]> git.karo-electronics.de Git - mv-sheeva.git/blob - sound/soc/soc-core.c
ASoC: soc-core: Allow machine drivers to override compress_type
[mv-sheeva.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/initval.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/asoc.h>
43
44 #define NAME_SIZE       32
45
46 static DEFINE_MUTEX(pcm_mutex);
47 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
48
49 #ifdef CONFIG_DEBUG_FS
50 static struct dentry *debugfs_root;
51 #endif
52
53 static DEFINE_MUTEX(client_mutex);
54 static LIST_HEAD(card_list);
55 static LIST_HEAD(dai_list);
56 static LIST_HEAD(platform_list);
57 static LIST_HEAD(codec_list);
58
59 static int snd_soc_register_card(struct snd_soc_card *card);
60 static int snd_soc_unregister_card(struct snd_soc_card *card);
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62
63 /*
64  * This is a timeout to do a DAPM powerdown after a stream is closed().
65  * It can be used to eliminate pops between different playback streams, e.g.
66  * between two audio tracks.
67  */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 /*
73  * This function forces any delayed work to be queued and run.
74  */
75 static int run_delayed_work(struct delayed_work *dwork)
76 {
77         int ret;
78
79         /* cancel any work waiting to be queued. */
80         ret = cancel_delayed_work(dwork);
81
82         /* if there was any work waiting then we run it now and
83          * wait for it's completion */
84         if (ret) {
85                 schedule_delayed_work(dwork, 0);
86                 flush_scheduled_work();
87         }
88         return ret;
89 }
90
91 /* codec register dump */
92 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
93 {
94         int ret, i, step = 1, count = 0;
95
96         if (!codec->driver->reg_cache_size)
97                 return 0;
98
99         if (codec->driver->reg_cache_step)
100                 step = codec->driver->reg_cache_step;
101
102         count += sprintf(buf, "%s registers\n", codec->name);
103         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
104                 if (codec->driver->readable_register && !codec->driver->readable_register(i))
105                         continue;
106
107                 count += sprintf(buf + count, "%2x: ", i);
108                 if (count >= PAGE_SIZE - 1)
109                         break;
110
111                 if (codec->driver->display_register) {
112                         count += codec->driver->display_register(codec, buf + count,
113                                                          PAGE_SIZE - count, i);
114                 } else {
115                         /* If the read fails it's almost certainly due to
116                          * the register being volatile and the device being
117                          * powered off.
118                          */
119                         ret = codec->driver->read(codec, i);
120                         if (ret >= 0)
121                                 count += snprintf(buf + count,
122                                                   PAGE_SIZE - count,
123                                                   "%4x", ret);
124                         else
125                                 count += snprintf(buf + count,
126                                                   PAGE_SIZE - count,
127                                                   "<no data: %d>", ret);
128                 }
129
130                 if (count >= PAGE_SIZE - 1)
131                         break;
132
133                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
134                 if (count >= PAGE_SIZE - 1)
135                         break;
136         }
137
138         /* Truncate count; min() would cause a warning */
139         if (count >= PAGE_SIZE)
140                 count = PAGE_SIZE - 1;
141
142         return count;
143 }
144 static ssize_t codec_reg_show(struct device *dev,
145         struct device_attribute *attr, char *buf)
146 {
147         struct snd_soc_pcm_runtime *rtd =
148                         container_of(dev, struct snd_soc_pcm_runtime, dev);
149
150         return soc_codec_reg_show(rtd->codec, buf);
151 }
152
153 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
154
155 static ssize_t pmdown_time_show(struct device *dev,
156                                 struct device_attribute *attr, char *buf)
157 {
158         struct snd_soc_pcm_runtime *rtd =
159                         container_of(dev, struct snd_soc_pcm_runtime, dev);
160
161         return sprintf(buf, "%ld\n", rtd->pmdown_time);
162 }
163
164 static ssize_t pmdown_time_set(struct device *dev,
165                                struct device_attribute *attr,
166                                const char *buf, size_t count)
167 {
168         struct snd_soc_pcm_runtime *rtd =
169                         container_of(dev, struct snd_soc_pcm_runtime, dev);
170         int ret;
171
172         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
173         if (ret)
174                 return ret;
175
176         return count;
177 }
178
179 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
180
181 #ifdef CONFIG_DEBUG_FS
182 static int codec_reg_open_file(struct inode *inode, struct file *file)
183 {
184         file->private_data = inode->i_private;
185         return 0;
186 }
187
188 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
189                                size_t count, loff_t *ppos)
190 {
191         ssize_t ret;
192         struct snd_soc_codec *codec = file->private_data;
193         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
194         if (!buf)
195                 return -ENOMEM;
196         ret = soc_codec_reg_show(codec, buf);
197         if (ret >= 0)
198                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
199         kfree(buf);
200         return ret;
201 }
202
203 static ssize_t codec_reg_write_file(struct file *file,
204                 const char __user *user_buf, size_t count, loff_t *ppos)
205 {
206         char buf[32];
207         int buf_size;
208         char *start = buf;
209         unsigned long reg, value;
210         int step = 1;
211         struct snd_soc_codec *codec = file->private_data;
212
213         buf_size = min(count, (sizeof(buf)-1));
214         if (copy_from_user(buf, user_buf, buf_size))
215                 return -EFAULT;
216         buf[buf_size] = 0;
217
218         if (codec->driver->reg_cache_step)
219                 step = codec->driver->reg_cache_step;
220
221         while (*start == ' ')
222                 start++;
223         reg = simple_strtoul(start, &start, 16);
224         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
225                 return -EINVAL;
226         while (*start == ' ')
227                 start++;
228         if (strict_strtoul(start, 16, &value))
229                 return -EINVAL;
230         codec->driver->write(codec, reg, value);
231         return buf_size;
232 }
233
234 static const struct file_operations codec_reg_fops = {
235         .open = codec_reg_open_file,
236         .read = codec_reg_read_file,
237         .write = codec_reg_write_file,
238         .llseek = default_llseek,
239 };
240
241 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
242 {
243         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
244
245         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
246                                                        debugfs_card_root);
247         if (!codec->debugfs_codec_root) {
248                 printk(KERN_WARNING
249                        "ASoC: Failed to create codec debugfs directory\n");
250                 return;
251         }
252
253         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
