]> git.karo-electronics.de Git - mv-sheeva.git/blob - sound/soc/soc-core.c
ASoC: Fix compile error if CONFIG_DEBUG_FS is not configured
[mv-sheeva.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41
42 #define NAME_SIZE       32
43
44 static DEFINE_MUTEX(pcm_mutex);
45 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
46
47 #ifdef CONFIG_DEBUG_FS
48 static struct dentry *debugfs_root;
49 #endif
50
51 static DEFINE_MUTEX(client_mutex);
52 static LIST_HEAD(card_list);
53 static LIST_HEAD(dai_list);
54 static LIST_HEAD(platform_list);
55 static LIST_HEAD(codec_list);
56
57 static int snd_soc_register_card(struct snd_soc_card *card);
58 static int snd_soc_unregister_card(struct snd_soc_card *card);
59 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
60
61 /*
62  * This is a timeout to do a DAPM powerdown after a stream is closed().
63  * It can be used to eliminate pops between different playback streams, e.g.
64  * between two audio tracks.
65  */
66 static int pmdown_time = 5000;
67 module_param(pmdown_time, int, 0);
68 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
69
70 /*
71  * This function forces any delayed work to be queued and run.
72  */
73 static int run_delayed_work(struct delayed_work *dwork)
74 {
75         int ret;
76
77         /* cancel any work waiting to be queued. */
78         ret = cancel_delayed_work(dwork);
79
80         /* if there was any work waiting then we run it now and
81          * wait for it's completion */
82         if (ret) {
83                 schedule_delayed_work(dwork, 0);
84                 flush_scheduled_work();
85         }
86         return ret;
87 }
88
89 /* codec register dump */
90 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
91 {
92         int ret, i, step = 1, count = 0;
93
94         if (!codec->driver->reg_cache_size)
95                 return 0;
96
97         if (codec->driver->reg_cache_step)
98                 step = codec->driver->reg_cache_step;
99
100         count += sprintf(buf, "%s registers\n", codec->name);
101         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
102                 if (codec->driver->readable_register && !codec->driver->readable_register(i))
103                         continue;
104
105                 count += sprintf(buf + count, "%2x: ", i);
106                 if (count >= PAGE_SIZE - 1)
107                         break;
108
109                 if (codec->driver->display_register) {
110                         count += codec->driver->display_register(codec, buf + count,
111                                                          PAGE_SIZE - count, i);
112                 } else {
113                         /* If the read fails it's almost certainly due to
114                          * the register being volatile and the device being
115                          * powered off.
116                          */
117                         ret = codec->driver->read(codec, i);
118                         if (ret >= 0)
119                                 count += snprintf(buf + count,
120                                                   PAGE_SIZE - count,
121                                                   "%4x", ret);
122                         else
123                                 count += snprintf(buf + count,
124                                                   PAGE_SIZE - count,
125                                                   "<no data: %d>", ret);
126                 }
127
128                 if (count >= PAGE_SIZE - 1)
129                         break;
130
131                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
132                 if (count >= PAGE_SIZE - 1)
133                         break;
134         }
135
136         /* Truncate count; min() would cause a warning */
137         if (count >= PAGE_SIZE)
138                 count = PAGE_SIZE - 1;
139
140         return count;
141 }
142 static ssize_t codec_reg_show(struct device *dev,
143         struct device_attribute *attr, char *buf)
144 {
145         struct snd_soc_pcm_runtime *rtd =
146                         container_of(dev, struct snd_soc_pcm_runtime, dev);
147
148         return soc_codec_reg_show(rtd->codec, buf);
149 }
150
151 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
152
153 static ssize_t pmdown_time_show(struct device *dev,
154                                 struct device_attribute *attr, char *buf)
155 {
156         struct snd_soc_pcm_runtime *rtd =
157                         container_of(dev, struct snd_soc_pcm_runtime, dev);
158
159         return sprintf(buf, "%ld\n", rtd->pmdown_time);
160 }
161
162 static ssize_t pmdown_time_set(struct device *dev,
163                                struct device_attribute *attr,
164                                const char *buf, size_t count)
165 {
166         struct snd_soc_pcm_runtime *rtd =
167                         container_of(dev, struct snd_soc_pcm_runtime, dev);
168         int ret;
169
170         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
171         if (ret)
172                 return ret;
173
174         return count;
175 }
176
177 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
178
179 #ifdef CONFIG_DEBUG_FS
180 static int codec_reg_open_file(struct inode *inode, struct file *file)
181 {
182         file->private_data = inode->i_private;
183         return 0;
184 }
185
186 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
187                                size_t count, loff_t *ppos)
188 {
189         ssize_t ret;
190         struct snd_soc_codec *codec = file->private_data;
191         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
192         if (!buf)
193                 return -ENOMEM;
194         ret = soc_codec_reg_show(codec, buf);
195         if (ret >= 0)
196                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
197         kfree(buf);
198         return ret;
199 }
200
201 static ssize_t codec_reg_write_file(struct file *file,
202                 const char __user *user_buf, size_t count, loff_t *ppos)
203 {
204         char buf[32];
205         int buf_size;
206         char *start = buf;
207         unsigned long reg, value;
208         int step = 1;
209         struct snd_soc_codec *codec = file->private_data;
210
211         buf_size = min(count, (sizeof(buf)-1));
212         if (copy_from_user(buf, user_buf, buf_size))
213                 return -EFAULT;
214         buf[buf_size] = 0;
215
216         if (codec->driver->reg_cache_step)
217                 step = codec->driver->reg_cache_step;
218
219         while (*start == ' ')
220                 start++;
221         reg = simple_strtoul(start, &start, 16);
222         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
223                 return -EINVAL;
224         while (*start == ' ')
225                 start++;
226         if (strict_strtoul(start, 16, &value))
227                 return -EINVAL;
228         codec->driver->write(codec, reg, value);
229         return buf_size;
230 }
231
232 static const struct file_operations codec_reg_fops = {
233         .open = codec_reg_open_file,
234         .read = codec_reg_read_file,
235         .write = codec_reg_write_file,
236         .llseek = default_llseek,
237 };
238
239 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
240 {
241         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
242
243         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
244                                                        debugfs_card_root);
245         if (!codec->debugfs_codec_root) {
246                 printk(KERN_WARNING
247                        "ASoC: Failed to create codec debugfs directory\n");
248                 return;
249         }
250
251         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
252                                                  codec->debugfs_codec_root,
253                                                  codec, &codec_reg_fops);
254         if (!codec->debugfs_reg)
255                 printk(KERN_WARNING
256                        "ASoC: Failed to create codec register debugfs file\n");
257
258         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
259                                                  codec->debugfs_codec_root);
260         if (!codec->dapm.debugfs_dapm)
261                 printk(KERN_WARNING
262                        "Failed to create DAPM debugfs directory\n");
263
264         snd_soc_dapm_debugfs_init(&codec->dapm);
265 }
266
267 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
268 {
269         debugfs_remove_recursive(codec->debugfs_codec_root);
270 }
271
272 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
273                                     size_t count, loff_t *ppos)
274 {
275         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
276         ssize_t len, ret = 0;
277         struct snd_soc_codec *codec;
278
279         if (!buf)
280                 return -ENOMEM;
281
282         list_for_each_entry(codec, &codec_list, list) {
283                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
284                                codec->name);
285                 if (len >= 0)
286                         ret += len;
287                 if (ret > PAGE_SIZE) {
288                         ret = PAGE_SIZE;
289                         break;
290                 }
291         }
292
293         if (ret >= 0)
294                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
295
296         kfree(buf);
297
298         return ret;
299 }
300
301 static const struct file_operations codec_list_fops = {
302         .read = codec_list_read_file,
303         .llseek = default_llseek,/* read accesses f_pos */
304 };
305
306 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
307                                   size_t count, loff_t *ppos)
308 {
309         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
310         ssize_t len, ret = 0;
311         struct snd_soc_dai *dai;
312
313         if (!buf)
314                 return -ENOMEM;
315
316         list_for_each_entry(dai, &dai_list, list) {
317                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
318                 if (len >= 0)
319                         ret += len;
320                 if (ret > PAGE_SIZE) {
321                         ret = PAGE_SIZE;
322                         break;
323                 }
324         }
325
326         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
327
328         kfree(buf);
329
330         return ret;
331 }
332
333 static const struct file_operations dai_list_fops = {
334         .read = dai_list_read_file,
335         .llseek = default_llseek,/* read accesses f_pos */
336 };
337
338 static ssize_t platform_list_read_file(struct file *file,
339                                        char __user *user_buf,
340                                        size_t count, loff_t *ppos)
341 {
342         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
343         ssize_t len, ret = 0;
344         struct snd_soc_platform *platform;
345
346         if (!buf)
347                 return -ENOMEM;
348
349         list_for_each_entry(platform, &platform_list, list) {
350                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
351                                platform->name);
352                 if (len >= 0)
353                         ret += len;
354                 if (ret > PAGE_SIZE) {
355                         ret = PAGE_SIZE;
356                         break;
357                 }
358         }
359
360         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
361
362         kfree(buf);
363
364         return ret;
365 }
366
367 static const struct file_operations platform_list_fops = {
368         .read = platform_list_read_file,
369         .llseek = default_llseek,/* read accesses f_pos */
370 };
371
372 static void soc_init_card_debugfs(struct snd_soc_card *card)
373 {
374         card->debugfs_card_root = debugfs_create_dir(card->name,
375                                                      debugfs_root);
376         if (!card->debugfs_card_root) {
377                 dev_warn(card->dev,
378                          "ASoC: Failed to create codec debugfs directory\n");
379                 return;
380         }
381
382         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
383                                                     card->debugfs_card_root,
384                                                     &card->pop_time);
385         if (!card->debugfs_pop_time)
386                 dev_warn(card->dev,
387                        "Failed to create pop time debugfs file\n");
388 }
389
390 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
391 {
392         debugfs_remove_recursive(card->debugfs_card_root);
393 }
394
395 #else
396
397 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
398 {
399 }
400
401 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
402 {
403 }
404
405 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
406 {
407 }
408
409 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
410 {
411 }
412 #endif
413
414 #ifdef CONFIG_SND_SOC_AC97_BUS
415 /* unregister ac97 codec */
416 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
417 {
418         if (codec->ac97->dev.bus)
419                 device_unregister(&codec->ac97->dev);
420         return 0;
421 }
422
423 /* stop no dev release warning */
424 static void soc_ac97_device_release(struct device *dev){}
425
426 /* register ac97 codec to bus */
427 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
428 {
429         int err;
430
431         codec->ac97->dev.bus = &ac97_bus_type;
432         codec->ac97->dev.parent = codec->card->dev;
433         codec->ac97->dev.release = soc_ac97_device_release;
434
435         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
436                      codec->card->snd_card->number, 0, codec->name);
437         err = device_register(&codec->ac97->dev);
438         if (err < 0) {
439                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
440                 codec->ac97->dev.bus = NULL;
441                 return err;
442         }
443         return 0;
444 }
445 #endif
446
447 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
448 {
449         struct snd_soc_pcm_runtime *rtd = substream->private_data;
450         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
451         struct snd_soc_dai *codec_dai = rtd->codec_dai;
452         int ret;
453
454         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
455                         rtd->dai_link->symmetric_rates) {
456                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
457                                 rtd->rate);
458
459                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
460                                                    SNDRV_PCM_HW_PARAM_RATE,
461                                                    rtd->rate,
462                                                    rtd->rate);
463                 if (ret < 0) {
464                         dev_err(&rtd->dev,
465                                 "Unable to apply rate symmetry constraint: %d\n", ret);
466                         return ret;
467                 }
468         }
469
470         return 0;
471 }
472
473 /*
474  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
475  * then initialized and any private data can be allocated. This also calls
476  * startup for the cpu DAI, platform, machine and codec DAI.
