]> git.karo-electronics.de Git - mv-sheeva.git/blob - sound/soc/soc-core.c
Merge branch 'for-2.6.37' into for-2.6.38
[mv-sheeva.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE       32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 static struct dentry *debugfs_root;
52 #endif
53
54 static DEFINE_MUTEX(client_mutex);
55 static LIST_HEAD(card_list);
56 static LIST_HEAD(dai_list);
57 static LIST_HEAD(platform_list);
58 static LIST_HEAD(codec_list);
59
60 static int snd_soc_register_card(struct snd_soc_card *card);
61 static int snd_soc_unregister_card(struct snd_soc_card *card);
62 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
63
64 /*
65  * This is a timeout to do a DAPM powerdown after a stream is closed().
66  * It can be used to eliminate pops between different playback streams, e.g.
67  * between two audio tracks.
68  */
69 static int pmdown_time = 5000;
70 module_param(pmdown_time, int, 0);
71 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
72
73 /*
74  * This function forces any delayed work to be queued and run.
75  */
76 static int run_delayed_work(struct delayed_work *dwork)
77 {
78         int ret;
79
80         /* cancel any work waiting to be queued. */
81         ret = cancel_delayed_work(dwork);
82
83         /* if there was any work waiting then we run it now and
84          * wait for it's completion */
85         if (ret) {
86                 schedule_delayed_work(dwork, 0);
87                 flush_scheduled_work();
88         }
89         return ret;
90 }
91
92 /* codec register dump */
93 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
94 {
95         int ret, i, step = 1, count = 0;
96
97         if (!codec->driver->reg_cache_size)
98                 return 0;
99
100         if (codec->driver->reg_cache_step)
101                 step = codec->driver->reg_cache_step;
102
103         count += sprintf(buf, "%s registers\n", codec->name);
104         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
105                 if (codec->driver->readable_register && !codec->driver->readable_register(i))
106                         continue;
107
108                 count += sprintf(buf + count, "%2x: ", i);
109                 if (count >= PAGE_SIZE - 1)
110                         break;
111
112                 if (codec->driver->display_register) {
113                         count += codec->driver->display_register(codec, buf + count,
114                                                          PAGE_SIZE - count, i);
115                 } else {
116                         /* If the read fails it's almost certainly due to
117                          * the register being volatile and the device being
118                          * powered off.
119                          */
120                         ret = codec->driver->read(codec, i);
121                         if (ret >= 0)
122                                 count += snprintf(buf + count,
123                                                   PAGE_SIZE - count,
124                                                   "%4x", ret);
125                         else
126                                 count += snprintf(buf + count,
127                                                   PAGE_SIZE - count,
128                                                   "<no data: %d>", ret);
129                 }
130
131                 if (count >= PAGE_SIZE - 1)
132                         break;
133
134                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
135                 if (count >= PAGE_SIZE - 1)
136                         break;
137         }
138
139         /* Truncate count; min() would cause a warning */
140         if (count >= PAGE_SIZE)
141                 count = PAGE_SIZE - 1;
142
143         return count;
144 }
145 static ssize_t codec_reg_show(struct device *dev,
146         struct device_attribute *attr, char *buf)
147 {
148         struct snd_soc_pcm_runtime *rtd =
149                         container_of(dev, struct snd_soc_pcm_runtime, dev);
150
151         return soc_codec_reg_show(rtd->codec, buf);
152 }
153
154 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
155
156 static ssize_t pmdown_time_show(struct device *dev,
157                                 struct device_attribute *attr, char *buf)
158 {
159         struct snd_soc_pcm_runtime *rtd =
160                         container_of(dev, struct snd_soc_pcm_runtime, dev);
161
162         return sprintf(buf, "%ld\n", rtd->pmdown_time);
163 }
164
165 static ssize_t pmdown_time_set(struct device *dev,
166                                struct device_attribute *attr,
167                                const char *buf, size_t count)
168 {
169         struct snd_soc_pcm_runtime *rtd =
170                         container_of(dev, struct snd_soc_pcm_runtime, dev);
171         int ret;
172
173         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
174         if (ret)
175                 return ret;
176
177         return count;
178 }
179
180 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
181
182 #ifdef CONFIG_DEBUG_FS
183 static int codec_reg_open_file(struct inode *inode, struct file *file)
184 {
185         file->private_data = inode->i_private;
186         return 0;
187 }
188
189 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
190                                size_t count, loff_t *ppos)
191 {
192         ssize_t ret;
193         struct snd_soc_codec *codec = file->private_data;
194         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
195         if (!buf)
196                 return -ENOMEM;
197         ret = soc_codec_reg_show(codec, buf);
198         if (ret >= 0)
199                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
200         kfree(buf);
201         return ret;
202 }
203
204 static ssize_t codec_reg_write_file(struct file *file,
205                 const char __user *user_buf, size_t count, loff_t *ppos)
206 {
207         char buf[32];
208         int buf_size;
209         char *start = buf;
210         unsigned long reg, value;
211         int step = 1;
212         struct snd_soc_codec *codec = file->private_data;
213
214         buf_size = min(count, (sizeof(buf)-1));
215         if (copy_from_user(buf, user_buf, buf_size))
216                 return -EFAULT;
217         buf[buf_size] = 0;
218
219         if (codec->driver->reg_cache_step)
220                 step = codec->driver->reg_cache_step;
221
222         while (*start == ' ')
223                 start++;
224         reg = simple_strtoul(start, &start, 16);
225         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
226                 return -EINVAL;
227         while (*start == ' ')
228                 start++;
229         if (strict_strtoul(start, 16, &value))
230                 return -EINVAL;
231         codec->driver->write(codec, reg, value);
232         return buf_size;
233 }
234
235 static const struct file_operations codec_reg_fops = {
236         .open = codec_reg_open_file,
237         .read = codec_reg_read_file,
238         .write = codec_reg_write_file,
239         .llseek = default_llseek,
240 };
241
242 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
243 {
244         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
245
246         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
247                                                        debugfs_card_root);
248         if (!codec->debugfs_codec_root) {
249                 printk(KERN_WARNING
250                        "ASoC: Failed to create codec debugfs directory\n");
251                 return;
252         }
253
254         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
255                                                  codec->debugfs_codec_root,
256                                                  codec, &codec_reg_fops);
257         if (!codec->debugfs_reg)
258                 printk(KERN_WARNING
259                        "ASoC: Failed to create codec register debugfs file\n");
260
261         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
262                                                  codec->debugfs_codec_root);
263         if (!codec->dapm.debugfs_dapm)
264                 printk(KERN_WARNING
265                        "Failed to create DAPM debugfs directory\n");
266
267         snd_soc_dapm_debugfs_init(&codec->dapm);
268 }
269
270 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
271 {
272         debugfs_remove_recursive(codec->debugfs_codec_root);
273 }
274
275 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
276                                     size_t count, loff_t *ppos)
277 {
278         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
279         ssize_t len, ret = 0;
280         struct snd_soc_codec *codec;
281
282         if (!buf)
283                 return -ENOMEM;
284
285         list_for_each_entry(codec, &codec_list, list) {
286                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
287                                codec->name);
288                 if (len >= 0)
289                         ret += len;
290                 if (ret > PAGE_SIZE) {
291                         ret = PAGE_SIZE;
292                         break;
293                 }
294         }
295
296         if (ret >= 0)
297                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
298
299         kfree(buf);
300
301         return ret;
302 }
303
304 static const struct file_operations codec_list_fops = {
305         .read = codec_list_read_file,
306         .llseek = default_llseek,/* read accesses f_pos */
307 };
308
309 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
310                                   size_t count, loff_t *ppos)
311 {
312         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
313         ssize_t len, ret = 0;
314         struct snd_soc_dai *dai;
315
316         if (!buf)
317                 return -ENOMEM;
318
319         list_for_each_entry(dai, &dai_list, list) {
320                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
321                 if (len >= 0)
322                         ret += len;
323                 if (ret > PAGE_SIZE) {
324                         ret = PAGE_SIZE;
325                         break;
326                 }
327         }
328
329         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
330
331         kfree(buf);
332
333         return ret;
334 }
335
336 static const struct file_operations dai_list_fops = {
337         .read = dai_list_read_file,
338         .llseek = default_llseek,/* read accesses f_pos */
339 };
340
341 static ssize_t platform_list_read_file(struct file *file,
342                                        char __user *user_buf,
343                                        size_t count, loff_t *ppos)
344 {
345         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
346         ssize_t len, ret = 0;
347         struct snd_soc_platform *platform;
348
349         if (!buf)
350                 return -ENOMEM;
351
352         list_for_each_entry(platform, &platform_list, list) {
353                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
354                                platform->name);
355                 if (len >= 0)
356                         ret += len;
357                 if (ret > PAGE_SIZE) {
358                         ret = PAGE_SIZE;
359                         break;
360                 }
361         }
362
363         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
364
365         kfree(buf);
366
367         return ret;
368 }
369
370 static const struct file_operations platform_list_fops = {
371         .read = platform_list_read_file,
372         .llseek = default_llseek,/* read accesses f_pos */
373 };
374
375 static void soc_init_card_debugfs(struct snd_soc_card *card)
376 {
377         card->debugfs_card_root = debugfs_create_dir(card->name,
378                                                      debugfs_root);
379         if (!card->debugfs_card_root) {
380                 dev_warn(card->dev,
381                          "ASoC: Failed to create codec debugfs directory\n");
382                 return;
383         }
384
385         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
386                                                     card->debugfs_card_root,
387                                                     &card->pop_time);
388         if (!card->debugfs_pop_time)
389                 dev_warn(card->dev,
390                        "Failed to create pop time debugfs file\n");
391 }
392
393 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
394 {
395         debugfs_remove_recursive(card->debugfs_card_root);
396 }
397
398 #else
399
400 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
401 {
402 }
403
404 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
405 {
406 }
407
408 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
409 {
410 }
411
412 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
413 {
414 }
415 #endif
416
417 #ifdef CONFIG_SND_SOC_AC97_BUS
418 /* unregister ac97 codec */
419 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
420 {
421         if (codec->ac97->dev.bus)
422                 device_unregister(&codec->ac97->dev);
423         return 0;
424 }
425
426 /* stop no dev release warning */
427 static void soc_ac97_device_release(struct device *dev){}
428
429 /* register ac97 codec to bus */
430 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
431 {
432         int err;
433
434         codec->ac97->dev.bus = &ac97_bus_type;
435         codec->ac97->dev.parent = codec->card->dev;
436         codec->ac97->dev.release = soc_ac97_device_release;
437
438         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
439                      codec->card->snd_card->number, 0, codec->name);
440         err = device_register(&codec->ac97->dev);
441         if (err < 0) {
442                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
443                 codec->ac97->dev.bus = NULL;
444                 return err;
445         }
446         return 0;
447 }
448 #endif
449
450 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
451 {
452         struct snd_soc_pcm_runtime *rtd = substream->private_data;
453         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
454         struct snd_soc_dai *codec_dai = rtd->codec_dai;
455         int ret;
456
457         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
458                         rtd->dai_link->symmetric_rates) {
459                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
460                                 rtd->rate);
461
462                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
463                                                    SNDRV_PCM_HW_PARAM_RATE,
464                                                    rtd->rate,
465                                                    rtd->rate);
466                 if (ret < 0) {
467                         dev_err(&rtd->dev,
468                                 "Unable to apply rate symmetry constraint: %d\n", ret);
469                         return ret;
470                 }
471         }
472
473         return 0;
474 }
475
476 /*
477  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
478  * then initialized and any private data can be allocated. This also calls
479  * startup for the cpu DAI, platform, machine and codec DAI.
