2068         codec->ac97->num = num;
2069
2070         /*
2071          * Mark the AC97 device to be created by us. This way we ensure that the
2072          * device will be registered with the device subsystem later on.
2073          */
2074         codec->ac97_created = 1;
2075
2076         mutex_unlock(&codec->mutex);
2077         return 0;
2078 }
2079 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2080
2081 /**
2082  * snd_soc_free_ac97_codec - free AC97 codec device
2083  * @codec: audio codec
2084  *
2085  * Frees AC97 codec device resources.
2086  */
2087 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2088 {
2089         mutex_lock(&codec->mutex);
2090 #ifdef CONFIG_SND_SOC_AC97_BUS
2091         soc_unregister_ac97_dai_link(codec);
2092 #endif
2093         kfree(codec->ac97->bus);
2094         kfree(codec->ac97);
2095         codec->ac97 = NULL;
2096         codec->ac97_created = 0;
2097         mutex_unlock(&codec->mutex);
2098 }
2099 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2100
2101 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2102 {
2103         unsigned int ret;
2104
2105         ret = codec->read(codec, reg);
2106         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2107         trace_snd_soc_reg_read(codec, reg, ret);
2108
2109         return ret;
2110 }
2111 EXPORT_SYMBOL_GPL(snd_soc_read);
2112
2113 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2114                            unsigned int reg, unsigned int val)
2115 {
2116         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2117         trace_snd_soc_reg_write(codec, reg, val);
2118         return codec->write(codec, reg, val);
2119 }
2120 EXPORT_SYMBOL_GPL(snd_soc_write);
2121
2122 /**
2123  * snd_soc_update_bits - update codec register bits
2124  * @codec: audio codec
2125  * @reg: codec register
2126  * @mask: register mask
2127  * @value: new value
2128  *
2129  * Writes new register value.
2130  *
2131  * Returns 1 for change else 0.
2132  */
2133 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2134                                 unsigned int mask, unsigned int value)
2135 {
2136         int change;
2137         unsigned int old, new;
2138
2139         old = snd_soc_read(codec, reg);
2140         new = (old & ~mask) | value;
2141         change = old != new;
2142         if (change)
2143                 snd_soc_write(codec, reg, new);
2144
2145         return change;
2146 }
2147 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2148
2149 /**
2150  * snd_soc_update_bits_locked - update codec register bits
2151  * @codec: audio codec
2152  * @reg: codec register
2153  * @mask: register mask
2154  * @value: new value
2155  *
2156  * Writes new register value, and takes the codec mutex.
2157  *
2158  * Returns 1 for change else 0.
2159  */
2160 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2161                                unsigned short reg, unsigned int mask,
2162                                unsigned int value)
2163 {
2164         int change;
2165
2166         mutex_lock(&codec->mutex);
2167         change = snd_soc_update_bits(codec, reg, mask, value);
2168         mutex_unlock(&codec->mutex);
2169
2170         return change;
2171 }
2172 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2173
2174 /**
2175  * snd_soc_test_bits - test register for change
2176  * @codec: audio codec
2177  * @reg: codec register
2178  * @mask: register mask
2179  * @value: new value
2180  *
2181  * Tests a register with a new value and checks if the new value is
2182  * different from the old value.
2183  *
2184  * Returns 1 for change else 0.
2185  */
2186 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2187                                 unsigned int mask, unsigned int value)
2188 {
2189         int change;
2190         unsigned int old, new;
2191
2192         old = snd_soc_read(codec, reg);
2193         new = (old & ~mask) | value;
2194         change = old != new;
2195
2196         return change;
2197 }
2198 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2199
2200 /**
2201  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2202  * @substream: the pcm substream
2203  * @hw: the hardware parameters
2204  *
2205  * Sets the substream runtime hardware parameters.
2206  */
2207 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2208         const struct snd_pcm_hardware *hw)
2209 {
2210         struct snd_pcm_runtime *runtime = substream->runtime;
2211         runtime->hw.info = hw->info;
2212         runtime->hw.formats = hw->formats;
2213         runtime->hw.period_bytes_min = hw->period_bytes_min;
2214         runtime->hw.period_bytes_max = hw->period_bytes_max;
2215         runtime->hw.periods_min = hw->periods_min;
2216         runtime->hw.periods_max = hw->periods_max;
2217         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2218         runtime->hw.fifo_size = hw->fifo_size;
2219         return 0;
2220 }
2221 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2222
2223 /**
2224  * snd_soc_cnew - create new control
2225  * @_template: control template
2226  * @data: control private data
2227  * @long_name: control long name
2228  *
2229  * Create a new mixer control from a template control.
2230  *
2231  * Returns 0 for success, else error.
2232  */
2233 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2234         void *data, char *long_name)
2235 {
2236         struct snd_kcontrol_new template;
2237
2238         memcpy(&template, _template, sizeof(template));
2239         if (long_name)
2240                 template.name = long_name;
2241         template.index = 0;
2242
2243         return snd_ctl_new1(&template, data);
2244 }
2245 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2246
2247 /**
2248  * snd_soc_add_controls - add an array of controls to a codec.
2249  * Convienience function to add a list of controls. Many codecs were
2250  * duplicating this code.
2251  *
2252  * @codec: codec to add controls to
2253  * @controls: array of controls to add
2254  * @num_controls: number of elements in the array
2255  *
2256  * Return 0 for success, else error.