254                                                  codec->debugfs_codec_root,
255                                                  codec, &codec_reg_fops);
256         if (!codec->debugfs_reg)
257                 printk(KERN_WARNING
258                        "ASoC: Failed to create codec register debugfs file\n");
259
260         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
261                                                  codec->debugfs_codec_root);
262         if (!codec->dapm.debugfs_dapm)
263                 printk(KERN_WARNING
264                        "Failed to create DAPM debugfs directory\n");
265
266         snd_soc_dapm_debugfs_init(&codec->dapm);
267 }
268
269 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
270 {
271         debugfs_remove_recursive(codec->debugfs_codec_root);
272 }
273
274 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
275                                     size_t count, loff_t *ppos)
276 {
277         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
278         ssize_t len, ret = 0;
279         struct snd_soc_codec *codec;
280
281         if (!buf)
282                 return -ENOMEM;
283
284         list_for_each_entry(codec, &codec_list, list) {
285                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
286                                codec->name);
287                 if (len >= 0)
288                         ret += len;
289                 if (ret > PAGE_SIZE) {
290                         ret = PAGE_SIZE;
291                         break;
292                 }
293         }
294
295         if (ret >= 0)
296                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
297
298         kfree(buf);
299
300         return ret;
301 }
302
303 static const struct file_operations codec_list_fops = {
304         .read = codec_list_read_file,
305         .llseek = default_llseek,/* read accesses f_pos */
306 };
307
308 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
309                                   size_t count, loff_t *ppos)
310 {
311         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
312         ssize_t len, ret = 0;
313         struct snd_soc_dai *dai;
314
315         if (!buf)
316                 return -ENOMEM;
317
318         list_for_each_entry(dai, &dai_list, list) {
319                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
320                 if (len >= 0)
321                         ret += len;
322                 if (ret > PAGE_SIZE) {
323                         ret = PAGE_SIZE;
324                         break;
325                 }
326         }
327
328         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
329
330         kfree(buf);
331
332         return ret;
333 }
334
335 static const struct file_operations dai_list_fops = {
336         .read = dai_list_read_file,
337         .llseek = default_llseek,/* read accesses f_pos */
338 };
339
340 static ssize_t platform_list_read_file(struct file *file,
341                                        char __user *user_buf,
342                                        size_t count, loff_t *ppos)
343 {
344         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
345         ssize_t len, ret = 0;
346         struct snd_soc_platform *platform;
347
348         if (!buf)
349                 return -ENOMEM;
350
351         list_for_each_entry(platform, &platform_list, list) {
352                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
353                                platform->name);
354                 if (len >= 0)
355                         ret += len;
356                 if (ret > PAGE_SIZE) {
357                         ret = PAGE_SIZE;
358                         break;
359                 }
360         }
361
362         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
363
364         kfree(buf);
365
366         return ret;
367 }
368
369 static const struct file_operations platform_list_fops = {
370         .read = platform_list_read_file,
371         .llseek = default_llseek,/* read accesses f_pos */
372 };
373
374 static void soc_init_card_debugfs(struct snd_soc_card *card)
375 {
376         card->debugfs_card_root = debugfs_create_dir(card->name,
377                                                      debugfs_root);
378         if (!card->debugfs_card_root) {
379                 dev_warn(card->dev,
380                          "ASoC: Failed to create codec debugfs directory\n");
381                 return;
382         }
383
384         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
385                                                     card->debugfs_card_root,
386                                                     &card->pop_time);
387         if (!card->debugfs_pop_time)
388                 dev_warn(card->dev,
389                        "Failed to create pop time debugfs file\n");
390 }
391
392 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
393 {
394         debugfs_remove_recursive(card->debugfs_card_root);
395 }
396
397 #else
398
399 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
400 {
401 }
402
403 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
404 {
405 }
406
407 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
408 {
409 }
410
411 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
412 {
413 }
414 #endif
415
416 #ifdef CONFIG_SND_SOC_AC97_BUS
417 /* unregister ac97 codec */
418 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
419 {
420         if (codec->ac97->dev.bus)
421                 device_unregister(&codec->ac97->dev);
422         return 0;
423 }
424
425 /* stop no dev release warning */
426 static void soc_ac97_device_release(struct device *dev){}
427
428 /* register ac97 codec to bus */
429 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
430 {
431         int err;
432
433         codec->ac97->dev.bus = &ac97_bus_type;
434         codec->ac97->dev.parent = codec->card->dev;
435         codec->ac97->dev.release = soc_ac97_device_release;
436
437         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
438                      codec->card->snd_card->number, 0, codec->name);
439         err = device_register(&codec->ac97->dev);
440         if (err < 0) {
441                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
442                 codec->ac97->dev.bus = NULL;
443                 return err;
444         }
445         return 0;
446 }
447 #endif
448
449 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
450 {
451         struct snd_soc_pcm_runtime *rtd = substream->private_data;
452         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
453         struct snd_soc_dai *codec_dai = rtd->codec_dai;
454         int ret;
455
456         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
457                         rtd->dai_link->symmetric_rates) {
458                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
459                                 rtd->rate);
460
461                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
462                                                    SNDRV_PCM_HW_PARAM_RATE,
463                                                    rtd->rate,
464                                                    rtd->rate);
465                 if (ret < 0) {
466                         dev_err(&rtd->dev,
467                                 "Unable to apply rate symmetry constraint: %d\n", ret);
468                         return ret;
469                 }
470         }
471
472         return 0;
473 }
474
475 /*
476  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
477  * then initialized and any private data can be allocated. This also calls
478  * startup for the cpu DAI, platform, machine and codec DAI.