480  */
481 static int soc_pcm_open(struct snd_pcm_substream *substream)
482 {
483         struct snd_soc_pcm_runtime *rtd = substream->private_data;
484         struct snd_pcm_runtime *runtime = substream->runtime;
485         struct snd_soc_platform *platform = rtd->platform;
486         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
487         struct snd_soc_dai *codec_dai = rtd->codec_dai;
488         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
489         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
490         int ret = 0;
491
492         mutex_lock(&pcm_mutex);
493
494         /* startup the audio subsystem */
495         if (cpu_dai->driver->ops->startup) {
496                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
497                 if (ret < 0) {
498                         printk(KERN_ERR "asoc: can't open interface %s\n",
499                                 cpu_dai->name);
500                         goto out;
501                 }
502         }
503
504         if (platform->driver->ops->open) {
505                 ret = platform->driver->ops->open(substream);
506                 if (ret < 0) {
507                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
508                         goto platform_err;
509                 }
510         }
511
512         if (codec_dai->driver->ops->startup) {
513                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
514                 if (ret < 0) {
515                         printk(KERN_ERR "asoc: can't open codec %s\n",
516                                 codec_dai->name);
517                         goto codec_dai_err;
518                 }
519         }
520
521         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
522                 ret = rtd->dai_link->ops->startup(substream);
523                 if (ret < 0) {
524                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
525                         goto machine_err;
526                 }
527         }
528
529         /* Check that the codec and cpu DAI's are compatible */
530         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
531                 runtime->hw.rate_min =
532                         max(codec_dai_drv->playback.rate_min,
533                             cpu_dai_drv->playback.rate_min);
534                 runtime->hw.rate_max =
535                         min(codec_dai_drv->playback.rate_max,
536                             cpu_dai_drv->playback.rate_max);
537                 runtime->hw.channels_min =
538                         max(codec_dai_drv->playback.channels_min,
539                                 cpu_dai_drv->playback.channels_min);
540                 runtime->hw.channels_max =
541                         min(codec_dai_drv->playback.channels_max,
542                                 cpu_dai_drv->playback.channels_max);
543                 runtime->hw.formats =
544                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
545                 runtime->hw.rates =
546                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
547                 if (codec_dai_drv->playback.rates
548                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
549                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
550                 if (cpu_dai_drv->playback.rates
551                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
552                         runtime->hw.rates |= codec_dai_drv->playback.rates;
553         } else {
554                 runtime->hw.rate_min =
555                         max(codec_dai_drv->capture.rate_min,
556                             cpu_dai_drv->capture.rate_min);
557                 runtime->hw.rate_max =
558                         min(codec_dai_drv->capture.rate_max,
559                             cpu_dai_drv->capture.rate_max);
560                 runtime->hw.channels_min =
561                         max(codec_dai_drv->capture.channels_min,
562                                 cpu_dai_drv->capture.channels_min);
563                 runtime->hw.channels_max =
564                         min(codec_dai_drv->capture.channels_max,
565                                 cpu_dai_drv->capture.channels_max);
566                 runtime->hw.formats =
567                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
568                 runtime->hw.rates =
569                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
570                 if (codec_dai_drv->capture.rates
571                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
572                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
573                 if (cpu_dai_drv->capture.rates
574                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
575                         runtime->hw.rates |= codec_dai_drv->capture.rates;
576         }
577
578         snd_pcm_limit_hw_rates(runtime);
579         if (!runtime->hw.rates) {
580                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
581                         codec_dai->name, cpu_dai->name);
582                 goto config_err;
583         }
584         if (!runtime->hw.formats) {
585                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
586                         codec_dai->name, cpu_dai->name);
587                 goto config_err;
588         }
589         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
590                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
591                                 codec_dai->name, cpu_dai->name);
592                 goto config_err;
593         }
594
595         /* Symmetry only applies if we've already got an active stream. */
596         if (cpu_dai->active || codec_dai->active) {
597                 ret = soc_pcm_apply_symmetry(substream);
598                 if (ret != 0)
599                         goto config_err;
600         }
601
602         pr_debug("asoc: %s <-> %s info:\n",
603                         codec_dai->name, cpu_dai->name);
604         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
605         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
606                  runtime->hw.channels_max);
607         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
608                  runtime->hw.rate_max);
609
610         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
611                 cpu_dai->playback_active++;
612                 codec_dai->playback_active++;
613         } else {
614                 cpu_dai->capture_active++;
615                 codec_dai->capture_active++;
616         }
617         cpu_dai->active++;
618         codec_dai->active++;
619         rtd->codec->active++;
620         mutex_unlock(&pcm_mutex);
621         return 0;
622
623 config_err:
624         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
625                 rtd->dai_link->ops->shutdown(substream);
626
627 machine_err:
628         if (codec_dai->driver->ops->shutdown)
629                 codec_dai->driver->ops->shutdown(substream, codec_dai);
630
631 codec_dai_err:
632         if (platform->driver->ops->close)
633                 platform->driver->ops->close(substream);
634
635 platform_err:
636         if (cpu_dai->driver->ops->shutdown)
637                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
638 out:
639         mutex_unlock(&pcm_mutex);
640         return ret;
641 }
642
643 /*
644  * Power down the audio subsystem pmdown_time msecs after close is called.
645  * This is to ensure there are no pops or clicks in between any music tracks
646  * due to DAPM power cycling.
647  */
648 static void close_delayed_work(struct work_struct *work)
649 {
650         struct snd_soc_pcm_runtime *rtd =
651                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
652         struct snd_soc_dai *codec_dai = rtd->codec_dai;
653
654         mutex_lock(&pcm_mutex);
655
656         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
657                  codec_dai->driver->playback.stream_name,
658                  codec_dai->playback_active ? "active" : "inactive",
659                  codec_dai->pop_wait ? "yes" : "no");
660
661         /* are we waiting on this codec DAI stream */
662         if (codec_dai->pop_wait == 1) {
663                 codec_dai->pop_wait = 0;
664                 snd_soc_dapm_stream_event(rtd,
665                         codec_dai->driver->playback.stream_name,
666                         SND_SOC_DAPM_STREAM_STOP);
667         }
668
669         mutex_unlock(&pcm_mutex);
670 }
671
672 /*
673  * Called by ALSA when a PCM substream is closed. Private data can be
674  * freed here. The cpu DAI, codec DAI, machine and platform are also
675  * shutdown.
676  */
677 static int soc_codec_close(struct snd_pcm_substream *substream)
678 {
679         struct snd_soc_pcm_runtime *rtd = substream->private_data;
680         struct snd_soc_platform *platform = rtd->platform;
681         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
682         struct snd_soc_dai *codec_dai = rtd->codec_dai;
683         struct snd_soc_codec *codec = rtd->codec;
684
685         mutex_lock(&pcm_mutex);
686
687         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
688                 cpu_dai->playback_active--;
689                 codec_dai->playback_active--;
690         } else {
691                 cpu_dai->capture_active--;
692                 codec_dai->capture_active--;
693         }
694
695         cpu_dai->active--;
696         codec_dai->active--;
697         codec->active--;
698
699         /* Muting the DAC suppresses artifacts caused during digital
700          * shutdown, for example from stopping clocks.
701          */
702         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
703                 snd_soc_dai_digital_mute(codec_dai, 1);
704
705         if (cpu_dai->driver->ops->shutdown)
706                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
707
708         if (codec_dai->driver->ops->shutdown)
709                 codec_dai->driver->ops->shutdown(substream, codec_dai);
710
711         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
712                 rtd->dai_link->ops->shutdown(substream);
713
714         if (platform->driver->ops->close)
715                 platform->driver->ops->close(substream);
716         cpu_dai->runtime = NULL;
717
718         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
719                 /* start delayed pop wq here for playback streams */
720                 codec_dai->pop_wait = 1;
721                 schedule_delayed_work(&rtd->delayed_work,
722                         msecs_to_jiffies(rtd->pmdown_time));
723         } else {
724                 /* capture streams can be powered down now */
725                 snd_soc_dapm_stream_event(rtd,
726                         codec_dai->driver->capture.stream_name,
727                         SND_SOC_DAPM_STREAM_STOP);
728         }
729
730         mutex_unlock(&pcm_mutex);
731         return 0;
732 }
733
734 /*
735  * Called by ALSA when the PCM substream is prepared, can set format, sample
736  * rate, etc.  This function is non atomic and can be called multiple times,
737  * it can refer to the runtime info.
738  */
739 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
740 {
741         struct snd_soc_pcm_runtime *rtd = substream->private_data;
742         struct snd_soc_platform *platform = rtd->platform;
743         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
744         struct snd_soc_dai *codec_dai = rtd->codec_dai;
745         int ret = 0;
746
747         mutex_lock(&pcm_mutex);
748
749         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
750                 ret = rtd->dai_link->ops->prepare(substream);
751                 if (ret < 0) {
752                         printk(KERN_ERR "asoc: machine prepare error\n");
753                         goto out;
754                 }
755         }
756
757         if (platform->driver->ops->prepare) {
758                 ret = platform->driver->ops->prepare(substream);
759                 if (ret < 0) {
760                         printk(KERN_ERR "asoc: platform prepare error\n");
761                         goto out;
762                 }
763         }
764
765         if (codec_dai->driver->ops->prepare) {
766                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
767                 if (ret < 0) {
768                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
769                         goto out;
770                 }
771         }
772
773         if (cpu_dai->driver->ops->prepare) {
774                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
775                 if (ret < 0) {
776                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
777                         goto out;
778                 }
779         }
780
781         /* cancel any delayed stream shutdown that is pending */
782         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
783             codec_dai->pop_wait) {
784                 codec_dai->pop_wait = 0;
785                 cancel_delayed_work(&rtd->delayed_work);
786         }
787
788         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
789                 snd_soc_dapm_stream_event(rtd,
790                                           codec_dai->driver->playback.stream_name,
791                                           SND_SOC_DAPM_STREAM_START);
792         else
793                 snd_soc_dapm_stream_event(rtd,
794                                           codec_dai->driver->capture.stream_name,
795                                           SND_SOC_DAPM_STREAM_START);
796
797         snd_soc_dai_digital_mute(codec_dai, 0);
798
799 out:
800         mutex_unlock(&pcm_mutex);
801         return ret;
802 }
803
804 /*
805  * Called by ALSA when the hardware params are set by application. This
806  * function can also be called multiple times and can allocate buffers
807  * (using snd_pcm_lib_* ). It's non-atomic.
808  */
809 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
810                                 struct snd_pcm_hw_params *params)
811 {
812         struct snd_soc_pcm_runtime *rtd = substream->private_data;
813         struct snd_soc_platform *platform = rtd->platform;
814         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
815         struct snd_soc_dai *codec_dai = rtd->codec_dai;
816         int ret = 0;
817
818         mutex_lock(&pcm_mutex);
819
820         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
821                 ret = rtd->dai_link->ops->hw_params(substream, params);
822                 if (ret < 0) {
823                         printk(KERN_ERR "asoc: machine hw_params failed\n");
824                         goto out;
825                 }
826         }
827
828         if (codec_dai->driver->ops->hw_params) {
829                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
830                 if (ret < 0) {
831                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
832                                 codec_dai->name);
833                         goto codec_err;
834                 }
835         }
836
837         if (cpu_dai->driver->ops->hw_params) {
838                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
839                 if (ret < 0) {
840                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
841                                 cpu_dai->name);
842                         goto interface_err;
843                 }
844         }
845
846         if (platform->driver->ops->hw_params) {
847                 ret = platform->driver->ops->hw_params(substream, params);
848                 if (ret < 0) {
849                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
850                                 platform->name);
851                         goto platform_err;
852                 }
853         }
854
855         rtd->rate = params_rate(params);
856
857 out:
858         mutex_unlock(&pcm_mutex);
859         return ret;
860
861 platform_err:
862         if (cpu_dai->driver->ops->hw_free)
863                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
864
865 interface_err:
866         if (codec_dai->driver->ops->hw_free)
867                 codec_dai->driver->ops->hw_free(substream, codec_dai);
868
869 codec_err:
870         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
871                 rtd->dai_link->ops->hw_free(substream);
872
873         mutex_unlock(&pcm_mutex);
874         return ret;
875 }
876
877 /*
878  * Free's resources allocated by hw_params, can be called multiple times
879  */
880 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
881 {
882         struct snd_soc_pcm_runtime *rtd = substream->private_data;
883         struct snd_soc_platform *platform = rtd->platform;
884         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
885         struct snd_soc_dai *codec_dai = rtd->codec_dai;
886         struct snd_soc_codec *codec = rtd->codec;
887
888         mutex_lock(&pcm_mutex);
889
890         /* apply codec digital mute */
891         if (!codec->active)
892                 snd_soc_dai_digital_mute(codec_dai, 1);
893
894         /* free any machine hw params */
895         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
896                 rtd->dai_link->ops->hw_free(substream);
897
898         /* free any DMA resources */
899         if (platform->driver->ops->hw_free)
900                 platform->driver->ops->hw_free(substream);
901
902         /* now free hw params for the DAI's  */
903         if (codec_dai->driver->ops->hw_free)
904                 codec_dai->driver->ops->hw_free(substream, codec_dai);
905
906         if (cpu_dai->driver->ops->hw_free)
907                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
908
909         mutex_unlock(&pcm_mutex);
910         return 0;
911 }
912
913 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
914 {
915         struct snd_soc_pcm_runtime *rtd = substream->private_data;
916         struct snd_soc_platform *platform = rtd->platform;
917         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
918         struct snd_soc_dai *codec_dai = rtd->codec_dai;
919         int ret;
920
921         if (codec_dai->driver->ops->trigger) {
922                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
923                 if (ret < 0)
924                         return ret;
925         }
926
927         if (platform->driver->ops->trigger) {
928                 ret = platform->driver->ops->trigger(substream, cmd);
929                 if (ret < 0)
930                         return ret;
931         }
932
933         if (cpu_dai->driver->ops->trigger) {
934                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
935                 if (ret < 0)
936                         return ret;
937         }
938         return 0;
939 }
940
941 /*
942  * soc level wrapper for pointer callback
943  * If cpu_dai, codec_dai, platform driver has the delay callback, than
944  * the runtime->delay will be updated accordingly.