2257  */
2258 int snd_soc_add_controls(struct snd_soc_codec *codec,
2259         const struct snd_kcontrol_new *controls, int num_controls)
2260 {
2261         struct snd_card *card = codec->card->snd_card;
2262         char prefixed_name[44], *name;
2263         int err, i;
2264
2265         for (i = 0; i < num_controls; i++) {
2266                 const struct snd_kcontrol_new *control = &controls[i];
2267                 if (codec->name_prefix) {
2268                         snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2269                                  codec->name_prefix, control->name);
2270                         name = prefixed_name;
2271                 } else {
2272                         name = control->name;
2273                 }
2274                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2275                 if (err < 0) {
2276                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2277                                 codec->name, name, err);
2278                         return err;
2279                 }
2280         }
2281
2282         return 0;
2283 }
2284 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2285
2286 /**
2287  * snd_soc_info_enum_double - enumerated double mixer info callback
2288  * @kcontrol: mixer control
2289  * @uinfo: control element information
2290  *
2291  * Callback to provide information about a double enumerated
2292  * mixer control.
2293  *
2294  * Returns 0 for success.
2295  */
2296 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2297         struct snd_ctl_elem_info *uinfo)
2298 {
2299         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2300
2301         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2302         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2303         uinfo->value.enumerated.items = e->max;
2304
2305         if (uinfo->value.enumerated.item > e->max - 1)
2306                 uinfo->value.enumerated.item = e->max - 1;
2307         strcpy(uinfo->value.enumerated.name,
2308                 e->texts[uinfo->value.enumerated.item]);
2309         return 0;
2310 }
2311 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2312
2313 /**
2314  * snd_soc_get_enum_double - enumerated double mixer get callback
2315  * @kcontrol: mixer control
2316  * @ucontrol: control element information
2317  *
2318  * Callback to get the value of a double enumerated mixer.
2319  *
2320  * Returns 0 for success.
2321  */
2322 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2323         struct snd_ctl_elem_value *ucontrol)
2324 {
2325         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2326         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2327         unsigned int val, bitmask;
2328
2329         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2330                 ;
2331         val = snd_soc_read(codec, e->reg);
2332         ucontrol->value.enumerated.item[0]
2333                 = (val >> e->shift_l) & (bitmask - 1);
2334         if (e->shift_l != e->shift_r)
2335                 ucontrol->value.enumerated.item[1] =
2336                         (val >> e->shift_r) & (bitmask - 1);
2337
2338         return 0;
2339 }
2340 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2341
2342 /**
2343  * snd_soc_put_enum_double - enumerated double mixer put callback
2344  * @kcontrol: mixer control
2345  * @ucontrol: control element information
2346  *
2347  * Callback to set the value of a double enumerated mixer.
2348  *
2349  * Returns 0 for success.
2350  */
2351 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2352         struct snd_ctl_elem_value *ucontrol)
2353 {
2354         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2355         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2356         unsigned int val;
2357         unsigned int mask, bitmask;
2358
2359         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2360                 ;
2361         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2362                 return -EINVAL;
2363         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2364         mask = (bitmask - 1) << e->shift_l;
2365         if (e->shift_l != e->shift_r) {
2366                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2367                         return -EINVAL;
2368                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2369                 mask |= (bitmask - 1) << e->shift_r;
2370         }
2371
2372         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2373 }
2374 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2375
2376 /**
2377  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2378  * @kcontrol: mixer control
2379  * @ucontrol: control element information
2380  *
2381  * Callback to get the value of a double semi enumerated mixer.
2382  *
2383  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2384  * used for handling bitfield coded enumeration for example.
2385  *
2386  * Returns 0 for success.
2387  */
2388 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2389         struct snd_ctl_elem_value *ucontrol)
2390 {
2391         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2392         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2393         unsigned int reg_val, val, mux;
2394
2395         reg_val = snd_soc_read(codec, e->reg);
2396         val = (reg_val >> e->shift_l) & e->mask;
2397         for (mux = 0; mux < e->max; mux++) {
2398                 if (val == e->values[mux])
2399                         break;
2400         }
2401         ucontrol->value.enumerated.item[0] = mux;
2402         if (e->shift_l != e->shift_r) {
2403                 val = (reg_val >> e->shift_r) & e->mask;
2404                 for (mux = 0; mux < e->max; mux++) {
2405                         if (val == e->values[mux])
2406                                 break;
2407                 }
2408                 ucontrol->value.enumerated.item[1] = mux;
2409         }
2410
2411         return 0;
2412 }
2413 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2414
2415 /**
2416  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2417  * @kcontrol: mixer control
2418  * @ucontrol: control element information
2419  *
2420  * Callback to set the value of a double semi enumerated mixer.
2421  *
2422  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2423  * used for handling bitfield coded enumeration for example.
2424  *
2425  * Returns 0 for success.
2426  */
2427 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2428         struct snd_ctl_elem_value *ucontrol)
2429 {
2430         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2431         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2432         unsigned int val;
2433         unsigned int mask;
2434
2435         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2436                 return -EINVAL;
2437         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2438         mask = e->mask << e->shift_l;
2439         if (e->shift_l != e->shift_r) {
2440                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2441                         return -EINVAL;
2442                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2443                 mask |= e->mask << e->shift_r;
2444         }
2445
2446         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2447 }
2448 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2449
2450 /**
2451  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2452  * @kcontrol: mixer control
2453  * @uinfo: control element information
2454  *
2455  * Callback to provide information about an external enumerated
2456  * single mixer.
2457  *
2458  * Returns 0 for success.