479  */
480 static int soc_pcm_open(struct snd_pcm_substream *substream)
481 {
482         struct snd_soc_pcm_runtime *rtd = substream->private_data;
483         struct snd_pcm_runtime *runtime = substream->runtime;
484         struct snd_soc_platform *platform = rtd->platform;
485         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
486         struct snd_soc_dai *codec_dai = rtd->codec_dai;
487         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
488         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
489         int ret = 0;
490
491         mutex_lock(&pcm_mutex);
492
493         /* startup the audio subsystem */
494         if (cpu_dai->driver->ops->startup) {
495                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
496                 if (ret < 0) {
497                         printk(KERN_ERR "asoc: can't open interface %s\n",
498                                 cpu_dai->name);
499                         goto out;
500                 }
501         }
502
503         if (platform->driver->ops->open) {
504                 ret = platform->driver->ops->open(substream);
505                 if (ret < 0) {
506                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
507                         goto platform_err;
508                 }
509         }
510
511         if (codec_dai->driver->ops->startup) {
512                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
513                 if (ret < 0) {
514                         printk(KERN_ERR "asoc: can't open codec %s\n",
515                                 codec_dai->name);
516                         goto codec_dai_err;
517                 }
518         }
519
520         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
521                 ret = rtd->dai_link->ops->startup(substream);
522                 if (ret < 0) {
523                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
524                         goto machine_err;
525                 }
526         }
527
528         /* Check that the codec and cpu DAIs are compatible */
529         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
530                 runtime->hw.rate_min =
531                         max(codec_dai_drv->playback.rate_min,
532                             cpu_dai_drv->playback.rate_min);
533                 runtime->hw.rate_max =
534                         min(codec_dai_drv->playback.rate_max,
535                             cpu_dai_drv->playback.rate_max);
536                 runtime->hw.channels_min =
537                         max(codec_dai_drv->playback.channels_min,
538                                 cpu_dai_drv->playback.channels_min);
539                 runtime->hw.channels_max =
540                         min(codec_dai_drv->playback.channels_max,
541                                 cpu_dai_drv->playback.channels_max);
542                 runtime->hw.formats =
543                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
544                 runtime->hw.rates =
545                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
546                 if (codec_dai_drv->playback.rates
547                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
548                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
549                 if (cpu_dai_drv->playback.rates
550                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
551                         runtime->hw.rates |= codec_dai_drv->playback.rates;
552         } else {
553                 runtime->hw.rate_min =
554                         max(codec_dai_drv->capture.rate_min,
555                             cpu_dai_drv->capture.rate_min);
556                 runtime->hw.rate_max =
557                         min(codec_dai_drv->capture.rate_max,
558                             cpu_dai_drv->capture.rate_max);
559                 runtime->hw.channels_min =
560                         max(codec_dai_drv->capture.channels_min,
561                                 cpu_dai_drv->capture.channels_min);
562                 runtime->hw.channels_max =
563                         min(codec_dai_drv->capture.channels_max,
564                                 cpu_dai_drv->capture.channels_max);
565                 runtime->hw.formats =
566                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
567                 runtime->hw.rates =
568                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
569                 if (codec_dai_drv->capture.rates
570                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
571                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
572                 if (cpu_dai_drv->capture.rates
573                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
574                         runtime->hw.rates |= codec_dai_drv->capture.rates;
575         }
576
577         snd_pcm_limit_hw_rates(runtime);
578         if (!runtime->hw.rates) {
579                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
580                         codec_dai->name, cpu_dai->name);
581                 goto config_err;
582         }
583         if (!runtime->hw.formats) {
584                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
585                         codec_dai->name, cpu_dai->name);
586                 goto config_err;
587         }
588         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
589                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
590                                 codec_dai->name, cpu_dai->name);
591                 goto config_err;
592         }
593
594         /* Symmetry only applies if we've already got an active stream. */
595         if (cpu_dai->active || codec_dai->active) {
596                 ret = soc_pcm_apply_symmetry(substream);
597                 if (ret != 0)
598                         goto config_err;
599         }
600
601         pr_debug("asoc: %s <-> %s info:\n",
602                         codec_dai->name, cpu_dai->name);
603         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
604         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
605                  runtime->hw.channels_max);
606         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
607                  runtime->hw.rate_max);
608
609         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
610                 cpu_dai->playback_active++;
611                 codec_dai->playback_active++;
612         } else {
613                 cpu_dai->capture_active++;
614                 codec_dai->capture_active++;
615         }
616         cpu_dai->active++;
617         codec_dai->active++;
618         rtd->codec->active++;
619         mutex_unlock(&pcm_mutex);
620         return 0;
621
622 config_err:
623         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
624                 rtd->dai_link->ops->shutdown(substream);
625
626 machine_err:
627         if (codec_dai->driver->ops->shutdown)
628                 codec_dai->driver->ops->shutdown(substream, codec_dai);
629
630 codec_dai_err:
631         if (platform->driver->ops->close)
632                 platform->driver->ops->close(substream);
633
634 platform_err:
635         if (cpu_dai->driver->ops->shutdown)
636                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
637 out:
638         mutex_unlock(&pcm_mutex);
639         return ret;
640 }
641
642 /*
643  * Power down the audio subsystem pmdown_time msecs after close is called.
644  * This is to ensure there are no pops or clicks in between any music tracks
645  * due to DAPM power cycling.