945  */
946 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
947 {
948         struct snd_soc_pcm_runtime *rtd = substream->private_data;
949         struct snd_soc_platform *platform = rtd->platform;
950         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
951         struct snd_soc_dai *codec_dai = rtd->codec_dai;
952         struct snd_pcm_runtime *runtime = substream->runtime;
953         snd_pcm_uframes_t offset = 0;
954         snd_pcm_sframes_t delay = 0;
955
956         if (platform->driver->ops->pointer)
957                 offset = platform->driver->ops->pointer(substream);
958
959         if (cpu_dai->driver->ops->delay)
960                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
961
962         if (codec_dai->driver->ops->delay)
963                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
964
965         if (platform->driver->delay)
966                 delay += platform->driver->delay(substream, codec_dai);
967
968         runtime->delay = delay;
969
970         return offset;
971 }
972
973 /* ASoC PCM operations */
974 static struct snd_pcm_ops soc_pcm_ops = {
975         .open           = soc_pcm_open,
976         .close          = soc_codec_close,
977         .hw_params      = soc_pcm_hw_params,
978         .hw_free        = soc_pcm_hw_free,
979         .prepare        = soc_pcm_prepare,
980         .trigger        = soc_pcm_trigger,
981         .pointer        = soc_pcm_pointer,
982 };
983
984 #ifdef CONFIG_PM
985 /* powers down audio subsystem for suspend */
986 static int soc_suspend(struct device *dev)
987 {
988         struct platform_device *pdev = to_platform_device(dev);
989         struct snd_soc_card *card = platform_get_drvdata(pdev);
990         int i;
991
992         /* If the initialization of this soc device failed, there is no codec
993          * associated with it. Just bail out in this case.
994          */
995         if (list_empty(&card->codec_dev_list))
996                 return 0;
997
998         /* Due to the resume being scheduled into a workqueue we could
999         * suspend before that's finished - wait for it to complete.
1000          */
1001         snd_power_lock(card->snd_card);
1002         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1003         snd_power_unlock(card->snd_card);
1004
1005         /* we're going to block userspace touching us until resume completes */
1006         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1007
1008         /* mute any active DAC's */
1009         for (i = 0; i < card->num_rtd; i++) {
1010                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1011                 struct snd_soc_dai_driver *drv = dai->driver;
1012
1013                 if (card->rtd[i].dai_link->ignore_suspend)
1014                         continue;
1015
1016                 if (drv->ops->digital_mute && dai->playback_active)
1017                         drv->ops->digital_mute(dai, 1);
1018         }
1019
1020         /* suspend all pcms */
1021         for (i = 0; i < card->num_rtd; i++) {
1022                 if (card->rtd[i].dai_link->ignore_suspend)
1023                         continue;
1024
1025                 snd_pcm_suspend_all(card->rtd[i].pcm);
1026         }
1027
1028         if (card->suspend_pre)
1029                 card->suspend_pre(pdev, PMSG_SUSPEND);
1030
1031         for (i = 0; i < card->num_rtd; i++) {
1032                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1033                 struct snd_soc_platform *platform = card->rtd[i].platform;
1034
1035                 if (card->rtd[i].dai_link->ignore_suspend)
1036                         continue;
1037
1038                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1039                         cpu_dai->driver->suspend(cpu_dai);
1040                 if (platform->driver->suspend && !platform->suspended) {
1041                         platform->driver->suspend(cpu_dai);
1042                         platform->suspended = 1;
1043                 }
1044         }
1045
1046         /* close any waiting streams and save state */
1047         for (i = 0; i < card->num_rtd; i++) {
1048                 run_delayed_work(&card->rtd[i].delayed_work);
1049                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1050         }
1051
1052         for (i = 0; i < card->num_rtd; i++) {
1053                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1054
1055                 if (card->rtd[i].dai_link->ignore_suspend)
1056                         continue;
1057
1058                 if (driver->playback.stream_name != NULL)
1059                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1060                                 SND_SOC_DAPM_STREAM_SUSPEND);
1061
1062                 if (driver->capture.stream_name != NULL)
1063                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1064                                 SND_SOC_DAPM_STREAM_SUSPEND);
1065         }
1066
1067         /* suspend all CODECs */
1068         for (i = 0; i < card->num_rtd; i++) {
1069                 struct snd_soc_codec *codec = card->rtd[i].codec;
1070                 /* If there are paths active then the CODEC will be held with
1071                  * bias _ON and should not be suspended. */
1072                 if (!codec->suspended && codec->driver->suspend) {
1073                         switch (codec->dapm.bias_level) {
1074                         case SND_SOC_BIAS_STANDBY:
1075                         case SND_SOC_BIAS_OFF:
1076                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1077                                 codec->suspended = 1;
1078                                 break;
1079                         default:
1080                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1081                                 break;
1082                         }
1083                 }
1084         }
1085
1086         for (i = 0; i < card->num_rtd; i++) {
1087                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1088
1089                 if (card->rtd[i].dai_link->ignore_suspend)
1090                         continue;
1091
1092                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1093                         cpu_dai->driver->suspend(cpu_dai);
1094         }
1095
1096         if (card->suspend_post)
1097                 card->suspend_post(pdev, PMSG_SUSPEND);
1098
1099         return 0;
1100 }
1101
1102 /* deferred resume work, so resume can complete before we finished
1103  * setting our codec back up, which can be very slow on I2C
1104  */
1105 static void soc_resume_deferred(struct work_struct *work)
1106 {
1107         struct snd_soc_card *card =
1108                         container_of(work, struct snd_soc_card, deferred_resume_work);
1109         struct platform_device *pdev = to_platform_device(card->dev);
1110         int i;
1111
1112         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1113          * so userspace apps are blocked from touching us
1114          */
1115
1116         dev_dbg(card->dev, "starting resume work\n");
1117
1118         /* Bring us up into D2 so that DAPM starts enabling things */
1119         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1120
1121         if (card->resume_pre)
1122                 card->resume_pre(pdev);
1123
1124         /* resume AC97 DAIs */
1125         for (i = 0; i < card->num_rtd; i++) {
1126                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1127
1128                 if (card->rtd[i].dai_link->ignore_suspend)
1129                         continue;
1130
1131                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1132                         cpu_dai->driver->resume(cpu_dai);
1133         }
1134
1135         for (i = 0; i < card->num_rtd; i++) {
1136                 struct snd_soc_codec *codec = card->rtd[i].codec;
1137                 /* If the CODEC was idle over suspend then it will have been
1138                  * left with bias OFF or STANDBY and suspended so we must now
1139                  * resume.  Otherwise the suspend was suppressed.
1140                  */
1141                 if (codec->driver->resume && codec->suspended) {
1142                         switch (codec->dapm.bias_level) {
1143                         case SND_SOC_BIAS_STANDBY:
1144                         case SND_SOC_BIAS_OFF:
1145                                 codec->driver->resume(codec);
1146                                 codec->suspended = 0;
1147                                 break;
1148                         default:
1149                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1150                                 break;
1151                         }
1152                 }
1153         }
1154
1155         for (i = 0; i < card->num_rtd; i++) {
1156                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1157
1158                 if (card->rtd[i].dai_link->ignore_suspend)
1159                         continue;
1160
1161                 if (driver->playback.stream_name != NULL)
1162                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1163                                 SND_SOC_DAPM_STREAM_RESUME);
1164
1165                 if (driver->capture.stream_name != NULL)
1166                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1167                                 SND_SOC_DAPM_STREAM_RESUME);
1168         }
1169
1170         /* unmute any active DACs */
1171         for (i = 0; i < card->num_rtd; i++) {
1172                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1173                 struct snd_soc_dai_driver *drv = dai->driver;
1174
1175                 if (card->rtd[i].dai_link->ignore_suspend)
1176                         continue;
1177
1178                 if (drv->ops->digital_mute && dai->playback_active)
1179                         drv->ops->digital_mute(dai, 0);
1180         }
1181
1182         for (i = 0; i < card->num_rtd; i++) {
1183                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1184                 struct snd_soc_platform *platform = card->rtd[i].platform;
1185
1186                 if (card->rtd[i].dai_link->ignore_suspend)
1187                         continue;
1188
1189                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1190                         cpu_dai->driver->resume(cpu_dai);
1191                 if (platform->driver->resume && platform->suspended) {
1192                         platform->driver->resume(cpu_dai);
1193                         platform->suspended = 0;
1194                 }
1195         }
1196
1197         if (card->resume_post)
1198                 card->resume_post(pdev);
1199
1200         dev_dbg(card->dev, "resume work completed\n");
1201
1202         /* userspace can access us now we are back as we were before */
1203         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1204 }
1205
1206 /* powers up audio subsystem after a suspend */
1207 static int soc_resume(struct device *dev)
1208 {
1209         struct platform_device *pdev = to_platform_device(dev);
1210         struct snd_soc_card *card = platform_get_drvdata(pdev);
1211         int i;
1212
1213         /* AC97 devices might have other drivers hanging off them so
1214          * need to resume immediately.  Other drivers don't have that
1215          * problem and may take a substantial amount of time to resume
1216          * due to I/O costs and anti-pop so handle them out of line.