477  */
478 static int soc_pcm_open(struct snd_pcm_substream *substream)
479 {
480         struct snd_soc_pcm_runtime *rtd = substream->private_data;
481         struct snd_pcm_runtime *runtime = substream->runtime;
482         struct snd_soc_platform *platform = rtd->platform;
483         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
484         struct snd_soc_dai *codec_dai = rtd->codec_dai;
485         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
486         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
487         int ret = 0;
488
489         mutex_lock(&pcm_mutex);
490
491         /* startup the audio subsystem */
492         if (cpu_dai->driver->ops->startup) {
493                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
494                 if (ret < 0) {
495                         printk(KERN_ERR "asoc: can't open interface %s\n",
496                                 cpu_dai->name);
497                         goto out;
498                 }
499         }
500
501         if (platform->driver->ops->open) {
502                 ret = platform->driver->ops->open(substream);
503                 if (ret < 0) {
504                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
505                         goto platform_err;
506                 }
507         }
508
509         if (codec_dai->driver->ops->startup) {
510                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
511                 if (ret < 0) {
512                         printk(KERN_ERR "asoc: can't open codec %s\n",
513                                 codec_dai->name);
514                         goto codec_dai_err;
515                 }
516         }
517
518         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
519                 ret = rtd->dai_link->ops->startup(substream);
520                 if (ret < 0) {
521                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
522                         goto machine_err;
523                 }
524         }
525
526         /* Check that the codec and cpu DAI's are compatible */
527         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
528                 runtime->hw.rate_min =
529                         max(codec_dai_drv->playback.rate_min,
530                             cpu_dai_drv->playback.rate_min);
531                 runtime->hw.rate_max =
532                         min(codec_dai_drv->playback.rate_max,
533                             cpu_dai_drv->playback.rate_max);
534                 runtime->hw.channels_min =
535                         max(codec_dai_drv->playback.channels_min,
536                                 cpu_dai_drv->playback.channels_min);
537                 runtime->hw.channels_max =
538                         min(codec_dai_drv->playback.channels_max,
539                                 cpu_dai_drv->playback.channels_max);
540                 runtime->hw.formats =
541                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
542                 runtime->hw.rates =
543                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
544                 if (codec_dai_drv->playback.rates
545                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
546                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
547                 if (cpu_dai_drv->playback.rates
548                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
549                         runtime->hw.rates |= codec_dai_drv->playback.rates;
550         } else {
551                 runtime->hw.rate_min =
552                         max(codec_dai_drv->capture.rate_min,
553                             cpu_dai_drv->capture.rate_min);
554                 runtime->hw.rate_max =
555                         min(codec_dai_drv->capture.rate_max,
556                             cpu_dai_drv->capture.rate_max);
557                 runtime->hw.channels_min =
558                         max(codec_dai_drv->capture.channels_min,
559                                 cpu_dai_drv->capture.channels_min);
560                 runtime->hw.channels_max =
561                         min(codec_dai_drv->capture.channels_max,
562                                 cpu_dai_drv->capture.channels_max);
563                 runtime->hw.formats =
564                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
565                 runtime->hw.rates =
566                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
567                 if (codec_dai_drv->capture.rates
568                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
569                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
570                 if (cpu_dai_drv->capture.rates
571                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
572                         runtime->hw.rates |= codec_dai_drv->capture.rates;
573         }
574
575         snd_pcm_limit_hw_rates(runtime);
576         if (!runtime->hw.rates) {
577                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
578                         codec_dai->name, cpu_dai->name);
579                 goto config_err;
580         }
581         if (!runtime->hw.formats) {
582                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
583                         codec_dai->name, cpu_dai->name);
584                 goto config_err;
585         }
586         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
587                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
588                                 codec_dai->name, cpu_dai->name);
589                 goto config_err;
590         }
591
592         /* Symmetry only applies if we've already got an active stream. */
593         if (cpu_dai->active || codec_dai->active) {
594                 ret = soc_pcm_apply_symmetry(substream);
595                 if (ret != 0)
596                         goto config_err;
597         }
598
599         pr_debug("asoc: %s <-> %s info:\n",
600                         codec_dai->name, cpu_dai->name);
601         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
602         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
603                  runtime->hw.channels_max);
604         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
605                  runtime->hw.rate_max);
606
607         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
608                 cpu_dai->playback_active++;
609                 codec_dai->playback_active++;
610         } else {
611                 cpu_dai->capture_active++;
612                 codec_dai->capture_active++;
613         }
614         cpu_dai->active++;
615         codec_dai->active++;
616         rtd->codec->active++;
617         mutex_unlock(&pcm_mutex);
618         return 0;
619
620 config_err:
621         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
622                 rtd->dai_link->ops->shutdown(substream);
623
624 machine_err:
625         if (codec_dai->driver->ops->shutdown)
626                 codec_dai->driver->ops->shutdown(substream, codec_dai);
627
628 codec_dai_err:
629         if (platform->driver->ops->close)
630                 platform->driver->ops->close(substream);
631
632 platform_err:
633         if (cpu_dai->driver->ops->shutdown)
634                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
635 out:
636         mutex_unlock(&pcm_mutex);
637         return ret;
638 }
639
640 /*
641  * Power down the audio subsystem pmdown_time msecs after close is called.
642  * This is to ensure there are no pops or clicks in between any music tracks
643  * due to DAPM power cycling.
644  */
645 static void close_delayed_work(struct work_struct *work)
646 {
647         struct snd_soc_pcm_runtime *rtd =
648                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
649         struct snd_soc_dai *codec_dai = rtd->codec_dai;
650
651         mutex_lock(&pcm_mutex);
652
653         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
654                  codec_dai->driver->playback.stream_name,
655                  codec_dai->playback_active ? "active" : "inactive",
656                  codec_dai->pop_wait ? "yes" : "no");
657
658         /* are we waiting on this codec DAI stream */
659         if (codec_dai->pop_wait == 1) {
660                 codec_dai->pop_wait = 0;
661                 snd_soc_dapm_stream_event(rtd,
662                         codec_dai->driver->playback.stream_name,
663                         SND_SOC_DAPM_STREAM_STOP);
664         }
665
666         mutex_unlock(&pcm_mutex);
667 }
668
669 /*
670  * Called by ALSA when a PCM substream is closed. Private data can be
671  * freed here. The cpu DAI, codec DAI, machine and platform are also
672  * shutdown.
673  */
674 static int soc_codec_close(struct snd_pcm_substream *substream)
675 {
676         struct snd_soc_pcm_runtime *rtd = substream->private_data;
677         struct snd_soc_platform *platform = rtd->platform;
678         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
679         struct snd_soc_dai *codec_dai = rtd->codec_dai;
680         struct snd_soc_codec *codec = rtd->codec;
681
682         mutex_lock(&pcm_mutex);
683
684         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
685                 cpu_dai->playback_active--;
686                 codec_dai->playback_active--;
687         } else {
688                 cpu_dai->capture_active--;
689                 codec_dai->capture_active--;
690         }
691
692         cpu_dai->active--;
693         codec_dai->active--;
694         codec->active--;
695
696         /* Muting the DAC suppresses artifacts caused during digital
697          * shutdown, for example from stopping clocks.
698          */
699         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
700                 snd_soc_dai_digital_mute(codec_dai, 1);
701
702         if (cpu_dai->driver->ops->shutdown)
703                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
704
705         if (codec_dai->driver->ops->shutdown)
706                 codec_dai->driver->ops->shutdown(substream, codec_dai);
707
708         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
709                 rtd->dai_link->ops->shutdown(substream);
710
711         if (platform->driver->ops->close)
712                 platform->driver->ops->close(substream);
713         cpu_dai->runtime = NULL;
714
715         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
716                 /* start delayed pop wq here for playback streams */
717                 codec_dai->pop_wait = 1;
718                 schedule_delayed_work(&rtd->delayed_work,
719                         msecs_to_jiffies(rtd->pmdown_time));
720         } else {
721                 /* capture streams can be powered down now */
722                 snd_soc_dapm_stream_event(rtd,
723                         codec_dai->driver->capture.stream_name,
724                         SND_SOC_DAPM_STREAM_STOP);
725         }
726
727         mutex_unlock(&pcm_mutex);
728         return 0;
729 }
730
731 /*
732  * Called by ALSA when the PCM substream is prepared, can set format, sample
733  * rate, etc.  This function is non atomic and can be called multiple times,
734  * it can refer to the runtime info.
735  */
736 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
737 {
738         struct snd_soc_pcm_runtime *rtd = substream->private_data;
739         struct snd_soc_platform *platform = rtd->platform;
740         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
741         struct snd_soc_dai *codec_dai = rtd->codec_dai;
742         int ret = 0;
743
744         mutex_lock(&pcm_mutex);
745
746         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
747                 ret = rtd->dai_link->ops->prepare(substream);
748                 if (ret < 0) {
749                         printk(KERN_ERR "asoc: machine prepare error\n");
750                         goto out;
751                 }
752         }
753
754         if (platform->driver->ops->prepare) {
755                 ret = platform->driver->ops->prepare(substream);
756                 if (ret < 0) {
757                         printk(KERN_ERR "asoc: platform prepare error\n");
758                         goto out;
759                 }
760         }
761
762         if (codec_dai->driver->ops->prepare) {
763                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
764                 if (ret < 0) {
765                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
766                         goto out;
767                 }
768         }
769
770         if (cpu_dai->driver->ops->prepare) {
771                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
772                 if (ret < 0) {
773                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
774                         goto out;
775                 }
776         }
777
778         /* cancel any delayed stream shutdown that is pending */
779         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
780             codec_dai->pop_wait) {
781                 codec_dai->pop_wait = 0;
782                 cancel_delayed_work(&rtd->delayed_work);
783         }
784
785         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
786                 snd_soc_dapm_stream_event(rtd,
787                                           codec_dai->driver->playback.stream_name,
788                                           SND_SOC_DAPM_STREAM_START);
789         else
790                 snd_soc_dapm_stream_event(rtd,
791                                           codec_dai->driver->capture.stream_name,
792                                           SND_SOC_DAPM_STREAM_START);
793
794         snd_soc_dai_digital_mute(codec_dai, 0);
795
796 out:
797         mutex_unlock(&pcm_mutex);
798         return ret;
799 }
800
801 /*
802  * Called by ALSA when the hardware params are set by application. This
803  * function can also be called multiple times and can allocate buffers
804  * (using snd_pcm_lib_* ). It's non-atomic.
805  */
806 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
807                                 struct snd_pcm_hw_params *params)
808 {
809         struct snd_soc_pcm_runtime *rtd = substream->private_data;
810         struct snd_soc_platform *platform = rtd->platform;
811         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
812         struct snd_soc_dai *codec_dai = rtd->codec_dai;
813         int ret = 0;
814
815         mutex_lock(&pcm_mutex);
816
817         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
818                 ret = rtd->dai_link->ops->hw_params(substream, params);
819                 if (ret < 0) {
820                         printk(KERN_ERR "asoc: machine hw_params failed\n");
821                         goto out;
822                 }
823         }
824
825         if (codec_dai->driver->ops->hw_params) {
826                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
827                 if (ret < 0) {
828                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
829                                 codec_dai->name);
830                         goto codec_err;
831                 }
832         }
833
834         if (cpu_dai->driver->ops->hw_params) {
835                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
836                 if (ret < 0) {
837                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
838                                 cpu_dai->name);
839                         goto interface_err;
840                 }
841         }
842
843         if (platform->driver->ops->hw_params) {
844                 ret = platform->driver->ops->hw_params(substream, params);
845                 if (ret < 0) {
846                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
847                                 platform->name);
848                         goto platform_err;
849                 }
850         }
851
852         rtd->rate = params_rate(params);
853
854 out:
855         mutex_unlock(&pcm_mutex);
856         return ret;
857
858 platform_err:
859         if (cpu_dai->driver->ops->hw_free)
860                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
861
862 interface_err:
863         if (codec_dai->driver->ops->hw_free)
864                 codec_dai->driver->ops->hw_free(substream, codec_dai);
865
866 codec_err:
867         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
868                 rtd->dai_link->ops->hw_free(substream);
869
870         mutex_unlock(&pcm_mutex);
871         return ret;
872 }
873
874 /*
875  * Free's resources allocated by hw_params, can be called multiple times
876  */
877 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
878 {
879         struct snd_soc_pcm_runtime *rtd = substream->private_data;
880         struct snd_soc_platform *platform = rtd->platform;
881         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
882         struct snd_soc_dai *codec_dai = rtd->codec_dai;
883         struct snd_soc_codec *codec = rtd->codec;
884
885         mutex_lock(&pcm_mutex);
886
887         /* apply codec digital mute */
888         if (!codec->active)
889                 snd_soc_dai_digital_mute(codec_dai, 1);
890
891         /* free any machine hw params */
892         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
893                 rtd->dai_link->ops->hw_free(substream);
894
895         /* free any DMA resources */
896         if (platform->driver->ops->hw_free)
897                 platform->driver->ops->hw_free(substream);
898
899         /* now free hw params for the DAI's  */
900         if (codec_dai->driver->ops->hw_free)
901                 codec_dai->driver->ops->hw_free(substream, codec_dai);
902
903         if (cpu_dai->driver->ops->hw_free)
904                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
905
906         mutex_unlock(&pcm_mutex);
907         return 0;
908 }
909
910 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
911 {
912         struct snd_soc_pcm_runtime *rtd = substream->private_data;
913         struct snd_soc_platform *platform = rtd->platform;
914         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
915         struct snd_soc_dai *codec_dai = rtd->codec_dai;
916         int ret;
917
918         if (codec_dai->driver->ops->trigger) {
919                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
920                 if (ret < 0)
921                         return ret;
922         }
923
924         if (platform->driver->ops->trigger) {
925                 ret = platform->driver->ops->trigger(substream, cmd);
926                 if (ret < 0)
927                         return ret;
928         }
929
930         if (cpu_dai->driver->ops->trigger) {
931                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
932                 if (ret < 0)
933                         return ret;
934         }
935         return 0;
936 }
937
938 /*
939  * soc level wrapper for pointer callback
940  * If cpu_dai, codec_dai, platform driver has the delay callback, than
941  * the runtime->delay will be updated accordingly.