2459  */
2460 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2461         struct snd_ctl_elem_info *uinfo)
2462 {
2463         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2464
2465         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2466         uinfo->count = 1;
2467         uinfo->value.enumerated.items = e->max;
2468
2469         if (uinfo->value.enumerated.item > e->max - 1)
2470                 uinfo->value.enumerated.item = e->max - 1;
2471         strcpy(uinfo->value.enumerated.name,
2472                 e->texts[uinfo->value.enumerated.item]);
2473         return 0;
2474 }
2475 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2476
2477 /**
2478  * snd_soc_info_volsw_ext - external single mixer info callback
2479  * @kcontrol: mixer control
2480  * @uinfo: control element information
2481  *
2482  * Callback to provide information about a single external mixer control.
2483  *
2484  * Returns 0 for success.
2485  */
2486 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2487         struct snd_ctl_elem_info *uinfo)
2488 {
2489         int max = kcontrol->private_value;
2490
2491         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2492                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2493         else
2494                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2495
2496         uinfo->count = 1;
2497         uinfo->value.integer.min = 0;
2498         uinfo->value.integer.max = max;
2499         return 0;
2500 }
2501 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2502
2503 /**
2504  * snd_soc_info_volsw - single mixer info callback
2505  * @kcontrol: mixer control
2506  * @uinfo: control element information
2507  *
2508  * Callback to provide information about a single mixer control.
2509  *
2510  * Returns 0 for success.
2511  */
2512 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2513         struct snd_ctl_elem_info *uinfo)
2514 {
2515         struct soc_mixer_control *mc =
2516                 (struct soc_mixer_control *)kcontrol->private_value;
2517         int platform_max;
2518         unsigned int shift = mc->shift;
2519         unsigned int rshift = mc->rshift;
2520
2521         if (!mc->platform_max)
2522                 mc->platform_max = mc->max;
2523         platform_max = mc->platform_max;
2524
2525         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2526                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2527         else
2528                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2529
2530         uinfo->count = shift == rshift ? 1 : 2;
2531         uinfo->value.integer.min = 0;
2532         uinfo->value.integer.max = platform_max;
2533         return 0;
2534 }
2535 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2536
2537 /**
2538  * snd_soc_get_volsw - single mixer get callback
2539  * @kcontrol: mixer control
2540  * @ucontrol: control element information
2541  *
2542  * Callback to get the value of a single mixer control.
2543  *
2544  * Returns 0 for success.
2545  */
2546 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2547         struct snd_ctl_elem_value *ucontrol)
2548 {
2549         struct soc_mixer_control *mc =
2550                 (struct soc_mixer_control *)kcontrol->private_value;
2551         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2552         unsigned int reg = mc->reg;
2553         unsigned int shift = mc->shift;
2554         unsigned int rshift = mc->rshift;
2555         int max = mc->max;
2556         unsigned int mask = (1 << fls(max)) - 1;
2557         unsigned int invert = mc->invert;
2558
2559         ucontrol->value.integer.value[0] =
2560                 (snd_soc_read(codec, reg) >> shift) & mask;
2561         if (shift != rshift)
2562                 ucontrol->value.integer.value[1] =
2563                         (snd_soc_read(codec, reg) >> rshift) & mask;
2564         if (invert) {
2565                 ucontrol->value.integer.value[0] =
2566                         max - ucontrol->value.integer.value[0];
2567                 if (shift != rshift)
2568                         ucontrol->value.integer.value[1] =
2569                                 max - ucontrol->value.integer.value[1];
2570         }
2571
2572         return 0;
2573 }
2574 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2575
2576 /**
2577  * snd_soc_put_volsw - single mixer put callback
2578  * @kcontrol: mixer control
2579  * @ucontrol: control element information
2580  *
2581  * Callback to set the value of a single mixer control.
2582  *
2583  * Returns 0 for success.
2584  */
2585 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2586         struct snd_ctl_elem_value *ucontrol)
2587 {
2588         struct soc_mixer_control *mc =
2589                 (struct soc_mixer_control *)kcontrol->private_value;
2590         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2591         unsigned int reg = mc->reg;
2592         unsigned int shift = mc->shift;
2593         unsigned int rshift = mc->rshift;
2594         int max = mc->max;
2595         unsigned int mask = (1 << fls(max)) - 1;
2596         unsigned int invert = mc->invert;
2597         unsigned int val, val2, val_mask;
2598
2599         val = (ucontrol->value.integer.value[0] & mask);
2600         if (invert)
2601                 val = max - val;
2602         val_mask = mask << shift;
2603         val = val << shift;
2604         if (shift != rshift) {
2605                 val2 = (ucontrol->value.integer.value[1] & mask);
2606                 if (invert)
2607                         val2 = max - val2;
2608                 val_mask |= mask << rshift;
2609                 val |= val2 << rshift;
2610         }
2611         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2612 }
2613 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2614
2615 /**
2616  * snd_soc_info_volsw_2r - double mixer info callback
2617  * @kcontrol: mixer control
2618  * @uinfo: control element information
2619  *
2620  * Callback to provide information about a double mixer control that
2621  * spans 2 codec registers.
2622  *
2623  * Returns 0 for success.
2624  */
2625 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2626         struct snd_ctl_elem_info *uinfo)
2627 {
2628         struct soc_mixer_control *mc =
2629                 (struct soc_mixer_control *)kcontrol->private_value;
2630         int platform_max;
2631
2632         if (!mc->platform_max)
2633                 mc->platform_max = mc->max;
2634         platform_max = mc->platform_max;
2635
2636         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2637                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2638         else
2639                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2640
2641         uinfo->count = 2;
2642         uinfo->value.integer.min = 0;
2643         uinfo->value.integer.max = platform_max;
2644         return 0;
2645 }
2646 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2647
2648 /**
2649  * snd_soc_get_volsw_2r - double mixer get callback
2650  * @kcontrol: mixer control
2651  * @ucontrol: control element information
2652  *
2653  * Callback to get the value of a double mixer control that spans 2 registers.