646  */
647 static void close_delayed_work(struct work_struct *work)
648 {
649         struct snd_soc_pcm_runtime *rtd =
650                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
651         struct snd_soc_dai *codec_dai = rtd->codec_dai;
652
653         mutex_lock(&pcm_mutex);
654
655         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
656                  codec_dai->driver->playback.stream_name,
657                  codec_dai->playback_active ? "active" : "inactive",
658                  codec_dai->pop_wait ? "yes" : "no");
659
660         /* are we waiting on this codec DAI stream */
661         if (codec_dai->pop_wait == 1) {
662                 codec_dai->pop_wait = 0;
663                 snd_soc_dapm_stream_event(rtd,
664                         codec_dai->driver->playback.stream_name,
665                         SND_SOC_DAPM_STREAM_STOP);
666         }
667
668         mutex_unlock(&pcm_mutex);
669 }
670
671 /*
672  * Called by ALSA when a PCM substream is closed. Private data can be
673  * freed here. The cpu DAI, codec DAI, machine and platform are also
674  * shutdown.
675  */
676 static int soc_codec_close(struct snd_pcm_substream *substream)
677 {
678         struct snd_soc_pcm_runtime *rtd = substream->private_data;
679         struct snd_soc_platform *platform = rtd->platform;
680         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
681         struct snd_soc_dai *codec_dai = rtd->codec_dai;
682         struct snd_soc_codec *codec = rtd->codec;
683
684         mutex_lock(&pcm_mutex);
685
686         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
687                 cpu_dai->playback_active--;
688                 codec_dai->playback_active--;
689         } else {
690                 cpu_dai->capture_active--;
691                 codec_dai->capture_active--;
692         }
693
694         cpu_dai->active--;
695         codec_dai->active--;
696         codec->active--;
697
698         /* Muting the DAC suppresses artifacts caused during digital
699          * shutdown, for example from stopping clocks.
700          */
701         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
702                 snd_soc_dai_digital_mute(codec_dai, 1);
703
704         if (cpu_dai->driver->ops->shutdown)
705                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
706
707         if (codec_dai->driver->ops->shutdown)
708                 codec_dai->driver->ops->shutdown(substream, codec_dai);
709
710         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
711                 rtd->dai_link->ops->shutdown(substream);
712
713         if (platform->driver->ops->close)
714                 platform->driver->ops->close(substream);
715         cpu_dai->runtime = NULL;
716
717         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
718                 /* start delayed pop wq here for playback streams */
719                 codec_dai->pop_wait = 1;
720                 schedule_delayed_work(&rtd->delayed_work,
721                         msecs_to_jiffies(rtd->pmdown_time));
722         } else {
723                 /* capture streams can be powered down now */
724                 snd_soc_dapm_stream_event(rtd,
725                         codec_dai->driver->capture.stream_name,
726                         SND_SOC_DAPM_STREAM_STOP);
727         }
728
729         mutex_unlock(&pcm_mutex);
730         return 0;
731 }
732
733 /*
734  * Called by ALSA when the PCM substream is prepared, can set format, sample
735  * rate, etc.  This function is non atomic and can be called multiple times,
736  * it can refer to the runtime info.
737  */
738 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
739 {
740         struct snd_soc_pcm_runtime *rtd = substream->private_data;
741         struct snd_soc_platform *platform = rtd->platform;
742         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
743         struct snd_soc_dai *codec_dai = rtd->codec_dai;
744         int ret = 0;
745
746         mutex_lock(&pcm_mutex);
747
748         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
749                 ret = rtd->dai_link->ops->prepare(substream);
750                 if (ret < 0) {
751                         printk(KERN_ERR "asoc: machine prepare error\n");
752                         goto out;
753                 }
754         }
755
756         if (platform->driver->ops->prepare) {
757                 ret = platform->driver->ops->prepare(substream);
758                 if (ret < 0) {
759                         printk(KERN_ERR "asoc: platform prepare error\n");
760                         goto out;
761                 }
762         }
763
764         if (codec_dai->driver->ops->prepare) {
765                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
766                 if (ret < 0) {
767                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
768                         goto out;
769                 }
770         }
771
772         if (cpu_dai->driver->ops->prepare) {
773                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
774                 if (ret < 0) {
775                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
776                         goto out;
777                 }
778         }
779
780         /* cancel any delayed stream shutdown that is pending */
781         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
782             codec_dai->pop_wait) {
783                 codec_dai->pop_wait = 0;
784                 cancel_delayed_work(&rtd->delayed_work);
785         }
786
787         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
788                 snd_soc_dapm_stream_event(rtd,
789                                           codec_dai->driver->playback.stream_name,
790                                           SND_SOC_DAPM_STREAM_START);
791         else
792                 snd_soc_dapm_stream_event(rtd,
793                                           codec_dai->driver->capture.stream_name,
794                                           SND_SOC_DAPM_STREAM_START);
795
796         snd_soc_dai_digital_mute(codec_dai, 0);
797
798 out:
799         mutex_unlock(&pcm_mutex);
800         return ret;
801 }
802
803 /*
804  * Called by ALSA when the hardware params are set by application. This
805  * function can also be called multiple times and can allocate buffers
806  * (using snd_pcm_lib_* ). It's non-atomic.