1217          */
1218         for (i = 0; i < card->num_rtd; i++) {
1219                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1220                 if (cpu_dai->driver->ac97_control) {
1221                         dev_dbg(dev, "Resuming AC97 immediately\n");
1222                         soc_resume_deferred(&card->deferred_resume_work);
1223                 } else {
1224                         dev_dbg(dev, "Scheduling resume work\n");
1225                         if (!schedule_work(&card->deferred_resume_work))
1226                                 dev_err(dev, "resume work item may be lost\n");
1227                 }
1228         }
1229
1230         return 0;
1231 }
1232 #else
1233 #define soc_suspend     NULL
1234 #define soc_resume      NULL
1235 #endif
1236
1237 static struct snd_soc_dai_ops null_dai_ops = {
1238 };
1239
1240 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1241 {
1242         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1243         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1244         struct snd_soc_codec *codec;
1245         struct snd_soc_platform *platform;
1246         struct snd_soc_dai *codec_dai, *cpu_dai;
1247
1248         if (rtd->complete)
1249                 return 1;
1250         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1251
1252         /* do we already have the CPU DAI for this link ? */
1253         if (rtd->cpu_dai) {
1254                 goto find_codec;
1255         }
1256         /* no, then find CPU DAI from registered DAIs*/
1257         list_for_each_entry(cpu_dai, &dai_list, list) {
1258                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1259
1260                         if (!try_module_get(cpu_dai->dev->driver->owner))
1261                                 return -ENODEV;
1262
1263                         rtd->cpu_dai = cpu_dai;
1264                         goto find_codec;
1265                 }
1266         }
1267         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1268                         dai_link->cpu_dai_name);
1269
1270 find_codec:
1271         /* do we already have the CODEC for this link ? */
1272         if (rtd->codec) {
1273                 goto find_platform;
1274         }
1275
1276         /* no, then find CODEC from registered CODECs*/
1277         list_for_each_entry(codec, &codec_list, list) {
1278                 if (!strcmp(codec->name, dai_link->codec_name)) {
1279                         rtd->codec = codec;
1280
1281                         if (!try_module_get(codec->dev->driver->owner))
1282                                 return -ENODEV;
1283
1284                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1285                         list_for_each_entry(codec_dai, &dai_list, list) {
1286                                 if (codec->dev == codec_dai->dev &&
1287                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1288                                         rtd->codec_dai = codec_dai;
1289                                         goto find_platform;
1290                                 }
1291                         }
1292                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1293                                         dai_link->codec_dai_name);
1294
1295                         goto find_platform;
1296                 }
1297         }
1298         dev_dbg(card->dev, "CODEC %s not registered\n",
1299                         dai_link->codec_name);
1300
1301 find_platform:
1302         /* do we already have the CODEC DAI for this link ? */
1303         if (rtd->platform) {
1304                 goto out;
1305         }
1306         /* no, then find CPU DAI from registered DAIs*/
1307         list_for_each_entry(platform, &platform_list, list) {
1308                 if (!strcmp(platform->name, dai_link->platform_name)) {
1309
1310                         if (!try_module_get(platform->dev->driver->owner))
1311                                 return -ENODEV;
1312
1313                         rtd->platform = platform;
1314                         goto out;
1315                 }
1316         }
1317
1318         dev_dbg(card->dev, "platform %s not registered\n",
1319                         dai_link->platform_name);
1320         return 0;
1321
1322 out:
1323         /* mark rtd as complete if we found all 4 of our client devices */
1324         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1325                 rtd->complete = 1;
1326                 card->num_rtd++;
1327         }
1328         return 1;
1329 }
1330
1331 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1332 {
1333         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1334         struct snd_soc_codec *codec = rtd->codec;
1335         struct snd_soc_platform *platform = rtd->platform;
1336         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1337         int err;
1338
1339         /* unregister the rtd device */
1340         if (rtd->dev_registered) {
1341                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1342                 device_unregister(&rtd->dev);
1343                 rtd->dev_registered = 0;
1344         }
1345
1346         /* remove the CODEC DAI */
1347         if (codec_dai && codec_dai->probed) {
1348                 if (codec_dai->driver->remove) {
1349                         err = codec_dai->driver->remove(codec_dai);
1350                         if (err < 0)
1351                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1352                 }
1353                 codec_dai->probed = 0;
1354                 list_del(&codec_dai->card_list);
1355         }
1356
1357         /* remove the platform */
1358         if (platform && platform->probed) {
1359                 if (platform->driver->remove) {
1360                         err = platform->driver->remove(platform);
1361                         if (err < 0)
1362                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1363                 }
1364                 platform->probed = 0;
1365                 list_del(&platform->card_list);
1366                 module_put(platform->dev->driver->owner);
1367         }
1368
1369         /* remove the CODEC */
1370         if (codec && codec->probed) {
1371                 if (codec->driver->remove) {
1372                         err = codec->driver->remove(codec);
1373                         if (err < 0)
1374                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1375                 }
1376
1377                 /* Make sure all DAPM widgets are freed */
1378                 snd_soc_dapm_free(&codec->dapm);
1379
1380                 soc_cleanup_codec_debugfs(codec);
1381                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1382                 codec->probed = 0;
1383                 list_del(&codec->card_list);
1384                 module_put(codec->dev->driver->owner);
1385         }
1386
1387         /* remove the cpu_dai */
1388         if (cpu_dai && cpu_dai->probed) {
1389                 if (cpu_dai->driver->remove) {
1390                         err = cpu_dai->driver->remove(cpu_dai);
1391                         if (err < 0)
1392                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1393                 }
1394                 cpu_dai->probed = 0;
1395                 list_del(&cpu_dai->card_list);
1396                 module_put(cpu_dai->dev->driver->owner);
1397         }
1398 }
1399
1400 static void rtd_release(struct device *dev) {}
1401
1402 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1403 {
1404         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1405         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1406         struct snd_soc_codec *codec = rtd->codec;
1407         struct snd_soc_platform *platform = rtd->platform;
1408         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1409         int ret;
1410
1411         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1412
1413         /* config components */
1414         codec_dai->codec = codec;
1415         codec->card = card;
1416         cpu_dai->platform = platform;
1417         rtd->card = card;
1418         rtd->dev.parent = card->dev;
1419         codec_dai->card = card;
1420         cpu_dai->card = card;
1421
1422         /* set default power off timeout */
1423         rtd->pmdown_time = pmdown_time;
1424
1425         /* probe the cpu_dai */
1426         if (!cpu_dai->probed) {
1427                 if (cpu_dai->driver->probe) {
1428                         ret = cpu_dai->driver->probe(cpu_dai);
1429                         if (ret < 0) {
1430                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1431                                                 cpu_dai->name);
1432                                 return ret;
1433                         }
1434                 }
1435                 cpu_dai->probed = 1;
1436                 /* mark cpu_dai as probed and add to card cpu_dai list */
1437                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1438         }
1439
1440         /* probe the CODEC */
1441         if (!codec->probed) {
1442                 codec->dapm.card = card;
1443                 if (codec->driver->probe) {
1444                         ret = codec->driver->probe(codec);
1445                         if (ret < 0) {
1446                                 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1447                                                 codec->name);
1448                                 return ret;
1449                         }
1450                 }
1451
1452                 soc_init_codec_debugfs(codec);
1453
1454                 /* mark codec as probed and add to card codec list */
1455                 codec->probed = 1;
1456                 list_add(&codec->card_list, &card->codec_dev_list);
1457         }
1458
1459         /* probe the platform */
1460         if (!platform->probed) {
1461                 if (platform->driver->probe) {
1462                         ret = platform->driver->probe(platform);
1463                         if (ret < 0) {
1464                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1465                                                 platform->name);
1466                                 return ret;
1467                         }
1468                 }
1469                 /* mark platform as probed and add to card platform list */
1470                 platform->probed = 1;
1471                 list_add(&platform->card_list, &card->platform_dev_list);
1472         }
1473
1474         /* probe the CODEC DAI */
1475         if (!codec_dai->probed) {
1476                 if (codec_dai->driver->probe) {
1477                         ret = codec_dai->driver->probe(codec_dai);
1478                         if (ret < 0) {
1479                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1480                                                 codec_dai->name);
1481                                 return ret;
1482                         }
1483                 }
1484
1485                 /* mark cpu_dai as probed and add to card cpu_dai list */
1486                 codec_dai->probed = 1;
1487                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1488         }
1489
1490         /* DAPM dai link stream work */
1491         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1492
1493         /* now that all clients have probed, initialise the DAI link */
1494         if (dai_link->init) {
1495                 ret = dai_link->init(rtd);
1496                 if (ret < 0) {
1497                         printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1498                         return ret;
1499                 }
1500         }
1501
1502         /* Make sure all DAPM widgets are instantiated */
1503         snd_soc_dapm_new_widgets(&codec->dapm);
1504         snd_soc_dapm_sync(&codec->dapm);
1505
1506         /* register the rtd device */
1507         rtd->dev.release = rtd_release;
1508         rtd->dev.init_name = dai_link->name;
1509         ret = device_register(&rtd->dev);
1510         if (ret < 0) {
1511                 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1512                 return ret;
1513         }
1514
1515         rtd->dev_registered = 1;
1516         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1517         if (ret < 0)
1518                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1519
1520         /* add DAPM sysfs entries for this codec */
1521         ret = snd_soc_dapm_sys_add(&rtd->dev);
1522         if (ret < 0)
1523                 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1524
1525         /* add codec sysfs entries */
1526         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1527         if (ret < 0)
1528                 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1529
1530         /* create the pcm */
1531         ret = soc_new_pcm(rtd, num);
1532         if (ret < 0) {
1533                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1534                 return ret;
1535         }
1536
1537         /* add platform data for AC97 devices */
1538         if (rtd->codec_dai->driver->ac97_control)
1539                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1540
1541         return 0;
1542 }
1543
1544 #ifdef CONFIG_SND_SOC_AC97_BUS
1545 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1546 {
1547         int ret;
1548
1549         /* Only instantiate AC97 if not already done by the adaptor
1550          * for the generic AC97 subsystem.
1551          */
1552         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1553                 /*
1554                  * It is possible that the AC97 device is already registered to
1555                  * the device subsystem. This happens when the device is created
1556                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1557                  * is the generic AC97 glue but others migh emerge.
1558                  *
1559                  * In those cases we don't try to register the device again.
1560                  */
1561                 if (!rtd->codec->ac97_created)
1562                         return 0;
1563
1564                 ret = soc_ac97_dev_register(rtd->codec);
1565                 if (ret < 0) {
1566                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1567                         return ret;
1568                 }
1569
1570                 rtd->codec->ac97_registered = 1;
1571         }
1572         return 0;
1573 }
1574
1575 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1576 {
1577         if (codec->ac97_registered) {
1578                 soc_ac97_dev_unregister(codec);
1579                 codec->ac97_registered = 0;
1580         }
1581 }
1582 #endif
1583
1584 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1585 {
1586         struct platform_device *pdev = to_platform_device(card->dev);
1587         int ret, i;
1588
1589         mutex_lock(&card->mutex);
1590
1591         if (card->instantiated) {
1592                 mutex_unlock(&card->mutex);
1593                 return;
1594         }
1595
1596         /* bind DAIs */
1597         for (i = 0; i < card->num_links; i++)
1598                 soc_bind_dai_link(card, i);
1599
1600         /* bind completed ? */
1601         if (card->num_rtd != card->num_links) {
1602                 mutex_unlock(&card->mutex);
1603                 return;
1604         }
1605
1606         /* card bind complete so register a sound card */
1607         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1608                         card->owner, 0, &card->snd_card);
1609         if (ret < 0) {
1610                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1611                         card->name);
1612                 mutex_unlock(&card->mutex);
1613                 return;
1614         }
1615         card->snd_card->dev = card->dev;
1616
1617 #ifdef CONFIG_PM
1618         /* deferred resume work */
1619         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1620 #endif
1621
1622         /* initialise the sound card only once */
1623         if (card->probe) {
1624                 ret = card->probe(pdev);
1625                 if (ret < 0)
1626                         goto card_probe_error;
1627         }
1628
1629         for (i = 0; i < card->num_links; i++) {
1630                 ret = soc_probe_dai_link(card, i);
1631                 if (ret < 0) {
1632                         pr_err("asoc: failed to instantiate card %s: %d\n",
1633                                card->name, ret);
1634                         goto probe_dai_err;
1635                 }
1636         }
1637
1638         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1639                  "%s",  card->name);
1640         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1641                  "%s", card->name);
1642
1643         ret = snd_card_register(card->snd_card);
1644         if (ret < 0) {
1645                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1646                 goto probe_dai_err;
1647         }
1648
1649 #ifdef CONFIG_SND_SOC_AC97_BUS
1650         /* register any AC97 codecs */
1651         for (i = 0; i < card->num_rtd; i++) {
1652                         ret = soc_register_ac97_dai_link(&card->rtd[i]);
1653                         if (ret < 0) {
1654                                 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1655                                 goto probe_dai_err;
1656                         }
1657                 }
1658 #endif
1659
1660         card->instantiated = 1;
1661         mutex_unlock(&card->mutex);
1662         return;
1663
1664 probe_dai_err:
1665         for (i = 0; i < card->num_links; i++)
1666                 soc_remove_dai_link(card, i);
1667
1668 card_probe_error:
1669         if (card->remove)
1670                 card->remove(pdev);
1671
1672         snd_card_free(card->snd_card);
1673
1674         mutex_unlock(&card->mutex);
1675 }
1676
1677 /*
1678  * Attempt to initialise any uninitialised cards.  Must be called with
1679  * client_mutex.