2654  *
2655  * Returns 0 for success.
2656  */
2657 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2658         struct snd_ctl_elem_value *ucontrol)
2659 {
2660         struct soc_mixer_control *mc =
2661                 (struct soc_mixer_control *)kcontrol->private_value;
2662         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2663         unsigned int reg = mc->reg;
2664         unsigned int reg2 = mc->rreg;
2665         unsigned int shift = mc->shift;
2666         int max = mc->max;
2667         unsigned int mask = (1 << fls(max)) - 1;
2668         unsigned int invert = mc->invert;
2669
2670         ucontrol->value.integer.value[0] =
2671                 (snd_soc_read(codec, reg) >> shift) & mask;
2672         ucontrol->value.integer.value[1] =
2673                 (snd_soc_read(codec, reg2) >> shift) & mask;
2674         if (invert) {
2675                 ucontrol->value.integer.value[0] =
2676                         max - ucontrol->value.integer.value[0];
2677                 ucontrol->value.integer.value[1] =
2678                         max - ucontrol->value.integer.value[1];
2679         }
2680
2681         return 0;
2682 }
2683 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2684
2685 /**
2686  * snd_soc_put_volsw_2r - double mixer set callback
2687  * @kcontrol: mixer control
2688  * @ucontrol: control element information
2689  *
2690  * Callback to set the value of a double mixer control that spans 2 registers.
2691  *
2692  * Returns 0 for success.
2693  */
2694 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2695         struct snd_ctl_elem_value *ucontrol)
2696 {
2697         struct soc_mixer_control *mc =
2698                 (struct soc_mixer_control *)kcontrol->private_value;
2699         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2700         unsigned int reg = mc->reg;
2701         unsigned int reg2 = mc->rreg;
2702         unsigned int shift = mc->shift;
2703         int max = mc->max;
2704         unsigned int mask = (1 << fls(max)) - 1;
2705         unsigned int invert = mc->invert;
2706         int err;
2707         unsigned int val, val2, val_mask;
2708
2709         val_mask = mask << shift;
2710         val = (ucontrol->value.integer.value[0] & mask);
2711         val2 = (ucontrol->value.integer.value[1] & mask);
2712
2713         if (invert) {
2714                 val = max - val;
2715                 val2 = max - val2;
2716         }
2717
2718         val = val << shift;
2719         val2 = val2 << shift;
2720
2721         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2722         if (err < 0)
2723                 return err;
2724
2725         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2726         return err;
2727 }
2728 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2729
2730 /**
2731  * snd_soc_info_volsw_s8 - signed mixer info callback
2732  * @kcontrol: mixer control
2733  * @uinfo: control element information
2734  *
2735  * Callback to provide information about a signed mixer control.
2736  *
2737  * Returns 0 for success.
2738  */
2739 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2740         struct snd_ctl_elem_info *uinfo)
2741 {
2742         struct soc_mixer_control *mc =
2743                 (struct soc_mixer_control *)kcontrol->private_value;
2744         int platform_max;
2745         int min = mc->min;
2746
2747         if (!mc->platform_max)
2748                 mc->platform_max = mc->max;
2749         platform_max = mc->platform_max;
2750
2751         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2752         uinfo->count = 2;
2753         uinfo->value.integer.min = 0;
2754         uinfo->value.integer.max = platform_max - min;
2755         return 0;
2756 }
2757 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2758
2759 /**
2760  * snd_soc_get_volsw_s8 - signed mixer get callback
2761  * @kcontrol: mixer control
2762  * @ucontrol: control element information
2763  *
2764  * Callback to get the value of a signed mixer control.
2765  *
2766  * Returns 0 for success.
2767  */
2768 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2769         struct snd_ctl_elem_value *ucontrol)
2770 {
2771         struct soc_mixer_control *mc =
2772                 (struct soc_mixer_control *)kcontrol->private_value;
2773         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2774         unsigned int reg = mc->reg;
2775         int min = mc->min;
2776         int val = snd_soc_read(codec, reg);
2777
2778         ucontrol->value.integer.value[0] =
2779                 ((signed char)(val & 0xff))-min;
2780         ucontrol->value.integer.value[1] =
2781                 ((signed char)((val >> 8) & 0xff))-min;
2782         return 0;
2783 }
2784 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2785
2786 /**
2787  * snd_soc_put_volsw_sgn - signed mixer put callback
2788  * @kcontrol: mixer control
2789  * @ucontrol: control element information
2790  *
2791  * Callback to set the value of a signed mixer control.
2792  *
2793  * Returns 0 for success.
2794  */
2795 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2796         struct snd_ctl_elem_value *ucontrol)
2797 {
2798         struct soc_mixer_control *mc =
2799                 (struct soc_mixer_control *)kcontrol->private_value;
2800         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2801         unsigned int reg = mc->reg;
2802         int min = mc->min;
2803         unsigned int val;
2804
2805         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2806         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2807
2808         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2809 }
2810 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2811
2812 /**
2813  * snd_soc_limit_volume - Set new limit to an existing volume control.
2814  *
2815  * @codec: where to look for the control
2816  * @name: Name of the control
2817  * @max: new maximum limit
2818  *
2819  * Return 0 for success, else error.