807  */
808 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
809                                 struct snd_pcm_hw_params *params)
810 {
811         struct snd_soc_pcm_runtime *rtd = substream->private_data;
812         struct snd_soc_platform *platform = rtd->platform;
813         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
814         struct snd_soc_dai *codec_dai = rtd->codec_dai;
815         int ret = 0;
816
817         mutex_lock(&pcm_mutex);
818
819         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
820                 ret = rtd->dai_link->ops->hw_params(substream, params);
821                 if (ret < 0) {
822                         printk(KERN_ERR "asoc: machine hw_params failed\n");
823                         goto out;
824                 }
825         }
826
827         if (codec_dai->driver->ops->hw_params) {
828                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
829                 if (ret < 0) {
830                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
831                                 codec_dai->name);
832                         goto codec_err;
833                 }
834         }
835
836         if (cpu_dai->driver->ops->hw_params) {
837                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
838                 if (ret < 0) {
839                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
840                                 cpu_dai->name);
841                         goto interface_err;
842                 }
843         }
844
845         if (platform->driver->ops->hw_params) {
846                 ret = platform->driver->ops->hw_params(substream, params);
847                 if (ret < 0) {
848                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
849                                 platform->name);
850                         goto platform_err;
851                 }
852         }
853
854         rtd->rate = params_rate(params);
855
856 out:
857         mutex_unlock(&pcm_mutex);
858         return ret;
859
860 platform_err:
861         if (cpu_dai->driver->ops->hw_free)
862                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
863
864 interface_err:
865         if (codec_dai->driver->ops->hw_free)
866                 codec_dai->driver->ops->hw_free(substream, codec_dai);
867
868 codec_err:
869         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
870                 rtd->dai_link->ops->hw_free(substream);
871
872         mutex_unlock(&pcm_mutex);
873         return ret;
874 }
875
876 /*
877  * Frees resources allocated by hw_params, can be called multiple times
878  */
879 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
880 {
881         struct snd_soc_pcm_runtime *rtd = substream->private_data;
882         struct snd_soc_platform *platform = rtd->platform;
883         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
884         struct snd_soc_dai *codec_dai = rtd->codec_dai;
885         struct snd_soc_codec *codec = rtd->codec;
886
887         mutex_lock(&pcm_mutex);
888
889         /* apply codec digital mute */
890         if (!codec->active)
891                 snd_soc_dai_digital_mute(codec_dai, 1);
892
893         /* free any machine hw params */
894         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
895                 rtd->dai_link->ops->hw_free(substream);
896
897         /* free any DMA resources */
898         if (platform->driver->ops->hw_free)
899                 platform->driver->ops->hw_free(substream);
900
901         /* now free hw params for the DAIs  */
902         if (codec_dai->driver->ops->hw_free)
903                 codec_dai->driver->ops->hw_free(substream, codec_dai);
904
905         if (cpu_dai->driver->ops->hw_free)
906                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
907
908         mutex_unlock(&pcm_mutex);
909         return 0;
910 }
911
912 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
913 {
914         struct snd_soc_pcm_runtime *rtd = substream->private_data;
915         struct snd_soc_platform *platform = rtd->platform;
916         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
917         struct snd_soc_dai *codec_dai = rtd->codec_dai;
918         int ret;
919
920         if (codec_dai->driver->ops->trigger) {
921                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
922                 if (ret < 0)
923                         return ret;
924         }
925
926         if (platform->driver->ops->trigger) {
927                 ret = platform->driver->ops->trigger(substream, cmd);
928                 if (ret < 0)
929                         return ret;
930         }
931
932         if (cpu_dai->driver->ops->trigger) {
933                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
934                 if (ret < 0)
935                         return ret;
936         }
937         return 0;
938 }
939
940 /*
941  * soc level wrapper for pointer callback
942  * If cpu_dai, codec_dai, platform driver has the delay callback, than
943  * the runtime->delay will be updated accordingly.
944  */
945 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
946 {
947         struct snd_soc_pcm_runtime *rtd = substream->private_data;
948         struct snd_soc_platform *platform = rtd->platform;
949         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
950         struct snd_soc_dai *codec_dai = rtd->codec_dai;
951         struct snd_pcm_runtime *runtime = substream->runtime;
952         snd_pcm_uframes_t offset = 0;
953         snd_pcm_sframes_t delay = 0;
954
955         if (platform->driver->ops->pointer)
956                 offset = platform->driver->ops->pointer(substream);
957
958         if (cpu_dai->driver->ops->delay)
959                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
960
961         if (codec_dai->driver->ops->delay)
962                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
963
964         if (platform->driver->delay)
965                 delay += platform->driver->delay(substream, codec_dai);
966
967         runtime->delay = delay;
968
969         return offset;
970 }
971
972 /* ASoC PCM operations */
973 static struct snd_pcm_ops soc_pcm_ops = {
974         .open           = soc_pcm_open,
975         .close          = soc_codec_close,
976         .hw_params      = soc_pcm_hw_params,
977         .hw_free        = soc_pcm_hw_free,
978         .prepare        = soc_pcm_prepare,
979         .trigger        = soc_pcm_trigger,
980         .pointer        = soc_pcm_pointer,
981 };
982
983 #ifdef CONFIG_PM
984 /* powers down audio subsystem for suspend */
985 static int soc_suspend(struct device *dev)
986 {
987         struct platform_device *pdev = to_platform_device(dev);
988         struct snd_soc_card *card = platform_get_drvdata(pdev);
989         struct snd_soc_codec *codec;
990         int i;
991
992         /* If the initialization of this soc device failed, there is no codec
993          * associated with it. Just bail out in this case.
994          */
995         if (list_empty(&card->codec_dev_list))
996                 return 0;
997
998         /* Due to the resume being scheduled into a workqueue we could
999         * suspend before that's finished - wait for it to complete.