942  */
943 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
944 {
945         struct snd_soc_pcm_runtime *rtd = substream->private_data;
946         struct snd_soc_platform *platform = rtd->platform;
947         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
948         struct snd_soc_dai *codec_dai = rtd->codec_dai;
949         struct snd_pcm_runtime *runtime = substream->runtime;
950         snd_pcm_uframes_t offset = 0;
951         snd_pcm_sframes_t delay = 0;
952
953         if (platform->driver->ops->pointer)
954                 offset = platform->driver->ops->pointer(substream);
955
956         if (cpu_dai->driver->ops->delay)
957                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
958
959         if (codec_dai->driver->ops->delay)
960                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
961
962         if (platform->driver->delay)
963                 delay += platform->driver->delay(substream, codec_dai);
964
965         runtime->delay = delay;
966
967         return offset;
968 }
969
970 /* ASoC PCM operations */
971 static struct snd_pcm_ops soc_pcm_ops = {
972         .open           = soc_pcm_open,
973         .close          = soc_codec_close,
974         .hw_params      = soc_pcm_hw_params,
975         .hw_free        = soc_pcm_hw_free,
976         .prepare        = soc_pcm_prepare,
977         .trigger        = soc_pcm_trigger,
978         .pointer        = soc_pcm_pointer,
979 };
980
981 #ifdef CONFIG_PM
982 /* powers down audio subsystem for suspend */
983 static int soc_suspend(struct device *dev)
984 {
985         struct platform_device *pdev = to_platform_device(dev);
986         struct snd_soc_card *card = platform_get_drvdata(pdev);
987         int i;
988
989         /* If the initialization of this soc device failed, there is no codec
990          * associated with it. Just bail out in this case.
991          */
992         if (list_empty(&card->codec_dev_list))
993                 return 0;
994
995         /* Due to the resume being scheduled into a workqueue we could
996         * suspend before that's finished - wait for it to complete.
997          */
998         snd_power_lock(card->snd_card);
999         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1000         snd_power_unlock(card->snd_card);
1001
1002         /* we're going to block userspace touching us until resume completes */
1003         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1004
1005         /* mute any active DAC's */
1006         for (i = 0; i < card->num_rtd; i++) {
1007                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1008                 struct snd_soc_dai_driver *drv = dai->driver;
1009
1010                 if (card->rtd[i].dai_link->ignore_suspend)
1011                         continue;
1012
1013                 if (drv->ops->digital_mute && dai->playback_active)
1014                         drv->ops->digital_mute(dai, 1);
1015         }
1016
1017         /* suspend all pcms */
1018         for (i = 0; i < card->num_rtd; i++) {
1019                 if (card->rtd[i].dai_link->ignore_suspend)
1020                         continue;
1021
1022                 snd_pcm_suspend_all(card->rtd[i].pcm);
1023         }
1024
1025         if (card->suspend_pre)
1026                 card->suspend_pre(pdev, PMSG_SUSPEND);
1027
1028         for (i = 0; i < card->num_rtd; i++) {
1029                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1030                 struct snd_soc_platform *platform = card->rtd[i].platform;
1031
1032                 if (card->rtd[i].dai_link->ignore_suspend)
1033                         continue;
1034
1035                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1036                         cpu_dai->driver->suspend(cpu_dai);
1037                 if (platform->driver->suspend && !platform->suspended) {
1038                         platform->driver->suspend(cpu_dai);
1039                         platform->suspended = 1;
1040                 }
1041         }
1042
1043         /* close any waiting streams and save state */
1044         for (i = 0; i < card->num_rtd; i++) {
1045                 run_delayed_work(&card->rtd[i].delayed_work);
1046                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1047         }
1048
1049         for (i = 0; i < card->num_rtd; i++) {
1050                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1051
1052                 if (card->rtd[i].dai_link->ignore_suspend)
1053                         continue;
1054
1055                 if (driver->playback.stream_name != NULL)
1056                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1057                                 SND_SOC_DAPM_STREAM_SUSPEND);
1058
1059                 if (driver->capture.stream_name != NULL)
1060                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1061                                 SND_SOC_DAPM_STREAM_SUSPEND);
1062         }
1063
1064         /* suspend all CODECs */
1065         for (i = 0; i < card->num_rtd; i++) {
1066                 struct snd_soc_codec *codec = card->rtd[i].codec;
1067                 /* If there are paths active then the CODEC will be held with
1068                  * bias _ON and should not be suspended. */
1069                 if (!codec->suspended && codec->driver->suspend) {
1070                         switch (codec->dapm.bias_level) {
1071                         case SND_SOC_BIAS_STANDBY:
1072                         case SND_SOC_BIAS_OFF:
1073                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1074                                 codec->suspended = 1;
1075                                 break;
1076                         default:
1077                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1078                                 break;
1079                         }
1080                 }
1081         }
1082
1083         for (i = 0; i < card->num_rtd; i++) {
1084                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1085
1086                 if (card->rtd[i].dai_link->ignore_suspend)
1087                         continue;
1088
1089                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1090                         cpu_dai->driver->suspend(cpu_dai);
1091         }
1092
1093         if (card->suspend_post)
1094                 card->suspend_post(pdev, PMSG_SUSPEND);
1095
1096         return 0;
1097 }
1098
1099 /* deferred resume work, so resume can complete before we finished
1100  * setting our codec back up, which can be very slow on I2C
1101  */
1102 static void soc_resume_deferred(struct work_struct *work)
1103 {
1104         struct snd_soc_card *card =
1105                         container_of(work, struct snd_soc_card, deferred_resume_work);
1106         struct platform_device *pdev = to_platform_device(card->dev);
1107         int i;
1108
1109         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1110          * so userspace apps are blocked from touching us
1111          */
1112
1113         dev_dbg(card->dev, "starting resume work\n");
1114
1115         /* Bring us up into D2 so that DAPM starts enabling things */
1116         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1117
1118         if (card->resume_pre)
1119                 card->resume_pre(pdev);
1120
1121         /* resume AC97 DAIs */
1122         for (i = 0; i < card->num_rtd; i++) {
1123                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1124
1125                 if (card->rtd[i].dai_link->ignore_suspend)
1126                         continue;
1127
1128                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1129                         cpu_dai->driver->resume(cpu_dai);
1130         }
1131
1132         for (i = 0; i < card->num_rtd; i++) {
1133                 struct snd_soc_codec *codec = card->rtd[i].codec;
1134                 /* If the CODEC was idle over suspend then it will have been
1135                  * left with bias OFF or STANDBY and suspended so we must now
1136                  * resume.  Otherwise the suspend was suppressed.
1137                  */
1138                 if (codec->driver->resume && codec->suspended) {
1139                         switch (codec->dapm.bias_level) {
1140                         case SND_SOC_BIAS_STANDBY:
1141                         case SND_SOC_BIAS_OFF:
1142                                 codec->driver->resume(codec);
1143                                 codec->suspended = 0;
1144                                 break;
1145                         default:
1146                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1147                                 break;
1148                         }
1149                 }
1150         }
1151
1152         for (i = 0; i < card->num_rtd; i++) {
1153                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1154
1155                 if (card->rtd[i].dai_link->ignore_suspend)
1156                         continue;
1157
1158                 if (driver->playback.stream_name != NULL)
1159                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1160                                 SND_SOC_DAPM_STREAM_RESUME);
1161
1162                 if (driver->capture.stream_name != NULL)
1163                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1164                                 SND_SOC_DAPM_STREAM_RESUME);
1165         }
1166
1167         /* unmute any active DACs */
1168         for (i = 0; i < card->num_rtd; i++) {
1169                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1170                 struct snd_soc_dai_driver *drv = dai->driver;
1171
1172                 if (card->rtd[i].dai_link->ignore_suspend)
1173                         continue;
1174
1175                 if (drv->ops->digital_mute && dai->playback_active)
1176                         drv->ops->digital_mute(dai, 0);
1177         }
1178
1179         for (i = 0; i < card->num_rtd; i++) {
1180                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1181                 struct snd_soc_platform *platform = card->rtd[i].platform;
1182
1183                 if (card->rtd[i].dai_link->ignore_suspend)
1184                         continue;
1185
1186                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1187                         cpu_dai->driver->resume(cpu_dai);
1188                 if (platform->driver->resume && platform->suspended) {
1189                         platform->driver->resume(cpu_dai);
1190                         platform->suspended = 0;
1191                 }
1192         }
1193
1194         if (card->resume_post)
1195                 card->resume_post(pdev);
1196
1197         dev_dbg(card->dev, "resume work completed\n");
1198
1199         /* userspace can access us now we are back as we were before */
1200         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1201 }
1202
1203 /* powers up audio subsystem after a suspend */
1204 static int soc_resume(struct device *dev)
1205 {
1206         struct platform_device *pdev = to_platform_device(dev);
1207         struct snd_soc_card *card = platform_get_drvdata(pdev);
1208         int i;
1209
1210         /* AC97 devices might have other drivers hanging off them so
1211          * need to resume immediately.  Other drivers don't have that
1212          * problem and may take a substantial amount of time to resume
1213          * due to I/O costs and anti-pop so handle them out of line.