2820  */
2821 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2822         const char *name, int max)
2823 {
2824         struct snd_card *card = codec->card->snd_card;
2825         struct snd_kcontrol *kctl;
2826         struct soc_mixer_control *mc;
2827         int found = 0;
2828         int ret = -EINVAL;
2829
2830         /* Sanity check for name and max */
2831         if (unlikely(!name || max <= 0))
2832                 return -EINVAL;
2833
2834         list_for_each_entry(kctl, &card->controls, list) {
2835                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2836                         found = 1;
2837                         break;
2838                 }
2839         }
2840         if (found) {
2841                 mc = (struct soc_mixer_control *)kctl->private_value;
2842                 if (max <= mc->max) {
2843                         mc->platform_max = max;
2844                         ret = 0;
2845                 }
2846         }
2847         return ret;
2848 }
2849 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2850
2851 /**
2852  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2853  *  mixer info callback
2854  * @kcontrol: mixer control
2855  * @uinfo: control element information
2856  *
2857  * Returns 0 for success.
2858  */
2859 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2860                         struct snd_ctl_elem_info *uinfo)
2861 {
2862         struct soc_mixer_control *mc =
2863                 (struct soc_mixer_control *)kcontrol->private_value;
2864         int max = mc->max;
2865         int min = mc->min;
2866
2867         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2868         uinfo->count = 2;
2869         uinfo->value.integer.min = 0;
2870         uinfo->value.integer.max = max-min;
2871
2872         return 0;
2873 }
2874 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2875
2876 /**
2877  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2878  *  mixer get callback
2879  * @kcontrol: mixer control
2880  * @uinfo: control element information
2881  *
2882  * Returns 0 for success.
2883  */
2884 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2885                         struct snd_ctl_elem_value *ucontrol)
2886 {
2887         struct soc_mixer_control *mc =
2888                 (struct soc_mixer_control *)kcontrol->private_value;
2889         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2890         unsigned int mask = (1<<mc->shift)-1;
2891         int min = mc->min;
2892         int val = snd_soc_read(codec, mc->reg) & mask;
2893         int valr = snd_soc_read(codec, mc->rreg) & mask;
2894
2895         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2896         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2897         return 0;
2898 }
2899 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2900
2901 /**
2902  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2903  *  mixer put callback
2904  * @kcontrol: mixer control
2905  * @uinfo: control element information
2906  *
2907  * Returns 0 for success.
2908  */
2909 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2910                         struct snd_ctl_elem_value *ucontrol)
2911 {
2912         struct soc_mixer_control *mc =
2913                 (struct soc_mixer_control *)kcontrol->private_value;
2914         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2915         unsigned int mask = (1<<mc->shift)-1;
2916         int min = mc->min;
2917         int ret;
2918         unsigned int val, valr, oval, ovalr;
2919
2920         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2921         val &= mask;
2922         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2923         valr &= mask;
2924
2925         oval = snd_soc_read(codec, mc->reg) & mask;
2926         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2927
2928         ret = 0;
2929         if (oval != val) {
2930                 ret = snd_soc_write(codec, mc->reg, val);
2931                 if (ret < 0)
2932                         return ret;
2933         }
2934         if (ovalr != valr) {
2935                 ret = snd_soc_write(codec, mc->rreg, valr);
2936                 if (ret < 0)
2937                         return ret;
2938         }
2939
2940         return 0;
2941 }
2942 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2943
2944 /**
2945  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2946  * @dai: DAI
2947  * @clk_id: DAI specific clock ID
2948  * @freq: new clock frequency in Hz
2949  * @dir: new clock direction - input/output.
2950  *
2951  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2952  */
2953 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2954         unsigned int freq, int dir)
2955 {
2956         if (dai->driver && dai->driver->ops->set_sysclk)
2957                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2958         else
2959                 return -EINVAL;
2960 }
2961 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2962
2963 /**
2964  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2965  * @dai: DAI
2966  * @div_id: DAI specific clock divider ID
2967  * @div: new clock divisor.
2968  *
2969  * Configures the clock dividers. This is used to derive the best DAI bit and
2970  * frame clocks from the system or master clock. It's best to set the DAI bit
2971  * and frame clocks as low as possible to save system power.
2972  */
2973 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2974         int div_id, int div)
2975 {
2976         if (dai->driver && dai->driver->ops->set_clkdiv)
2977                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2978         else
2979                 return -EINVAL;
2980 }
2981 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2982
2983 /**
2984  * snd_soc_dai_set_pll - configure DAI PLL.
2985  * @dai: DAI
2986  * @pll_id: DAI specific PLL ID
2987  * @source: DAI specific source for the PLL
2988  * @freq_in: PLL input clock frequency in Hz
2989  * @freq_out: requested PLL output clock frequency in Hz
2990  *
2991  * Configures and enables PLL to generate output clock based on input clock.
2992  */
2993 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2994         unsigned int freq_in, unsigned int freq_out)
2995 {
2996         if (dai->driver && dai->driver->ops->set_pll)
2997                 return dai->driver->ops->set_pll(dai, pll_id, source,
2998                                          freq_in, freq_out);
2999         else
3000                 return -EINVAL;
3001 }
3002 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3003
3004 /**
3005  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3006  * @dai: DAI
3007  * @fmt: SND_SOC_DAIFMT_ format value.
3008  *
3009  * Configures the DAI hardware format and clocking.
3010  */
3011 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3012 {
3013         if (dai->driver && dai->driver->ops->set_fmt)
3014                 return dai->driver->ops->set_fmt(dai, fmt);
3015         else
3016                 return -EINVAL;
3017 }
3018 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3019
3020 /**
3021  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3022  * @dai: DAI
3023  * @tx_mask: bitmask representing active TX slots.
3024  * @rx_mask: bitmask representing active RX slots.
3025  * @slots: Number of slots in use.
3026  * @slot_width: Width in bits for each slot.
3027  *
3028  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3029  * specific.