1680  */
1681 static void snd_soc_instantiate_cards(void)
1682 {
1683         struct snd_soc_card *card;
1684         list_for_each_entry(card, &card_list, list)
1685                 snd_soc_instantiate_card(card);
1686 }
1687
1688 /* probes a new socdev */
1689 static int soc_probe(struct platform_device *pdev)
1690 {
1691         struct snd_soc_card *card = platform_get_drvdata(pdev);
1692         int ret = 0;
1693
1694         /* Bodge while we unpick instantiation */
1695         card->dev = &pdev->dev;
1696         INIT_LIST_HEAD(&card->dai_dev_list);
1697         INIT_LIST_HEAD(&card->codec_dev_list);
1698         INIT_LIST_HEAD(&card->platform_dev_list);
1699
1700         soc_init_card_debugfs(card);
1701
1702         ret = snd_soc_register_card(card);
1703         if (ret != 0) {
1704                 dev_err(&pdev->dev, "Failed to register card\n");
1705                 return ret;
1706         }
1707
1708         return 0;
1709 }
1710
1711 /* removes a socdev */
1712 static int soc_remove(struct platform_device *pdev)
1713 {
1714         struct snd_soc_card *card = platform_get_drvdata(pdev);
1715         int i;
1716
1717                 if (card->instantiated) {
1718
1719                 /* make sure any delayed work runs */
1720                 for (i = 0; i < card->num_rtd; i++) {
1721                         struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1722                         run_delayed_work(&rtd->delayed_work);
1723                 }
1724
1725                 /* remove and free each DAI */
1726                 for (i = 0; i < card->num_rtd; i++)
1727                         soc_remove_dai_link(card, i);
1728
1729                 soc_cleanup_card_debugfs(card);
1730
1731                 /* remove the card */
1732                 if (card->remove)
1733                         card->remove(pdev);
1734
1735                 kfree(card->rtd);
1736                 snd_card_free(card->snd_card);
1737         }
1738         snd_soc_unregister_card(card);
1739         return 0;
1740 }
1741
1742 static int soc_poweroff(struct device *dev)
1743 {
1744         struct platform_device *pdev = to_platform_device(dev);
1745         struct snd_soc_card *card = platform_get_drvdata(pdev);
1746         int i;
1747
1748         if (!card->instantiated)
1749                 return 0;
1750
1751         /* Flush out pmdown_time work - we actually do want to run it
1752          * now, we're shutting down so no imminent restart. */
1753         for (i = 0; i < card->num_rtd; i++) {
1754                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1755                 run_delayed_work(&rtd->delayed_work);
1756         }
1757
1758         snd_soc_dapm_shutdown(card);
1759
1760         return 0;
1761 }
1762
1763 static const struct dev_pm_ops soc_pm_ops = {
1764         .suspend = soc_suspend,
1765         .resume = soc_resume,
1766         .poweroff = soc_poweroff,
1767 };
1768
1769 /* ASoC platform driver */
1770 static struct platform_driver soc_driver = {
1771         .driver         = {
1772                 .name           = "soc-audio",
1773                 .owner          = THIS_MODULE,
1774                 .pm             = &soc_pm_ops,
1775         },
1776         .probe          = soc_probe,
1777         .remove         = soc_remove,
1778 };
1779
1780 /* create a new pcm */
1781 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1782 {
1783         struct snd_soc_codec *codec = rtd->codec;
1784         struct snd_soc_platform *platform = rtd->platform;
1785         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1786         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1787         struct snd_pcm *pcm;
1788         char new_name[64];
1789         int ret = 0, playback = 0, capture = 0;
1790
1791         /* check client and interface hw capabilities */
1792         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1793                         rtd->dai_link->stream_name, codec_dai->name, num);
1794
1795         if (codec_dai->driver->playback.channels_min)
1796                 playback = 1;
1797         if (codec_dai->driver->capture.channels_min)
1798                 capture = 1;
1799
1800         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1801         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1802                         num, playback, capture, &pcm);
1803         if (ret < 0) {
1804                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1805                 return ret;
1806         }
1807
1808         rtd->pcm = pcm;
1809         pcm->private_data = rtd;
1810         soc_pcm_ops.mmap = platform->driver->ops->mmap;
1811         soc_pcm_ops.pointer = platform->driver->ops->pointer;
1812         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1813         soc_pcm_ops.copy = platform->driver->ops->copy;
1814         soc_pcm_ops.silence = platform->driver->ops->silence;
1815         soc_pcm_ops.ack = platform->driver->ops->ack;
1816         soc_pcm_ops.page = platform->driver->ops->page;
1817
1818         if (playback)
1819                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1820
1821         if (capture)
1822                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1823
1824         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1825         if (ret < 0) {
1826                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1827                 return ret;
1828         }
1829
1830         pcm->private_free = platform->driver->pcm_free;
1831         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1832                 cpu_dai->name);
1833         return ret;
1834 }
1835
1836 /**
1837  * snd_soc_codec_volatile_register: Report if a register is volatile.
1838  *
1839  * @codec: CODEC to query.
1840  * @reg: Register to query.
1841  *
1842  * Boolean function indiciating if a CODEC register is volatile.
1843  */
1844 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1845 {
1846         if (codec->driver->volatile_register)
1847                 return codec->driver->volatile_register(reg);
1848         else
1849                 return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1852
1853 /**
1854  * snd_soc_new_ac97_codec - initailise AC97 device
1855  * @codec: audio codec
1856  * @ops: AC97 bus operations
1857  * @num: AC97 codec number
1858  *
1859  * Initialises AC97 codec resources for use by ad-hoc devices only.
1860  */
1861 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1862         struct snd_ac97_bus_ops *ops, int num)
1863 {
1864         mutex_lock(&codec->mutex);
1865
1866         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1867         if (codec->ac97 == NULL) {
1868                 mutex_unlock(&codec->mutex);
1869                 return -ENOMEM;
1870         }
1871
1872         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1873         if (codec->ac97->bus == NULL) {
1874                 kfree(codec->ac97);
1875                 codec->ac97 = NULL;
1876                 mutex_unlock(&codec->mutex);
1877                 return -ENOMEM;
1878         }
1879
1880         codec->ac97->bus->ops = ops;
1881         codec->ac97->num = num;
1882
1883         /*
1884          * Mark the AC97 device to be created by us. This way we ensure that the
1885          * device will be registered with the device subsystem later on.
1886          */
1887         codec->ac97_created = 1;
1888
1889         mutex_unlock(&codec->mutex);
1890         return 0;
1891 }
1892 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1893
1894 /**
1895  * snd_soc_free_ac97_codec - free AC97 codec device
1896  * @codec: audio codec
1897  *
1898  * Frees AC97 codec device resources.
1899  */
1900 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1901 {
1902         mutex_lock(&codec->mutex);
1903 #ifdef CONFIG_SND_SOC_AC97_BUS
1904         soc_unregister_ac97_dai_link(codec);
1905 #endif
1906         kfree(codec->ac97->bus);
1907         kfree(codec->ac97);
1908         codec->ac97 = NULL;
1909         codec->ac97_created = 0;
1910         mutex_unlock(&codec->mutex);
1911 }
1912 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1913
1914 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
1915 {
1916         unsigned int ret;
1917
1918         ret = codec->driver->read(codec, reg);
1919         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
1920         trace_snd_soc_reg_read(codec, reg, ret);
1921
1922         return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(snd_soc_read);
1925
1926 unsigned int snd_soc_write(struct snd_soc_codec *codec,
1927                            unsigned int reg, unsigned int val)
1928 {
1929         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
1930         trace_snd_soc_reg_write(codec, reg, val);
1931         return codec->driver->write(codec, reg, val);
1932 }
1933 EXPORT_SYMBOL_GPL(snd_soc_write);
1934
1935 /**
1936  * snd_soc_update_bits - update codec register bits
1937  * @codec: audio codec
1938  * @reg: codec register
1939  * @mask: register mask
1940  * @value: new value
1941  *
1942  * Writes new register value.
1943  *
1944  * Returns 1 for change else 0.
1945  */
1946 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1947                                 unsigned int mask, unsigned int value)
1948 {
1949         int change;
1950         unsigned int old, new;
1951
1952         old = snd_soc_read(codec, reg);
1953         new = (old & ~mask) | value;
1954         change = old != new;
1955         if (change)
1956                 snd_soc_write(codec, reg, new);
1957
1958         return change;
1959 }
1960 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1961
1962 /**
1963  * snd_soc_update_bits_locked - update codec register bits
1964  * @codec: audio codec
1965  * @reg: codec register
1966  * @mask: register mask
1967  * @value: new value
1968  *
1969  * Writes new register value, and takes the codec mutex.
1970  *
1971  * Returns 1 for change else 0.
1972  */
1973 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1974                                unsigned short reg, unsigned int mask,
1975                                unsigned int value)
1976 {
1977         int change;
1978
1979         mutex_lock(&codec->mutex);
1980         change = snd_soc_update_bits(codec, reg, mask, value);
1981         mutex_unlock(&codec->mutex);
1982
1983         return change;
1984 }
1985 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1986
1987 /**
1988  * snd_soc_test_bits - test register for change
1989  * @codec: audio codec
1990  * @reg: codec register
1991  * @mask: register mask
1992  * @value: new value
1993  *
1994  * Tests a register with a new value and checks if the new value is
1995  * different from the old value.
1996  *
1997  * Returns 1 for change else 0.
1998  */
1999 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2000                                 unsigned int mask, unsigned int value)
2001 {
2002         int change;
2003         unsigned int old, new;
2004
2005         old = snd_soc_read(codec, reg);
2006         new = (old & ~mask) | value;
2007         change = old != new;
2008
2009         return change;
2010 }
2011 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2012
2013 /**
2014  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2015  * @substream: the pcm substream
2016  * @hw: the hardware parameters
2017  *
2018  * Sets the substream runtime hardware parameters.
2019  */
2020 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2021         const struct snd_pcm_hardware *hw)
2022 {
2023         struct snd_pcm_runtime *runtime = substream->runtime;
2024         runtime->hw.info = hw->info;
2025         runtime->hw.formats = hw->formats;
2026         runtime->hw.period_bytes_min = hw->period_bytes_min;
2027         runtime->hw.period_bytes_max = hw->period_bytes_max;
2028         runtime->hw.periods_min = hw->periods_min;
2029         runtime->hw.periods_max = hw->periods_max;
2030         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2031         runtime->hw.fifo_size = hw->fifo_size;
2032         return 0;
2033 }
2034 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2035
2036 /**
2037  * snd_soc_cnew - create new control
2038  * @_template: control template
2039  * @data: control private data
2040  * @long_name: control long name
2041  *
2042  * Create a new mixer control from a template control.
2043  *
2044  * Returns 0 for success, else error.
2045  */
2046 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2047         void *data, char *long_name)
2048 {
2049         struct snd_kcontrol_new template;
2050
2051         memcpy(&template, _template, sizeof(template));
2052         if (long_name)
2053                 template.name = long_name;
2054         template.index = 0;
2055
2056         return snd_ctl_new1(&template, data);
2057 }
2058 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2059
2060 /**
2061  * snd_soc_add_controls - add an array of controls to a codec.
2062  * Convienience function to add a list of controls. Many codecs were
2063  * duplicating this code.
2064  *
2065  * @codec: codec to add controls to
2066  * @controls: array of controls to add
2067  * @num_controls: number of elements in the array
2068  *
2069  * Return 0 for success, else error.
2070  */
2071 int snd_soc_add_controls(struct snd_soc_codec *codec,
2072         const struct snd_kcontrol_new *controls, int num_controls)
2073 {
2074         struct snd_card *card = codec->card->snd_card;
2075         int err, i;
2076
2077         for (i = 0; i < num_controls; i++) {
2078                 const struct snd_kcontrol_new *control = &controls[i];
2079                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
2080                 if (err < 0) {
2081                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2082                                 codec->name, control->name, err);
2083                         return err;
2084                 }
2085         }
2086
2087         return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2090
2091 /**
2092  * snd_soc_info_enum_double - enumerated double mixer info callback
2093  * @kcontrol: mixer control
2094  * @uinfo: control element information
2095  *
2096  * Callback to provide information about a double enumerated
2097  * mixer control.
2098  *
2099  * Returns 0 for success.
2100  */
2101 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2102         struct snd_ctl_elem_info *uinfo)
2103 {
2104         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2105
2106         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2107         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2108         uinfo->value.enumerated.items = e->max;
2109
2110         if (uinfo->value.enumerated.item > e->max - 1)
2111                 uinfo->value.enumerated.item = e->max - 1;
2112         strcpy(uinfo->value.enumerated.name,
2113                 e->texts[uinfo->value.enumerated.item]);
2114         return 0;
2115 }
2116 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2117
2118 /**
2119  * snd_soc_get_enum_double - enumerated double mixer get callback
2120  * @kcontrol: mixer control
2121  * @ucontrol: control element information
2122  *
2123  * Callback to get the value of a double enumerated mixer.