1214          */
1215         for (i = 0; i < card->num_rtd; i++) {
1216                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1217                 if (cpu_dai->driver->ac97_control) {
1218                         dev_dbg(dev, "Resuming AC97 immediately\n");
1219                         soc_resume_deferred(&card->deferred_resume_work);
1220                 } else {
1221                         dev_dbg(dev, "Scheduling resume work\n");
1222                         if (!schedule_work(&card->deferred_resume_work))
1223                                 dev_err(dev, "resume work item may be lost\n");
1224                 }
1225         }
1226
1227         return 0;
1228 }
1229 #else
1230 #define soc_suspend     NULL
1231 #define soc_resume      NULL
1232 #endif
1233
1234 static struct snd_soc_dai_ops null_dai_ops = {
1235 };
1236
1237 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1238 {
1239         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1240         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1241         struct snd_soc_codec *codec;
1242         struct snd_soc_platform *platform;
1243         struct snd_soc_dai *codec_dai, *cpu_dai;
1244
1245         if (rtd->complete)
1246                 return 1;
1247         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1248
1249         /* do we already have the CPU DAI for this link ? */
1250         if (rtd->cpu_dai) {
1251                 goto find_codec;
1252         }
1253         /* no, then find CPU DAI from registered DAIs*/
1254         list_for_each_entry(cpu_dai, &dai_list, list) {
1255                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1256
1257                         if (!try_module_get(cpu_dai->dev->driver->owner))
1258                                 return -ENODEV;
1259
1260                         rtd->cpu_dai = cpu_dai;
1261                         goto find_codec;
1262                 }
1263         }
1264         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1265                         dai_link->cpu_dai_name);
1266
1267 find_codec:
1268         /* do we already have the CODEC for this link ? */
1269         if (rtd->codec) {
1270                 goto find_platform;
1271         }
1272
1273         /* no, then find CODEC from registered CODECs*/
1274         list_for_each_entry(codec, &codec_list, list) {
1275                 if (!strcmp(codec->name, dai_link->codec_name)) {
1276                         rtd->codec = codec;
1277
1278                         if (!try_module_get(codec->dev->driver->owner))
1279                                 return -ENODEV;
1280
1281                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1282                         list_for_each_entry(codec_dai, &dai_list, list) {
1283                                 if (codec->dev == codec_dai->dev &&
1284                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1285                                         rtd->codec_dai = codec_dai;
1286                                         goto find_platform;
1287                                 }
1288                         }
1289                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1290                                         dai_link->codec_dai_name);
1291
1292                         goto find_platform;
1293                 }
1294         }
1295         dev_dbg(card->dev, "CODEC %s not registered\n",
1296                         dai_link->codec_name);
1297
1298 find_platform:
1299         /* do we already have the CODEC DAI for this link ? */
1300         if (rtd->platform) {
1301                 goto out;
1302         }
1303         /* no, then find CPU DAI from registered DAIs*/
1304         list_for_each_entry(platform, &platform_list, list) {
1305                 if (!strcmp(platform->name, dai_link->platform_name)) {
1306
1307                         if (!try_module_get(platform->dev->driver->owner))
1308                                 return -ENODEV;
1309
1310                         rtd->platform = platform;
1311                         goto out;
1312                 }
1313         }
1314
1315         dev_dbg(card->dev, "platform %s not registered\n",
1316                         dai_link->platform_name);
1317         return 0;
1318
1319 out:
1320         /* mark rtd as complete if we found all 4 of our client devices */
1321         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1322                 rtd->complete = 1;
1323                 card->num_rtd++;
1324         }
1325         return 1;
1326 }
1327
1328 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1329 {
1330         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1331         struct snd_soc_codec *codec = rtd->codec;
1332         struct snd_soc_platform *platform = rtd->platform;
1333         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1334         int err;
1335
1336         /* unregister the rtd device */
1337         if (rtd->dev_registered) {
1338                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1339                 device_unregister(&rtd->dev);
1340                 rtd->dev_registered = 0;
1341         }
1342
1343         /* remove the CODEC DAI */
1344         if (codec_dai && codec_dai->probed) {
1345                 if (codec_dai->driver->remove) {
1346                         err = codec_dai->driver->remove(codec_dai);
1347                         if (err < 0)
1348                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1349                 }
1350                 codec_dai->probed = 0;
1351                 list_del(&codec_dai->card_list);
1352         }
1353
1354         /* remove the platform */
1355         if (platform && platform->probed) {
1356                 if (platform->driver->remove) {
1357                         err = platform->driver->remove(platform);
1358                         if (err < 0)
1359                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1360                 }
1361                 platform->probed = 0;
1362                 list_del(&platform->card_list);
1363                 module_put(platform->dev->driver->owner);
1364         }
1365
1366         /* remove the CODEC */
1367         if (codec && codec->probed) {
1368                 if (codec->driver->remove) {
1369                         err = codec->driver->remove(codec);
1370                         if (err < 0)
1371                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1372                 }
1373
1374                 /* Make sure all DAPM widgets are freed */
1375                 snd_soc_dapm_free(&codec->dapm);
1376
1377                 soc_cleanup_codec_debugfs(codec);
1378                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1379                 codec->probed = 0;
1380                 list_del(&codec->card_list);
1381                 module_put(codec->dev->driver->owner);
1382         }
1383
1384         /* remove the cpu_dai */
1385         if (cpu_dai && cpu_dai->probed) {
1386                 if (cpu_dai->driver->remove) {
1387                         err = cpu_dai->driver->remove(cpu_dai);
1388                         if (err < 0)
1389                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1390                 }
1391                 cpu_dai->probed = 0;
1392                 list_del(&cpu_dai->card_list);
1393                 module_put(cpu_dai->dev->driver->owner);
1394         }
1395 }
1396
1397 static void rtd_release(struct device *dev) {}
1398
1399 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1400 {
1401         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1402         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1403         struct snd_soc_codec *codec = rtd->codec;
1404         struct snd_soc_platform *platform = rtd->platform;
1405         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1406         int ret;
1407
1408         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1409
1410         /* config components */
1411         codec_dai->codec = codec;
1412         codec->card = card;
1413         cpu_dai->platform = platform;
1414         rtd->card = card;
1415         rtd->dev.parent = card->dev;
1416         codec_dai->card = card;
1417         cpu_dai->card = card;
1418
1419         /* set default power off timeout */
1420         rtd->pmdown_time = pmdown_time;
1421
1422         /* probe the cpu_dai */
1423         if (!cpu_dai->probed) {
1424                 if (cpu_dai->driver->probe) {
1425                         ret = cpu_dai->driver->probe(cpu_dai);
1426                         if (ret < 0) {
1427                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1428                                                 cpu_dai->name);
1429                                 return ret;
1430                         }
1431                 }
1432                 cpu_dai->probed = 1;
1433                 /* mark cpu_dai as probed and add to card cpu_dai list */
1434                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1435         }
1436
1437         /* probe the CODEC */
1438         if (!codec->probed) {
1439                 codec->dapm.card = card;
1440                 if (codec->driver->probe) {
1441                         ret = codec->driver->probe(codec);
1442                         if (ret < 0) {
1443                                 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1444                                                 codec->name);
1445                                 return ret;
1446                         }
1447                 }
1448
1449                 soc_init_codec_debugfs(codec);
1450
1451                 /* mark codec as probed and add to card codec list */
1452                 codec->probed = 1;
1453                 list_add(&codec->card_list, &card->codec_dev_list);
1454         }
1455
1456         /* probe the platform */
1457         if (!platform->probed) {
1458                 if (platform->driver->probe) {
1459                         ret = platform->driver->probe(platform);
1460                         if (ret < 0) {
1461                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1462                                                 platform->name);
1463                                 return ret;
1464                         }
1465                 }
1466                 /* mark platform as probed and add to card platform list */
1467                 platform->probed = 1;
1468                 list_add(&platform->card_list, &card->platform_dev_list);
1469         }
1470
1471         /* probe the CODEC DAI */
1472         if (!codec_dai->probed) {
1473                 if (codec_dai->driver->probe) {
1474                         ret = codec_dai->driver->probe(codec_dai);
1475                         if (ret < 0) {
1476                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1477                                                 codec_dai->name);
1478                                 return ret;
1479                         }
1480                 }
1481
1482                 /* mark cpu_dai as probed and add to card cpu_dai list */
1483                 codec_dai->probed = 1;
1484                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1485         }
1486
1487         /* DAPM dai link stream work */
1488         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1489
1490         /* now that all clients have probed, initialise the DAI link */
1491         if (dai_link->init) {
1492                 ret = dai_link->init(rtd);
1493                 if (ret < 0) {
1494                         printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1495                         return ret;
1496                 }
1497         }
1498
1499         /* Make sure all DAPM widgets are instantiated */
1500         snd_soc_dapm_new_widgets(&codec->dapm);
1501         snd_soc_dapm_sync(&codec->dapm);
1502
1503         /* register the rtd device */
1504         rtd->dev.release = rtd_release;
1505         rtd->dev.init_name = dai_link->name;
1506         ret = device_register(&rtd->dev);
1507         if (ret < 0) {
1508                 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1509                 return ret;
1510         }
1511
1512         rtd->dev_registered = 1;
1513         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1514         if (ret < 0)
1515                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1516
1517         /* add DAPM sysfs entries for this codec */
1518         ret = snd_soc_dapm_sys_add(&rtd->dev);
1519         if (ret < 0)
1520                 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1521
1522         /* add codec sysfs entries */
1523         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1524         if (ret < 0)
1525                 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1526
1527         /* create the pcm */
1528         ret = soc_new_pcm(rtd, num);
1529         if (ret < 0) {
1530                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1531                 return ret;
1532         }
1533
1534         /* add platform data for AC97 devices */
1535         if (rtd->codec_dai->driver->ac97_control)
1536                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1537
1538         return 0;
1539 }
1540
1541 #ifdef CONFIG_SND_SOC_AC97_BUS
1542 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1543 {
1544         int ret;
1545
1546         /* Only instantiate AC97 if not already done by the adaptor
1547          * for the generic AC97 subsystem.
1548          */
1549         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1550                 /*
1551                  * It is possible that the AC97 device is already registered to
1552                  * the device subsystem. This happens when the device is created
1553                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1554                  * is the generic AC97 glue but others migh emerge.
1555                  *
1556                  * In those cases we don't try to register the device again.
1557                  */
1558                 if (!rtd->codec->ac97_created)
1559                         return 0;
1560
1561                 ret = soc_ac97_dev_register(rtd->codec);
1562                 if (ret < 0) {
1563                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1564                         return ret;
1565                 }
1566
1567                 rtd->codec->ac97_registered = 1;
1568         }
1569         return 0;
1570 }
1571
1572 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1573 {
1574         if (codec->ac97_registered) {
1575                 soc_ac97_dev_unregister(codec);
1576                 codec->ac97_registered = 0;
1577         }
1578 }
1579 #endif
1580
1581 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1582 {
1583         struct platform_device *pdev = to_platform_device(card->dev);
1584         int ret, i;
1585
1586         mutex_lock(&card->mutex);
1587
1588         if (card->instantiated) {
1589                 mutex_unlock(&card->mutex);
1590                 return;
1591         }
1592
1593         /* bind DAIs */
1594         for (i = 0; i < card->num_links; i++)
1595                 soc_bind_dai_link(card, i);
1596
1597         /* bind completed ? */
1598         if (card->num_rtd != card->num_links) {
1599                 mutex_unlock(&card->mutex);
1600                 return;
1601         }
1602
1603         /* card bind complete so register a sound card */
1604         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1605                         card->owner, 0, &card->snd_card);
1606         if (ret < 0) {
1607                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1608                         card->name);
1609                 mutex_unlock(&card->mutex);
1610                 return;
1611         }
1612         card->snd_card->dev = card->dev;
1613
1614 #ifdef CONFIG_PM
1615         /* deferred resume work */
1616         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1617 #endif
1618
1619         /* initialise the sound card only once */
1620         if (card->probe) {
1621                 ret = card->probe(pdev);
1622                 if (ret < 0)
1623                         goto card_probe_error;
1624         }
1625
1626         for (i = 0; i < card->num_links; i++) {
1627                 ret = soc_probe_dai_link(card, i);
1628                 if (ret < 0) {
1629                         pr_err("asoc: failed to instantiate card %s: %d\n",
1630                                card->name, ret);
1631                         goto probe_dai_err;
1632                 }
1633         }
1634
1635         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1636                  "%s",  card->name);
1637         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1638                  "%s", card->name);
1639
1640         ret = snd_card_register(card->snd_card);
1641         if (ret < 0) {
1642                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1643                 goto probe_dai_err;
1644         }
1645
1646 #ifdef CONFIG_SND_SOC_AC97_BUS
1647         /* register any AC97 codecs */
1648         for (i = 0; i < card->num_rtd; i++) {
1649                         ret = soc_register_ac97_dai_link(&card->rtd[i]);
1650                         if (ret < 0) {
1651                                 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1652                                 goto probe_dai_err;
1653                         }
1654                 }
1655 #endif
1656
1657         card->instantiated = 1;
1658         mutex_unlock(&card->mutex);
1659         return;
1660
1661 probe_dai_err:
1662         for (i = 0; i < card->num_links; i++)
1663                 soc_remove_dai_link(card, i);
1664
1665 card_probe_error:
1666         if (card->remove)
1667                 card->remove(pdev);
1668
1669         snd_card_free(card->snd_card);
1670
1671         mutex_unlock(&card->mutex);
1672 }
1673
1674 /*
1675  * Attempt to initialise any uninitialised cards.  Must be called with
1676  * client_mutex.
