]> git.karo-electronics.de Git - mv-sheeva.git/blob - sound/soc/soc-core.c
ASoC: Add support for optional auxiliary dailess codecs
[mv-sheeva.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/initval.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/asoc.h>
43
44 #define NAME_SIZE       32
45
46 static DEFINE_MUTEX(pcm_mutex);
47 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
48
49 #ifdef CONFIG_DEBUG_FS
50 static struct dentry *debugfs_root;
51 #endif
52
53 static DEFINE_MUTEX(client_mutex);
54 static LIST_HEAD(card_list);
55 static LIST_HEAD(dai_list);
56 static LIST_HEAD(platform_list);
57 static LIST_HEAD(codec_list);
58
59 static int snd_soc_register_card(struct snd_soc_card *card);
60 static int snd_soc_unregister_card(struct snd_soc_card *card);
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62
63 /*
64  * This is a timeout to do a DAPM powerdown after a stream is closed().
65  * It can be used to eliminate pops between different playback streams, e.g.
66  * between two audio tracks.
67  */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 /*
73  * This function forces any delayed work to be queued and run.
74  */
75 static int run_delayed_work(struct delayed_work *dwork)
76 {
77         int ret;
78
79         /* cancel any work waiting to be queued. */
80         ret = cancel_delayed_work(dwork);
81
82         /* if there was any work waiting then we run it now and
83          * wait for it's completion */
84         if (ret) {
85                 schedule_delayed_work(dwork, 0);
86                 flush_scheduled_work();
87         }
88         return ret;
89 }
90
91 /* codec register dump */
92 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
93 {
94         int ret, i, step = 1, count = 0;
95
96         if (!codec->driver->reg_cache_size)
97                 return 0;
98
99         if (codec->driver->reg_cache_step)
100                 step = codec->driver->reg_cache_step;
101
102         count += sprintf(buf, "%s registers\n", codec->name);
103         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
104                 if (codec->driver->readable_register && !codec->driver->readable_register(i))
105                         continue;
106
107                 count += sprintf(buf + count, "%2x: ", i);
108                 if (count >= PAGE_SIZE - 1)
109                         break;
110
111                 if (codec->driver->display_register) {
112                         count += codec->driver->display_register(codec, buf + count,
113                                                          PAGE_SIZE - count, i);
114                 } else {
115                         /* If the read fails it's almost certainly due to
116                          * the register being volatile and the device being
117                          * powered off.
118                          */
119                         ret = codec->driver->read(codec, i);
120                         if (ret >= 0)
121                                 count += snprintf(buf + count,
122                                                   PAGE_SIZE - count,
123                                                   "%4x", ret);
124                         else
125                                 count += snprintf(buf + count,
126                                                   PAGE_SIZE - count,
127                                                   "<no data: %d>", ret);
128                 }
129
130                 if (count >= PAGE_SIZE - 1)
131                         break;
132
133                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
134                 if (count >= PAGE_SIZE - 1)
135                         break;
136         }
137
138         /* Truncate count; min() would cause a warning */
139         if (count >= PAGE_SIZE)
140                 count = PAGE_SIZE - 1;
141
142         return count;
143 }
144 static ssize_t codec_reg_show(struct device *dev,
145         struct device_attribute *attr, char *buf)
146 {
147         struct snd_soc_pcm_runtime *rtd =
148                         container_of(dev, struct snd_soc_pcm_runtime, dev);
149
150         return soc_codec_reg_show(rtd->codec, buf);
151 }
152
153 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
154
155 static ssize_t pmdown_time_show(struct device *dev,
156                                 struct device_attribute *attr, char *buf)
157 {
158         struct snd_soc_pcm_runtime *rtd =
159                         container_of(dev, struct snd_soc_pcm_runtime, dev);
160
161         return sprintf(buf, "%ld\n", rtd->pmdown_time);
162 }
163
164 static ssize_t pmdown_time_set(struct device *dev,
165                                struct device_attribute *attr,
166                                const char *buf, size_t count)
167 {
168         struct snd_soc_pcm_runtime *rtd =
169                         container_of(dev, struct snd_soc_pcm_runtime, dev);
170         int ret;
171
172         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
173         if (ret)
174                 return ret;
175
176         return count;
177 }
178
179 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
180
181 #ifdef CONFIG_DEBUG_FS
182 static int codec_reg_open_file(struct inode *inode, struct file *file)
183 {
184         file->private_data = inode->i_private;
185         return 0;
186 }
187
188 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
189                                size_t count, loff_t *ppos)
190 {
191         ssize_t ret;
192         struct snd_soc_codec *codec = file->private_data;
193         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
194         if (!buf)
195                 return -ENOMEM;
196         ret = soc_codec_reg_show(codec, buf);
197         if (ret >= 0)
198                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
199         kfree(buf);
200         return ret;
201 }
202
203 static ssize_t codec_reg_write_file(struct file *file,
204                 const char __user *user_buf, size_t count, loff_t *ppos)
205 {
206         char buf[32];
207         int buf_size;
208         char *start = buf;
209         unsigned long reg, value;
210         int step = 1;
211         struct snd_soc_codec *codec = file->private_data;
212
213         buf_size = min(count, (sizeof(buf)-1));
214         if (copy_from_user(buf, user_buf, buf_size))
215                 return -EFAULT;
216         buf[buf_size] = 0;
217
218         if (codec->driver->reg_cache_step)
219                 step = codec->driver->reg_cache_step;
220
221         while (*start == ' ')
222                 start++;
223         reg = simple_strtoul(start, &start, 16);
224         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
225                 return -EINVAL;
226         while (*start == ' ')
227                 start++;
228         if (strict_strtoul(start, 16, &value))
229                 return -EINVAL;
230         codec->driver->write(codec, reg, value);
231         return buf_size;
232 }
233
234 static const struct file_operations codec_reg_fops = {
235         .open = codec_reg_open_file,
236         .read = codec_reg_read_file,
237         .write = codec_reg_write_file,
238         .llseek = default_llseek,
239 };
240
241 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
242 {
243         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
244
245         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
246                                                        debugfs_card_root);
247         if (!codec->debugfs_codec_root) {
248                 printk(KERN_WARNING
249                        "ASoC: Failed to create codec debugfs directory\n");
250                 return;
251         }
252
253         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
254                                                  codec->debugfs_codec_root,
255                                                  codec, &codec_reg_fops);
256         if (!codec->debugfs_reg)
257                 printk(KERN_WARNING
258                        "ASoC: Failed to create codec register debugfs file\n");
259
260         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
261                                                  codec->debugfs_codec_root);
262         if (!codec->dapm.debugfs_dapm)
263                 printk(KERN_WARNING
264                        "Failed to create DAPM debugfs directory\n");
265
266         snd_soc_dapm_debugfs_init(&codec->dapm);
267 }
268
269 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
270 {
271         debugfs_remove_recursive(codec->debugfs_codec_root);
272 }
273
274 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
275                                     size_t count, loff_t *ppos)
276 {
277         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
278         ssize_t len, ret = 0;
279         struct snd_soc_codec *codec;
280
281         if (!buf)
282                 return -ENOMEM;
283
284         list_for_each_entry(codec, &codec_list, list) {
285                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
286                                codec->name);
287                 if (len >= 0)
288                         ret += len;
289                 if (ret > PAGE_SIZE) {
290                         ret = PAGE_SIZE;
291                         break;
292                 }
293         }
294
295         if (ret >= 0)
296                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
297
298         kfree(buf);
299
300         return ret;
301 }
302
303 static const struct file_operations codec_list_fops = {
304         .read = codec_list_read_file,
305         .llseek = default_llseek,/* read accesses f_pos */
306 };
307
308 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
309                                   size_t count, loff_t *ppos)
310 {
311         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
312         ssize_t len, ret = 0;
313         struct snd_soc_dai *dai;
314
315         if (!buf)
316                 return -ENOMEM;
317
318         list_for_each_entry(dai, &dai_list, list) {
319                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
320                 if (len >= 0)
321                         ret += len;
322                 if (ret > PAGE_SIZE) {
323                         ret = PAGE_SIZE;
324                         break;
325                 }
326         }
327
328         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
329
330         kfree(buf);
331
332         return ret;
333 }
334
335 static const struct file_operations dai_list_fops = {
336         .read = dai_list_read_file,
337         .llseek = default_llseek,/* read accesses f_pos */
338 };
339
340 static ssize_t platform_list_read_file(struct file *file,
341                                        char __user *user_buf,
342                                        size_t count, loff_t *ppos)
343 {
344         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
345         ssize_t len, ret = 0;
346         struct snd_soc_platform *platform;
347
348         if (!buf)
349                 return -ENOMEM;
350
351         list_for_each_entry(platform, &platform_list, list) {
352                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
353                                platform->name);
354                 if (len >= 0)
355                         ret += len;
356                 if (ret > PAGE_SIZE) {
357                         ret = PAGE_SIZE;
358                         break;
359                 }
360         }
361
362         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
363
364         kfree(buf);
365
366         return ret;
367 }
368
369 static const struct file_operations platform_list_fops = {
370         .read = platform_list_read_file,
371         .llseek = default_llseek,/* read accesses f_pos */
372 };
373
374 static void soc_init_card_debugfs(struct snd_soc_card *card)
375 {
376         card->debugfs_card_root = debugfs_create_dir(card->name,
377                                                      debugfs_root);
378         if (!card->debugfs_card_root) {
379                 dev_warn(card->dev,
380                          "ASoC: Failed to create codec debugfs directory\n");
381                 return;
382         }
383
384         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
385                                                     card->debugfs_card_root,
386                                                     &card->pop_time);
387         if (!card->debugfs_pop_time)
388                 dev_warn(card->dev,
389                        "Failed to create pop time debugfs file\n");
390 }
391
392 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
393 {
394         debugfs_remove_recursive(card->debugfs_card_root);
395 }
396
397 #else
398
399 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
400 {
401 }
402
403 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
404 {
405 }
406
407 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
408 {
409 }
410
411 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
412 {
413 }
414 #endif
415
416 #ifdef CONFIG_SND_SOC_AC97_BUS
417 /* unregister ac97 codec */
418 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
419 {
420         if (codec->ac97->dev.bus)
421                 device_unregister(&codec->ac97->dev);
422         return 0;
423 }
424
425 /* stop no dev release warning */
426 static void soc_ac97_device_release(struct device *dev){}
427
428 /* register ac97 codec to bus */
429 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
430 {
431         int err;
432
433         codec->ac97->dev.bus = &ac97_bus_type;
434         codec->ac97->dev.parent = codec->card->dev;
435         codec->ac97->dev.release = soc_ac97_device_release;
436
437         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
438                      codec->card->snd_card->number, 0, codec->name);
439         err = device_register(&codec->ac97->dev);
440         if (err < 0) {
441                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
442                 codec->ac97->dev.bus = NULL;
443                 return err;
444         }
445         return 0;
446 }
447 #endif
448
449 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
450 {
451         struct snd_soc_pcm_runtime *rtd = substream->private_data;
452         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
453         struct snd_soc_dai *codec_dai = rtd->codec_dai;
454         int ret;
455
456         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
457                         rtd->dai_link->symmetric_rates) {
458                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
459                                 rtd->rate);
460
461                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
462                                                    SNDRV_PCM_HW_PARAM_RATE,
463                                                    rtd->rate,
464                                                    rtd->rate);
465                 if (ret < 0) {
466                         dev_err(&rtd->dev,
467                                 "Unable to apply rate symmetry constraint: %d\n", ret);
468                         return ret;
469                 }
470         }
471
472         return 0;
473 }
474
475 /*
476  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
477  * then initialized and any private data can be allocated. This also calls
478  * startup for the cpu DAI, platform, machine and codec DAI.