2124  *
2125  * Returns 0 for success.
2126  */
2127 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2128         struct snd_ctl_elem_value *ucontrol)
2129 {
2130         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2131         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2132         unsigned int val, bitmask;
2133
2134         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2135                 ;
2136         val = snd_soc_read(codec, e->reg);
2137         ucontrol->value.enumerated.item[0]
2138                 = (val >> e->shift_l) & (bitmask - 1);
2139         if (e->shift_l != e->shift_r)
2140                 ucontrol->value.enumerated.item[1] =
2141                         (val >> e->shift_r) & (bitmask - 1);
2142
2143         return 0;
2144 }
2145 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2146
2147 /**
2148  * snd_soc_put_enum_double - enumerated double mixer put callback
2149  * @kcontrol: mixer control
2150  * @ucontrol: control element information
2151  *
2152  * Callback to set the value of a double enumerated mixer.
2153  *
2154  * Returns 0 for success.
2155  */
2156 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2157         struct snd_ctl_elem_value *ucontrol)
2158 {
2159         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2160         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2161         unsigned int val;
2162         unsigned int mask, bitmask;
2163
2164         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2165                 ;
2166         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2167                 return -EINVAL;
2168         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2169         mask = (bitmask - 1) << e->shift_l;
2170         if (e->shift_l != e->shift_r) {
2171                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2172                         return -EINVAL;
2173                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2174                 mask |= (bitmask - 1) << e->shift_r;
2175         }
2176
2177         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2178 }
2179 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2180
2181 /**
2182  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2183  * @kcontrol: mixer control
2184  * @ucontrol: control element information
2185  *
2186  * Callback to get the value of a double semi enumerated mixer.
2187  *
2188  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2189  * used for handling bitfield coded enumeration for example.
2190  *
2191  * Returns 0 for success.
2192  */
2193 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2194         struct snd_ctl_elem_value *ucontrol)
2195 {
2196         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2197         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2198         unsigned int reg_val, val, mux;
2199
2200         reg_val = snd_soc_read(codec, e->reg);
2201         val = (reg_val >> e->shift_l) & e->mask;
2202         for (mux = 0; mux < e->max; mux++) {
2203                 if (val == e->values[mux])
2204                         break;
2205         }
2206         ucontrol->value.enumerated.item[0] = mux;
2207         if (e->shift_l != e->shift_r) {
2208                 val = (reg_val >> e->shift_r) & e->mask;
2209                 for (mux = 0; mux < e->max; mux++) {
2210                         if (val == e->values[mux])
2211                                 break;
2212                 }
2213                 ucontrol->value.enumerated.item[1] = mux;
2214         }
2215
2216         return 0;
2217 }
2218 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2219
2220 /**
2221  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2222  * @kcontrol: mixer control
2223  * @ucontrol: control element information
2224  *
2225  * Callback to set the value of a double semi enumerated mixer.
2226  *
2227  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2228  * used for handling bitfield coded enumeration for example.
2229  *
2230  * Returns 0 for success.
2231  */
2232 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2233         struct snd_ctl_elem_value *ucontrol)
2234 {
2235         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2236         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2237         unsigned int val;
2238         unsigned int mask;
2239
2240         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2241                 return -EINVAL;
2242         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2243         mask = e->mask << e->shift_l;
2244         if (e->shift_l != e->shift_r) {
2245                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2246                         return -EINVAL;
2247                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2248                 mask |= e->mask << e->shift_r;
2249         }
2250
2251         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2252 }
2253 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2254
2255 /**
2256  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2257  * @kcontrol: mixer control
2258  * @uinfo: control element information
2259  *
2260  * Callback to provide information about an external enumerated
2261  * single mixer.
2262  *
2263  * Returns 0 for success.
2264  */
2265 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2266         struct snd_ctl_elem_info *uinfo)
2267 {
2268         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2269
2270         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2271         uinfo->count = 1;
2272         uinfo->value.enumerated.items = e->max;
2273
2274         if (uinfo->value.enumerated.item > e->max - 1)
2275                 uinfo->value.enumerated.item = e->max - 1;
2276         strcpy(uinfo->value.enumerated.name,
2277                 e->texts[uinfo->value.enumerated.item]);
2278         return 0;
2279 }
2280 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2281
2282 /**
2283  * snd_soc_info_volsw_ext - external single mixer info callback
2284  * @kcontrol: mixer control
2285  * @uinfo: control element information
2286  *
2287  * Callback to provide information about a single external mixer control.
2288  *
2289  * Returns 0 for success.
2290  */
2291 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2292         struct snd_ctl_elem_info *uinfo)
2293 {
2294         int max = kcontrol->private_value;
2295
2296         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2297                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2298         else
2299                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2300
2301         uinfo->count = 1;
2302         uinfo->value.integer.min = 0;
2303         uinfo->value.integer.max = max;
2304         return 0;
2305 }
2306 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2307
2308 /**
2309  * snd_soc_info_volsw - single mixer info callback
2310  * @kcontrol: mixer control
2311  * @uinfo: control element information
2312  *
2313  * Callback to provide information about a single mixer control.
2314  *
2315  * Returns 0 for success.
2316  */
2317 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2318         struct snd_ctl_elem_info *uinfo)
2319 {
2320         struct soc_mixer_control *mc =
2321                 (struct soc_mixer_control *)kcontrol->private_value;
2322         int platform_max;
2323         unsigned int shift = mc->shift;
2324         unsigned int rshift = mc->rshift;
2325
2326         if (!mc->platform_max)
2327                 mc->platform_max = mc->max;
2328         platform_max = mc->platform_max;
2329
2330         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2331                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2332         else
2333                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2334
2335         uinfo->count = shift == rshift ? 1 : 2;
2336         uinfo->value.integer.min = 0;
2337         uinfo->value.integer.max = platform_max;
2338         return 0;
2339 }
2340 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2341
2342 /**
2343  * snd_soc_get_volsw - single mixer get callback
2344  * @kcontrol: mixer control
2345  * @ucontrol: control element information
2346  *
2347  * Callback to get the value of a single mixer control.
2348  *
2349  * Returns 0 for success.
2350  */
2351 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2352         struct snd_ctl_elem_value *ucontrol)
2353 {
2354         struct soc_mixer_control *mc =
2355                 (struct soc_mixer_control *)kcontrol->private_value;
2356         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2357         unsigned int reg = mc->reg;
2358         unsigned int shift = mc->shift;
2359         unsigned int rshift = mc->rshift;
2360         int max = mc->max;
2361         unsigned int mask = (1 << fls(max)) - 1;
2362         unsigned int invert = mc->invert;
2363
2364         ucontrol->value.integer.value[0] =
2365                 (snd_soc_read(codec, reg) >> shift) & mask;
2366         if (shift != rshift)
2367                 ucontrol->value.integer.value[1] =
2368                         (snd_soc_read(codec, reg) >> rshift) & mask;
2369         if (invert) {
2370                 ucontrol->value.integer.value[0] =
2371                         max - ucontrol->value.integer.value[0];
2372                 if (shift != rshift)
2373                         ucontrol->value.integer.value[1] =
2374                                 max - ucontrol->value.integer.value[1];
2375         }
2376
2377         return 0;
2378 }
2379 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2380
2381 /**
2382  * snd_soc_put_volsw - single mixer put callback
2383  * @kcontrol: mixer control
2384  * @ucontrol: control element information
2385  *
2386  * Callback to set the value of a single mixer control.
2387  *
2388  * Returns 0 for success.
2389  */
2390 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2391         struct snd_ctl_elem_value *ucontrol)
2392 {
2393         struct soc_mixer_control *mc =
2394                 (struct soc_mixer_control *)kcontrol->private_value;
2395         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2396         unsigned int reg = mc->reg;
2397         unsigned int shift = mc->shift;
2398         unsigned int rshift = mc->rshift;
2399         int max = mc->max;
2400         unsigned int mask = (1 << fls(max)) - 1;
2401         unsigned int invert = mc->invert;
2402         unsigned int val, val2, val_mask;
2403
2404         val = (ucontrol->value.integer.value[0] & mask);
2405         if (invert)
2406                 val = max - val;
2407         val_mask = mask << shift;
2408         val = val << shift;
2409         if (shift != rshift) {
2410                 val2 = (ucontrol->value.integer.value[1] & mask);
2411                 if (invert)
2412                         val2 = max - val2;
2413                 val_mask |= mask << rshift;
2414                 val |= val2 << rshift;
2415         }
2416         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2417 }
2418 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2419
2420 /**
2421  * snd_soc_info_volsw_2r - double mixer info callback
2422  * @kcontrol: mixer control
2423  * @uinfo: control element information
2424  *
2425  * Callback to provide information about a double mixer control that
2426  * spans 2 codec registers.
2427  *
2428  * Returns 0 for success.
2429  */
2430 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2431         struct snd_ctl_elem_info *uinfo)
2432 {
2433         struct soc_mixer_control *mc =
2434                 (struct soc_mixer_control *)kcontrol->private_value;
2435         int platform_max;
2436
2437         if (!mc->platform_max)
2438                 mc->platform_max = mc->max;
2439         platform_max = mc->platform_max;
2440
2441         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2442                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2443         else
2444                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2445
2446         uinfo->count = 2;
2447         uinfo->value.integer.min = 0;
2448         uinfo->value.integer.max = platform_max;
2449         return 0;
2450 }
2451 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2452
2453 /**
2454  * snd_soc_get_volsw_2r - double mixer get callback
2455  * @kcontrol: mixer control
2456  * @ucontrol: control element information
2457  *
2458  * Callback to get the value of a double mixer control that spans 2 registers.
2459  *
2460  * Returns 0 for success.
2461  */
2462 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2463         struct snd_ctl_elem_value *ucontrol)
2464 {
2465         struct soc_mixer_control *mc =
2466                 (struct soc_mixer_control *)kcontrol->private_value;
2467         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2468         unsigned int reg = mc->reg;
2469         unsigned int reg2 = mc->rreg;
2470         unsigned int shift = mc->shift;
2471         int max = mc->max;
2472         unsigned int mask = (1 << fls(max)) - 1;
2473         unsigned int invert = mc->invert;
2474
2475         ucontrol->value.integer.value[0] =
2476                 (snd_soc_read(codec, reg) >> shift) & mask;
2477         ucontrol->value.integer.value[1] =
2478                 (snd_soc_read(codec, reg2) >> shift) & mask;
2479         if (invert) {
2480                 ucontrol->value.integer.value[0] =
2481                         max - ucontrol->value.integer.value[0];
2482                 ucontrol->value.integer.value[1] =
2483                         max - ucontrol->value.integer.value[1];
2484         }
2485
2486         return 0;
2487 }
2488 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2489
2490 /**
2491  * snd_soc_put_volsw_2r - double mixer set callback
2492  * @kcontrol: mixer control
2493  * @ucontrol: control element information
2494  *
2495  * Callback to set the value of a double mixer control that spans 2 registers.
2496  *
2497  * Returns 0 for success.
2498  */
2499 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2500         struct snd_ctl_elem_value *ucontrol)
2501 {
2502         struct soc_mixer_control *mc =
2503                 (struct soc_mixer_control *)kcontrol->private_value;
2504         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2505         unsigned int reg = mc->reg;
2506         unsigned int reg2 = mc->rreg;
2507         unsigned int shift = mc->shift;
2508         int max = mc->max;
2509         unsigned int mask = (1 << fls(max)) - 1;
2510         unsigned int invert = mc->invert;
2511         int err;
2512         unsigned int val, val2, val_mask;
2513
2514         val_mask = mask << shift;
2515         val = (ucontrol->value.integer.value[0] & mask);
2516         val2 = (ucontrol->value.integer.value[1] & mask);
2517
2518         if (invert) {
2519                 val = max - val;
2520                 val2 = max - val2;
2521         }
2522
2523         val = val << shift;
2524         val2 = val2 << shift;
2525
2526         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2527         if (err < 0)
2528                 return err;
2529
2530         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2531         return err;
2532 }
2533 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2534
2535 /**
2536  * snd_soc_info_volsw_s8 - signed mixer info callback
2537  * @kcontrol: mixer control
2538  * @uinfo: control element information
2539  *
2540  * Callback to provide information about a signed mixer control.