1677  */
1678 static void snd_soc_instantiate_cards(void)
1679 {
1680         struct snd_soc_card *card;
1681         list_for_each_entry(card, &card_list, list)
1682                 snd_soc_instantiate_card(card);
1683 }
1684
1685 /* probes a new socdev */
1686 static int soc_probe(struct platform_device *pdev)
1687 {
1688         struct snd_soc_card *card = platform_get_drvdata(pdev);
1689         int ret = 0;
1690
1691         /* Bodge while we unpick instantiation */
1692         card->dev = &pdev->dev;
1693         INIT_LIST_HEAD(&card->dai_dev_list);
1694         INIT_LIST_HEAD(&card->codec_dev_list);
1695         INIT_LIST_HEAD(&card->platform_dev_list);
1696
1697         soc_init_card_debugfs(card);
1698
1699         ret = snd_soc_register_card(card);
1700         if (ret != 0) {
1701                 dev_err(&pdev->dev, "Failed to register card\n");
1702                 return ret;
1703         }
1704
1705         return 0;
1706 }
1707
1708 /* removes a socdev */
1709 static int soc_remove(struct platform_device *pdev)
1710 {
1711         struct snd_soc_card *card = platform_get_drvdata(pdev);
1712         int i;
1713
1714                 if (card->instantiated) {
1715
1716                 /* make sure any delayed work runs */
1717                 for (i = 0; i < card->num_rtd; i++) {
1718                         struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1719                         run_delayed_work(&rtd->delayed_work);
1720                 }
1721
1722                 /* remove and free each DAI */
1723                 for (i = 0; i < card->num_rtd; i++)
1724                         soc_remove_dai_link(card, i);
1725
1726                 soc_cleanup_card_debugfs(card);
1727
1728                 /* remove the card */
1729                 if (card->remove)
1730                         card->remove(pdev);
1731
1732                 kfree(card->rtd);
1733                 snd_card_free(card->snd_card);
1734         }
1735         snd_soc_unregister_card(card);
1736         return 0;
1737 }
1738
1739 static int soc_poweroff(struct device *dev)
1740 {
1741         struct platform_device *pdev = to_platform_device(dev);
1742         struct snd_soc_card *card = platform_get_drvdata(pdev);
1743         int i;
1744
1745         if (!card->instantiated)
1746                 return 0;
1747
1748         /* Flush out pmdown_time work - we actually do want to run it
1749          * now, we're shutting down so no imminent restart. */
1750         for (i = 0; i < card->num_rtd; i++) {
1751                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1752                 run_delayed_work(&rtd->delayed_work);
1753         }
1754
1755         snd_soc_dapm_shutdown(card);
1756
1757         return 0;
1758 }
1759
1760 static const struct dev_pm_ops soc_pm_ops = {
1761         .suspend = soc_suspend,
1762         .resume = soc_resume,
1763         .poweroff = soc_poweroff,
1764 };
1765
1766 /* ASoC platform driver */
1767 static struct platform_driver soc_driver = {
1768         .driver         = {
1769                 .name           = "soc-audio",
1770                 .owner          = THIS_MODULE,
1771                 .pm             = &soc_pm_ops,
1772         },
1773         .probe          = soc_probe,
1774         .remove         = soc_remove,
1775 };
1776
1777 /* create a new pcm */
1778 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1779 {
1780         struct snd_soc_codec *codec = rtd->codec;
1781         struct snd_soc_platform *platform = rtd->platform;
1782         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1783         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1784         struct snd_pcm *pcm;
1785         char new_name[64];
1786         int ret = 0, playback = 0, capture = 0;
1787
1788         /* check client and interface hw capabilities */
1789         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1790                         rtd->dai_link->stream_name, codec_dai->name, num);
1791
1792         if (codec_dai->driver->playback.channels_min)
1793                 playback = 1;
1794         if (codec_dai->driver->capture.channels_min)
1795                 capture = 1;
1796
1797         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1798         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1799                         num, playback, capture, &pcm);
1800         if (ret < 0) {
1801                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1802                 return ret;
1803         }
1804
1805         rtd->pcm = pcm;
1806         pcm->private_data = rtd;
1807         soc_pcm_ops.mmap = platform->driver->ops->mmap;
1808         soc_pcm_ops.pointer = platform->driver->ops->pointer;
1809         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1810         soc_pcm_ops.copy = platform->driver->ops->copy;
1811         soc_pcm_ops.silence = platform->driver->ops->silence;
1812         soc_pcm_ops.ack = platform->driver->ops->ack;
1813         soc_pcm_ops.page = platform->driver->ops->page;
1814
1815         if (playback)
1816                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1817
1818         if (capture)
1819                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1820
1821         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1822         if (ret < 0) {
1823                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1824                 return ret;
1825         }
1826
1827         pcm->private_free = platform->driver->pcm_free;
1828         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1829                 cpu_dai->name);
1830         return ret;
1831 }
1832
1833 /**
1834  * snd_soc_codec_volatile_register: Report if a register is volatile.
1835  *
1836  * @codec: CODEC to query.
1837  * @reg: Register to query.
1838  *
1839  * Boolean function indiciating if a CODEC register is volatile.
1840  */
1841 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1842 {
1843         if (codec->driver->volatile_register)
1844                 return codec->driver->volatile_register(reg);
1845         else
1846                 return 0;
1847 }
1848 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1849
1850 /**
1851  * snd_soc_new_ac97_codec - initailise AC97 device
1852  * @codec: audio codec
1853  * @ops: AC97 bus operations
1854  * @num: AC97 codec number
1855  *
1856  * Initialises AC97 codec resources for use by ad-hoc devices only.
1857  */
1858 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1859         struct snd_ac97_bus_ops *ops, int num)
1860 {
1861         mutex_lock(&codec->mutex);
1862
1863         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1864         if (codec->ac97 == NULL) {
1865                 mutex_unlock(&codec->mutex);
1866                 return -ENOMEM;
1867         }
1868
1869         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1870         if (codec->ac97->bus == NULL) {
1871                 kfree(codec->ac97);
1872                 codec->ac97 = NULL;
1873                 mutex_unlock(&codec->mutex);
1874                 return -ENOMEM;
1875         }
1876
1877         codec->ac97->bus->ops = ops;
1878         codec->ac97->num = num;
1879
1880         /*
1881          * Mark the AC97 device to be created by us. This way we ensure that the
1882          * device will be registered with the device subsystem later on.
1883          */
1884         codec->ac97_created = 1;
1885
1886         mutex_unlock(&codec->mutex);
1887         return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1890
1891 /**
1892  * snd_soc_free_ac97_codec - free AC97 codec device
1893  * @codec: audio codec
1894  *
1895  * Frees AC97 codec device resources.
1896  */
1897 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1898 {
1899         mutex_lock(&codec->mutex);
1900 #ifdef CONFIG_SND_SOC_AC97_BUS
1901         soc_unregister_ac97_dai_link(codec);
1902 #endif
1903         kfree(codec->ac97->bus);
1904         kfree(codec->ac97);
1905         codec->ac97 = NULL;
1906         codec->ac97_created = 0;
1907         mutex_unlock(&codec->mutex);
1908 }
1909 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1910
1911 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
1912 {
1913         unsigned int ret;
1914
1915         ret = codec->driver->read(codec, reg);
1916         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
1917
1918         return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(snd_soc_read);
1921
1922 unsigned int snd_soc_write(struct snd_soc_codec *codec,
1923                            unsigned int reg, unsigned int val)
1924 {
1925         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
1926         return codec->driver->write(codec, reg, val);
1927 }
1928 EXPORT_SYMBOL_GPL(snd_soc_write);
1929
1930 /**
1931  * snd_soc_update_bits - update codec register bits
1932  * @codec: audio codec
1933  * @reg: codec register
1934  * @mask: register mask
1935  * @value: new value
1936  *
1937  * Writes new register value.
1938  *
1939  * Returns 1 for change else 0.
1940  */
1941 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1942                                 unsigned int mask, unsigned int value)
1943 {
1944         int change;
1945         unsigned int old, new;
1946
1947         old = snd_soc_read(codec, reg);
1948         new = (old & ~mask) | value;
1949         change = old != new;
1950         if (change)
1951                 snd_soc_write(codec, reg, new);
1952
1953         return change;
1954 }
1955 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1956
1957 /**
1958  * snd_soc_update_bits_locked - update codec register bits
1959  * @codec: audio codec
1960  * @reg: codec register
1961  * @mask: register mask
1962  * @value: new value
1963  *
1964  * Writes new register value, and takes the codec mutex.
1965  *
1966  * Returns 1 for change else 0.
1967  */
1968 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1969                                unsigned short reg, unsigned int mask,
1970                                unsigned int value)
1971 {
1972         int change;
1973
1974         mutex_lock(&codec->mutex);
1975         change = snd_soc_update_bits(codec, reg, mask, value);
1976         mutex_unlock(&codec->mutex);
1977
1978         return change;
1979 }
1980 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1981
1982 /**
1983  * snd_soc_test_bits - test register for change
1984  * @codec: audio codec
1985  * @reg: codec register
1986  * @mask: register mask
1987  * @value: new value
1988  *
1989  * Tests a register with a new value and checks if the new value is
1990  * different from the old value.
1991  *
1992  * Returns 1 for change else 0.
1993  */
1994 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1995                                 unsigned int mask, unsigned int value)
1996 {
1997         int change;
1998         unsigned int old, new;
1999
2000         old = snd_soc_read(codec, reg);
2001         new = (old & ~mask) | value;
2002         change = old != new;
2003
2004         return change;
2005 }
2006 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2007
2008 /**
2009  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2010  * @substream: the pcm substream
2011  * @hw: the hardware parameters
2012  *
2013  * Sets the substream runtime hardware parameters.
2014  */
2015 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2016         const struct snd_pcm_hardware *hw)
2017 {
2018         struct snd_pcm_runtime *runtime = substream->runtime;
2019         runtime->hw.info = hw->info;
2020         runtime->hw.formats = hw->formats;
2021         runtime->hw.period_bytes_min = hw->period_bytes_min;
2022         runtime->hw.period_bytes_max = hw->period_bytes_max;
2023         runtime->hw.periods_min = hw->periods_min;
2024         runtime->hw.periods_max = hw->periods_max;
2025         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2026         runtime->hw.fifo_size = hw->fifo_size;
2027         return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2030
2031 /**
2032  * snd_soc_cnew - create new control
2033  * @_template: control template
2034  * @data: control private data
2035  * @long_name: control long name
2036  *
2037  * Create a new mixer control from a template control.
2038  *
2039  * Returns 0 for success, else error.
2040  */
2041 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2042         void *data, char *long_name)
2043 {
2044         struct snd_kcontrol_new template;
2045
2046         memcpy(&template, _template, sizeof(template));
2047         if (long_name)
2048                 template.name = long_name;
2049         template.index = 0;
2050
2051         return snd_ctl_new1(&template, data);
2052 }
2053 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2054
2055 /**
2056  * snd_soc_add_controls - add an array of controls to a codec.
2057  * Convienience function to add a list of controls. Many codecs were
2058  * duplicating this code.
2059  *
2060  * @codec: codec to add controls to
2061  * @controls: array of controls to add
2062  * @num_controls: number of elements in the array
2063  *
2064  * Return 0 for success, else error.
2065  */
2066 int snd_soc_add_controls(struct snd_soc_codec *codec,
2067         const struct snd_kcontrol_new *controls, int num_controls)
2068 {
2069         struct snd_card *card = codec->card->snd_card;
2070         int err, i;
2071
2072         for (i = 0; i < num_controls; i++) {
2073                 const struct snd_kcontrol_new *control = &controls[i];
2074                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
2075                 if (err < 0) {
2076                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2077                                 codec->name, control->name, err);
2078                         return err;
2079                 }
2080         }
2081
2082         return 0;
2083 }
2084 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2085
2086 /**
2087  * snd_soc_info_enum_double - enumerated double mixer info callback
2088  * @kcontrol: mixer control
2089  * @uinfo: control element information
2090  *
2091  * Callback to provide information about a double enumerated
2092  * mixer control.
2093  *
2094  * Returns 0 for success.
2095  */
2096 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2097         struct snd_ctl_elem_info *uinfo)
2098 {
2099         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2100
2101         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2102         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2103         uinfo->value.enumerated.items = e->max;
2104
2105         if (uinfo->value.enumerated.item > e->max - 1)
2106                 uinfo->value.enumerated.item = e->max - 1;
2107         strcpy(uinfo->value.enumerated.name,
2108                 e->texts[uinfo->value.enumerated.item]);
2109         return 0;
2110 }
2111 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2112
2113 /**
2114  * snd_soc_get_enum_double - enumerated double mixer get callback
2115  * @kcontrol: mixer control
2116  * @ucontrol: control element information
2117  *
2118  * Callback to get the value of a double enumerated mixer.
2119  *
2120  * Returns 0 for success.