479  */
480 static int soc_pcm_open(struct snd_pcm_substream *substream)
481 {
482         struct snd_soc_pcm_runtime *rtd = substream->private_data;
483         struct snd_pcm_runtime *runtime = substream->runtime;
484         struct snd_soc_platform *platform = rtd->platform;
485         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
486         struct snd_soc_dai *codec_dai = rtd->codec_dai;
487         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
488         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
489         int ret = 0;
490
491         mutex_lock(&pcm_mutex);
492
493         /* startup the audio subsystem */
494         if (cpu_dai->driver->ops->startup) {
495                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
496                 if (ret < 0) {
497                         printk(KERN_ERR "asoc: can't open interface %s\n",
498                                 cpu_dai->name);
499                         goto out;
500                 }
501         }
502
503         if (platform->driver->ops->open) {
504                 ret = platform->driver->ops->open(substream);
505                 if (ret < 0) {
506                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
507                         goto platform_err;
508                 }
509         }
510
511         if (codec_dai->driver->ops->startup) {
512                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
513                 if (ret < 0) {
514                         printk(KERN_ERR "asoc: can't open codec %s\n",
515                                 codec_dai->name);
516                         goto codec_dai_err;
517                 }
518         }
519
520         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
521                 ret = rtd->dai_link->ops->startup(substream);
522                 if (ret < 0) {
523                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
524                         goto machine_err;
525                 }
526         }
527
528         /* Check that the codec and cpu DAI's are compatible */
529         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
530                 runtime->hw.rate_min =
531                         max(codec_dai_drv->playback.rate_min,
532                             cpu_dai_drv->playback.rate_min);
533                 runtime->hw.rate_max =
534                         min(codec_dai_drv->playback.rate_max,
535                             cpu_dai_drv->playback.rate_max);
536                 runtime->hw.channels_min =
537                         max(codec_dai_drv->playback.channels_min,
538                                 cpu_dai_drv->playback.channels_min);
539                 runtime->hw.channels_max =
540                         min(codec_dai_drv->playback.channels_max,
541                                 cpu_dai_drv->playback.channels_max);
542                 runtime->hw.formats =
543                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
544                 runtime->hw.rates =
545                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
546                 if (codec_dai_drv->playback.rates
547                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
548                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
549                 if (cpu_dai_drv->playback.rates
550                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
551                         runtime->hw.rates |= codec_dai_drv->playback.rates;
552         } else {
553                 runtime->hw.rate_min =
554                         max(codec_dai_drv->capture.rate_min,
555                             cpu_dai_drv->capture.rate_min);
556                 runtime->hw.rate_max =
557                         min(codec_dai_drv->capture.rate_max,
558                             cpu_dai_drv->capture.rate_max);
559                 runtime->hw.channels_min =
560                         max(codec_dai_drv->capture.channels_min,
561                                 cpu_dai_drv->capture.channels_min);
562                 runtime->hw.channels_max =
563                         min(codec_dai_drv->capture.channels_max,
564                                 cpu_dai_drv->capture.channels_max);
565                 runtime->hw.formats =
566                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
567                 runtime->hw.rates =
568                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
569                 if (codec_dai_drv->capture.rates
570                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
571                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
572                 if (cpu_dai_drv->capture.rates
573                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
574                         runtime->hw.rates |= codec_dai_drv->capture.rates;
575         }
576
577         snd_pcm_limit_hw_rates(runtime);
578         if (!runtime->hw.rates) {
579                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
580                         codec_dai->name, cpu_dai->name);
581                 goto config_err;
582         }
583         if (!runtime->hw.formats) {
584                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
585                         codec_dai->name, cpu_dai->name);
586                 goto config_err;
587         }
588         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
589                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
590                                 codec_dai->name, cpu_dai->name);
591                 goto config_err;
592         }
593
594         /* Symmetry only applies if we've already got an active stream. */
595         if (cpu_dai->active || codec_dai->active) {
596                 ret = soc_pcm_apply_symmetry(substream);
597                 if (ret != 0)
598                         goto config_err;
599         }
600
601         pr_debug("asoc: %s <-> %s info:\n",
602                         codec_dai->name, cpu_dai->name);
603         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
604         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
605                  runtime->hw.channels_max);
606         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
607                  runtime->hw.rate_max);
608
609         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
610                 cpu_dai->playback_active++;
611                 codec_dai->playback_active++;
612         } else {
613                 cpu_dai->capture_active++;
614                 codec_dai->capture_active++;
615         }
616         cpu_dai->active++;
617         codec_dai->active++;
618         rtd->codec->active++;
619         mutex_unlock(&pcm_mutex);
620         return 0;
621
622 config_err:
623         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
624                 rtd->dai_link->ops->shutdown(substream);
625
626 machine_err:
627         if (codec_dai->driver->ops->shutdown)
628                 codec_dai->driver->ops->shutdown(substream, codec_dai);
629
630 codec_dai_err:
631         if (platform->driver->ops->close)
632                 platform->driver->ops->close(substream);
633
634 platform_err:
635         if (cpu_dai->driver->ops->shutdown)
636                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
637 out:
638         mutex_unlock(&pcm_mutex);
639         return ret;
640 }
641
642 /*
643  * Power down the audio subsystem pmdown_time msecs after close is called.
644  * This is to ensure there are no pops or clicks in between any music tracks
645  * due to DAPM power cycling.
646  */
647 static void close_delayed_work(struct work_struct *work)
648 {
649         struct snd_soc_pcm_runtime *rtd =
650                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
651         struct snd_soc_dai *codec_dai = rtd->codec_dai;
652
653         mutex_lock(&pcm_mutex);
654
655         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
656                  codec_dai->driver->playback.stream_name,
657                  codec_dai->playback_active ? "active" : "inactive",
658                  codec_dai->pop_wait ? "yes" : "no");
659
660         /* are we waiting on this codec DAI stream */
661         if (codec_dai->pop_wait == 1) {
662                 codec_dai->pop_wait = 0;
663                 snd_soc_dapm_stream_event(rtd,
664                         codec_dai->driver->playback.stream_name,
665                         SND_SOC_DAPM_STREAM_STOP);
666         }
667
668         mutex_unlock(&pcm_mutex);
669 }
670
671 /*
672  * Called by ALSA when a PCM substream is closed. Private data can be
673  * freed here. The cpu DAI, codec DAI, machine and platform are also
674  * shutdown.
675  */
676 static int soc_codec_close(struct snd_pcm_substream *substream)
677 {
678         struct snd_soc_pcm_runtime *rtd = substream->private_data;
679         struct snd_soc_platform *platform = rtd->platform;
680         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
681         struct snd_soc_dai *codec_dai = rtd->codec_dai;
682         struct snd_soc_codec *codec = rtd->codec;
683
684         mutex_lock(&pcm_mutex);
685
686         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
687                 cpu_dai->playback_active--;
688                 codec_dai->playback_active--;
689         } else {
690                 cpu_dai->capture_active--;
691                 codec_dai->capture_active--;
692         }
693
694         cpu_dai->active--;
695         codec_dai->active--;
696         codec->active--;
697
698         /* Muting the DAC suppresses artifacts caused during digital
699          * shutdown, for example from stopping clocks.
700          */
701         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
702                 snd_soc_dai_digital_mute(codec_dai, 1);
703
704         if (cpu_dai->driver->ops->shutdown)
705                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
706
707         if (codec_dai->driver->ops->shutdown)
708                 codec_dai->driver->ops->shutdown(substream, codec_dai);
709
710         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
711                 rtd->dai_link->ops->shutdown(substream);
712
713         if (platform->driver->ops->close)
714                 platform->driver->ops->close(substream);
715         cpu_dai->runtime = NULL;
716
717         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
718                 /* start delayed pop wq here for playback streams */
719                 codec_dai->pop_wait = 1;
720                 schedule_delayed_work(&rtd->delayed_work,
721                         msecs_to_jiffies(rtd->pmdown_time));
722         } else {
723                 /* capture streams can be powered down now */
724                 snd_soc_dapm_stream_event(rtd,
725                         codec_dai->driver->capture.stream_name,
726                         SND_SOC_DAPM_STREAM_STOP);
727         }
728
729         mutex_unlock(&pcm_mutex);
730         return 0;
731 }
732
733 /*
734  * Called by ALSA when the PCM substream is prepared, can set format, sample
735  * rate, etc.  This function is non atomic and can be called multiple times,
736  * it can refer to the runtime info.
737  */
738 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
739 {
740         struct snd_soc_pcm_runtime *rtd = substream->private_data;
741         struct snd_soc_platform *platform = rtd->platform;
742         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
743         struct snd_soc_dai *codec_dai = rtd->codec_dai;
744         int ret = 0;
745
746         mutex_lock(&pcm_mutex);
747
748         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
749                 ret = rtd->dai_link->ops->prepare(substream);
750                 if (ret < 0) {
751                         printk(KERN_ERR "asoc: machine prepare error\n");
752                         goto out;
753                 }
754         }
755
756         if (platform->driver->ops->prepare) {
757                 ret = platform->driver->ops->prepare(substream);
758                 if (ret < 0) {
759                         printk(KERN_ERR "asoc: platform prepare error\n");
760                         goto out;
761                 }
762         }
763
764         if (codec_dai->driver->ops->prepare) {
765                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
766                 if (ret < 0) {
767                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
768                         goto out;
769                 }
770         }
771
772         if (cpu_dai->driver->ops->prepare) {
773                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
774                 if (ret < 0) {
775                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
776                         goto out;
777                 }
778         }
779
780         /* cancel any delayed stream shutdown that is pending */
781         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
782             codec_dai->pop_wait) {
783                 codec_dai->pop_wait = 0;
784                 cancel_delayed_work(&rtd->delayed_work);
785         }
786
787         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
788                 snd_soc_dapm_stream_event(rtd,
789                                           codec_dai->driver->playback.stream_name,
790                                           SND_SOC_DAPM_STREAM_START);
791         else
792                 snd_soc_dapm_stream_event(rtd,
793                                           codec_dai->driver->capture.stream_name,
794                                           SND_SOC_DAPM_STREAM_START);
795
796         snd_soc_dai_digital_mute(codec_dai, 0);
797
798 out:
799         mutex_unlock(&pcm_mutex);
800         return ret;
801 }
802
803 /*
804  * Called by ALSA when the hardware params are set by application. This
805  * function can also be called multiple times and can allocate buffers
806  * (using snd_pcm_lib_* ). It's non-atomic.
807  */
808 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
809                                 struct snd_pcm_hw_params *params)
810 {
811         struct snd_soc_pcm_runtime *rtd = substream->private_data;
812         struct snd_soc_platform *platform = rtd->platform;
813         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
814         struct snd_soc_dai *codec_dai = rtd->codec_dai;
815         int ret = 0;
816
817         mutex_lock(&pcm_mutex);
818
819         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
820                 ret = rtd->dai_link->ops->hw_params(substream, params);
821                 if (ret < 0) {
822                         printk(KERN_ERR "asoc: machine hw_params failed\n");
823                         goto out;
824                 }
825         }
826
827         if (codec_dai->driver->ops->hw_params) {
828                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
829                 if (ret < 0) {
830                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
831                                 codec_dai->name);
832                         goto codec_err;
833                 }
834         }
835
836         if (cpu_dai->driver->ops->hw_params) {
837                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
838                 if (ret < 0) {
839                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
840                                 cpu_dai->name);
841                         goto interface_err;
842                 }
843         }
844
845         if (platform->driver->ops->hw_params) {
846                 ret = platform->driver->ops->hw_params(substream, params);
847                 if (ret < 0) {
848                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
849                                 platform->name);
850                         goto platform_err;
851                 }
852         }
853
854         rtd->rate = params_rate(params);
855
856 out:
857         mutex_unlock(&pcm_mutex);
858         return ret;
859
860 platform_err:
861         if (cpu_dai->driver->ops->hw_free)
862                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
863
864 interface_err:
865         if (codec_dai->driver->ops->hw_free)
866                 codec_dai->driver->ops->hw_free(substream, codec_dai);
867
868 codec_err:
869         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
870                 rtd->dai_link->ops->hw_free(substream);
871
872         mutex_unlock(&pcm_mutex);
873         return ret;
874 }
875
876 /*
877  * Free's resources allocated by hw_params, can be called multiple times
878  */
879 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
880 {
881         struct snd_soc_pcm_runtime *rtd = substream->private_data;
882         struct snd_soc_platform *platform = rtd->platform;
883         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
884         struct snd_soc_dai *codec_dai = rtd->codec_dai;
885         struct snd_soc_codec *codec = rtd->codec;
886
887         mutex_lock(&pcm_mutex);
888
889         /* apply codec digital mute */
890         if (!codec->active)
891                 snd_soc_dai_digital_mute(codec_dai, 1);
892
893         /* free any machine hw params */
894         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
895                 rtd->dai_link->ops->hw_free(substream);
896
897         /* free any DMA resources */
898         if (platform->driver->ops->hw_free)
899                 platform->driver->ops->hw_free(substream);
900
901         /* now free hw params for the DAI's  */
902         if (codec_dai->driver->ops->hw_free)
903                 codec_dai->driver->ops->hw_free(substream, codec_dai);
904
905         if (cpu_dai->driver->ops->hw_free)
906                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
907
908         mutex_unlock(&pcm_mutex);
909         return 0;
910 }
911
912 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
913 {
914         struct snd_soc_pcm_runtime *rtd = substream->private_data;
915         struct snd_soc_platform *platform = rtd->platform;
916         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
917         struct snd_soc_dai *codec_dai = rtd->codec_dai;
918         int ret;
919
920         if (codec_dai->driver->ops->trigger) {
921                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
922                 if (ret < 0)
923                         return ret;
924         }
925
926         if (platform->driver->ops->trigger) {
927                 ret = platform->driver->ops->trigger(substream, cmd);
928                 if (ret < 0)
929                         return ret;
930         }
931
932         if (cpu_dai->driver->ops->trigger) {
933                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
934                 if (ret < 0)
935                         return ret;
936         }
937         return 0;
938 }
939
940 /*
941  * soc level wrapper for pointer callback
942  * If cpu_dai, codec_dai, platform driver has the delay callback, than
943  * the runtime->delay will be updated accordingly.