2541  *
2542  * Returns 0 for success.
2543  */
2544 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2545         struct snd_ctl_elem_info *uinfo)
2546 {
2547         struct soc_mixer_control *mc =
2548                 (struct soc_mixer_control *)kcontrol->private_value;
2549         int platform_max;
2550         int min = mc->min;
2551
2552         if (!mc->platform_max)
2553                 mc->platform_max = mc->max;
2554         platform_max = mc->platform_max;
2555
2556         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2557         uinfo->count = 2;
2558         uinfo->value.integer.min = 0;
2559         uinfo->value.integer.max = platform_max - min;
2560         return 0;
2561 }
2562 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2563
2564 /**
2565  * snd_soc_get_volsw_s8 - signed mixer get callback
2566  * @kcontrol: mixer control
2567  * @ucontrol: control element information
2568  *
2569  * Callback to get the value of a signed mixer control.
2570  *
2571  * Returns 0 for success.
2572  */
2573 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2574         struct snd_ctl_elem_value *ucontrol)
2575 {
2576         struct soc_mixer_control *mc =
2577                 (struct soc_mixer_control *)kcontrol->private_value;
2578         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2579         unsigned int reg = mc->reg;
2580         int min = mc->min;
2581         int val = snd_soc_read(codec, reg);
2582
2583         ucontrol->value.integer.value[0] =
2584                 ((signed char)(val & 0xff))-min;
2585         ucontrol->value.integer.value[1] =
2586                 ((signed char)((val >> 8) & 0xff))-min;
2587         return 0;
2588 }
2589 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2590
2591 /**
2592  * snd_soc_put_volsw_sgn - signed mixer put callback
2593  * @kcontrol: mixer control
2594  * @ucontrol: control element information
2595  *
2596  * Callback to set the value of a signed mixer control.
2597  *
2598  * Returns 0 for success.
2599  */
2600 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2601         struct snd_ctl_elem_value *ucontrol)
2602 {
2603         struct soc_mixer_control *mc =
2604                 (struct soc_mixer_control *)kcontrol->private_value;
2605         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2606         unsigned int reg = mc->reg;
2607         int min = mc->min;
2608         unsigned int val;
2609
2610         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2611         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2612
2613         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2614 }
2615 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2616
2617 /**
2618  * snd_soc_limit_volume - Set new limit to an existing volume control.
2619  *
2620  * @codec: where to look for the control
2621  * @name: Name of the control
2622  * @max: new maximum limit
2623  *
2624  * Return 0 for success, else error.
2625  */
2626 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2627         const char *name, int max)
2628 {
2629         struct snd_card *card = codec->card->snd_card;
2630         struct snd_kcontrol *kctl;
2631         struct soc_mixer_control *mc;
2632         int found = 0;
2633         int ret = -EINVAL;
2634
2635         /* Sanity check for name and max */
2636         if (unlikely(!name || max <= 0))
2637                 return -EINVAL;
2638
2639         list_for_each_entry(kctl, &card->controls, list) {
2640                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2641                         found = 1;
2642                         break;
2643                 }
2644         }
2645         if (found) {
2646                 mc = (struct soc_mixer_control *)kctl->private_value;
2647                 if (max <= mc->max) {
2648                         mc->platform_max = max;
2649                         ret = 0;
2650                 }
2651         }
2652         return ret;
2653 }
2654 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2655
2656 /**
2657  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2658  *  mixer info callback
2659  * @kcontrol: mixer control
2660  * @uinfo: control element information
2661  *
2662  * Returns 0 for success.
2663  */
2664 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2665                         struct snd_ctl_elem_info *uinfo)
2666 {
2667         struct soc_mixer_control *mc =
2668                 (struct soc_mixer_control *)kcontrol->private_value;
2669         int max = mc->max;
2670         int min = mc->min;
2671
2672         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2673         uinfo->count = 2;
2674         uinfo->value.integer.min = 0;
2675         uinfo->value.integer.max = max-min;
2676
2677         return 0;
2678 }
2679 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2680
2681 /**
2682  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2683  *  mixer get callback
2684  * @kcontrol: mixer control
2685  * @uinfo: control element information
2686  *
2687  * Returns 0 for success.
2688  */
2689 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2690                         struct snd_ctl_elem_value *ucontrol)
2691 {
2692         struct soc_mixer_control *mc =
2693                 (struct soc_mixer_control *)kcontrol->private_value;
2694         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2695         unsigned int mask = (1<<mc->shift)-1;
2696         int min = mc->min;
2697         int val = snd_soc_read(codec, mc->reg) & mask;
2698         int valr = snd_soc_read(codec, mc->rreg) & mask;
2699
2700         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2701         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2702         return 0;
2703 }
2704 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2705
2706 /**
2707  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2708  *  mixer put callback
2709  * @kcontrol: mixer control
2710  * @uinfo: control element information
2711  *
2712  * Returns 0 for success.
2713  */
2714 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2715                         struct snd_ctl_elem_value *ucontrol)
2716 {
2717         struct soc_mixer_control *mc =
2718                 (struct soc_mixer_control *)kcontrol->private_value;
2719         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2720         unsigned int mask = (1<<mc->shift)-1;
2721         int min = mc->min;
2722         int ret;
2723         unsigned int val, valr, oval, ovalr;
2724
2725         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2726         val &= mask;
2727         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2728         valr &= mask;
2729
2730         oval = snd_soc_read(codec, mc->reg) & mask;
2731         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2732
2733         ret = 0;
2734         if (oval != val) {
2735                 ret = snd_soc_write(codec, mc->reg, val);
2736                 if (ret < 0)
2737                         return ret;
2738         }
2739         if (ovalr != valr) {
2740                 ret = snd_soc_write(codec, mc->rreg, valr);
2741                 if (ret < 0)
2742                         return ret;
2743         }
2744
2745         return 0;
2746 }
2747 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2748
2749 /**
2750  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2751  * @dai: DAI
2752  * @clk_id: DAI specific clock ID
2753  * @freq: new clock frequency in Hz
2754  * @dir: new clock direction - input/output.
2755  *
2756  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2757  */
2758 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2759         unsigned int freq, int dir)
2760 {
2761         if (dai->driver && dai->driver->ops->set_sysclk)
2762                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2763         else
2764                 return -EINVAL;
2765 }
2766 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2767
2768 /**
2769  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2770  * @dai: DAI
2771  * @div_id: DAI specific clock divider ID
2772  * @div: new clock divisor.
2773  *
2774  * Configures the clock dividers. This is used to derive the best DAI bit and
2775  * frame clocks from the system or master clock. It's best to set the DAI bit
2776  * and frame clocks as low as possible to save system power.
2777  */
2778 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2779         int div_id, int div)
2780 {
2781         if (dai->driver && dai->driver->ops->set_clkdiv)
2782                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2783         else
2784                 return -EINVAL;
2785 }
2786 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2787
2788 /**
2789  * snd_soc_dai_set_pll - configure DAI PLL.
2790  * @dai: DAI
2791  * @pll_id: DAI specific PLL ID
2792  * @source: DAI specific source for the PLL
2793  * @freq_in: PLL input clock frequency in Hz
2794  * @freq_out: requested PLL output clock frequency in Hz
2795  *
2796  * Configures and enables PLL to generate output clock based on input clock.
2797  */
2798 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2799         unsigned int freq_in, unsigned int freq_out)
2800 {
2801         if (dai->driver && dai->driver->ops->set_pll)
2802                 return dai->driver->ops->set_pll(dai, pll_id, source,
2803                                          freq_in, freq_out);
2804         else
2805                 return -EINVAL;
2806 }
2807 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2808
2809 /**
2810  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2811  * @dai: DAI
2812  * @fmt: SND_SOC_DAIFMT_ format value.
2813  *
2814  * Configures the DAI hardware format and clocking.
2815  */
2816 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2817 {
2818         if (dai->driver && dai->driver->ops->set_fmt)
2819                 return dai->driver->ops->set_fmt(dai, fmt);
2820         else
2821                 return -EINVAL;
2822 }
2823 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2824
2825 /**
2826  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2827  * @dai: DAI
2828  * @tx_mask: bitmask representing active TX slots.
2829  * @rx_mask: bitmask representing active RX slots.
2830  * @slots: Number of slots in use.
2831  * @slot_width: Width in bits for each slot.
2832  *
2833  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2834  * specific.
2835  */
2836 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2837         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2838 {
2839         if (dai->driver && dai->driver->ops->set_tdm_slot)
2840                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2841                                 slots, slot_width);
2842         else
2843                 return -EINVAL;
2844 }
2845 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2846
2847 /**
2848  * snd_soc_dai_set_channel_map - configure DAI audio channel map
2849  * @dai: DAI
2850  * @tx_num: how many TX channels
2851  * @tx_slot: pointer to an array which imply the TX slot number channel
2852  *           0~num-1 uses
2853  * @rx_num: how many RX channels
2854  * @rx_slot: pointer to an array which imply the RX slot number channel
2855  *           0~num-1 uses
2856  *
2857  * configure the relationship between channel number and TDM slot number.
2858  */
2859 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2860         unsigned int tx_num, unsigned int *tx_slot,
2861         unsigned int rx_num, unsigned int *rx_slot)
2862 {
2863         if (dai->driver && dai->driver->ops->set_channel_map)
2864                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2865                         rx_num, rx_slot);
2866         else
2867                 return -EINVAL;
2868 }
2869 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2870
2871 /**
2872  * snd_soc_dai_set_tristate - configure DAI system or master clock.
2873  * @dai: DAI
2874  * @tristate: tristate enable
2875  *
2876  * Tristates the DAI so that others can use it.
2877  */
2878 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2879 {
2880         if (dai->driver && dai->driver->ops->set_tristate)
2881                 return dai->driver->ops->set_tristate(dai, tristate);
2882         else
2883                 return -EINVAL;
2884 }
2885 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2886
2887 /**
2888  * snd_soc_dai_digital_mute - configure DAI system or master clock.
2889  * @dai: DAI
2890  * @mute: mute enable
2891  *
2892  * Mutes the DAI DAC.
2893  */
2894 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2895 {
2896         if (dai->driver && dai->driver->ops->digital_mute)
2897                 return dai->driver->ops->digital_mute(dai, mute);
2898         else
2899                 return -EINVAL;
2900 }
2901 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2902
2903 /**
2904  * snd_soc_register_card - Register a card with the ASoC core
2905  *
2906  * @card: Card to register
2907  *
2908  * Note that currently this is an internal only function: it will be
2909  * exposed to machine drivers after further backporting of ASoC v2
2910  * registration APIs.
2911  */
2912 static int snd_soc_register_card(struct snd_soc_card *card)
2913 {
2914         int i;
2915
2916         if (!card->name || !card->dev)
2917                 return -EINVAL;
2918
2919         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2920                         GFP_KERNEL);
2921         if (card->rtd == NULL)
2922                 return -ENOMEM;
2923
2924         for (i = 0; i < card->num_links; i++)
2925                 card->rtd[i].dai_link = &card->dai_link[i];
2926
2927         INIT_LIST_HEAD(&card->list);
2928         card->instantiated = 0;
2929         mutex_init(&card->mutex);
2930
2931         mutex_lock(&client_mutex);
2932         list_add(&card->list, &card_list);
2933         snd_soc_instantiate_cards();
2934         mutex_unlock(&client_mutex);
2935
2936         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2937
2938         return 0;
2939 }
2940
2941 /**
2942  * snd_soc_unregister_card - Unregister a card with the ASoC core
2943  *
2944  * @card: Card to unregister
2945  *
2946  * Note that currently this is an internal only function: it will be
2947  * exposed to machine drivers after further backporting of ASoC v2
2948  * registration APIs.
2949  */
2950 static int snd_soc_unregister_card(struct snd_soc_card *card)
2951 {
2952         mutex_lock(&client_mutex);
2953         list_del(&card->list);
2954         mutex_unlock(&client_mutex);
2955         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2956
2957         return 0;
2958 }
2959
2960 /*
2961  * Simplify DAI link configuration by removing ".-1" from device names
2962  * and sanitizing names.