1000          */
1001         snd_power_lock(card->snd_card);
1002         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1003         snd_power_unlock(card->snd_card);
1004
1005         /* we're going to block userspace touching us until resume completes */
1006         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1007
1008         /* mute any active DACs */
1009         for (i = 0; i < card->num_rtd; i++) {
1010                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1011                 struct snd_soc_dai_driver *drv = dai->driver;
1012
1013                 if (card->rtd[i].dai_link->ignore_suspend)
1014                         continue;
1015
1016                 if (drv->ops->digital_mute && dai->playback_active)
1017                         drv->ops->digital_mute(dai, 1);
1018         }
1019
1020         /* suspend all pcms */
1021         for (i = 0; i < card->num_rtd; i++) {
1022                 if (card->rtd[i].dai_link->ignore_suspend)
1023                         continue;
1024
1025                 snd_pcm_suspend_all(card->rtd[i].pcm);
1026         }
1027
1028         if (card->suspend_pre)
1029                 card->suspend_pre(pdev, PMSG_SUSPEND);
1030
1031         for (i = 0; i < card->num_rtd; i++) {
1032                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1033                 struct snd_soc_platform *platform = card->rtd[i].platform;
1034
1035                 if (card->rtd[i].dai_link->ignore_suspend)
1036                         continue;
1037
1038                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1039                         cpu_dai->driver->suspend(cpu_dai);
1040                 if (platform->driver->suspend && !platform->suspended) {
1041                         platform->driver->suspend(cpu_dai);
1042                         platform->suspended = 1;
1043                 }
1044         }
1045
1046         /* close any waiting streams and save state */
1047         for (i = 0; i < card->num_rtd; i++) {
1048                 run_delayed_work(&card->rtd[i].delayed_work);
1049                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1050         }
1051
1052         for (i = 0; i < card->num_rtd; i++) {
1053                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1054
1055                 if (card->rtd[i].dai_link->ignore_suspend)
1056                         continue;
1057
1058                 if (driver->playback.stream_name != NULL)
1059                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1060                                 SND_SOC_DAPM_STREAM_SUSPEND);
1061
1062                 if (driver->capture.stream_name != NULL)
1063                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1064                                 SND_SOC_DAPM_STREAM_SUSPEND);
1065         }
1066
1067         /* suspend all CODECs */
1068         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1069                 /* If there are paths active then the CODEC will be held with
1070                  * bias _ON and should not be suspended. */
1071                 if (!codec->suspended && codec->driver->suspend) {
1072                         switch (codec->dapm.bias_level) {
1073                         case SND_SOC_BIAS_STANDBY:
1074                         case SND_SOC_BIAS_OFF:
1075                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1076                                 codec->suspended = 1;
1077                                 break;
1078                         default:
1079                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1080                                 break;
1081                         }
1082                 }
1083         }
1084
1085         for (i = 0; i < card->num_rtd; i++) {
1086                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1087
1088                 if (card->rtd[i].dai_link->ignore_suspend)
1089                         continue;
1090
1091                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1092                         cpu_dai->driver->suspend(cpu_dai);
1093         }
1094
1095         if (card->suspend_post)
1096                 card->suspend_post(pdev, PMSG_SUSPEND);
1097
1098         return 0;
1099 }
1100
1101 /* deferred resume work, so resume can complete before we finished
1102  * setting our codec back up, which can be very slow on I2C
1103  */
1104 static void soc_resume_deferred(struct work_struct *work)
1105 {
1106         struct snd_soc_card *card =
1107                         container_of(work, struct snd_soc_card, deferred_resume_work);
1108         struct platform_device *pdev = to_platform_device(card->dev);
1109         struct snd_soc_codec *codec;
1110         int i;
1111
1112         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1113          * so userspace apps are blocked from touching us
1114          */
1115
1116         dev_dbg(card->dev, "starting resume work\n");
1117
1118         /* Bring us up into D2 so that DAPM starts enabling things */
1119         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1120
1121         if (card->resume_pre)
1122                 card->resume_pre(pdev);
1123
1124         /* resume AC97 DAIs */
1125         for (i = 0; i < card->num_rtd; i++) {
1126                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1127
1128                 if (card->rtd[i].dai_link->ignore_suspend)
1129                         continue;
1130
1131                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1132                         cpu_dai->driver->resume(cpu_dai);
1133         }
1134
1135         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1136                 /* If the CODEC was idle over suspend then it will have been
1137                  * left with bias OFF or STANDBY and suspended so we must now
1138                  * resume.  Otherwise the suspend was suppressed.
1139                  */
1140                 if (codec->driver->resume && codec->suspended) {
1141                         switch (codec->dapm.bias_level) {
1142                         case SND_SOC_BIAS_STANDBY:
1143                         case SND_SOC_BIAS_OFF:
1144                                 codec->driver->resume(codec);
1145                                 codec->suspended = 0;
1146                                 break;
1147                         default:
1148                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1149                                 break;
1150                         }
1151                 }
1152         }
1153
1154         for (i = 0; i < card->num_rtd; i++) {
1155                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1156
1157                 if (card->rtd[i].dai_link->ignore_suspend)
1158                         continue;
1159
1160                 if (driver->playback.stream_name != NULL)
1161                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1162                                 SND_SOC_DAPM_STREAM_RESUME);
1163
1164                 if (driver->capture.stream_name != NULL)
1165                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1166                                 SND_SOC_DAPM_STREAM_RESUME);
1167         }
1168
1169         /* unmute any active DACs */
1170         for (i = 0; i < card->num_rtd; i++) {
1171                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1172                 struct snd_soc_dai_driver *drv = dai->driver;
1173
1174                 if (card->rtd[i].dai_link->ignore_suspend)
1175                         continue;
1176
1177                 if (drv->ops->digital_mute && dai->playback_active)
1178                         drv->ops->digital_mute(dai, 0);
1179         }
1180
1181         for (i = 0; i < card->num_rtd; i++) {
1182                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1183                 struct snd_soc_platform *platform = card->rtd[i].platform;
1184
1185                 if (card->rtd[i].dai_link->ignore_suspend)
1186                         continue;
1187
1188                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1189                         cpu_dai->driver->resume(cpu_dai);
1190                 if (platform->driver->resume && platform->suspended) {
1191                         platform->driver->resume(cpu_dai);
1192                         platform->suspended = 0;
1193                 }
1194         }
1195
1196         if (card->resume_post)
1197                 card->resume_post(pdev);
1198
1199         dev_dbg(card->dev, "resume work completed\n");
1200
1201         /* userspace can access us now we are back as we were before */
1202         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1203 }
1204
1205 /* powers up audio subsystem after a suspend */
1206 static int soc_resume(struct device *dev)
1207 {
1208         struct platform_device *pdev = to_platform_device(dev);
1209         struct snd_soc_card *card = platform_get_drvdata(pdev);
1210         int i;
1211
1212         /* AC97 devices might have other drivers hanging off them so
1213          * need to resume immediately.  Other drivers don't have that
1214          * problem and may take a substantial amount of time to resume
1215          * due to I/O costs and anti-pop so handle them out of line.