944  */
945 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
946 {
947         struct snd_soc_pcm_runtime *rtd = substream->private_data;
948         struct snd_soc_platform *platform = rtd->platform;
949         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
950         struct snd_soc_dai *codec_dai = rtd->codec_dai;
951         struct snd_pcm_runtime *runtime = substream->runtime;
952         snd_pcm_uframes_t offset = 0;
953         snd_pcm_sframes_t delay = 0;
954
955         if (platform->driver->ops->pointer)
956                 offset = platform->driver->ops->pointer(substream);
957
958         if (cpu_dai->driver->ops->delay)
959                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
960
961         if (codec_dai->driver->ops->delay)
962                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
963
964         if (platform->driver->delay)
965                 delay += platform->driver->delay(substream, codec_dai);
966
967         runtime->delay = delay;
968
969         return offset;
970 }
971
972 /* ASoC PCM operations */
973 static struct snd_pcm_ops soc_pcm_ops = {
974         .open           = soc_pcm_open,
975         .close          = soc_codec_close,
976         .hw_params      = soc_pcm_hw_params,
977         .hw_free        = soc_pcm_hw_free,
978         .prepare        = soc_pcm_prepare,
979         .trigger        = soc_pcm_trigger,
980         .pointer        = soc_pcm_pointer,
981 };
982
983 #ifdef CONFIG_PM
984 /* powers down audio subsystem for suspend */
985 static int soc_suspend(struct device *dev)
986 {
987         struct platform_device *pdev = to_platform_device(dev);
988         struct snd_soc_card *card = platform_get_drvdata(pdev);
989         struct snd_soc_codec *codec;
990         int i;
991
992         /* If the initialization of this soc device failed, there is no codec
993          * associated with it. Just bail out in this case.
994          */
995         if (list_empty(&card->codec_dev_list))
996                 return 0;
997
998         /* Due to the resume being scheduled into a workqueue we could
999         * suspend before that's finished - wait for it to complete.
1000          */
1001         snd_power_lock(card->snd_card);
1002         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1003         snd_power_unlock(card->snd_card);
1004
1005         /* we're going to block userspace touching us until resume completes */
1006         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1007
1008         /* mute any active DAC's */
1009         for (i = 0; i < card->num_rtd; i++) {
1010                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1011                 struct snd_soc_dai_driver *drv = dai->driver;
1012
1013                 if (card->rtd[i].dai_link->ignore_suspend)
1014                         continue;
1015
1016                 if (drv->ops->digital_mute && dai->playback_active)
1017                         drv->ops->digital_mute(dai, 1);
1018         }
1019
1020         /* suspend all pcms */
1021         for (i = 0; i < card->num_rtd; i++) {
1022                 if (card->rtd[i].dai_link->ignore_suspend)
1023                         continue;
1024
1025                 snd_pcm_suspend_all(card->rtd[i].pcm);
1026         }
1027
1028         if (card->suspend_pre)
1029                 card->suspend_pre(pdev, PMSG_SUSPEND);
1030
1031         for (i = 0; i < card->num_rtd; i++) {
1032                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1033                 struct snd_soc_platform *platform = card->rtd[i].platform;
1034
1035                 if (card->rtd[i].dai_link->ignore_suspend)
1036                         continue;
1037
1038                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1039                         cpu_dai->driver->suspend(cpu_dai);
1040                 if (platform->driver->suspend && !platform->suspended) {
1041                         platform->driver->suspend(cpu_dai);
1042                         platform->suspended = 1;
1043                 }
1044         }
1045
1046         /* close any waiting streams and save state */
1047         for (i = 0; i < card->num_rtd; i++) {
1048                 run_delayed_work(&card->rtd[i].delayed_work);
1049                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1050         }
1051
1052         for (i = 0; i < card->num_rtd; i++) {
1053                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1054
1055                 if (card->rtd[i].dai_link->ignore_suspend)
1056                         continue;
1057
1058                 if (driver->playback.stream_name != NULL)
1059                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1060                                 SND_SOC_DAPM_STREAM_SUSPEND);
1061
1062                 if (driver->capture.stream_name != NULL)
1063                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1064                                 SND_SOC_DAPM_STREAM_SUSPEND);
1065         }
1066
1067         /* suspend all CODECs */
1068         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1069                 /* If there are paths active then the CODEC will be held with
1070                  * bias _ON and should not be suspended. */
1071                 if (!codec->suspended && codec->driver->suspend) {
1072                         switch (codec->dapm.bias_level) {
1073                         case SND_SOC_BIAS_STANDBY:
1074                         case SND_SOC_BIAS_OFF:
1075                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1076                                 codec->suspended = 1;
1077                                 break;
1078                         default:
1079                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1080                                 break;
1081                         }
1082                 }
1083         }
1084
1085         for (i = 0; i < card->num_rtd; i++) {
1086                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1087
1088                 if (card->rtd[i].dai_link->ignore_suspend)
1089                         continue;
1090
1091                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1092                         cpu_dai->driver->suspend(cpu_dai);
1093         }
1094
1095         if (card->suspend_post)
1096                 card->suspend_post(pdev, PMSG_SUSPEND);
1097
1098         return 0;
1099 }
1100
1101 /* deferred resume work, so resume can complete before we finished
1102  * setting our codec back up, which can be very slow on I2C
1103  */
1104 static void soc_resume_deferred(struct work_struct *work)
1105 {
1106         struct snd_soc_card *card =
1107                         container_of(work, struct snd_soc_card, deferred_resume_work);
1108         struct platform_device *pdev = to_platform_device(card->dev);
1109         struct snd_soc_codec *codec;
1110         int i;
1111
1112         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1113          * so userspace apps are blocked from touching us
1114          */
1115
1116         dev_dbg(card->dev, "starting resume work\n");
1117
1118         /* Bring us up into D2 so that DAPM starts enabling things */
1119         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1120
1121         if (card->resume_pre)
1122                 card->resume_pre(pdev);
1123
1124         /* resume AC97 DAIs */
1125         for (i = 0; i < card->num_rtd; i++) {
1126                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1127
1128                 if (card->rtd[i].dai_link->ignore_suspend)
1129                         continue;
1130
1131                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1132                         cpu_dai->driver->resume(cpu_dai);
1133         }
1134
1135         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1136                 /* If the CODEC was idle over suspend then it will have been
1137                  * left with bias OFF or STANDBY and suspended so we must now
1138                  * resume.  Otherwise the suspend was suppressed.
1139                  */
1140                 if (codec->driver->resume && codec->suspended) {
1141                         switch (codec->dapm.bias_level) {
1142                         case SND_SOC_BIAS_STANDBY:
1143                         case SND_SOC_BIAS_OFF:
1144                                 codec->driver->resume(codec);
1145                                 codec->suspended = 0;
1146                                 break;
1147                         default:
1148                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1149                                 break;
1150                         }
1151                 }
1152         }
1153
1154         for (i = 0; i < card->num_rtd; i++) {
1155                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1156
1157                 if (card->rtd[i].dai_link->ignore_suspend)
1158                         continue;
1159
1160                 if (driver->playback.stream_name != NULL)
1161                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1162                                 SND_SOC_DAPM_STREAM_RESUME);
1163
1164                 if (driver->capture.stream_name != NULL)
1165                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1166                                 SND_SOC_DAPM_STREAM_RESUME);
1167         }
1168
1169         /* unmute any active DACs */
1170         for (i = 0; i < card->num_rtd; i++) {
1171                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1172                 struct snd_soc_dai_driver *drv = dai->driver;
1173
1174                 if (card->rtd[i].dai_link->ignore_suspend)
1175                         continue;
1176
1177                 if (drv->ops->digital_mute && dai->playback_active)
1178                         drv->ops->digital_mute(dai, 0);
1179         }
1180
1181         for (i = 0; i < card->num_rtd; i++) {
1182                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1183                 struct snd_soc_platform *platform = card->rtd[i].platform;
1184
1185                 if (card->rtd[i].dai_link->ignore_suspend)
1186                         continue;
1187
1188                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1189                         cpu_dai->driver->resume(cpu_dai);
1190                 if (platform->driver->resume && platform->suspended) {
1191                         platform->driver->resume(cpu_dai);
1192                         platform->suspended = 0;
1193                 }
1194         }
1195
1196         if (card->resume_post)
1197                 card->resume_post(pdev);
1198
1199         dev_dbg(card->dev, "resume work completed\n");
1200
1201         /* userspace can access us now we are back as we were before */
1202         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1203 }
1204
1205 /* powers up audio subsystem after a suspend */
1206 static int soc_resume(struct device *dev)
1207 {
1208         struct platform_device *pdev = to_platform_device(dev);
1209         struct snd_soc_card *card = platform_get_drvdata(pdev);
1210         int i;
1211
1212         /* AC97 devices might have other drivers hanging off them so
1213          * need to resume immediately.  Other drivers don't have that
1214          * problem and may take a substantial amount of time to resume
1215          * due to I/O costs and anti-pop so handle them out of line.
1216          */
1217         for (i = 0; i < card->num_rtd; i++) {
1218                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1219                 if (cpu_dai->driver->ac97_control) {
1220                         dev_dbg(dev, "Resuming AC97 immediately\n");
1221                         soc_resume_deferred(&card->deferred_resume_work);
1222                 } else {
1223                         dev_dbg(dev, "Scheduling resume work\n");
1224                         if (!schedule_work(&card->deferred_resume_work))
1225                                 dev_err(dev, "resume work item may be lost\n");
1226                 }
1227         }
1228
1229         return 0;
1230 }
1231 #else
1232 #define soc_suspend     NULL
1233 #define soc_resume      NULL
1234 #endif
1235
1236 static struct snd_soc_dai_ops null_dai_ops = {
1237 };
1238
1239 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1240 {
1241         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1242         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1243         struct snd_soc_codec *codec;
1244         struct snd_soc_platform *platform;
1245         struct snd_soc_dai *codec_dai, *cpu_dai;
1246
1247         if (rtd->complete)
1248                 return 1;
1249         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1250
1251         /* do we already have the CPU DAI for this link ? */
1252         if (rtd->cpu_dai) {
1253                 goto find_codec;
1254         }
1255         /* no, then find CPU DAI from registered DAIs*/
1256         list_for_each_entry(cpu_dai, &dai_list, list) {
1257                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1258
1259                         if (!try_module_get(cpu_dai->dev->driver->owner))
1260                                 return -ENODEV;
1261
1262                         rtd->cpu_dai = cpu_dai;
1263                         goto find_codec;
1264                 }
1265         }
1266         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1267                         dai_link->cpu_dai_name);
1268
1269 find_codec:
1270         /* do we already have the CODEC for this link ? */
1271         if (rtd->codec) {
1272                 goto find_platform;
1273         }
1274
1275         /* no, then find CODEC from registered CODECs*/
1276         list_for_each_entry(codec, &codec_list, list) {
1277                 if (!strcmp(codec->name, dai_link->codec_name)) {
1278                         rtd->codec = codec;
1279
1280                         if (!try_module_get(codec->dev->driver->owner))
1281                                 return -ENODEV;
1282
1283                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1284                         list_for_each_entry(codec_dai, &dai_list, list) {
1285                                 if (codec->dev == codec_dai->dev &&
1286                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1287                                         rtd->codec_dai = codec_dai;
1288                                         goto find_platform;
1289                                 }
1290                         }
1291                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1292                                         dai_link->codec_dai_name);
1293
1294                         goto find_platform;
1295                 }
1296         }
1297         dev_dbg(card->dev, "CODEC %s not registered\n",
1298                         dai_link->codec_name);
1299
1300 find_platform:
1301         /* do we already have the CODEC DAI for this link ? */
1302         if (rtd->platform) {
1303                 goto out;
1304         }
1305         /* no, then find CPU DAI from registered DAIs*/
1306         list_for_each_entry(platform, &platform_list, list) {
1307                 if (!strcmp(platform->name, dai_link->platform_name)) {
1308
1309                         if (!try_module_get(platform->dev->driver->owner))
1310                                 return -ENODEV;
1311
1312                         rtd->platform = platform;
1313                         goto out;
1314                 }
1315         }
1316
1317         dev_dbg(card->dev, "platform %s not registered\n",
1318                         dai_link->platform_name);
1319         return 0;
1320
1321 out:
1322         /* mark rtd as complete if we found all 4 of our client devices */
1323         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1324                 rtd->complete = 1;
1325                 card->num_rtd++;
1326         }
1327         return 1;
1328 }
1329
1330 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1331 {
1332         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1333         struct snd_soc_codec *codec = rtd->codec;
1334         struct snd_soc_platform *platform = rtd->platform;
1335         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1336         int err;
1337
1338         /* unregister the rtd device */
1339         if (rtd->dev_registered) {
1340                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1341                 device_unregister(&rtd->dev);
1342                 rtd->dev_registered = 0;
1343         }
1344
1345         /* remove the CODEC DAI */
1346         if (codec_dai && codec_dai->probed) {
1347                 if (codec_dai->driver->remove) {
1348                         err = codec_dai->driver->remove(codec_dai);
1349                         if (err < 0)
1350                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1351                 }
1352                 codec_dai->probed = 0;
1353                 list_del(&codec_dai->card_list);
1354         }
1355
1356         /* remove the platform */
1357         if (platform && platform->probed) {
1358                 if (platform->driver->remove) {
1359                         err = platform->driver->remove(platform);
1360                         if (err < 0)
1361                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1362                 }
1363                 platform->probed = 0;
1364                 list_del(&platform->card_list);
1365                 module_put(platform->dev->driver->owner);
1366         }
1367
1368         /* remove the CODEC */
1369         if (codec && codec->probed) {
1370                 if (codec->driver->remove) {
1371                         err = codec->driver->remove(codec);
1372                         if (err < 0)
1373                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1374                 }
1375