2963  */
2964 static inline char *fmt_single_name(struct device *dev, int *id)
2965 {
2966         char *found, name[NAME_SIZE];
2967         int id1, id2;
2968
2969         if (dev_name(dev) == NULL)
2970                 return NULL;
2971
2972         strncpy(name, dev_name(dev), NAME_SIZE);
2973
2974         /* are we a "%s.%d" name (platform and SPI components) */
2975         found = strstr(name, dev->driver->name);
2976         if (found) {
2977                 /* get ID */
2978                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
2979
2980                         /* discard ID from name if ID == -1 */
2981                         if (*id == -1)
2982                                 found[strlen(dev->driver->name)] = '\0';
2983                 }
2984
2985         } else {
2986                 /* I2C component devices are named "bus-addr"  */
2987                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
2988                         char tmp[NAME_SIZE];
2989
2990                         /* create unique ID number from I2C addr and bus */
2991                         *id = ((id1 & 0xffff) << 16) + id2;
2992
2993                         /* sanitize component name for DAI link creation */
2994                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
2995                         strncpy(name, tmp, NAME_SIZE);
2996                 } else
2997                         *id = 0;
2998         }
2999
3000         return kstrdup(name, GFP_KERNEL);
3001 }
3002
3003 /*
3004  * Simplify DAI link naming for single devices with multiple DAIs by removing
3005  * any ".-1" and using the DAI name (instead of device name).
3006  */
3007 static inline char *fmt_multiple_name(struct device *dev,
3008                 struct snd_soc_dai_driver *dai_drv)
3009 {
3010         if (dai_drv->name == NULL) {
3011                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3012                                 dev_name(dev));
3013                 return NULL;
3014         }
3015
3016         return kstrdup(dai_drv->name, GFP_KERNEL);
3017 }
3018
3019 /**
3020  * snd_soc_register_dai - Register a DAI with the ASoC core
3021  *
3022  * @dai: DAI to register
3023  */
3024 int snd_soc_register_dai(struct device *dev,
3025                 struct snd_soc_dai_driver *dai_drv)
3026 {
3027         struct snd_soc_dai *dai;
3028
3029         dev_dbg(dev, "dai register %s\n", dev_name(dev));
3030
3031         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3032         if (dai == NULL)
3033                         return -ENOMEM;
3034
3035         /* create DAI component name */
3036         dai->name = fmt_single_name(dev, &dai->id);
3037         if (dai->name == NULL) {
3038                 kfree(dai);
3039                 return -ENOMEM;
3040         }
3041
3042         dai->dev = dev;
3043         dai->driver = dai_drv;
3044         if (!dai->driver->ops)
3045                 dai->driver->ops = &null_dai_ops;
3046
3047         mutex_lock(&client_mutex);
3048         list_add(&dai->list, &dai_list);
3049         snd_soc_instantiate_cards();
3050         mutex_unlock(&client_mutex);
3051
3052         pr_debug("Registered DAI '%s'\n", dai->name);
3053
3054         return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3057
3058 /**
3059  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3060  *
3061  * @dai: DAI to unregister
3062  */
3063 void snd_soc_unregister_dai(struct device *dev)
3064 {
3065         struct snd_soc_dai *dai;
3066
3067         list_for_each_entry(dai, &dai_list, list) {
3068                 if (dev == dai->dev)
3069                         goto found;
3070         }
3071         return;
3072
3073 found:
3074         mutex_lock(&client_mutex);
3075         list_del(&dai->list);
3076         mutex_unlock(&client_mutex);
3077
3078         pr_debug("Unregistered DAI '%s'\n", dai->name);
3079         kfree(dai->name);
3080         kfree(dai);
3081 }
3082 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3083
3084 /**
3085  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3086  *
3087  * @dai: Array of DAIs to register
3088  * @count: Number of DAIs
3089  */
3090 int snd_soc_register_dais(struct device *dev,
3091                 struct snd_soc_dai_driver *dai_drv, size_t count)
3092 {
3093         struct snd_soc_dai *dai;
3094         int i, ret = 0;
3095
3096         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3097
3098         for (i = 0; i < count; i++) {
3099
3100                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3101                 if (dai == NULL) {
3102                         ret = -ENOMEM;
3103                         goto err;
3104                 }
3105
3106                 /* create DAI component name */
3107                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3108                 if (dai->name == NULL) {
3109                         kfree(dai);
3110                         ret = -EINVAL;
3111                         goto err;
3112                 }
3113
3114                 dai->dev = dev;
3115                 dai->driver = &dai_drv[i];
3116                 if (dai->driver->id)
3117                         dai->id = dai->driver->id;
3118                 else
3119                         dai->id = i;
3120                 if (!dai->driver->ops)
3121                         dai->driver->ops = &null_dai_ops;
3122
3123                 mutex_lock(&client_mutex);
3124                 list_add(&dai->list, &dai_list);
3125                 mutex_unlock(&client_mutex);
3126
3127                 pr_debug("Registered DAI '%s'\n", dai->name);
3128         }
3129
3130         snd_soc_instantiate_cards();
3131         return 0;
3132
3133 err:
3134         for (i--; i >= 0; i--)
3135                 snd_soc_unregister_dai(dev);
3136
3137         return ret;
3138 }
3139 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3140
3141 /**
3142  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3143  *
3144  * @dai: Array of DAIs to unregister
3145  * @count: Number of DAIs
3146  */
3147 void snd_soc_unregister_dais(struct device *dev, size_t count)
3148 {
3149         int i;
3150
3151         for (i = 0; i < count; i++)
3152                 snd_soc_unregister_dai(dev);
3153 }
3154 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3155
3156 /**
3157  * snd_soc_register_platform - Register a platform with the ASoC core
3158  *
3159  * @platform: platform to register
3160  */
3161 int snd_soc_register_platform(struct device *dev,
3162                 struct snd_soc_platform_driver *platform_drv)
3163 {
3164         struct snd_soc_platform *platform;
3165
3166         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3167
3168         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3169         if (platform == NULL)
3170                         return -ENOMEM;
3171
3172         /* create platform component name */
3173         platform->name = fmt_single_name(dev, &platform->id);
3174         if (platform->name == NULL) {
3175                 kfree(platform);
3176                 return -ENOMEM;
3177         }
3178
3179         platform->dev = dev;
3180         platform->driver = platform_drv;
3181
3182         mutex_lock(&client_mutex);
3183         list_add(&platform->list, &platform_list);
3184         snd_soc_instantiate_cards();
3185         mutex_unlock(&client_mutex);
3186
3187         pr_debug("Registered platform '%s'\n", platform->name);
3188
3189         return 0;
3190 }
3191 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3192
3193 /**
3194  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3195  *
3196  * @platform: platform to unregister
3197  */
3198 void snd_soc_unregister_platform(struct device *dev)
3199 {
3200         struct snd_soc_platform *platform;
3201
3202         list_for_each_entry(platform, &platform_list, list) {
3203                 if (dev == platform->dev)
3204                         goto found;
3205         }
3206         return;
3207
3208 found:
3209         mutex_lock(&client_mutex);
3210         list_del(&platform->list);
3211         mutex_unlock(&client_mutex);
3212
3213         pr_debug("Unregistered platform '%s'\n", platform->name);
3214         kfree(platform->name);
3215         kfree(platform);
3216 }
3217 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3218
3219 static u64 codec_format_map[] = {
3220         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3221         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3222         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3223         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3224         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3225         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3226         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3227         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3228         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3229         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3230         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3231         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3232         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3233         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3234         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3235         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3236 };
3237
3238 /* Fix up the DAI formats for endianness: codecs don't actually see
3239  * the endianness of the data but we're using the CPU format
3240  * definitions which do need to include endianness so we ensure that
3241  * codec DAIs always have both big and little endian variants set.
3242  */
3243 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3244 {
3245         int i;
3246
3247         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3248                 if (stream->formats & codec_format_map[i])
3249                         stream->formats |= codec_format_map[i];
3250 }
3251
3252 /**
3253  * snd_soc_register_codec - Register a codec with the ASoC core
3254  *
3255  * @codec: codec to register
3256  */
3257 int snd_soc_register_codec(struct device *dev,
3258                 struct snd_soc_codec_driver *codec_drv,
3259                 struct snd_soc_dai_driver *dai_drv, int num_dai)
3260 {
3261         struct snd_soc_codec *codec;
3262         int ret, i;
3263
3264         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3265
3266         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3267         if (codec == NULL)
3268                 return -ENOMEM;
3269
3270         /* create CODEC component name */
3271         codec->name = fmt_single_name(dev, &codec->id);
3272         if (codec->name == NULL) {
3273                 kfree(codec);
3274                 return -ENOMEM;
3275         }
3276
3277         INIT_LIST_HEAD(&codec->dapm.widgets);
3278         INIT_LIST_HEAD(&codec->dapm.paths);
3279         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3280         codec->dapm.dev = dev;
3281         codec->dapm.codec = codec;
3282         codec->dev = dev;
3283         codec->driver = codec_drv;
3284         codec->num_dai = num_dai;
3285         mutex_init(&codec->mutex);
3286
3287         /* allocate CODEC register cache */
3288         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3289                 ret = snd_soc_cache_init(codec);
3290                 if (ret < 0) {
3291                         dev_err(codec->dev, "Failed to set cache compression type: %d\n",
3292                                 ret);
3293                         goto error_cache;
3294                 }
3295         }
3296
3297         for (i = 0; i < num_dai; i++) {
3298                 fixup_codec_formats(&dai_drv[i].playback);
3299                 fixup_codec_formats(&dai_drv[i].capture);
3300         }
3301
3302         /* register any DAIs */
3303         if (num_dai) {
3304                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3305                 if (ret < 0)
3306                         goto error_dais;
3307         }
3308
3309         mutex_lock(&client_mutex);
3310         list_add(&codec->list, &codec_list);
3311         snd_soc_instantiate_cards();
3312         mutex_unlock(&client_mutex);
3313
3314         pr_debug("Registered codec '%s'\n", codec->name);
3315         return 0;
3316
3317 error_dais:
3318         snd_soc_cache_exit(codec);
3319 error_cache:
3320         kfree(codec->name);
3321         kfree(codec);
3322         return ret;
3323 }
3324 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3325
3326 /**
3327  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3328  *
3329  * @codec: codec to unregister
3330  */
3331 void snd_soc_unregister_codec(struct device *dev)
3332 {
3333         struct snd_soc_codec *codec;
3334         int i;
3335
3336         list_for_each_entry(codec, &codec_list, list) {
3337                 if (dev == codec->dev)
3338                         goto found;
3339         }
3340         return;
3341
3342 found:
3343         if (codec->num_dai)
3344                 for (i = 0; i < codec->num_dai; i++)
3345                         snd_soc_unregister_dai(dev);
3346
3347         mutex_lock(&client_mutex);
3348         list_del(&codec->list);
3349         mutex_unlock(&client_mutex);
3350
3351         pr_debug("Unregistered codec '%s'\n", codec->name);
3352
3353         snd_soc_cache_exit(codec);
3354         kfree(codec->name);
3355         kfree(codec);
3356 }
3357 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3358
3359 static int __init snd_soc_init(void)
3360 {
3361 #ifdef CONFIG_DEBUG_FS
3362         debugfs_root = debugfs_create_dir("asoc", NULL);
3363         if (IS_ERR(debugfs_root) || !debugfs_root) {
3364                 printk(KERN_WARNING
3365                        "ASoC: Failed to create debugfs directory\n");
3366                 debugfs_root = NULL;
3367         }
3368
3369         if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3370                                  &codec_list_fops))
3371                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3372
3373         if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3374                                  &dai_list_fops))
3375                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3376
3377         if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3378                                  &platform_list_fops))
3379                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3380 #endif
3381
3382         return platform_driver_register(&soc_driver);
3383 }
3384 module_init(snd_soc_init);
3385
3386 static void __exit snd_soc_exit(void)
3387 {
3388 #ifdef CONFIG_DEBUG_FS
3389         debugfs_remove_recursive(debugfs_root);
3390 #endif
3391         platform_driver_unregister(&soc_driver);
3392 }
3393 module_exit(snd_soc_exit);
3394
3395 /* Module information */
3396 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3397 MODULE_DESCRIPTION("ALSA SoC Core");
3398 MODULE_LICENSE("GPL");
3399 MODULE_ALIAS("platform:soc-audio");