3030  */
3031 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3032         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3033 {
3034         if (dai->driver && dai->driver->ops->set_tdm_slot)
3035                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3036                                 slots, slot_width);
3037         else
3038                 return -EINVAL;
3039 }
3040 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3041
3042 /**
3043  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3044  * @dai: DAI
3045  * @tx_num: how many TX channels
3046  * @tx_slot: pointer to an array which imply the TX slot number channel
3047  *           0~num-1 uses
3048  * @rx_num: how many RX channels
3049  * @rx_slot: pointer to an array which imply the RX slot number channel
3050  *           0~num-1 uses
3051  *
3052  * configure the relationship between channel number and TDM slot number.
3053  */
3054 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3055         unsigned int tx_num, unsigned int *tx_slot,
3056         unsigned int rx_num, unsigned int *rx_slot)
3057 {
3058         if (dai->driver && dai->driver->ops->set_channel_map)
3059                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3060                         rx_num, rx_slot);
3061         else
3062                 return -EINVAL;
3063 }
3064 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3065
3066 /**
3067  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3068  * @dai: DAI
3069  * @tristate: tristate enable
3070  *
3071  * Tristates the DAI so that others can use it.
3072  */
3073 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3074 {
3075         if (dai->driver && dai->driver->ops->set_tristate)
3076                 return dai->driver->ops->set_tristate(dai, tristate);
3077         else
3078                 return -EINVAL;
3079 }
3080 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3081
3082 /**
3083  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3084  * @dai: DAI
3085  * @mute: mute enable
3086  *
3087  * Mutes the DAI DAC.
3088  */
3089 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3090 {
3091         if (dai->driver && dai->driver->ops->digital_mute)
3092                 return dai->driver->ops->digital_mute(dai, mute);
3093         else
3094                 return -EINVAL;
3095 }
3096 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3097
3098 /**
3099  * snd_soc_register_card - Register a card with the ASoC core
3100  *
3101  * @card: Card to register
3102  *
3103  * Note that currently this is an internal only function: it will be
3104  * exposed to machine drivers after further backporting of ASoC v2
3105  * registration APIs.
3106  */
3107 static int snd_soc_register_card(struct snd_soc_card *card)
3108 {
3109         int i;
3110
3111         if (!card->name || !card->dev)
3112                 return -EINVAL;
3113
3114         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3115                             (card->num_links + card->num_aux_devs),
3116                             GFP_KERNEL);
3117         if (card->rtd == NULL)
3118                 return -ENOMEM;
3119         card->rtd_aux = &card->rtd[card->num_links];
3120
3121         for (i = 0; i < card->num_links; i++)
3122                 card->rtd[i].dai_link = &card->dai_link[i];
3123
3124         INIT_LIST_HEAD(&card->list);
3125         card->instantiated = 0;
3126         mutex_init(&card->mutex);
3127
3128         mutex_lock(&client_mutex);
3129         list_add(&card->list, &card_list);
3130         snd_soc_instantiate_cards();
3131         mutex_unlock(&client_mutex);
3132
3133         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3134
3135         return 0;
3136 }
3137
3138 /**
3139  * snd_soc_unregister_card - Unregister a card with the ASoC core
3140  *
3141  * @card: Card to unregister
3142  *
3143  * Note that currently this is an internal only function: it will be
3144  * exposed to machine drivers after further backporting of ASoC v2
3145  * registration APIs.
3146  */
3147 static int snd_soc_unregister_card(struct snd_soc_card *card)
3148 {
3149         mutex_lock(&client_mutex);
3150         list_del(&card->list);
3151         mutex_unlock(&client_mutex);
3152         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3153
3154         return 0;
3155 }
3156
3157 /*
3158  * Simplify DAI link configuration by removing ".-1" from device names
3159  * and sanitizing names.
3160  */
3161 static char *fmt_single_name(struct device *dev, int *id)
3162 {
3163         char *found, name[NAME_SIZE];
3164         int id1, id2;
3165
3166         if (dev_name(dev) == NULL)
3167                 return NULL;
3168
3169         strlcpy(name, dev_name(dev), NAME_SIZE);
3170
3171         /* are we a "%s.%d" name (platform and SPI components) */
3172         found = strstr(name, dev->driver->name);
3173         if (found) {
3174                 /* get ID */
3175                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3176
3177                         /* discard ID from name if ID == -1 */
3178                         if (*id == -1)
3179                                 found[strlen(dev->driver->name)] = '\0';
3180                 }
3181
3182         } else {
3183                 /* I2C component devices are named "bus-addr"  */
3184                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3185                         char tmp[NAME_SIZE];
3186
3187                         /* create unique ID number from I2C addr and bus */
3188                         *id = ((id1 & 0xffff) << 16) + id2;
3189
3190                         /* sanitize component name for DAI link creation */
3191                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3192                         strlcpy(name, tmp, NAME_SIZE);
3193                 } else
3194                         *id = 0;
3195         }
3196
3197         return kstrdup(name, GFP_KERNEL);
3198 }
3199
3200 /*
3201  * Simplify DAI link naming for single devices with multiple DAIs by removing
3202  * any ".-1" and using the DAI name (instead of device name).