1376                 /* Make sure all DAPM widgets are freed */
1377                 snd_soc_dapm_free(&codec->dapm);
1378
1379                 soc_cleanup_codec_debugfs(codec);
1380                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1381                 codec->probed = 0;
1382                 list_del(&codec->card_list);
1383                 module_put(codec->dev->driver->owner);
1384         }
1385
1386         /* remove the cpu_dai */
1387         if (cpu_dai && cpu_dai->probed) {
1388                 if (cpu_dai->driver->remove) {
1389                         err = cpu_dai->driver->remove(cpu_dai);
1390                         if (err < 0)
1391                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1392                 }
1393                 cpu_dai->probed = 0;
1394                 list_del(&cpu_dai->card_list);
1395                 module_put(cpu_dai->dev->driver->owner);
1396         }
1397 }
1398
1399 static void soc_set_name_prefix(struct snd_soc_card *card,
1400                                 struct snd_soc_codec *codec)
1401 {
1402         int i;
1403
1404         if (card->prefix_map == NULL)
1405                 return;
1406
1407         for (i = 0; i < card->num_prefixes; i++) {
1408                 struct snd_soc_prefix_map *map = &card->prefix_map[i];
1409                 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1410                         codec->name_prefix = map->name_prefix;
1411                         break;
1412                 }
1413         }
1414 }
1415
1416 static void rtd_release(struct device *dev) {}
1417
1418 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1419 {
1420         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1421         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1422         struct snd_soc_codec *codec = rtd->codec;
1423         struct snd_soc_platform *platform = rtd->platform;
1424         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1425         const char *temp;
1426         int ret;
1427
1428         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1429
1430         /* config components */
1431         codec_dai->codec = codec;
1432         codec->card = card;
1433         cpu_dai->platform = platform;
1434         rtd->card = card;
1435         rtd->dev.parent = card->dev;
1436         codec_dai->card = card;
1437         cpu_dai->card = card;
1438
1439         /* set default power off timeout */
1440         rtd->pmdown_time = pmdown_time;
1441
1442         /* probe the cpu_dai */
1443         if (!cpu_dai->probed) {
1444                 if (cpu_dai->driver->probe) {
1445                         ret = cpu_dai->driver->probe(cpu_dai);
1446                         if (ret < 0) {
1447                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1448                                                 cpu_dai->name);
1449                                 return ret;
1450                         }
1451                 }
1452                 cpu_dai->probed = 1;
1453                 /* mark cpu_dai as probed and add to card cpu_dai list */
1454                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1455         }
1456
1457         /* probe the CODEC */
1458         if (!codec->probed) {
1459                 codec->dapm.card = card;
1460                 soc_set_name_prefix(card, codec);
1461                 if (codec->driver->probe) {
1462                         ret = codec->driver->probe(codec);
1463                         if (ret < 0) {
1464                                 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1465                                                 codec->name);
1466                                 return ret;
1467                         }
1468                 }
1469
1470                 soc_init_codec_debugfs(codec);
1471
1472                 /* mark codec as probed and add to card codec list */
1473                 codec->probed = 1;
1474                 list_add(&codec->card_list, &card->codec_dev_list);
1475         }
1476
1477         /* probe the platform */
1478         if (!platform->probed) {
1479                 if (platform->driver->probe) {
1480                         ret = platform->driver->probe(platform);
1481                         if (ret < 0) {
1482                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1483                                                 platform->name);
1484                                 return ret;
1485                         }
1486                 }
1487                 /* mark platform as probed and add to card platform list */
1488                 platform->probed = 1;
1489                 list_add(&platform->card_list, &card->platform_dev_list);
1490         }
1491
1492         /* probe the CODEC DAI */
1493         if (!codec_dai->probed) {
1494                 if (codec_dai->driver->probe) {
1495                         ret = codec_dai->driver->probe(codec_dai);
1496                         if (ret < 0) {
1497                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1498                                                 codec_dai->name);
1499                                 return ret;
1500                         }
1501                 }
1502
1503                 /* mark cpu_dai as probed and add to card cpu_dai list */
1504                 codec_dai->probed = 1;
1505                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1506         }
1507
1508         /* DAPM dai link stream work */
1509         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1510
1511         /* now that all clients have probed, initialise the DAI link */
1512         if (dai_link->init) {
1513                 /* machine controls, routes and widgets are not prefixed */
1514                 temp = rtd->codec->name_prefix;
1515                 rtd->codec->name_prefix = NULL;
1516                 ret = dai_link->init(rtd);
1517                 if (ret < 0) {
1518                         printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1519                         return ret;
1520                 }
1521                 rtd->codec->name_prefix = temp;
1522         }
1523
1524         /* Make sure all DAPM widgets are instantiated */
1525         snd_soc_dapm_new_widgets(&codec->dapm);
1526         snd_soc_dapm_sync(&codec->dapm);
1527
1528         /* register the rtd device */
1529         rtd->dev.release = rtd_release;
1530         rtd->dev.init_name = dai_link->name;
1531         ret = device_register(&rtd->dev);
1532         if (ret < 0) {
1533                 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1534                 return ret;
1535         }
1536
1537         rtd->dev_registered = 1;
1538         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1539         if (ret < 0)
1540                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1541
1542         /* add DAPM sysfs entries for this codec */
1543         ret = snd_soc_dapm_sys_add(&rtd->dev);
1544         if (ret < 0)
1545                 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1546
1547         /* add codec sysfs entries */
1548         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1549         if (ret < 0)
1550                 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1551
1552         /* create the pcm */
1553         ret = soc_new_pcm(rtd, num);
1554         if (ret < 0) {
1555                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1556                 return ret;
1557         }
1558
1559         /* add platform data for AC97 devices */
1560         if (rtd->codec_dai->driver->ac97_control)
1561                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1562
1563         return 0;
1564 }
1565
1566 #ifdef CONFIG_SND_SOC_AC97_BUS
1567 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1568 {
1569         int ret;
1570
1571         /* Only instantiate AC97 if not already done by the adaptor
1572          * for the generic AC97 subsystem.
1573          */
1574         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1575                 /*
1576                  * It is possible that the AC97 device is already registered to
1577                  * the device subsystem. This happens when the device is created
1578                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1579                  * is the generic AC97 glue but others migh emerge.
1580                  *
1581                  * In those cases we don't try to register the device again.
1582                  */
1583                 if (!rtd->codec->ac97_created)
1584                         return 0;
1585
1586                 ret = soc_ac97_dev_register(rtd->codec);
1587                 if (ret < 0) {
1588                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1589                         return ret;
1590                 }
1591
1592                 rtd->codec->ac97_registered = 1;
1593         }
1594         return 0;
1595 }
1596
1597 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1598 {
1599         if (codec->ac97_registered) {
1600                 soc_ac97_dev_unregister(codec);
1601                 codec->ac97_registered = 0;
1602         }
1603 }
1604 #endif
1605
1606 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1607 {
1608         struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1609         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1610         struct snd_soc_codec *codec;
1611         const char *temp;
1612         int ret = 0;
1613
1614         /* find CODEC from registered CODECs*/
1615         list_for_each_entry(codec, &codec_list, list) {
1616                 if (!strcmp(codec->name, aux_dev->codec_name)) {
1617                         if (codec->probed) {
1618                                 dev_err(codec->dev,
1619                                         "asoc: codec already probed");
1620                                 ret = -EBUSY;
1621                                 goto out;
1622                         }
1623                         break;
1624                 }
1625         }
1626
1627         if (!try_module_get(codec->dev->driver->owner))
1628                 return -ENODEV;
1629
1630         codec->card = card;
1631         codec->dapm.card = card;
1632
1633         soc_set_name_prefix(card, codec);
1634         if (codec->driver->probe) {
1635                 ret = codec->driver->probe(codec);
1636                 if (ret < 0) {
1637                         dev_err(codec->dev, "asoc: failed to probe CODEC");
1638                         return ret;
1639                 }
1640         }
1641
1642         soc_init_codec_debugfs(codec);
1643
1644         /* mark codec as probed and add to card codec list */
1645         codec->probed = 1;
1646         list_add(&codec->card_list, &card->codec_dev_list);
1647         list_add(&codec->dapm.list, &card->dapm_list);
1648
1649         /* now that all clients have probed, initialise the DAI link */
1650         if (aux_dev->init) {
1651                 /* machine controls, routes and widgets are not prefixed */
1652                 temp = codec->name_prefix;
1653                 codec->name_prefix = NULL;
1654                 ret = aux_dev->init(&codec->dapm);
1655                 if (ret < 0) {
1656                         dev_err(codec->dev,
1657                                 "asoc: failed to init %s\n", aux_dev->name);
1658                         return ret;
1659                 }
1660                 codec->name_prefix = temp;
1661         }
1662
1663         /* Make sure all DAPM widgets are instantiated */
1664         snd_soc_dapm_new_widgets(&codec->dapm);
1665         snd_soc_dapm_sync(&codec->dapm);
1666
1667         /* register the rtd device */
1668         rtd->codec = codec;
1669         rtd->card = card;
1670         rtd->dev.parent = card->dev;
1671         rtd->dev.release = rtd_release;
1672         rtd->dev.init_name = aux_dev->name;
1673         ret = device_register(&rtd->dev);
1674         if (ret < 0) {
1675                 dev_err(codec->dev,
1676                         "asoc: failed to register aux runtime device %d\n",
1677                         ret);
1678                 return ret;
1679         }
1680         rtd->dev_registered = 1;
1681
1682         /* add DAPM sysfs entries for this codec */
1683         ret = snd_soc_dapm_sys_add(&rtd->dev);
1684         if (ret < 0)
1685                 dev_err(codec->dev,
1686                         "asoc: failed to add codec dapm sysfs entries\n");
1687
1688         /* add codec sysfs entries */
1689         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1690         if (ret < 0)
1691                 dev_err(codec->dev, "asoc: failed to add codec sysfs files\n");
1692
1693 out:
1694         return ret;
1695 }
1696
1697 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1698 {
1699         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1700         struct snd_soc_codec *codec = rtd->codec;
1701         int err;
1702
1703         /* unregister the rtd device */
1704         if (rtd->dev_registered) {
1705                 device_unregister(&rtd->dev);
1706                 rtd->dev_registered = 0;
1707         }
1708
1709         /* remove the CODEC */
1710         if (codec && codec->probed) {
1711                 if (codec->driver->remove) {
1712                         err = codec->driver->remove(codec);
1713                         if (err < 0)
1714                                 dev_err(codec->dev,
1715                                         "asoc: failed to remove %s\n",
1716                                         codec->name);
1717                 }
1718
1719                 /* Make sure all DAPM widgets are freed */
1720                 snd_soc_dapm_free(&codec->dapm);
1721
1722                 soc_cleanup_codec_debugfs(codec);
1723                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1724                 codec->probed = 0;
1725                 list_del(&codec->card_list);
1726                 module_put(codec->dev->driver->owner);
1727         }
1728 }
1729
1730 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1731 {
1732         struct platform_device *pdev = to_platform_device(card->dev);
1733         int ret, i;
1734
1735         mutex_lock(&card->mutex);
1736
1737         if (card->instantiated) {
1738                 mutex_unlock(&card->mutex);
1739                 return;
1740         }
1741
1742         /* bind DAIs */
1743         for (i = 0; i < card->num_links; i++)
1744                 soc_bind_dai_link(card, i);
1745
1746         /* bind completed ? */
1747         if (card->num_rtd != card->num_links) {
1748                 mutex_unlock(&card->mutex);
1749                 return;
1750         }
1751
1752         /* card bind complete so register a sound card */
1753         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1754                         card->owner, 0, &card->snd_card);
1755         if (ret < 0) {
1756                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1757                         card->name);
1758                 mutex_unlock(&card->mutex);
1759                 return;
1760         }
1761         card->snd_card->dev = card->dev;
1762
1763 #ifdef CONFIG_PM
1764         /* deferred resume work */
1765         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1766 #endif
1767
1768         /* initialise the sound card only once */
1769         if (card->probe) {
1770                 ret = card->probe(pdev);
1771                 if (ret < 0)
1772                         goto card_probe_error;
1773         }
1774
1775         for (i = 0; i < card->num_links; i++) {
1776                 ret = soc_probe_dai_link(card, i);
1777                 if (ret < 0) {
1778                         pr_err("asoc: failed to instantiate card %s: %d\n",
1779                                card->name, ret);
1780                         goto probe_dai_err;
1781                 }
1782         }
1783
1784         for (i = 0; i < card->num_aux_devs; i++) {
1785                 ret = soc_probe_aux_dev(card, i);
1786                 if (ret < 0) {
1787                         pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1788                                card->name, ret);
1789                         goto probe_aux_dev_err;
1790                 }
1791         }
1792
1793         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1794                  "%s",  card->name);
1795         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1796                  "%s", card->name);
1797
1798         ret = snd_card_register(card->snd_card);
1799         if (ret < 0) {
1800                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1801                 goto probe_dai_err;
1802         }
1803
1804 #ifdef CONFIG_SND_SOC_AC97_BUS
1805         /* register any AC97 codecs */
1806         for (i = 0; i < card->num_rtd; i++) {
1807                         ret = soc_register_ac97_dai_link(&card->rtd[i]);
1808                         if (ret < 0) {
1809                                 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1810                                 goto probe_dai_err;
1811                         }
1812                 }
1813 #endif
1814
1815         card->instantiated = 1;
1816         mutex_unlock(&card->mutex);
1817         return;
1818
1819 probe_aux_dev_err:
1820         for (i = 0; i < card->num_aux_devs; i++)
1821                 soc_remove_aux_dev(card, i);
1822
1823 probe_dai_err:
1824         for (i = 0; i < card->num_links; i++)
1825                 soc_remove_dai_link(card, i);
1826
1827 card_probe_error:
1828         if (card->remove)
1829                 card->remove(pdev);
1830
1831         snd_card_free(card->snd_card);
1832
1833         mutex_unlock(&card->mutex);
1834 }
1835
1836 /*
1837  * Attempt to initialise any uninitialised cards.  Must be called with
1838  * client_mutex.