2121  */
2122 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2123         struct snd_ctl_elem_value *ucontrol)
2124 {
2125         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2126         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2127         unsigned int val, bitmask;
2128
2129         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2130                 ;
2131         val = snd_soc_read(codec, e->reg);
2132         ucontrol->value.enumerated.item[0]
2133                 = (val >> e->shift_l) & (bitmask - 1);
2134         if (e->shift_l != e->shift_r)
2135                 ucontrol->value.enumerated.item[1] =
2136                         (val >> e->shift_r) & (bitmask - 1);
2137
2138         return 0;
2139 }
2140 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2141
2142 /**
2143  * snd_soc_put_enum_double - enumerated double mixer put callback
2144  * @kcontrol: mixer control
2145  * @ucontrol: control element information
2146  *
2147  * Callback to set the value of a double enumerated mixer.
2148  *
2149  * Returns 0 for success.
2150  */
2151 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2152         struct snd_ctl_elem_value *ucontrol)
2153 {
2154         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2155         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2156         unsigned int val;
2157         unsigned int mask, bitmask;
2158
2159         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2160                 ;
2161         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2162                 return -EINVAL;
2163         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2164         mask = (bitmask - 1) << e->shift_l;
2165         if (e->shift_l != e->shift_r) {
2166                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2167                         return -EINVAL;
2168                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2169                 mask |= (bitmask - 1) << e->shift_r;
2170         }
2171
2172         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2173 }
2174 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2175
2176 /**
2177  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2178  * @kcontrol: mixer control
2179  * @ucontrol: control element information
2180  *
2181  * Callback to get the value of a double semi enumerated mixer.
2182  *
2183  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2184  * used for handling bitfield coded enumeration for example.
2185  *
2186  * Returns 0 for success.
2187  */
2188 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2189         struct snd_ctl_elem_value *ucontrol)
2190 {
2191         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2192         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2193         unsigned int reg_val, val, mux;
2194
2195         reg_val = snd_soc_read(codec, e->reg);
2196         val = (reg_val >> e->shift_l) & e->mask;
2197         for (mux = 0; mux < e->max; mux++) {
2198                 if (val == e->values[mux])
2199                         break;
2200         }
2201         ucontrol->value.enumerated.item[0] = mux;
2202         if (e->shift_l != e->shift_r) {
2203                 val = (reg_val >> e->shift_r) & e->mask;
2204                 for (mux = 0; mux < e->max; mux++) {
2205                         if (val == e->values[mux])
2206                                 break;
2207                 }
2208                 ucontrol->value.enumerated.item[1] = mux;
2209         }
2210
2211         return 0;
2212 }
2213 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2214
2215 /**
2216  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2217  * @kcontrol: mixer control
2218  * @ucontrol: control element information
2219  *
2220  * Callback to set the value of a double semi enumerated mixer.
2221  *
2222  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2223  * used for handling bitfield coded enumeration for example.
2224  *
2225  * Returns 0 for success.
2226  */
2227 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2228         struct snd_ctl_elem_value *ucontrol)
2229 {
2230         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2231         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2232         unsigned int val;
2233         unsigned int mask;
2234
2235         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2236                 return -EINVAL;
2237         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2238         mask = e->mask << e->shift_l;
2239         if (e->shift_l != e->shift_r) {
2240                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2241                         return -EINVAL;
2242                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2243                 mask |= e->mask << e->shift_r;
2244         }
2245
2246         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2247 }
2248 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2249
2250 /**
2251  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2252  * @kcontrol: mixer control
2253  * @uinfo: control element information
2254  *
2255  * Callback to provide information about an external enumerated
2256  * single mixer.
2257  *
2258  * Returns 0 for success.
2259  */
2260 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2261         struct snd_ctl_elem_info *uinfo)
2262 {
2263         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2264
2265         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2266         uinfo->count = 1;
2267         uinfo->value.enumerated.items = e->max;
2268
2269         if (uinfo->value.enumerated.item > e->max - 1)
2270                 uinfo->value.enumerated.item = e->max - 1;
2271         strcpy(uinfo->value.enumerated.name,
2272                 e->texts[uinfo->value.enumerated.item]);
2273         return 0;
2274 }
2275 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2276
2277 /**
2278  * snd_soc_info_volsw_ext - external single mixer info callback
2279  * @kcontrol: mixer control
2280  * @uinfo: control element information
2281  *
2282  * Callback to provide information about a single external mixer control.
2283  *
2284  * Returns 0 for success.
2285  */
2286 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2287         struct snd_ctl_elem_info *uinfo)
2288 {
2289         int max = kcontrol->private_value;
2290
2291         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2292                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2293         else
2294                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2295
2296         uinfo->count = 1;
2297         uinfo->value.integer.min = 0;
2298         uinfo->value.integer.max = max;
2299         return 0;
2300 }
2301 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2302
2303 /**
2304  * snd_soc_info_volsw - single mixer info callback
2305  * @kcontrol: mixer control
2306  * @uinfo: control element information
2307  *
2308  * Callback to provide information about a single mixer control.
2309  *
2310  * Returns 0 for success.
2311  */
2312 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2313         struct snd_ctl_elem_info *uinfo)
2314 {
2315         struct soc_mixer_control *mc =
2316                 (struct soc_mixer_control *)kcontrol->private_value;
2317         int platform_max;
2318         unsigned int shift = mc->shift;
2319         unsigned int rshift = mc->rshift;
2320
2321         if (!mc->platform_max)
2322                 mc->platform_max = mc->max;
2323         platform_max = mc->platform_max;
2324
2325         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2326                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2327         else
2328                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2329
2330         uinfo->count = shift == rshift ? 1 : 2;
2331         uinfo->value.integer.min = 0;
2332         uinfo->value.integer.max = platform_max;
2333         return 0;
2334 }
2335 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2336
2337 /**
2338  * snd_soc_get_volsw - single mixer get callback
2339  * @kcontrol: mixer control
2340  * @ucontrol: control element information
2341  *
2342  * Callback to get the value of a single mixer control.
2343  *
2344  * Returns 0 for success.
2345  */
2346 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2347         struct snd_ctl_elem_value *ucontrol)
2348 {
2349         struct soc_mixer_control *mc =
2350                 (struct soc_mixer_control *)kcontrol->private_value;
2351         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2352         unsigned int reg = mc->reg;
2353         unsigned int shift = mc->shift;
2354         unsigned int rshift = mc->rshift;
2355         int max = mc->max;
2356         unsigned int mask = (1 << fls(max)) - 1;
2357         unsigned int invert = mc->invert;
2358
2359         ucontrol->value.integer.value[0] =
2360                 (snd_soc_read(codec, reg) >> shift) & mask;
2361         if (shift != rshift)
2362                 ucontrol->value.integer.value[1] =
2363                         (snd_soc_read(codec, reg) >> rshift) & mask;
2364         if (invert) {
2365                 ucontrol->value.integer.value[0] =
2366                         max - ucontrol->value.integer.value[0];
2367                 if (shift != rshift)
2368                         ucontrol->value.integer.value[1] =
2369                                 max - ucontrol->value.integer.value[1];
2370         }
2371
2372         return 0;
2373 }
2374 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2375
2376 /**
2377  * snd_soc_put_volsw - single mixer put callback
2378  * @kcontrol: mixer control
2379  * @ucontrol: control element information
2380  *
2381  * Callback to set the value of a single mixer control.
2382  *
2383  * Returns 0 for success.
2384  */
2385 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2386         struct snd_ctl_elem_value *ucontrol)
2387 {
2388         struct soc_mixer_control *mc =
2389                 (struct soc_mixer_control *)kcontrol->private_value;
2390         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2391         unsigned int reg = mc->reg;
2392         unsigned int shift = mc->shift;
2393         unsigned int rshift = mc->rshift;
2394         int max = mc->max;
2395         unsigned int mask = (1 << fls(max)) - 1;
2396         unsigned int invert = mc->invert;
2397         unsigned int val, val2, val_mask;
2398
2399         val = (ucontrol->value.integer.value[0] & mask);
2400         if (invert)
2401                 val = max - val;
2402         val_mask = mask << shift;
2403         val = val << shift;
2404         if (shift != rshift) {
2405                 val2 = (ucontrol->value.integer.value[1] & mask);
2406                 if (invert)
2407                         val2 = max - val2;
2408                 val_mask |= mask << rshift;
2409                 val |= val2 << rshift;
2410         }
2411         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2412 }
2413 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2414
2415 /**
2416  * snd_soc_info_volsw_2r - double mixer info callback
2417  * @kcontrol: mixer control
2418  * @uinfo: control element information
2419  *
2420  * Callback to provide information about a double mixer control that
2421  * spans 2 codec registers.
2422  *
2423  * Returns 0 for success.
2424  */
2425 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2426         struct snd_ctl_elem_info *uinfo)
2427 {
2428         struct soc_mixer_control *mc =
2429                 (struct soc_mixer_control *)kcontrol->private_value;
2430         int platform_max;
2431
2432         if (!mc->platform_max)
2433                 mc->platform_max = mc->max;
2434         platform_max = mc->platform_max;
2435
2436         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2437                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2438         else
2439                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2440
2441         uinfo->count = 2;
2442         uinfo->value.integer.min = 0;
2443         uinfo->value.integer.max = platform_max;
2444         return 0;
2445 }
2446 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2447
2448 /**
2449  * snd_soc_get_volsw_2r - double mixer get callback
2450  * @kcontrol: mixer control
2451  * @ucontrol: control element information
2452  *
2453  * Callback to get the value of a double mixer control that spans 2 registers.
2454  *
2455  * Returns 0 for success.
2456  */
2457 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2458         struct snd_ctl_elem_value *ucontrol)
2459 {
2460         struct soc_mixer_control *mc =
2461                 (struct soc_mixer_control *)kcontrol->private_value;
2462         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2463         unsigned int reg = mc->reg;
2464         unsigned int reg2 = mc->rreg;
2465         unsigned int shift = mc->shift;
2466         int max = mc->max;
2467         unsigned int mask = (1 << fls(max)) - 1;
2468         unsigned int invert = mc->invert;
2469
2470         ucontrol->value.integer.value[0] =
2471                 (snd_soc_read(codec, reg) >> shift) & mask;
2472         ucontrol->value.integer.value[1] =
2473                 (snd_soc_read(codec, reg2) >> shift) & mask;
2474         if (invert) {
2475                 ucontrol->value.integer.value[0] =
2476                         max - ucontrol->value.integer.value[0];
2477                 ucontrol->value.integer.value[1] =
2478                         max - ucontrol->value.integer.value[1];
2479         }
2480
2481         return 0;
2482 }
2483 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2484
2485 /**
2486  * snd_soc_put_volsw_2r - double mixer set callback
2487  * @kcontrol: mixer control
2488  * @ucontrol: control element information
2489  *
2490  * Callback to set the value of a double mixer control that spans 2 registers.
2491  *
2492  * Returns 0 for success.
2493  */
2494 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2495         struct snd_ctl_elem_value *ucontrol)
2496 {
2497         struct soc_mixer_control *mc =
2498                 (struct soc_mixer_control *)kcontrol->private_value;
2499         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2500         unsigned int reg = mc->reg;
2501         unsigned int reg2 = mc->rreg;
2502         unsigned int shift = mc->shift;
2503         int max = mc->max;
2504         unsigned int mask = (1 << fls(max)) - 1;
2505         unsigned int invert = mc->invert;
2506         int err;
2507         unsigned int val, val2, val_mask;
2508
2509         val_mask = mask << shift;
2510         val = (ucontrol->value.integer.value[0] & mask);
2511         val2 = (ucontrol->value.integer.value[1] & mask);
2512
2513         if (invert) {
2514                 val = max - val;
2515                 val2 = max - val2;
2516         }
2517
2518         val = val << shift;
2519         val2 = val2 << shift;
2520
2521         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2522         if (err < 0)
2523                 return err;
2524
2525         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2526         return err;
2527 }
2528 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2529
2530 /**
2531  * snd_soc_info_volsw_s8 - signed mixer info callback
2532  * @kcontrol: mixer control
2533  * @uinfo: control element information
2534  *
2535  * Callback to provide information about a signed mixer control.
2536  *
2537  * Returns 0 for success.