3203  */
3204 static inline char *fmt_multiple_name(struct device *dev,
3205                 struct snd_soc_dai_driver *dai_drv)
3206 {
3207         if (dai_drv->name == NULL) {
3208                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3209                                 dev_name(dev));
3210                 return NULL;
3211         }
3212
3213         return kstrdup(dai_drv->name, GFP_KERNEL);
3214 }
3215
3216 /**
3217  * snd_soc_register_dai - Register a DAI with the ASoC core
3218  *
3219  * @dai: DAI to register
3220  */
3221 int snd_soc_register_dai(struct device *dev,
3222                 struct snd_soc_dai_driver *dai_drv)
3223 {
3224         struct snd_soc_dai *dai;
3225
3226         dev_dbg(dev, "dai register %s\n", dev_name(dev));
3227
3228         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3229         if (dai == NULL)
3230                         return -ENOMEM;
3231
3232         /* create DAI component name */
3233         dai->name = fmt_single_name(dev, &dai->id);
3234         if (dai->name == NULL) {
3235                 kfree(dai);
3236                 return -ENOMEM;
3237         }
3238
3239         dai->dev = dev;
3240         dai->driver = dai_drv;
3241         if (!dai->driver->ops)
3242                 dai->driver->ops = &null_dai_ops;
3243
3244         mutex_lock(&client_mutex);
3245         list_add(&dai->list, &dai_list);
3246         snd_soc_instantiate_cards();
3247         mutex_unlock(&client_mutex);
3248
3249         pr_debug("Registered DAI '%s'\n", dai->name);
3250
3251         return 0;
3252 }
3253 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3254
3255 /**
3256  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3257  *
3258  * @dai: DAI to unregister
3259  */
3260 void snd_soc_unregister_dai(struct device *dev)
3261 {
3262         struct snd_soc_dai *dai;
3263
3264         list_for_each_entry(dai, &dai_list, list) {
3265                 if (dev == dai->dev)
3266                         goto found;
3267         }
3268         return;
3269
3270 found:
3271         mutex_lock(&client_mutex);
3272         list_del(&dai->list);
3273         mutex_unlock(&client_mutex);
3274
3275         pr_debug("Unregistered DAI '%s'\n", dai->name);
3276         kfree(dai->name);
3277         kfree(dai);
3278 }
3279 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3280
3281 /**
3282  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3283  *
3284  * @dai: Array of DAIs to register
3285  * @count: Number of DAIs
3286  */
3287 int snd_soc_register_dais(struct device *dev,
3288                 struct snd_soc_dai_driver *dai_drv, size_t count)
3289 {
3290         struct snd_soc_dai *dai;
3291         int i, ret = 0;
3292
3293         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3294
3295         for (i = 0; i < count; i++) {
3296
3297                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3298                 if (dai == NULL) {
3299                         ret = -ENOMEM;
3300                         goto err;
3301                 }
3302
3303                 /* create DAI component name */
3304                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3305                 if (dai->name == NULL) {
3306                         kfree(dai);
3307                         ret = -EINVAL;
3308                         goto err;
3309                 }
3310
3311                 dai->dev = dev;
3312                 dai->driver = &dai_drv[i];
3313                 if (dai->driver->id)
3314                         dai->id = dai->driver->id;
3315                 else
3316                         dai->id = i;
3317                 if (!dai->driver->ops)
3318                         dai->driver->ops = &null_dai_ops;
3319
3320                 mutex_lock(&client_mutex);
3321                 list_add(&dai->list, &dai_list);
3322                 mutex_unlock(&client_mutex);
3323
3324                 pr_debug("Registered DAI '%s'\n", dai->name);
3325         }
3326
3327         mutex_lock(&client_mutex);
3328         snd_soc_instantiate_cards();
3329         mutex_unlock(&client_mutex);
3330         return 0;
3331
3332 err:
3333         for (i--; i >= 0; i--)
3334                 snd_soc_unregister_dai(dev);
3335
3336         return ret;
3337 }
3338 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3339
3340 /**
3341  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3342  *
3343  * @dai: Array of DAIs to unregister
3344  * @count: Number of DAIs
3345  */
3346 void snd_soc_unregister_dais(struct device *dev, size_t count)
3347 {
3348         int i;
3349
3350         for (i = 0; i < count; i++)
3351                 snd_soc_unregister_dai(dev);
3352 }
3353 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3354
3355 /**
3356  * snd_soc_register_platform - Register a platform with the ASoC core
3357  *
3358  * @platform: platform to register
3359  */
3360 int snd_soc_register_platform(struct device *dev,
3361                 struct snd_soc_platform_driver *platform_drv)
3362 {
3363         struct snd_soc_platform *platform;
3364
3365         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3366
3367         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3368         if (platform == NULL)
3369                         return -ENOMEM;
3370
3371         /* create platform component name */
3372         platform->name = fmt_single_name(dev, &platform->id);
3373         if (platform->name == NULL) {
3374                 kfree(platform);
3375                 return -ENOMEM;
3376         }
3377
3378         platform->dev = dev;
3379         platform->driver = platform_drv;
3380
3381         mutex_lock(&client_mutex);
3382         list_add(&platform->list, &platform_list);
3383         snd_soc_instantiate_cards();
3384         mutex_unlock(&client_mutex);
3385
3386         pr_debug("Registered platform '%s'\n", platform->name);
3387
3388         return 0;
3389 }
3390 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3391
3392 /**
3393  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3394  *
3395  * @platform: platform to unregister
3396  */
3397 void snd_soc_unregister_platform(struct device *dev)
3398 {
3399         struct snd_soc_platform *platform;
3400
3401         list_for_each_entry(platform, &platform_list, list) {
3402                 if (dev == platform->dev)
3403                         goto found;
3404         }
3405         return;
3406
3407 found:
3408         mutex_lock(&client_mutex);
3409         list_del(&platform->list);
3410         mutex_unlock(&client_mutex);
3411
3412         pr_debug("Unregistered platform '%s'\n", platform->name);
3413         kfree(platform->name);
3414         kfree(platform);
3415 }
3416 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3417
3418 static u64 codec_format_map[] = {
3419         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3420         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3421         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3422         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3423         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3424         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3425         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3426         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3427         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3428         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3429         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3430         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3431         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3432         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3433         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3434         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3435 };
3436
3437 /* Fix up the DAI formats for endianness: codecs don't actually see
3438  * the endianness of the data but we're using the CPU format
3439  * definitions which do need to include endianness so we ensure that
3440  * codec DAIs always have both big and little endian variants set.