1839  */
1840 static void snd_soc_instantiate_cards(void)
1841 {
1842         struct snd_soc_card *card;
1843         list_for_each_entry(card, &card_list, list)
1844                 snd_soc_instantiate_card(card);
1845 }
1846
1847 /* probes a new socdev */
1848 static int soc_probe(struct platform_device *pdev)
1849 {
1850         struct snd_soc_card *card = platform_get_drvdata(pdev);
1851         int ret = 0;
1852
1853         /* Bodge while we unpick instantiation */
1854         card->dev = &pdev->dev;
1855         INIT_LIST_HEAD(&card->dai_dev_list);
1856         INIT_LIST_HEAD(&card->codec_dev_list);
1857         INIT_LIST_HEAD(&card->platform_dev_list);
1858
1859         soc_init_card_debugfs(card);
1860
1861         ret = snd_soc_register_card(card);
1862         if (ret != 0) {
1863                 dev_err(&pdev->dev, "Failed to register card\n");
1864                 return ret;
1865         }
1866
1867         return 0;
1868 }
1869
1870 /* removes a socdev */
1871 static int soc_remove(struct platform_device *pdev)
1872 {
1873         struct snd_soc_card *card = platform_get_drvdata(pdev);
1874         int i;
1875
1876                 if (card->instantiated) {
1877
1878                 /* make sure any delayed work runs */
1879                 for (i = 0; i < card->num_rtd; i++) {
1880                         struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1881                         run_delayed_work(&rtd->delayed_work);
1882                 }
1883
1884                 /* remove auxiliary devices */
1885                 for (i = 0; i < card->num_aux_devs; i++)
1886                         soc_remove_aux_dev(card, i);
1887
1888                 /* remove and free each DAI */
1889                 for (i = 0; i < card->num_rtd; i++)
1890                         soc_remove_dai_link(card, i);
1891
1892                 soc_cleanup_card_debugfs(card);
1893
1894                 /* remove the card */
1895                 if (card->remove)
1896                         card->remove(pdev);
1897
1898                 kfree(card->rtd);
1899                 snd_card_free(card->snd_card);
1900         }
1901         snd_soc_unregister_card(card);
1902         return 0;
1903 }
1904
1905 static int soc_poweroff(struct device *dev)
1906 {
1907         struct platform_device *pdev = to_platform_device(dev);
1908         struct snd_soc_card *card = platform_get_drvdata(pdev);
1909         int i;
1910
1911         if (!card->instantiated)
1912                 return 0;
1913
1914         /* Flush out pmdown_time work - we actually do want to run it
1915          * now, we're shutting down so no imminent restart. */
1916         for (i = 0; i < card->num_rtd; i++) {
1917                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1918                 run_delayed_work(&rtd->delayed_work);
1919         }
1920
1921         snd_soc_dapm_shutdown(card);
1922
1923         return 0;
1924 }
1925
1926 static const struct dev_pm_ops soc_pm_ops = {
1927         .suspend = soc_suspend,
1928         .resume = soc_resume,
1929         .poweroff = soc_poweroff,
1930 };
1931
1932 /* ASoC platform driver */
1933 static struct platform_driver soc_driver = {
1934         .driver         = {
1935                 .name           = "soc-audio",
1936                 .owner          = THIS_MODULE,
1937                 .pm             = &soc_pm_ops,
1938         },
1939         .probe          = soc_probe,
1940         .remove         = soc_remove,
1941 };
1942
1943 /* create a new pcm */
1944 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1945 {
1946         struct snd_soc_codec *codec = rtd->codec;
1947         struct snd_soc_platform *platform = rtd->platform;
1948         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1949         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1950         struct snd_pcm *pcm;
1951         char new_name[64];
1952         int ret = 0, playback = 0, capture = 0;
1953
1954         /* check client and interface hw capabilities */
1955         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1956                         rtd->dai_link->stream_name, codec_dai->name, num);
1957
1958         if (codec_dai->driver->playback.channels_min)
1959                 playback = 1;
1960         if (codec_dai->driver->capture.channels_min)
1961                 capture = 1;
1962
1963         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1964         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1965                         num, playback, capture, &pcm);
1966         if (ret < 0) {
1967                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1968                 return ret;
1969         }
1970
1971         rtd->pcm = pcm;
1972         pcm->private_data = rtd;
1973         soc_pcm_ops.mmap = platform->driver->ops->mmap;
1974         soc_pcm_ops.pointer = platform->driver->ops->pointer;
1975         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1976         soc_pcm_ops.copy = platform->driver->ops->copy;
1977         soc_pcm_ops.silence = platform->driver->ops->silence;
1978         soc_pcm_ops.ack = platform->driver->ops->ack;
1979         soc_pcm_ops.page = platform->driver->ops->page;
1980
1981         if (playback)
1982                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1983
1984         if (capture)
1985                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1986
1987         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1988         if (ret < 0) {
1989                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1990                 return ret;
1991         }
1992
1993         pcm->private_free = platform->driver->pcm_free;
1994         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1995                 cpu_dai->name);
1996         return ret;
1997 }
1998
1999 /**
2000  * snd_soc_codec_volatile_register: Report if a register is volatile.
2001  *
2002  * @codec: CODEC to query.
2003  * @reg: Register to query.
2004  *
2005  * Boolean function indiciating if a CODEC register is volatile.
2006  */
2007 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
2008 {
2009         if (codec->driver->volatile_register)
2010                 return codec->driver->volatile_register(reg);
2011         else
2012                 return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2015
2016 /**
2017  * snd_soc_new_ac97_codec - initailise AC97 device
2018  * @codec: audio codec
2019  * @ops: AC97 bus operations
2020  * @num: AC97 codec number
2021  *
2022  * Initialises AC97 codec resources for use by ad-hoc devices only.
2023  */
2024 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2025         struct snd_ac97_bus_ops *ops, int num)
2026 {
2027         mutex_lock(&codec->mutex);
2028
2029         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2030         if (codec->ac97 == NULL) {
2031                 mutex_unlock(&codec->mutex);
2032                 return -ENOMEM;
2033         }
2034
2035         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2036         if (codec->ac97->bus == NULL) {
2037                 kfree(codec->ac97);
2038                 codec->ac97 = NULL;
2039                 mutex_unlock(&codec->mutex);
2040                 return -ENOMEM;
2041         }
2042
2043         codec->ac97->bus->ops = ops;
2044         codec->ac97->num = num;
2045
2046         /*
2047          * Mark the AC97 device to be created by us. This way we ensure that the
2048          * device will be registered with the device subsystem later on.
2049          */
2050         codec->ac97_created = 1;
2051
2052         mutex_unlock(&codec->mutex);
2053         return 0;
2054 }
2055 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2056
2057 /**
2058  * snd_soc_free_ac97_codec - free AC97 codec device
2059  * @codec: audio codec
2060  *
2061  * Frees AC97 codec device resources.
2062  */
2063 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2064 {
2065         mutex_lock(&codec->mutex);
2066 #ifdef CONFIG_SND_SOC_AC97_BUS
2067         soc_unregister_ac97_dai_link(codec);
2068 #endif
2069         kfree(codec->ac97->bus);
2070         kfree(codec->ac97);
2071         codec->ac97 = NULL;
2072         codec->ac97_created = 0;
2073         mutex_unlock(&codec->mutex);
2074 }
2075 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2076
2077 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2078 {
2079         unsigned int ret;
2080
2081         ret = codec->driver->read(codec, reg);
2082         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2083         trace_snd_soc_reg_read(codec, reg, ret);
2084
2085         return ret;
2086 }
2087 EXPORT_SYMBOL_GPL(snd_soc_read);
2088
2089 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2090                            unsigned int reg, unsigned int val)
2091 {
2092         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2093         trace_snd_soc_reg_write(codec, reg, val);
2094         return codec->driver->write(codec, reg, val);
2095 }
2096 EXPORT_SYMBOL_GPL(snd_soc_write);
2097
2098 /**
2099  * snd_soc_update_bits - update codec register bits
2100  * @codec: audio codec
2101  * @reg: codec register
2102  * @mask: register mask
2103  * @value: new value
2104  *
2105  * Writes new register value.
2106  *
2107  * Returns 1 for change else 0.
2108  */
2109 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2110                                 unsigned int mask, unsigned int value)
2111 {
2112         int change;
2113         unsigned int old, new;
2114
2115         old = snd_soc_read(codec, reg);
2116         new = (old & ~mask) | value;
2117         change = old != new;
2118         if (change)
2119                 snd_soc_write(codec, reg, new);
2120
2121         return change;
2122 }
2123 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2124
2125 /**
2126  * snd_soc_update_bits_locked - update codec register bits
2127  * @codec: audio codec
2128  * @reg: codec register
2129  * @mask: register mask
2130  * @value: new value
2131  *
2132  * Writes new register value, and takes the codec mutex.
2133  *
2134  * Returns 1 for change else 0.
2135  */
2136 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2137                                unsigned short reg, unsigned int mask,
2138                                unsigned int value)
2139 {
2140         int change;
2141
2142         mutex_lock(&codec->mutex);
2143         change = snd_soc_update_bits(codec, reg, mask, value);
2144         mutex_unlock(&codec->mutex);
2145
2146         return change;
2147 }
2148 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2149
2150 /**
2151  * snd_soc_test_bits - test register for change
2152  * @codec: audio codec
2153  * @reg: codec register
2154  * @mask: register mask
2155  * @value: new value
2156  *
2157  * Tests a register with a new value and checks if the new value is
2158  * different from the old value.
2159  *
2160  * Returns 1 for change else 0.
2161  */
2162 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2163                                 unsigned int mask, unsigned int value)
2164 {
2165         int change;
2166         unsigned int old, new;
2167
2168         old = snd_soc_read(codec, reg);
2169         new = (old & ~mask) | value;
2170         change = old != new;
2171
2172         return change;
2173 }
2174 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2175
2176 /**
2177  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2178  * @substream: the pcm substream
2179  * @hw: the hardware parameters
2180  *
2181  * Sets the substream runtime hardware parameters.
2182  */
2183 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2184         const struct snd_pcm_hardware *hw)
2185 {
2186         struct snd_pcm_runtime *runtime = substream->runtime;
2187         runtime->hw.info = hw->info;
2188         runtime->hw.formats = hw->formats;
2189         runtime->hw.period_bytes_min = hw->period_bytes_min;
2190         runtime->hw.period_bytes_max = hw->period_bytes_max;
2191         runtime->hw.periods_min = hw->periods_min;
2192         runtime->hw.periods_max = hw->periods_max;
2193         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2194         runtime->hw.fifo_size = hw->fifo_size;
2195         return 0;
2196 }
2197 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2198
2199 /**
2200  * snd_soc_cnew - create new control
2201  * @_template: control template
2202  * @data: control private data
2203  * @long_name: control long name
2204  *
2205  * Create a new mixer control from a template control.
2206  *
2207  * Returns 0 for success, else error.