1216          */
1217         for (i = 0; i < card->num_rtd; i++) {
1218                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1219                 if (cpu_dai->driver->ac97_control) {
1220                         dev_dbg(dev, "Resuming AC97 immediately\n");
1221                         soc_resume_deferred(&card->deferred_resume_work);
1222                 } else {
1223                         dev_dbg(dev, "Scheduling resume work\n");
1224                         if (!schedule_work(&card->deferred_resume_work))
1225                                 dev_err(dev, "resume work item may be lost\n");
1226                 }
1227         }
1228
1229         return 0;
1230 }
1231 #else
1232 #define soc_suspend     NULL
1233 #define soc_resume      NULL
1234 #endif
1235
1236 static struct snd_soc_dai_ops null_dai_ops = {
1237 };
1238
1239 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1240 {
1241         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1242         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1243         struct snd_soc_codec *codec;
1244         struct snd_soc_platform *platform;
1245         struct snd_soc_dai *codec_dai, *cpu_dai;
1246
1247         if (rtd->complete)
1248                 return 1;
1249         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1250
1251         /* do we already have the CPU DAI for this link ? */
1252         if (rtd->cpu_dai) {
1253                 goto find_codec;
1254         }
1255         /* no, then find CPU DAI from registered DAIs*/
1256         list_for_each_entry(cpu_dai, &dai_list, list) {
1257                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1258
1259                         if (!try_module_get(cpu_dai->dev->driver->owner))
1260                                 return -ENODEV;
1261
1262                         rtd->cpu_dai = cpu_dai;
1263                         goto find_codec;
1264                 }
1265         }
1266         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1267                         dai_link->cpu_dai_name);
1268
1269 find_codec:
1270         /* do we already have the CODEC for this link ? */
1271         if (rtd->codec) {
1272                 goto find_platform;
1273         }
1274
1275         /* no, then find CODEC from registered CODECs*/
1276         list_for_each_entry(codec, &codec_list, list) {
1277                 if (!strcmp(codec->name, dai_link->codec_name)) {
1278                         rtd->codec = codec;
1279
1280                         if (!try_module_get(codec->dev->driver->owner))
1281                                 return -ENODEV;
1282
1283                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1284                         list_for_each_entry(codec_dai, &dai_list, list) {
1285                                 if (codec->dev == codec_dai->dev &&
1286                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1287                                         rtd->codec_dai = codec_dai;
1288                                         goto find_platform;
1289                                 }
1290                         }
1291                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1292                                         dai_link->codec_dai_name);
1293
1294                         goto find_platform;
1295                 }
1296         }
1297         dev_dbg(card->dev, "CODEC %s not registered\n",
1298                         dai_link->codec_name);
1299
1300 find_platform:
1301         /* do we already have the CODEC DAI for this link ? */
1302         if (rtd->platform) {
1303                 goto out;
1304         }
1305         /* no, then find CPU DAI from registered DAIs*/
1306         list_for_each_entry(platform, &platform_list, list) {
1307                 if (!strcmp(platform->name, dai_link->platform_name)) {
1308
1309                         if (!try_module_get(platform->dev->driver->owner))
1310                                 return -ENODEV;
1311
1312                         rtd->platform = platform;
1313                         goto out;
1314                 }
1315         }
1316
1317         dev_dbg(card->dev, "platform %s not registered\n",
1318                         dai_link->platform_name);
1319         return 0;
1320
1321 out:
1322         /* mark rtd as complete if we found all 4 of our client devices */
1323         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1324                 rtd->complete = 1;
1325                 card->num_rtd++;
1326         }
1327         return 1;
1328 }
1329
1330 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1331 {
1332         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1333         struct snd_soc_codec *codec = rtd->codec;
1334         struct snd_soc_platform *platform = rtd->platform;
1335         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1336         int err;
1337
1338         /* unregister the rtd device */
1339         if (rtd->dev_registered) {
1340                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1341                 device_unregister(&rtd->dev);
1342                 rtd->dev_registered = 0;
1343         }
1344
1345         /* remove the CODEC DAI */
1346         if (codec_dai && codec_dai->probed) {
1347                 if (codec_dai->driver->remove) {
1348                         err = codec_dai->driver->remove(codec_dai);
1349                         if (err < 0)
1350                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1351                 }
1352                 codec_dai->probed = 0;
1353                 list_del(&codec_dai->card_list);
1354         }
1355
1356         /* remove the platform */
1357         if (platform && platform->probed) {
1358                 if (platform->driver->remove) {
1359                         err = platform->driver->remove(platform);
1360                         if (err < 0)
1361                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1362                 }
1363                 platform->probed = 0;
1364                 list_del(&platform->card_list);
1365                 module_put(platform->dev->driver->owner);
1366         }
1367
1368         /* remove the CODEC */
1369         if (codec && codec->probed) {
1370                 if (codec->driver->remove) {
1371                         err = codec->driver->remove(codec);
1372                         if (err < 0)
1373                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1374                 }
1375
1376                 /* Make sure all DAPM widgets are freed */
1377                 snd_soc_dapm_free(&codec->dapm);
1378
1379                 soc_cleanup_codec_debugfs(codec);
1380                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1381                 codec->probed = 0;
1382                 list_del(&codec->card_list);
1383                 module_put(codec->dev->driver->owner);
1384         }
1385
1386         /* remove the cpu_dai */
1387         if (cpu_dai && cpu_dai->probed) {
1388                 if (cpu_dai->driver->remove) {
1389                         err = cpu_dai->driver->remove(cpu_dai);
1390                         if (err < 0)
1391                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1392                 }
1393                 cpu_dai->probed = 0;
1394                 list_del(&cpu_dai->card_list);
1395                 module_put(cpu_dai->dev->driver->owner);
1396         }
1397 }
1398
1399 static void soc_set_name_prefix(struct snd_soc_card *card,
1400                                 struct snd_soc_codec *codec)
1401 {
1402         int i;
1403
1404         if (card->codec_conf == NULL)
1405                 return;
1406
1407         for (i = 0; i < card->num_configs; i++) {