3441  */
3442 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3443 {
3444         int i;
3445
3446         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3447                 if (stream->formats & codec_format_map[i])
3448                         stream->formats |= codec_format_map[i];
3449 }
3450
3451 /**
3452  * snd_soc_register_codec - Register a codec with the ASoC core
3453  *
3454  * @codec: codec to register
3455  */
3456 int snd_soc_register_codec(struct device *dev,
3457                            const struct snd_soc_codec_driver *codec_drv,
3458                            struct snd_soc_dai_driver *dai_drv,
3459                            int num_dai)
3460 {
3461         size_t reg_size;
3462         struct snd_soc_codec *codec;
3463         int ret, i;
3464
3465         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3466
3467         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3468         if (codec == NULL)
3469                 return -ENOMEM;
3470
3471         /* create CODEC component name */
3472         codec->name = fmt_single_name(dev, &codec->id);
3473         if (codec->name == NULL) {
3474                 kfree(codec);
3475                 return -ENOMEM;
3476         }
3477
3478         if (codec_drv->compress_type)
3479                 codec->compress_type = codec_drv->compress_type;
3480         else
3481                 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3482
3483         INIT_LIST_HEAD(&codec->dapm.widgets);
3484         INIT_LIST_HEAD(&codec->dapm.paths);
3485         codec->write = codec_drv->write;
3486         codec->read = codec_drv->read;
3487         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3488         codec->dapm.dev = dev;
3489         codec->dapm.codec = codec;
3490         codec->dev = dev;
3491         codec->driver = codec_drv;
3492         codec->num_dai = num_dai;
3493         mutex_init(&codec->mutex);
3494
3495         /* allocate CODEC register cache */
3496         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3497                 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3498                 /* it is necessary to make a copy of the default register cache
3499                  * because in the case of using a compression type that requires
3500                  * the default register cache to be marked as __devinitconst the
3501                  * kernel might have freed the array by the time we initialize
3502                  * the cache.
3503                  */
3504                 codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3505                                               reg_size, GFP_KERNEL);
3506                 if (!codec->reg_def_copy) {
3507                         ret = -ENOMEM;
3508                         goto fail;
3509                 }
3510         }
3511
3512         for (i = 0; i < num_dai; i++) {
3513                 fixup_codec_formats(&dai_drv[i].playback);
3514                 fixup_codec_formats(&dai_drv[i].capture);
3515         }
3516
3517         /* register any DAIs */
3518         if (num_dai) {
3519                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3520                 if (ret < 0)
3521                         goto fail;
3522         }
3523
3524         mutex_lock(&client_mutex);
3525         list_add(&codec->list, &codec_list);
3526         snd_soc_instantiate_cards();
3527         mutex_unlock(&client_mutex);
3528
3529         pr_debug("Registered codec '%s'\n", codec->name);
3530         return 0;
3531
3532 fail:
3533         kfree(codec->reg_def_copy);
3534         codec->reg_def_copy = NULL;
3535         kfree(codec->name);
3536         kfree(codec);
3537         return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3540
3541 /**
3542  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3543  *
3544  * @codec: codec to unregister
3545  */
3546 void snd_soc_unregister_codec(struct device *dev)
3547 {
3548         struct snd_soc_codec *codec;
3549         int i;
3550
3551         list_for_each_entry(codec, &codec_list, list) {
3552                 if (dev == codec->dev)
3553                         goto found;
3554         }
3555         return;
3556
3557 found:
3558         if (codec->num_dai)
3559                 for (i = 0; i < codec->num_dai; i++)
3560                         snd_soc_unregister_dai(dev);
3561
3562         mutex_lock(&client_mutex);
3563         list_del(&codec->list);
3564         mutex_unlock(&client_mutex);
3565
3566         pr_debug("Unregistered codec '%s'\n", codec->name);
3567
3568         snd_soc_cache_exit(codec);
3569         kfree(codec->reg_def_copy);
3570         kfree(codec->name);
3571         kfree(codec);
3572 }
3573 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3574
3575 static int __init snd_soc_init(void)
3576 {
3577 #ifdef CONFIG_DEBUG_FS
3578         debugfs_root = debugfs_create_dir("asoc", NULL);
3579         if (IS_ERR(debugfs_root) || !debugfs_root) {
3580                 printk(KERN_WARNING
3581                        "ASoC: Failed to create debugfs directory\n");
3582                 debugfs_root = NULL;
3583         }
3584
3585         if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3586                                  &codec_list_fops))
3587                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3588
3589         if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3590                                  &dai_list_fops))
3591                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3592
3593         if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3594                                  &platform_list_fops))
3595                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3596 #endif
3597
3598         return platform_driver_register(&soc_driver);
3599 }
3600 module_init(snd_soc_init);
3601
3602 static void __exit snd_soc_exit(void)
3603 {
3604 #ifdef CONFIG_DEBUG_FS
3605         debugfs_remove_recursive(debugfs_root);
3606 #endif
3607         platform_driver_unregister(&soc_driver);
3608 }
3609 module_exit(snd_soc_exit);
3610
3611 /* Module information */
3612 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3613 MODULE_DESCRIPTION("ALSA SoC Core");
3614 MODULE_LICENSE("GPL");
3615 MODULE_ALIAS("platform:soc-audio");