2208  */
2209 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2210         void *data, char *long_name)
2211 {
2212         struct snd_kcontrol_new template;
2213
2214         memcpy(&template, _template, sizeof(template));
2215         if (long_name)
2216                 template.name = long_name;
2217         template.index = 0;
2218
2219         return snd_ctl_new1(&template, data);
2220 }
2221 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2222
2223 /**
2224  * snd_soc_add_controls - add an array of controls to a codec.
2225  * Convienience function to add a list of controls. Many codecs were
2226  * duplicating this code.
2227  *
2228  * @codec: codec to add controls to
2229  * @controls: array of controls to add
2230  * @num_controls: number of elements in the array
2231  *
2232  * Return 0 for success, else error.
2233  */
2234 int snd_soc_add_controls(struct snd_soc_codec *codec,
2235         const struct snd_kcontrol_new *controls, int num_controls)
2236 {
2237         struct snd_card *card = codec->card->snd_card;
2238         char prefixed_name[44], *name;
2239         int err, i;
2240
2241         for (i = 0; i < num_controls; i++) {
2242                 const struct snd_kcontrol_new *control = &controls[i];
2243                 if (codec->name_prefix) {
2244                         snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2245                                  codec->name_prefix, control->name);
2246                         name = prefixed_name;
2247                 } else {
2248                         name = control->name;
2249                 }
2250                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2251                 if (err < 0) {
2252                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2253                                 codec->name, name, err);
2254                         return err;
2255                 }
2256         }
2257
2258         return 0;
2259 }
2260 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2261
2262 /**
2263  * snd_soc_info_enum_double - enumerated double mixer info callback
2264  * @kcontrol: mixer control
2265  * @uinfo: control element information
2266  *
2267  * Callback to provide information about a double enumerated
2268  * mixer control.
2269  *
2270  * Returns 0 for success.
2271  */
2272 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2273         struct snd_ctl_elem_info *uinfo)
2274 {
2275         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2276
2277         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2278         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2279         uinfo->value.enumerated.items = e->max;
2280
2281         if (uinfo->value.enumerated.item > e->max - 1)
2282                 uinfo->value.enumerated.item = e->max - 1;
2283         strcpy(uinfo->value.enumerated.name,
2284                 e->texts[uinfo->value.enumerated.item]);
2285         return 0;
2286 }
2287 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2288
2289 /**
2290  * snd_soc_get_enum_double - enumerated double mixer get callback
2291  * @kcontrol: mixer control
2292  * @ucontrol: control element information
2293  *
2294  * Callback to get the value of a double enumerated mixer.
2295  *
2296  * Returns 0 for success.
2297  */
2298 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2299         struct snd_ctl_elem_value *ucontrol)
2300 {
2301         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2302         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2303         unsigned int val, bitmask;
2304
2305         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2306                 ;
2307         val = snd_soc_read(codec, e->reg);
2308         ucontrol->value.enumerated.item[0]
2309                 = (val >> e->shift_l) & (bitmask - 1);
2310         if (e->shift_l != e->shift_r)
2311                 ucontrol->value.enumerated.item[1] =
2312                         (val >> e->shift_r) & (bitmask - 1);
2313
2314         return 0;
2315 }
2316 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2317
2318 /**
2319  * snd_soc_put_enum_double - enumerated double mixer put callback
2320  * @kcontrol: mixer control
2321  * @ucontrol: control element information
2322  *
2323  * Callback to set the value of a double enumerated mixer.
2324  *
2325  * Returns 0 for success.
2326  */
2327 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2328         struct snd_ctl_elem_value *ucontrol)
2329 {
2330         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2331         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2332         unsigned int val;
2333         unsigned int mask, bitmask;
2334
2335         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2336                 ;
2337         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2338                 return -EINVAL;
2339         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2340         mask = (bitmask - 1) << e->shift_l;
2341         if (e->shift_l != e->shift_r) {
2342                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2343                         return -EINVAL;
2344                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2345                 mask |= (bitmask - 1) << e->shift_r;
2346         }
2347
2348         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2349 }
2350 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2351
2352 /**
2353  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2354  * @kcontrol: mixer control
2355  * @ucontrol: control element information
2356  *
2357  * Callback to get the value of a double semi enumerated mixer.
2358  *
2359  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2360  * used for handling bitfield coded enumeration for example.
2361  *
2362  * Returns 0 for success.
2363  */
2364 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2365         struct snd_ctl_elem_value *ucontrol)
2366 {
2367         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2368         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2369         unsigned int reg_val, val, mux;
2370
2371         reg_val = snd_soc_read(codec, e->reg);
2372         val = (reg_val >> e->shift_l) & e->mask;
2373         for (mux = 0; mux < e->max; mux++) {
2374                 if (val == e->values[mux])
2375                         break;
2376         }
2377         ucontrol->value.enumerated.item[0] = mux;
2378         if (e->shift_l != e->shift_r) {
2379                 val = (reg_val >> e->shift_r) & e->mask;
2380                 for (mux = 0; mux < e->max; mux++) {
2381                         if (val == e->values[mux])
2382                                 break;
2383                 }
2384                 ucontrol->value.enumerated.item[1] = mux;
2385         }
2386
2387         return 0;
2388 }
2389 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2390
2391 /**
2392  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2393  * @kcontrol: mixer control
2394  * @ucontrol: control element information
2395  *
2396  * Callback to set the value of a double semi enumerated mixer.
2397  *
2398  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2399  * used for handling bitfield coded enumeration for example.
2400  *
2401  * Returns 0 for success.
2402  */
2403 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2404         struct snd_ctl_elem_value *ucontrol)
2405 {
2406         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2407         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2408         unsigned int val;
2409         unsigned int mask;
2410
2411         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2412                 return -EINVAL;
2413         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2414         mask = e->mask << e->shift_l;
2415         if (e->shift_l != e->shift_r) {
2416                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2417                         return -EINVAL;
2418                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2419                 mask |= e->mask << e->shift_r;
2420         }
2421
2422         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2423 }
2424 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2425
2426 /**
2427  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2428  * @kcontrol: mixer control
2429  * @uinfo: control element information
2430  *
2431  * Callback to provide information about an external enumerated
2432  * single mixer.
2433  *
2434  * Returns 0 for success.
2435  */
2436 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2437         struct snd_ctl_elem_info *uinfo)
2438 {
2439         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2440
2441         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2442         uinfo->count = 1;
2443         uinfo->value.enumerated.items = e->max;
2444
2445         if (uinfo->value.enumerated.item > e->max - 1)
2446                 uinfo->value.enumerated.item = e->max - 1;
2447         strcpy(uinfo->value.enumerated.name,
2448                 e->texts[uinfo->value.enumerated.item]);
2449         return 0;
2450 }
2451 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2452
2453 /**
2454  * snd_soc_info_volsw_ext - external single mixer info callback
2455  * @kcontrol: mixer control
2456  * @uinfo: control element information
2457  *
2458  * Callback to provide information about a single external mixer control.
2459  *
2460  * Returns 0 for success.
2461  */
2462 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2463         struct snd_ctl_elem_info *uinfo)
2464 {
2465         int max = kcontrol->private_value;
2466
2467         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2468                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2469         else
2470                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2471
2472         uinfo->count = 1;
2473         uinfo->value.integer.min = 0;
2474         uinfo->value.integer.max = max;
2475         return 0;
2476 }
2477 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2478
2479 /**
2480  * snd_soc_info_volsw - single mixer info callback
2481  * @kcontrol: mixer control
2482  * @uinfo: control element information
2483  *
2484  * Callback to provide information about a single mixer control.
2485  *
2486  * Returns 0 for success.
2487  */
2488 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2489         struct snd_ctl_elem_info *uinfo)
2490 {
2491         struct soc_mixer_control *mc =
2492                 (struct soc_mixer_control *)kcontrol->private_value;
2493         int platform_max;
2494         unsigned int shift = mc->shift;
2495         unsigned int rshift = mc->rshift;
2496
2497         if (!mc->platform_max)
2498                 mc->platform_max = mc->max;
2499         platform_max = mc->platform_max;
2500
2501         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2502                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2503         else
2504                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2505
2506         uinfo->count = shift == rshift ? 1 : 2;
2507         uinfo->value.integer.min = 0;
2508         uinfo->value.integer.max = platform_max;
2509         return 0;
2510 }
2511 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2512
2513 /**
2514  * snd_soc_get_volsw - single mixer get callback
2515  * @kcontrol: mixer control
2516  * @ucontrol: control element information
2517  *
2518  * Callback to get the value of a single mixer control.
2519  *
2520  * Returns 0 for success.
2521  */
2522 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2523         struct snd_ctl_elem_value *ucontrol)
2524 {
2525         struct soc_mixer_control *mc =
2526                 (struct soc_mixer_control *)kcontrol->private_value;
2527         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2528         unsigned int reg = mc->reg;
2529         unsigned int shift = mc->shift;
2530         unsigned int rshift = mc->rshift;
2531         int max = mc->max;
2532         unsigned int mask = (1 << fls(max)) - 1;
2533         unsigned int invert = mc->invert;
2534
2535         ucontrol->value.integer.value[0] =
2536                 (snd_soc_read(codec, reg) >> shift) & mask;
2537         if (shift != rshift)
2538                 ucontrol->value.integer.value[1] =
2539                         (snd_soc_read(codec, reg) >> rshift) & mask;
2540         if (invert) {
2541                 ucontrol->value.integer.value[0] =
2542                         max - ucontrol->value.integer.value[0];
2543                 if (shift != rshift)
2544                         ucontrol->value.integer.value[1] =
2545                                 max - ucontrol->value.integer.value[1];
2546         }
2547
2548         return 0;
2549 }
2550 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2551
2552 /**
2553  * snd_soc_put_volsw - single mixer put callback
2554  * @kcontrol: mixer control
2555  * @ucontrol: control element information
2556  *
2557  * Callback to set the value of a single mixer control.
2558  *
2559  * Returns 0 for success.
2560  */
2561 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2562         struct snd_ctl_elem_value *ucontrol)
2563 {
2564         struct soc_mixer_control *mc =
2565                 (struct soc_mixer_control *)kcontrol->private_value;
2566         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2567         unsigned int reg = mc->reg;
2568         unsigned int shift = mc->shift;
2569         unsigned int rshift = mc->rshift;
2570         int max = mc->max;
2571         unsigned int mask = (1 << fls(max)) - 1;
2572         unsigned int invert = mc->invert;
2573         unsigned int val, val2, val_mask;
2574
2575         val = (ucontrol->value.integer.value[0] & mask);
2576         if (invert)
2577                 val = max - val;
2578         val_mask = mask << shift;
2579         val = val << shift;
2580         if (shift != rshift) {
2581                 val2 = (ucontrol->value.integer.value[1] & mask);
2582                 if (invert)
2583                         val2 = max - val2;
2584                 val_mask |= mask << rshift;
2585                 val |= val2 << rshift;
2586         }
2587         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2588 }
2589 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2590
2591 /**
2592  * snd_soc_info_volsw_2r - double mixer info callback
2593  * @kcontrol: mixer control
2594  * @uinfo: control element information
2595  *
2596  * Callback to provide information about a double mixer control that
2597  * spans 2 codec registers.
2598  *
2599  * Returns 0 for success.
2600  */
2601 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2602         struct snd_ctl_elem_info *uinfo)
2603 {
2604         struct soc_mixer_control *mc =
2605                 (struct soc_mixer_control *)kcontrol->private_value;
2606         int platform_max;
2607
2608         if (!mc->platform_max)
2609                 mc->platform_max = mc->max;
2610         platform_max = mc->platform_max;
2611
2612         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2613                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2614         else
2615                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2616
2617         uinfo->count = 2;
2618         uinfo->value.integer.min = 0;
2619         uinfo->value.integer.max = platform_max;
2620         return 0;
2621 }
2622 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2623
2624 /**
2625  * snd_soc_get_volsw_2r - double mixer get callback
2626  * @kcontrol: mixer control
2627  * @ucontrol: control element information
2628  *
2629  * Callback to get the value of a double mixer control that spans 2 registers.
2630  *
2631  * Returns 0 for success.
2632  */
2633 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2634         struct snd_ctl_elem_value *ucontrol)
2635 {
2636         struct soc_mixer_control *mc =
2637                 (struct soc_mixer_control *)kcontrol->private_value;
2638         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2639         unsigned int reg = mc->reg;
2640         unsigned int reg2 = mc->rreg;
2641         unsigned int shift = mc->shift;
2642         int max = mc->max;
2643         unsigned int mask = (1 << fls(max)) - 1;
2644         unsigned int invert = mc->invert;
2645
2646         ucontrol->value.integer.value[0] =
2647                 (snd_soc_read(codec, reg) >> shift) & mask;
2648         ucontrol->value.integer.value[1] =
2649                 (snd_soc_read(codec, reg2) >> shift) & mask;
2650         if (invert) {
2651                 ucontrol->value.integer.value[0] =
2652                         max - ucontrol->value.integer.value[0];
2653                 ucontrol->value.integer.value[1] =
2654                         max - ucontrol->value.integer.value[1];
2655         }
2656
2657         return 0;
2658 }
2659 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2660
2661 /**
2662  * snd_soc_put_volsw_2r - double mixer set callback
2663  * @kcontrol: mixer control
2664  * @ucontrol: control element information
2665  *
2666  * Callback to set the value of a double mixer control that spans 2 registers.