2538  */
2539 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2540         struct snd_ctl_elem_info *uinfo)
2541 {
2542         struct soc_mixer_control *mc =
2543                 (struct soc_mixer_control *)kcontrol->private_value;
2544         int platform_max;
2545         int min = mc->min;
2546
2547         if (!mc->platform_max)
2548                 mc->platform_max = mc->max;
2549         platform_max = mc->platform_max;
2550
2551         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2552         uinfo->count = 2;
2553         uinfo->value.integer.min = 0;
2554         uinfo->value.integer.max = platform_max - min;
2555         return 0;
2556 }
2557 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2558
2559 /**
2560  * snd_soc_get_volsw_s8 - signed mixer get callback
2561  * @kcontrol: mixer control
2562  * @ucontrol: control element information
2563  *
2564  * Callback to get the value of a signed mixer control.
2565  *
2566  * Returns 0 for success.
2567  */
2568 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2569         struct snd_ctl_elem_value *ucontrol)
2570 {
2571         struct soc_mixer_control *mc =
2572                 (struct soc_mixer_control *)kcontrol->private_value;
2573         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2574         unsigned int reg = mc->reg;
2575         int min = mc->min;
2576         int val = snd_soc_read(codec, reg);
2577
2578         ucontrol->value.integer.value[0] =
2579                 ((signed char)(val & 0xff))-min;
2580         ucontrol->value.integer.value[1] =
2581                 ((signed char)((val >> 8) & 0xff))-min;
2582         return 0;
2583 }
2584 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2585
2586 /**
2587  * snd_soc_put_volsw_sgn - signed mixer put callback
2588  * @kcontrol: mixer control
2589  * @ucontrol: control element information
2590  *
2591  * Callback to set the value of a signed mixer control.
2592  *
2593  * Returns 0 for success.
2594  */
2595 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2596         struct snd_ctl_elem_value *ucontrol)
2597 {
2598         struct soc_mixer_control *mc =
2599                 (struct soc_mixer_control *)kcontrol->private_value;
2600         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2601         unsigned int reg = mc->reg;
2602         int min = mc->min;
2603         unsigned int val;
2604
2605         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2606         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2607
2608         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2609 }
2610 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2611
2612 /**
2613  * snd_soc_limit_volume - Set new limit to an existing volume control.
2614  *
2615  * @codec: where to look for the control
2616  * @name: Name of the control
2617  * @max: new maximum limit
2618  *
2619  * Return 0 for success, else error.
2620  */
2621 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2622         const char *name, int max)
2623 {
2624         struct snd_card *card = codec->card->snd_card;
2625         struct snd_kcontrol *kctl;
2626         struct soc_mixer_control *mc;
2627         int found = 0;
2628         int ret = -EINVAL;
2629
2630         /* Sanity check for name and max */
2631         if (unlikely(!name || max <= 0))
2632                 return -EINVAL;
2633
2634         list_for_each_entry(kctl, &card->controls, list) {
2635                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2636                         found = 1;
2637                         break;
2638                 }
2639         }
2640         if (found) {
2641                 mc = (struct soc_mixer_control *)kctl->private_value;
2642                 if (max <= mc->max) {
2643                         mc->platform_max = max;
2644                         ret = 0;
2645                 }
2646         }
2647         return ret;
2648 }
2649 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2650
2651 /**
2652  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2653  *  mixer info callback
2654  * @kcontrol: mixer control
2655  * @uinfo: control element information
2656  *
2657  * Returns 0 for success.
2658  */
2659 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2660                         struct snd_ctl_elem_info *uinfo)
2661 {
2662         struct soc_mixer_control *mc =
2663                 (struct soc_mixer_control *)kcontrol->private_value;
2664         int max = mc->max;
2665         int min = mc->min;
2666
2667         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2668         uinfo->count = 2;
2669         uinfo->value.integer.min = 0;
2670         uinfo->value.integer.max = max-min;
2671
2672         return 0;
2673 }
2674 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2675
2676 /**
2677  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2678  *  mixer get callback
2679  * @kcontrol: mixer control
2680  * @uinfo: control element information
2681  *
2682  * Returns 0 for success.
2683  */
2684 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2685                         struct snd_ctl_elem_value *ucontrol)
2686 {
2687         struct soc_mixer_control *mc =
2688                 (struct soc_mixer_control *)kcontrol->private_value;
2689         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2690         unsigned int mask = (1<<mc->shift)-1;
2691         int min = mc->min;
2692         int val = snd_soc_read(codec, mc->reg) & mask;
2693         int valr = snd_soc_read(codec, mc->rreg) & mask;
2694
2695         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2696         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2697         return 0;
2698 }
2699 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2700
2701 /**
2702  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2703  *  mixer put callback
2704  * @kcontrol: mixer control
2705  * @uinfo: control element information
2706  *
2707  * Returns 0 for success.
2708  */
2709 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2710                         struct snd_ctl_elem_value *ucontrol)
2711 {
2712         struct soc_mixer_control *mc =
2713                 (struct soc_mixer_control *)kcontrol->private_value;
2714         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2715         unsigned int mask = (1<<mc->shift)-1;
2716         int min = mc->min;
2717         int ret;
2718         unsigned int val, valr, oval, ovalr;
2719
2720         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2721         val &= mask;
2722         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2723         valr &= mask;
2724
2725         oval = snd_soc_read(codec, mc->reg) & mask;
2726         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2727
2728         ret = 0;
2729         if (oval != val) {
2730                 ret = snd_soc_write(codec, mc->reg, val);
2731                 if (ret < 0)
2732                         return ret;
2733         }
2734         if (ovalr != valr) {
2735                 ret = snd_soc_write(codec, mc->rreg, valr);
2736                 if (ret < 0)
2737                         return ret;
2738         }
2739
2740         return 0;
2741 }
2742 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2743
2744 /**
2745  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2746  * @dai: DAI
2747  * @clk_id: DAI specific clock ID
2748  * @freq: new clock frequency in Hz
2749  * @dir: new clock direction - input/output.
2750  *
2751  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2752  */
2753 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2754         unsigned int freq, int dir)
2755 {
2756         if (dai->driver && dai->driver->ops->set_sysclk)
2757                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2758         else
2759                 return -EINVAL;
2760 }
2761 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2762
2763 /**
2764  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2765  * @dai: DAI
2766  * @div_id: DAI specific clock divider ID
2767  * @div: new clock divisor.
2768  *
2769  * Configures the clock dividers. This is used to derive the best DAI bit and
2770  * frame clocks from the system or master clock. It's best to set the DAI bit
2771  * and frame clocks as low as possible to save system power.
2772  */
2773 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2774         int div_id, int div)
2775 {
2776         if (dai->driver && dai->driver->ops->set_clkdiv)
2777                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2778         else
2779                 return -EINVAL;
2780 }
2781 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2782
2783 /**
2784  * snd_soc_dai_set_pll - configure DAI PLL.
2785  * @dai: DAI
2786  * @pll_id: DAI specific PLL ID
2787  * @source: DAI specific source for the PLL
2788  * @freq_in: PLL input clock frequency in Hz
2789  * @freq_out: requested PLL output clock frequency in Hz
2790  *
2791  * Configures and enables PLL to generate output clock based on input clock.
2792  */
2793 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2794         unsigned int freq_in, unsigned int freq_out)
2795 {
2796         if (dai->driver && dai->driver->ops->set_pll)
2797                 return dai->driver->ops->set_pll(dai, pll_id, source,
2798                                          freq_in, freq_out);
2799         else
2800                 return -EINVAL;
2801 }
2802 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2803
2804 /**
2805  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2806  * @dai: DAI
2807  * @fmt: SND_SOC_DAIFMT_ format value.
2808  *
2809  * Configures the DAI hardware format and clocking.
2810  */
2811 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2812 {
2813         if (dai->driver && dai->driver->ops->set_fmt)
2814                 return dai->driver->ops->set_fmt(dai, fmt);
2815         else
2816                 return -EINVAL;
2817 }
2818 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2819
2820 /**
2821  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2822  * @dai: DAI
2823  * @tx_mask: bitmask representing active TX slots.
2824  * @rx_mask: bitmask representing active RX slots.
2825  * @slots: Number of slots in use.
2826  * @slot_width: Width in bits for each slot.
2827  *
2828  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2829  * specific.
2830  */
2831 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2832         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2833 {
2834         if (dai->driver && dai->driver->ops->set_tdm_slot)
2835                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2836                                 slots, slot_width);
2837         else
2838                 return -EINVAL;
2839 }
2840 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2841
2842 /**
2843  * snd_soc_dai_set_channel_map - configure DAI audio channel map
2844  * @dai: DAI
2845  * @tx_num: how many TX channels
2846  * @tx_slot: pointer to an array which imply the TX slot number channel
2847  *           0~num-1 uses
2848  * @rx_num: how many RX channels
2849  * @rx_slot: pointer to an array which imply the RX slot number channel
2850  *           0~num-1 uses
2851  *
2852  * configure the relationship between channel number and TDM slot number.
2853  */
2854 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2855         unsigned int tx_num, unsigned int *tx_slot,
2856         unsigned int rx_num, unsigned int *rx_slot)
2857 {
2858         if (dai->driver && dai->driver->ops->set_channel_map)
2859                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2860                         rx_num, rx_slot);
2861         else
2862                 return -EINVAL;
2863 }
2864 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2865
2866 /**
2867  * snd_soc_dai_set_tristate - configure DAI system or master clock.
2868  * @dai: DAI
2869  * @tristate: tristate enable
2870  *
2871  * Tristates the DAI so that others can use it.
2872  */
2873 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2874 {
2875         if (dai->driver && dai->driver->ops->set_tristate)
2876                 return dai->driver->ops->set_tristate(dai, tristate);
2877         else
2878                 return -EINVAL;
2879 }
2880 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2881
2882 /**
2883  * snd_soc_dai_digital_mute - configure DAI system or master clock.
2884  * @dai: DAI
2885  * @mute: mute enable
2886  *
2887  * Mutes the DAI DAC.
2888  */
2889 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2890 {
2891         if (dai->driver && dai->driver->ops->digital_mute)
2892                 return dai->driver->ops->digital_mute(dai, mute);
2893         else
2894                 return -EINVAL;
2895 }
2896 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2897
2898 /**
2899  * snd_soc_register_card - Register a card with the ASoC core
2900  *
2901  * @card: Card to register
2902  *
2903  * Note that currently this is an internal only function: it will be
2904  * exposed to machine drivers after further backporting of ASoC v2
2905  * registration APIs.
2906  */
2907 static int snd_soc_register_card(struct snd_soc_card *card)
2908 {
2909         int i;
2910
2911         if (!card->name || !card->dev)
2912                 return -EINVAL;
2913
2914         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2915                         GFP_KERNEL);
2916         if (card->rtd == NULL)
2917                 return -ENOMEM;
2918
2919         for (i = 0; i < card->num_links; i++)
2920                 card->rtd[i].dai_link = &card->dai_link[i];
2921
2922         INIT_LIST_HEAD(&card->list);
2923         card->instantiated = 0;
2924         mutex_init(&card->mutex);
2925
2926         mutex_lock(&client_mutex);
2927         list_add(&card->list, &card_list);
2928         snd_soc_instantiate_cards();
2929         mutex_unlock(&client_mutex);
2930
2931         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2932
2933         return 0;
2934 }
2935
2936 /**
2937  * snd_soc_unregister_card - Unregister a card with the ASoC core
2938  *
2939  * @card: Card to unregister
2940  *
2941  * Note that currently this is an internal only function: it will be
2942  * exposed to machine drivers after further backporting of ASoC v2
2943  * registration APIs.
2944  */
2945 static int snd_soc_unregister_card(struct snd_soc_card *card)
2946 {
2947         mutex_lock(&client_mutex);
2948         list_del(&card->list);
2949         mutex_unlock(&client_mutex);
2950         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2951
2952         return 0;
2953 }
2954
2955 /*
2956  * Simplify DAI link configuration by removing ".-1" from device names
2957  * and sanitizing names.
2958  */
2959 static inline char *fmt_single_name(struct device *dev, int *id)
2960 {
2961         char *found, name[NAME_SIZE];
2962         int id1, id2;
2963
2964         if (dev_name(dev) == NULL)
2965                 return NULL;
2966
2967         strncpy(name, dev_name(dev), NAME_SIZE);
2968
2969         /* are we a "%s.%d" name (platform and SPI components) */
2970         found = strstr(name, dev->driver->name);
2971         if (found) {
2972                 /* get ID */
2973                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
2974
2975                         /* discard ID from name if ID == -1 */
2976                         if (*id == -1)
2977                                 found[strlen(dev->driver->name)] = '\0';
2978                 }
2979
2980         } else {
2981                 /* I2C component devices are named "bus-addr"  */
2982                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
2983                         char tmp[NAME_SIZE];
2984
2985                         /* create unique ID number from I2C addr and bus */
2986                         *id = ((id1 & 0xffff) << 16) + id2;
2987
2988                         /* sanitize component name for DAI link creation */
2989                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
2990                         strncpy(name, tmp, NAME_SIZE);
2991                 } else
2992                         *id = 0;
2993         }
2994
2995         return kstrdup(name, GFP_KERNEL);
2996 }
2997
2998 /*
2999  * Simplify DAI link naming for single devices with multiple DAIs by removing
3000  * any ".-1" and using the DAI name (instead of device name).
3001  */
3002 static inline char *fmt_multiple_name(struct device *dev,
3003                 struct snd_soc_dai_driver *dai_drv)
3004 {
3005         if (dai_drv->name == NULL) {
3006                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3007                                 dev_name(dev));
3008                 return NULL;
3009         }
3010
3011         return kstrdup(dai_drv->name, GFP_KERNEL);
3012 }
3013
3014 /**
3015  * snd_soc_register_dai - Register a DAI with the ASoC core
3016  *
3017  * @dai: DAI to register
3018  */
3019 int snd_soc_register_dai(struct device *dev,
3020                 struct snd_soc_dai_driver *dai_drv)
3021 {
3022         struct snd_soc_dai *dai;
3023
3024         dev_dbg(dev, "dai register %s\n", dev_name(dev));
3025
3026         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3027         if (dai == NULL)
3028                         return -ENOMEM;
3029
3030         /* create DAI component name */
3031         dai->name = fmt_single_name(dev, &dai->id);
3032         if (dai->name == NULL) {
3033                 kfree(dai);
3034                 return -ENOMEM;
3035         }
3036
3037         dai->dev = dev;
3038         dai->driver = dai_drv;
3039         if (!dai->driver->ops)
3040                 dai->driver->ops = &null_dai_ops;
3041
3042         mutex_lock(&client_mutex);
3043         list_add(&dai->list, &dai_list);
3044         snd_soc_instantiate_cards();
3045         mutex_unlock(&client_mutex);
3046
3047         pr_debug("Registered DAI '%s'\n", dai->name);
3048
3049         return 0;
3050 }
3051 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3052
3053 /**
3054  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3055  *
3056  * @dai: DAI to unregister
3057  */
3058 void snd_soc_unregister_dai(struct device *dev)
3059 {
3060         struct snd_soc_dai *dai;
3061
3062         list_for_each_entry(dai, &dai_list, list) {
3063                 if (dev == dai->dev)
3064                         goto found;
3065         }
3066         return;
3067
3068 found:
3069         mutex_lock(&client_mutex);
3070         list_del(&dai->list);
3071         mutex_unlock(&client_mutex);
3072
3073         pr_debug("Unregistered DAI '%s'\n", dai->name);
3074         kfree(dai->name);
3075         kfree(dai);
3076 }
3077 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3078
3079 /**
3080  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3081  *
3082  * @dai: Array of DAIs to register
3083  * @count: Number of DAIs
3084  */
3085 int snd_soc_register_dais(struct device *dev,
3086                 struct snd_soc_dai_driver *dai_drv, size_t count)
3087 {
3088         struct snd_soc_dai *dai;
3089         int i, ret = 0;
3090
3091         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3092
3093         for (i = 0; i < count; i++) {
3094
3095                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3096                 if (dai == NULL) {
3097                         ret = -ENOMEM;
3098                         goto err;
3099                 }
3100
3101                 /* create DAI component name */
3102                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3103                 if (dai->name == NULL) {
3104                         kfree(dai);
3105                         ret = -EINVAL;
3106                         goto err;
3107                 }
3108
3109                 dai->dev = dev;
3110                 dai->driver = &dai_drv[i];
3111                 if (dai->driver->id)
3112                         dai->id = dai->driver->id;
3113                 else
3114                         dai->id = i;
3115                 if (!dai->driver->ops)
3116                         dai->driver->ops = &null_dai_ops;
3117
3118                 mutex_lock(&client_mutex);
3119                 list_add(&dai->list, &dai_list);
3120                 mutex_unlock(&client_mutex);
3121
3122                 pr_debug("Registered DAI '%s'\n", dai->name);
3123         }
3124
3125         snd_soc_instantiate_cards();
3126         return 0;
3127
3128 err:
3129         for (i--; i >= 0; i--)
3130                 snd_soc_unregister_dai(dev);
3131
3132         return ret;
3133 }
3134 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3135
3136 /**
3137  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3138  *
3139  * @dai: Array of DAIs to unregister
3140  * @count: Number of DAIs
3141  */
3142 void snd_soc_unregister_dais(struct device *dev, size_t count)
3143 {
3144         int i;
3145
3146         for (i = 0; i < count; i++)
3147                 snd_soc_unregister_dai(dev);
3148 }
3149 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3150
3151 /**
3152  * snd_soc_register_platform - Register a platform with the ASoC core
3153  *
3154  * @platform: platform to register
3155  */
3156 int snd_soc_register_platform(struct device *dev,
3157                 struct snd_soc_platform_driver *platform_drv)
3158 {
3159         struct snd_soc_platform *platform;
3160
3161         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3162
3163         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3164         if (platform == NULL)
3165                         return -ENOMEM;
3166
3167         /* create platform component name */
3168         platform->name = fmt_single_name(dev, &platform->id);
3169         if (platform->name == NULL) {
3170                 kfree(platform);
3171                 return -ENOMEM;
3172         }
3173
3174         platform->dev = dev;
3175         platform->driver = platform_drv;
3176
3177         mutex_lock(&client_mutex);
3178         list_add(&platform->list, &platform_list);
3179         snd_soc_instantiate_cards();
3180         mutex_unlock(&client_mutex);
3181
3182         pr_debug("Registered platform '%s'\n", platform->name);
3183
3184         return 0;
3185 }
3186 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3187
3188 /**
3189  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3190  *
3191  * @platform: platform to unregister
3192  */
3193 void snd_soc_unregister_platform(struct device *dev)
3194 {
3195         struct snd_soc_platform *platform;
3196
3197         list_for_each_entry(platform, &platform_list, list) {
3198                 if (dev == platform->dev)
3199                         goto found;
3200         }
3201         return;
3202
3203 found:
3204         mutex_lock(&client_mutex);
3205         list_del(&platform->list);
3206         mutex_unlock(&client_mutex);
3207
3208         pr_debug("Unregistered platform '%s'\n", platform->name);
3209         kfree(platform->name);
3210         kfree(platform);
3211 }
3212 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3213
3214 static u64 codec_format_map[] = {
3215         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3216         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3217         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3218         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3219         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3220         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3221         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3222         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3223         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3224         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3225         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3226         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3227         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3228         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3229         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3230         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3231 };
3232
3233 /* Fix up the DAI formats for endianness: codecs don't actually see
3234  * the endianness of the data but we're using the CPU format
3235  * definitions which do need to include endianness so we ensure that
3236  * codec DAIs always have both big and little endian variants set.
3237  */
3238 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3239 {
3240         int i;
3241
3242         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3243                 if (stream->formats & codec_format_map[i])
3244                         stream->formats |= codec_format_map[i];
3245 }
3246
3247 /**
3248  * snd_soc_register_codec - Register a codec with the ASoC core
3249  *
3250  * @codec: codec to register
3251  */
3252 int snd_soc_register_codec(struct device *dev,
3253                 struct snd_soc_codec_driver *codec_drv,
3254                 struct snd_soc_dai_driver *dai_drv, int num_dai)
3255 {
3256         struct snd_soc_codec *codec;
3257         int ret, i;
3258
3259         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3260
3261         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3262         if (codec == NULL)
3263                 return -ENOMEM;
3264
3265         /* create CODEC component name */
3266         codec->name = fmt_single_name(dev, &codec->id);
3267         if (codec->name == NULL) {
3268                 kfree(codec);
3269                 return -ENOMEM;
3270         }
3271
3272         INIT_LIST_HEAD(&codec->dapm.widgets);
3273         INIT_LIST_HEAD(&codec->dapm.paths);
3274         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3275         codec->dapm.dev = dev;
3276         codec->dapm.codec = codec;
3277
3278         /* allocate CODEC register cache */
3279         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3280
3281                 if (codec_drv->reg_cache_default)
3282                         codec->reg_cache = kmemdup(codec_drv->reg_cache_default,
3283                                 codec_drv->reg_cache_size * codec_drv->reg_word_size, GFP_KERNEL);
3284                 else
3285                         codec->reg_cache = kzalloc(codec_drv->reg_cache_size *
3286                                 codec_drv->reg_word_size, GFP_KERNEL);
3287
3288                 if (codec->reg_cache == NULL) {
3289                         kfree(codec->name);
3290                         kfree(codec);
3291                         return -ENOMEM;
3292                 }
3293         }
3294
3295         codec->dev = dev;
3296         codec->driver = codec_drv;
3297         codec->num_dai = num_dai;
3298         mutex_init(&codec->mutex);
3299
3300         for (i = 0; i < num_dai; i++) {
3301                 fixup_codec_formats(&dai_drv[i].playback);
3302                 fixup_codec_formats(&dai_drv[i].capture);
3303         }
3304
3305         /* register any DAIs */
3306         if (num_dai) {
3307                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3308                 if (ret < 0)
3309                         goto error;
3310         }
3311
3312         mutex_lock(&client_mutex);
3313         list_add(&codec->list, &codec_list);
3314         snd_soc_instantiate_cards();
3315         mutex_unlock(&client_mutex);
3316
3317         pr_debug("Registered codec '%s'\n", codec->name);
3318         return 0;
3319
3320 error:
3321         if (codec->reg_cache)
3322                 kfree(codec->reg_cache);
3323         kfree(codec->name);
3324         kfree(codec);
3325         return ret;
3326 }
3327 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3328
3329 /**
3330  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3331  *
3332  * @codec: codec to unregister
3333  */
3334 void snd_soc_unregister_codec(struct device *dev)
3335 {
3336         struct snd_soc_codec *codec;
3337         int i;
3338
3339         list_for_each_entry(codec, &codec_list, list) {
3340                 if (dev == codec->dev)
3341                         goto found;
3342         }
3343         return;
3344
3345 found:
3346         if (codec->num_dai)
3347                 for (i = 0; i < codec->num_dai; i++)
3348                         snd_soc_unregister_dai(dev);
3349
3350         mutex_lock(&client_mutex);
3351         list_del(&codec->list);
3352         mutex_unlock(&client_mutex);
3353
3354         pr_debug("Unregistered codec '%s'\n", codec->name);
3355
3356         if (codec->reg_cache)
3357                 kfree(codec->reg_cache);
3358         kfree(codec->name);
3359         kfree(codec);
3360 }
3361 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3362
3363 static int __init snd_soc_init(void)
3364 {
3365 #ifdef CONFIG_DEBUG_FS
3366         debugfs_root = debugfs_create_dir("asoc", NULL);
3367         if (IS_ERR(debugfs_root) || !debugfs_root) {
3368                 printk(KERN_WARNING
3369                        "ASoC: Failed to create debugfs directory\n");
3370                 debugfs_root = NULL;
3371         }
3372
3373         if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3374                                  &codec_list_fops))
3375                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3376
3377         if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3378                                  &dai_list_fops))
3379                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3380
3381         if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3382                                  &platform_list_fops))
3383                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3384 #endif
3385
3386         return platform_driver_register(&soc_driver);
3387 }
3388 module_init(snd_soc_init);
3389
3390 static void __exit snd_soc_exit(void)
3391 {
3392 #ifdef CONFIG_DEBUG_FS
3393         debugfs_remove_recursive(debugfs_root);
3394 #endif
3395         platform_driver_unregister(&soc_driver);
3396 }
3397 module_exit(snd_soc_exit);
3398
3399 /* Module information */
3400 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3401 MODULE_DESCRIPTION("ALSA SoC Core");
3402 MODULE_LICENSE("GPL");
3403 MODULE_ALIAS("platform:soc-audio");