2667  *
2668  * Returns 0 for success.
2669  */
2670 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2671         struct snd_ctl_elem_value *ucontrol)
2672 {
2673         struct soc_mixer_control *mc =
2674                 (struct soc_mixer_control *)kcontrol->private_value;
2675         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2676         unsigned int reg = mc->reg;
2677         unsigned int reg2 = mc->rreg;
2678         unsigned int shift = mc->shift;
2679         int max = mc->max;
2680         unsigned int mask = (1 << fls(max)) - 1;
2681         unsigned int invert = mc->invert;
2682         int err;
2683         unsigned int val, val2, val_mask;
2684
2685         val_mask = mask << shift;
2686         val = (ucontrol->value.integer.value[0] & mask);
2687         val2 = (ucontrol->value.integer.value[1] & mask);
2688
2689         if (invert) {
2690                 val = max - val;
2691                 val2 = max - val2;
2692         }
2693
2694         val = val << shift;
2695         val2 = val2 << shift;
2696
2697         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2698         if (err < 0)
2699                 return err;
2700
2701         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2702         return err;
2703 }
2704 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2705
2706 /**
2707  * snd_soc_info_volsw_s8 - signed mixer info callback
2708  * @kcontrol: mixer control
2709  * @uinfo: control element information
2710  *
2711  * Callback to provide information about a signed mixer control.
2712  *
2713  * Returns 0 for success.
2714  */
2715 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2716         struct snd_ctl_elem_info *uinfo)
2717 {
2718         struct soc_mixer_control *mc =
2719                 (struct soc_mixer_control *)kcontrol->private_value;
2720         int platform_max;
2721         int min = mc->min;
2722
2723         if (!mc->platform_max)
2724                 mc->platform_max = mc->max;
2725         platform_max = mc->platform_max;
2726
2727         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2728         uinfo->count = 2;
2729         uinfo->value.integer.min = 0;
2730         uinfo->value.integer.max = platform_max - min;
2731         return 0;
2732 }
2733 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2734
2735 /**
2736  * snd_soc_get_volsw_s8 - signed mixer get callback
2737  * @kcontrol: mixer control
2738  * @ucontrol: control element information
2739  *
2740  * Callback to get the value of a signed mixer control.
2741  *
2742  * Returns 0 for success.
2743  */
2744 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2745         struct snd_ctl_elem_value *ucontrol)
2746 {
2747         struct soc_mixer_control *mc =
2748                 (struct soc_mixer_control *)kcontrol->private_value;
2749         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2750         unsigned int reg = mc->reg;
2751         int min = mc->min;
2752         int val = snd_soc_read(codec, reg);
2753
2754         ucontrol->value.integer.value[0] =
2755                 ((signed char)(val & 0xff))-min;
2756         ucontrol->value.integer.value[1] =
2757                 ((signed char)((val >> 8) & 0xff))-min;
2758         return 0;
2759 }
2760 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2761
2762 /**
2763  * snd_soc_put_volsw_sgn - signed mixer put callback
2764  * @kcontrol: mixer control
2765  * @ucontrol: control element information
2766  *
2767  * Callback to set the value of a signed mixer control.
2768  *
2769  * Returns 0 for success.
2770  */
2771 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2772         struct snd_ctl_elem_value *ucontrol)
2773 {
2774         struct soc_mixer_control *mc =
2775                 (struct soc_mixer_control *)kcontrol->private_value;
2776         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2777         unsigned int reg = mc->reg;
2778         int min = mc->min;
2779         unsigned int val;
2780
2781         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2782         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2783
2784         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2785 }
2786 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2787
2788 /**
2789  * snd_soc_limit_volume - Set new limit to an existing volume control.
2790  *
2791  * @codec: where to look for the control
2792  * @name: Name of the control
2793  * @max: new maximum limit
2794  *
2795  * Return 0 for success, else error.
2796  */
2797 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2798         const char *name, int max)
2799 {
2800         struct snd_card *card = codec->card->snd_card;
2801         struct snd_kcontrol *kctl;
2802         struct soc_mixer_control *mc;
2803         int found = 0;
2804         int ret = -EINVAL;
2805
2806         /* Sanity check for name and max */
2807         if (unlikely(!name || max <= 0))
2808                 return -EINVAL;
2809
2810         list_for_each_entry(kctl, &card->controls, list) {
2811                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2812                         found = 1;
2813                         break;
2814                 }
2815         }
2816         if (found) {
2817                 mc = (struct soc_mixer_control *)kctl->private_value;
2818                 if (max <= mc->max) {
2819                         mc->platform_max = max;
2820                         ret = 0;
2821                 }
2822         }
2823         return ret;
2824 }
2825 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2826
2827 /**
2828  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2829  *  mixer info callback
2830  * @kcontrol: mixer control
2831  * @uinfo: control element information
2832  *
2833  * Returns 0 for success.
2834  */
2835 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2836                         struct snd_ctl_elem_info *uinfo)
2837 {
2838         struct soc_mixer_control *mc =
2839                 (struct soc_mixer_control *)kcontrol->private_value;
2840         int max = mc->max;
2841         int min = mc->min;
2842
2843         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2844         uinfo->count = 2;
2845         uinfo->value.integer.min = 0;
2846         uinfo->value.integer.max = max-min;
2847
2848         return 0;
2849 }
2850 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2851
2852 /**
2853  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2854  *  mixer get callback
2855  * @kcontrol: mixer control
2856  * @uinfo: control element information
2857  *
2858  * Returns 0 for success.
2859  */
2860 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2861                         struct snd_ctl_elem_value *ucontrol)
2862 {
2863         struct soc_mixer_control *mc =
2864                 (struct soc_mixer_control *)kcontrol->private_value;
2865         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2866         unsigned int mask = (1<<mc->shift)-1;
2867         int min = mc->min;
2868         int val = snd_soc_read(codec, mc->reg) & mask;
2869         int valr = snd_soc_read(codec, mc->rreg) & mask;
2870
2871         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2872         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2873         return 0;
2874 }
2875 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2876
2877 /**
2878  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2879  *  mixer put callback
2880  * @kcontrol: mixer control
2881  * @uinfo: control element information
2882  *
2883  * Returns 0 for success.
2884  */
2885 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2886                         struct snd_ctl_elem_value *ucontrol)
2887 {
2888         struct soc_mixer_control *mc =
2889                 (struct soc_mixer_control *)kcontrol->private_value;
2890         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2891         unsigned int mask = (1<<mc->shift)-1;
2892         int min = mc->min;
2893         int ret;
2894         unsigned int val, valr, oval, ovalr;
2895
2896         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2897         val &= mask;
2898         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2899         valr &= mask;
2900
2901         oval = snd_soc_read(codec, mc->reg) & mask;
2902         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2903
2904         ret = 0;
2905         if (oval != val) {
2906                 ret = snd_soc_write(codec, mc->reg, val);
2907                 if (ret < 0)
2908                         return ret;
2909         }
2910         if (ovalr != valr) {
2911                 ret = snd_soc_write(codec, mc->rreg, valr);
2912                 if (ret < 0)
2913                         return ret;
2914         }
2915
2916         return 0;
2917 }
2918 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2919
2920 /**
2921  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2922  * @dai: DAI
2923  * @clk_id: DAI specific clock ID
2924  * @freq: new clock frequency in Hz
2925  * @dir: new clock direction - input/output.
2926  *
2927  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2928  */
2929 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2930         unsigned int freq, int dir)
2931 {
2932         if (dai->driver && dai->driver->ops->set_sysclk)
2933                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2934         else
2935                 return -EINVAL;
2936 }
2937 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2938
2939 /**
2940  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2941  * @dai: DAI
2942  * @div_id: DAI specific clock divider ID
2943  * @div: new clock divisor.
2944  *
2945  * Configures the clock dividers. This is used to derive the best DAI bit and
2946  * frame clocks from the system or master clock. It's best to set the DAI bit
2947  * and frame clocks as low as possible to save system power.
2948  */
2949 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2950         int div_id, int div)
2951 {
2952         if (dai->driver && dai->driver->ops->set_clkdiv)
2953                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2954         else
2955                 return -EINVAL;
2956 }
2957 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2958
2959 /**
2960  * snd_soc_dai_set_pll - configure DAI PLL.
2961  * @dai: DAI
2962  * @pll_id: DAI specific PLL ID
2963  * @source: DAI specific source for the PLL
2964  * @freq_in: PLL input clock frequency in Hz
2965  * @freq_out: requested PLL output clock frequency in Hz
2966  *
2967  * Configures and enables PLL to generate output clock based on input clock.
2968  */
2969 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2970         unsigned int freq_in, unsigned int freq_out)
2971 {
2972         if (dai->driver && dai->driver->ops->set_pll)
2973                 return dai->driver->ops->set_pll(dai, pll_id, source,
2974                                          freq_in, freq_out);
2975         else
2976                 return -EINVAL;
2977 }
2978 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2979
2980 /**
2981  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2982  * @dai: DAI
2983  * @fmt: SND_SOC_DAIFMT_ format value.
2984  *
2985  * Configures the DAI hardware format and clocking.
2986  */
2987 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2988 {
2989         if (dai->driver && dai->driver->ops->set_fmt)
2990                 return dai->driver->ops->set_fmt(dai, fmt);
2991         else
2992                 return -EINVAL;
2993 }
2994 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2995
2996 /**
2997  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2998  * @dai: DAI
2999  * @tx_mask: bitmask representing active TX slots.
3000  * @rx_mask: bitmask representing active RX slots.
3001  * @slots: Number of slots in use.
3002  * @slot_width: Width in bits for each slot.
3003  *
3004  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3005  * specific.
3006  */
3007 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3008         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3009 {
3010         if (dai->driver && dai->driver->ops->set_tdm_slot)
3011                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3012                                 slots, slot_width);
3013         else
3014                 return -EINVAL;
3015 }
3016 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3017
3018 /**
3019  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3020  * @dai: DAI
3021  * @tx_num: how many TX channels
3022  * @tx_slot: pointer to an array which imply the TX slot number channel
3023  *           0~num-1 uses
3024  * @rx_num: how many RX channels
3025  * @rx_slot: pointer to an array which imply the RX slot number channel
3026  *           0~num-1 uses
3027  *
3028  * configure the relationship between channel number and TDM slot number.
3029  */
3030 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3031         unsigned int tx_num, unsigned int *tx_slot,
3032         unsigned int rx_num, unsigned int *rx_slot)
3033 {
3034         if (dai->driver && dai->driver->ops->set_channel_map)
3035                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3036                         rx_num, rx_slot);
3037         else
3038                 return -EINVAL;
3039 }
3040 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3041
3042 /**
3043  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3044  * @dai: DAI
3045  * @tristate: tristate enable
3046  *
3047  * Tristates the DAI so that others can use it.
3048  */
3049 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3050 {
3051         if (dai->driver && dai->driver->ops->set_tristate)
3052                 return dai->driver->ops->set_tristate(dai, tristate);
3053         else
3054                 return -EINVAL;
3055 }
3056 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3057
3058 /**
3059  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3060  * @dai: DAI
3061  * @mute: mute enable
3062  *
3063  * Mutes the DAI DAC.
3064  */
3065 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3066 {
3067         if (dai->driver && dai->driver->ops->digital_mute)
3068                 return dai->driver->ops->digital_mute(dai, mute);
3069         else
3070                 return -EINVAL;
3071 }
3072 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3073
3074 /**
3075  * snd_soc_register_card - Register a card with the ASoC core
3076  *
3077  * @card: Card to register
3078  *
3079  * Note that currently this is an internal only function: it will be
3080  * exposed to machine drivers after further backporting of ASoC v2
3081  * registration APIs.
3082  */
3083 static int snd_soc_register_card(struct snd_soc_card *card)
3084 {
3085         int i;
3086
3087         if (!card->name || !card->dev)
3088                 return -EINVAL;
3089
3090         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3091                             (card->num_links + card->num_aux_devs),
3092                             GFP_KERNEL);
3093         if (card->rtd == NULL)
3094                 return -ENOMEM;
3095         card->rtd_aux = &card->rtd[card->num_links];
3096
3097         for (i = 0; i < card->num_links; i++)
3098                 card->rtd[i].dai_link = &card->dai_link[i];
3099
3100         INIT_LIST_HEAD(&card->list);
3101         card->instantiated = 0;
3102         mutex_init(&card->mutex);
3103
3104         mutex_lock(&client_mutex);
3105         list_add(&card->list, &card_list);
3106         snd_soc_instantiate_cards();
3107         mutex_unlock(&client_mutex);
3108
3109         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3110
3111         return 0;
3112 }
3113
3114 /**
3115  * snd_soc_unregister_card - Unregister a card with the ASoC core
3116  *
3117  * @card: Card to unregister
3118  *
3119  * Note that currently this is an internal only function: it will be
3120  * exposed to machine drivers after further backporting of ASoC v2
3121  * registration APIs.
3122  */
3123 static int snd_soc_unregister_card(struct snd_soc_card *card)
3124 {
3125         mutex_lock(&client_mutex);
3126         list_del(&card->list);
3127         mutex_unlock(&client_mutex);
3128         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3129
3130         return 0;
3131 }
3132
3133 /*
3134  * Simplify DAI link configuration by removing ".-1" from device names
3135  * and sanitizing names.
3136  */
3137 static inline char *fmt_single_name(struct device *dev, int *id)
3138 {
3139         char *found, name[NAME_SIZE];
3140         int id1, id2;
3141
3142         if (dev_name(dev) == NULL)
3143                 return NULL;
3144
3145         strncpy(name, dev_name(dev), NAME_SIZE);
3146
3147         /* are we a "%s.%d" name (platform and SPI components) */
3148         found = strstr(name, dev->driver->name);
3149         if (found) {
3150                 /* get ID */
3151                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3152
3153                         /* discard ID from name if ID == -1 */
3154                         if (*id == -1)
3155                                 found[strlen(dev->driver->name)] = '\0';
3156                 }
3157
3158         } else {
3159                 /* I2C component devices are named "bus-addr"  */
3160                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3161                         char tmp[NAME_SIZE];
3162
3163                         /* create unique ID number from I2C addr and bus */
3164                         *id = ((id1 & 0xffff) << 16) + id2;
3165
3166                         /* sanitize component name for DAI link creation */
3167                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3168                         strncpy(name, tmp, NAME_SIZE);
3169                 } else
3170                         *id = 0;
3171         }
3172
3173         return kstrdup(name, GFP_KERNEL);
3174 }
3175
3176 /*
3177  * Simplify DAI link naming for single devices with multiple DAIs by removing
3178  * any ".-1" and using the DAI name (instead of device name).
3179  */
3180 static inline char *fmt_multiple_name(struct device *dev,
3181                 struct snd_soc_dai_driver *dai_drv)
3182 {
3183         if (dai_drv->name == NULL) {
3184                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3185                                 dev_name(dev));
3186                 return NULL;
3187         }
3188
3189         return kstrdup(dai_drv->name, GFP_KERNEL);
3190 }
3191
3192 /**
3193  * snd_soc_register_dai - Register a DAI with the ASoC core
3194  *
3195  * @dai: DAI to register
3196  */
3197 int snd_soc_register_dai(struct device *dev,
3198                 struct snd_soc_dai_driver *dai_drv)
3199 {
3200         struct snd_soc_dai *dai;
3201
3202         dev_dbg(dev, "dai register %s\n", dev_name(dev));
3203
3204         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3205         if (dai == NULL)
3206                         return -ENOMEM;
3207
3208         /* create DAI component name */
3209         dai->name = fmt_single_name(dev, &dai->id);
3210         if (dai->name == NULL) {
3211                 kfree(dai);
3212                 return -ENOMEM;
3213         }
3214
3215         dai->dev = dev;
3216         dai->driver = dai_drv;
3217         if (!dai->driver->ops)
3218                 dai->driver->ops = &null_dai_ops;
3219
3220         mutex_lock(&client_mutex);
3221         list_add(&dai->list, &dai_list);
3222         snd_soc_instantiate_cards();
3223         mutex_unlock(&client_mutex);
3224
3225         pr_debug("Registered DAI '%s'\n", dai->name);
3226
3227         return 0;
3228 }
3229 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3230
3231 /**
3232  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3233  *
3234  * @dai: DAI to unregister
3235  */
3236 void snd_soc_unregister_dai(struct device *dev)
3237 {
3238         struct snd_soc_dai *dai;
3239
3240         list_for_each_entry(dai, &dai_list, list) {
3241                 if (dev == dai->dev)
3242                         goto found;
3243         }
3244         return;
3245
3246 found:
3247         mutex_lock(&client_mutex);
3248         list_del(&dai->list);
3249         mutex_unlock(&client_mutex);
3250
3251         pr_debug("Unregistered DAI '%s'\n", dai->name);
3252         kfree(dai->name);
3253         kfree(dai);
3254 }
3255 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3256
3257 /**
3258  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3259  *
3260  * @dai: Array of DAIs to register
3261  * @count: Number of DAIs
3262  */
3263 int snd_soc_register_dais(struct device *dev,
3264                 struct snd_soc_dai_driver *dai_drv, size_t count)
3265 {
3266         struct snd_soc_dai *dai;
3267         int i, ret = 0;
3268
3269         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3270
3271         for (i = 0; i < count; i++) {
3272
3273                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3274                 if (dai == NULL) {
3275                         ret = -ENOMEM;
3276                         goto err;
3277                 }
3278
3279                 /* create DAI component name */
3280                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3281                 if (dai->name == NULL) {
3282                         kfree(dai);
3283                         ret = -EINVAL;
3284                         goto err;
3285                 }
3286
3287                 dai->dev = dev;
3288                 dai->driver = &dai_drv[i];
3289                 if (dai->driver->id)
3290                         dai->id = dai->driver->id;
3291                 else
3292                         dai->id = i;
3293                 if (!dai->driver->ops)
3294                         dai->driver->ops = &null_dai_ops;
3295
3296                 mutex_lock(&client_mutex);
3297                 list_add(&dai->list, &dai_list);
3298                 mutex_unlock(&client_mutex);
3299
3300                 pr_debug("Registered DAI '%s'\n", dai->name);
3301         }
3302
3303         snd_soc_instantiate_cards();
3304         return 0;
3305
3306 err:
3307         for (i--; i >= 0; i--)
3308                 snd_soc_unregister_dai(dev);
3309
3310         return ret;
3311 }
3312 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3313
3314 /**
3315  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3316  *
3317  * @dai: Array of DAIs to unregister
3318  * @count: Number of DAIs
3319  */
3320 void snd_soc_unregister_dais(struct device *dev, size_t count)
3321 {
3322         int i;
3323
3324         for (i = 0; i < count; i++)
3325                 snd_soc_unregister_dai(dev);
3326 }
3327 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3328
3329 /**
3330  * snd_soc_register_platform - Register a platform with the ASoC core
3331  *
3332  * @platform: platform to register
3333  */
3334 int snd_soc_register_platform(struct device *dev,
3335                 struct snd_soc_platform_driver *platform_drv)
3336 {
3337         struct snd_soc_platform *platform;
3338
3339         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3340
3341         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3342         if (platform == NULL)
3343                         return -ENOMEM;
3344
3345         /* create platform component name */
3346         platform->name = fmt_single_name(dev, &platform->id);
3347         if (platform->name == NULL) {
3348                 kfree(platform);
3349                 return -ENOMEM;
3350         }
3351
3352         platform->dev = dev;
3353         platform->driver = platform_drv;
3354
3355         mutex_lock(&client_mutex);
3356         list_add(&platform->list, &platform_list);
3357         snd_soc_instantiate_cards();
3358         mutex_unlock(&client_mutex);
3359
3360         pr_debug("Registered platform '%s'\n", platform->name);
3361
3362         return 0;
3363 }
3364 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3365
3366 /**
3367  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3368  *
3369  * @platform: platform to unregister
3370  */
3371 void snd_soc_unregister_platform(struct device *dev)
3372 {
3373         struct snd_soc_platform *platform;
3374
3375         list_for_each_entry(platform, &platform_list, list) {
3376                 if (dev == platform->dev)
3377                         goto found;
3378         }
3379         return;
3380
3381 found:
3382         mutex_lock(&client_mutex);
3383         list_del(&platform->list);
3384         mutex_unlock(&client_mutex);
3385
3386         pr_debug("Unregistered platform '%s'\n", platform->name);
3387         kfree(platform->name);
3388         kfree(platform);
3389 }
3390 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3391
3392 static u64 codec_format_map[] = {
3393         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3394         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3395         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3396         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3397         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3398         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3399         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3400         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3401         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3402         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3403         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3404         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3405         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3406         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3407         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3408         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3409 };
3410
3411 /* Fix up the DAI formats for endianness: codecs don't actually see
3412  * the endianness of the data but we're using the CPU format
3413  * definitions which do need to include endianness so we ensure that
3414  * codec DAIs always have both big and little endian variants set.
3415  */
3416 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3417 {
3418         int i;
3419
3420         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3421                 if (stream->formats & codec_format_map[i])
3422                         stream->formats |= codec_format_map[i];
3423 }
3424
3425 /**
3426  * snd_soc_register_codec - Register a codec with the ASoC core
3427  *
3428  * @codec: codec to register
3429  */
3430 int snd_soc_register_codec(struct device *dev,
3431                 struct snd_soc_codec_driver *codec_drv,
3432                 struct snd_soc_dai_driver *dai_drv, int num_dai)
3433 {
3434         struct snd_soc_codec *codec;
3435         int ret, i;
3436
3437         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3438
3439         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3440         if (codec == NULL)
3441                 return -ENOMEM;
3442
3443         /* create CODEC component name */
3444         codec->name = fmt_single_name(dev, &codec->id);
3445         if (codec->name == NULL) {
3446                 kfree(codec);
3447                 return -ENOMEM;
3448         }
3449
3450         INIT_LIST_HEAD(&codec->dapm.widgets);
3451         INIT_LIST_HEAD(&codec->dapm.paths);
3452         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3453         codec->dapm.dev = dev;
3454         codec->dapm.codec = codec;
3455         codec->dev = dev;
3456         codec->driver = codec_drv;
3457         codec->num_dai = num_dai;
3458         mutex_init(&codec->mutex);
3459
3460         /* allocate CODEC register cache */
3461         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3462                 ret = snd_soc_cache_init(codec);
3463                 if (ret < 0) {
3464                         dev_err(codec->dev, "Failed to set cache compression type: %d\n",
3465                                 ret);
3466                         goto error_cache;
3467                 }
3468         }
3469
3470         for (i = 0; i < num_dai; i++) {
3471                 fixup_codec_formats(&dai_drv[i].playback);
3472                 fixup_codec_formats(&dai_drv[i].capture);
3473         }
3474
3475         /* register any DAIs */
3476         if (num_dai) {
3477                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3478                 if (ret < 0)
3479                         goto error_dais;
3480         }
3481
3482         mutex_lock(&client_mutex);
3483         list_add(&codec->list, &codec_list);
3484         snd_soc_instantiate_cards();
3485         mutex_unlock(&client_mutex);
3486
3487         pr_debug("Registered codec '%s'\n", codec->name);
3488         return 0;
3489
3490 error_dais:
3491         snd_soc_cache_exit(codec);
3492 error_cache:
3493         kfree(codec->name);
3494         kfree(codec);
3495         return ret;
3496 }
3497 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3498
3499 /**
3500  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3501  *
3502  * @codec: codec to unregister
3503  */
3504 void snd_soc_unregister_codec(struct device *dev)
3505 {
3506         struct snd_soc_codec *codec;
3507         int i;
3508
3509         list_for_each_entry(codec, &codec_list, list) {
3510                 if (dev == codec->dev)
3511                         goto found;
3512         }
3513         return;
3514
3515 found:
3516         if (codec->num_dai)
3517                 for (i = 0; i < codec->num_dai; i++)
3518                         snd_soc_unregister_dai(dev);
3519
3520         mutex_lock(&client_mutex);
3521         list_del(&codec->list);
3522         mutex_unlock(&client_mutex);
3523
3524         pr_debug("Unregistered codec '%s'\n", codec->name);
3525
3526         snd_soc_cache_exit(codec);
3527         kfree(codec->name);
3528         kfree(codec);
3529 }
3530 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3531
3532 static int __init snd_soc_init(void)
3533 {
3534 #ifdef CONFIG_DEBUG_FS
3535         debugfs_root = debugfs_create_dir("asoc", NULL);
3536         if (IS_ERR(debugfs_root) || !debugfs_root) {
3537                 printk(KERN_WARNING
3538                        "ASoC: Failed to create debugfs directory\n");
3539                 debugfs_root = NULL;
3540         }
3541
3542         if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3543                                  &codec_list_fops))
3544                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3545
3546         if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3547                                  &dai_list_fops))
3548                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3549
3550         if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3551                                  &platform_list_fops))
3552                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3553 #endif
3554
3555         return platform_driver_register(&soc_driver);
3556 }
3557 module_init(snd_soc_init);
3558
3559 static void __exit snd_soc_exit(void)
3560 {
3561 #ifdef CONFIG_DEBUG_FS
3562         debugfs_remove_recursive(debugfs_root);
3563 #endif
3564         platform_driver_unregister(&soc_driver);
3565 }
3566 module_exit(snd_soc_exit);
3567
3568 /* Module information */
3569 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3570 MODULE_DESCRIPTION("ALSA SoC Core");
3571 MODULE_LICENSE("GPL");
3572 MODULE_ALIAS("platform:soc-audio");