1408                 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1409                 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1410                         codec->name_prefix = map->name_prefix;
1411                         break;
1412                 }
1413         }
1414 }
1415
1416 static void rtd_release(struct device *dev) {}
1417
1418 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1419 {
1420         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1421         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1422         struct snd_soc_codec *codec = rtd->codec;
1423         struct snd_soc_platform *platform = rtd->platform;
1424         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1425         const char *temp;
1426         int ret;
1427
1428         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1429
1430         /* config components */
1431         codec_dai->codec = codec;
1432         codec->card = card;
1433         cpu_dai->platform = platform;
1434         rtd->card = card;
1435         rtd->dev.parent = card->dev;
1436         codec_dai->card = card;
1437         cpu_dai->card = card;
1438
1439         /* set default power off timeout */
1440         rtd->pmdown_time = pmdown_time;
1441
1442         /* probe the cpu_dai */
1443         if (!cpu_dai->probed) {
1444                 if (cpu_dai->driver->probe) {
1445                         ret = cpu_dai->driver->probe(cpu_dai);
1446                         if (ret < 0) {
1447                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1448                                                 cpu_dai->name);
1449                                 return ret;
1450                         }
1451                 }
1452                 cpu_dai->probed = 1;
1453                 /* mark cpu_dai as probed and add to card cpu_dai list */
1454                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1455         }
1456
1457         /* probe the CODEC */
1458         if (!codec->probed) {
1459                 codec->dapm.card = card;
1460                 soc_set_name_prefix(card, codec);
1461                 if (codec->driver->probe) {
1462                         ret = codec->driver->probe(codec);
1463                         if (ret < 0) {
1464                                 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1465                                                 codec->name);
1466                                 return ret;
1467                         }
1468                 }
1469
1470                 soc_init_codec_debugfs(codec);
1471
1472                 /* mark codec as probed and add to card codec list */
1473                 codec->probed = 1;
1474                 list_add(&codec->card_list, &card->codec_dev_list);
1475         }
1476
1477         /* probe the platform */
1478         if (!platform->probed) {
1479                 if (platform->driver->probe) {
1480                         ret = platform->driver->probe(platform);
1481                         if (ret < 0) {
1482                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1483                                                 platform->name);
1484                                 return ret;
1485                         }
1486                 }
1487                 /* mark platform as probed and add to card platform list */
1488                 platform->probed = 1;
1489                 list_add(&platform->card_list, &card->platform_dev_list);
1490         }
1491
1492         /* probe the CODEC DAI */
1493         if (!codec_dai->probed) {
1494                 if (codec_dai->driver->probe) {
1495                         ret = codec_dai->driver->probe(codec_dai);
1496                         if (ret < 0) {
1497                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1498                                                 codec_dai->name);
1499                                 return ret;
1500                         }
1501                 }
1502
1503                 /* mark cpu_dai as probed and add to card cpu_dai list */
1504                 codec_dai->probed = 1;
1505                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1506         }
1507
1508         /* DAPM dai link stream work */
1509         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1510
1511         /* now that all clients have probed, initialise the DAI link */
1512         if (dai_link->init) {
1513                 /* machine controls, routes and widgets are not prefixed */
1514                 temp = rtd->codec->name_prefix;
1515                 rtd->codec->name_prefix = NULL;
1516                 ret = dai_link->init(rtd);
1517                 if (ret < 0) {
1518                         printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1519                         return ret;
1520                 }
1521                 rtd->codec->name_prefix = temp;
1522         }
1523
1524         /* Make sure all DAPM widgets are instantiated */
1525         snd_soc_dapm_new_widgets(&codec->dapm);
1526         snd_soc_dapm_sync(&codec->dapm);
1527
1528         /* register the rtd device */
1529         rtd->dev.release = rtd_release;
1530         rtd->dev.init_name = dai_link->name;
1531         ret = device_register(&rtd->dev);
1532         if (ret < 0) {
1533                 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1534                 return ret;
1535         }
1536
1537         rtd->dev_registered = 1;
1538         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1539         if (ret < 0)
1540                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1541
1542         /* add DAPM sysfs entries for this codec */
1543         ret = snd_soc_dapm_sys_add(&rtd->dev);
1544         if (ret < 0)
1545                 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1546
1547         /* add codec sysfs entries */
1548         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1549         if (ret < 0)
1550                 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1551
1552         /* create the pcm */
1553         ret = soc_new_pcm(rtd, num);
1554         if (ret < 0) {
1555                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1556                 return ret;
1557         }
1558
1559         /* add platform data for AC97 devices */
1560         if (rtd->codec_dai->driver->ac97_control)
1561                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1562
1563         return 0;
1564 }
1565
1566 #ifdef CONFIG_SND_SOC_AC97_BUS
1567 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1568 {
1569         int ret;
1570
1571         /* Only instantiate AC97 if not already done by the adaptor
1572          * for the generic AC97 subsystem.
1573          */
1574         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1575                 /*
1576                  * It is possible that the AC97 device is already registered to
1577                  * the device subsystem. This happens when the device is created
1578                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1579                  * is the generic AC97 glue but others migh emerge.
1580                  *
1581                  * In those cases we don't try to register the device again.
1582                  */
1583                 if (!rtd->codec->ac97_created)
1584                         return 0;
1585
1586                 ret = soc_ac97_dev_register(rtd->codec);
1587                 if (ret < 0) {
1588                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1589                         return ret;
1590                 }
1591
1592                 rtd->codec->ac97_registered = 1;
1593         }
1594         return 0;
1595 }
1596
1597 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1598 {
1599         if (codec->ac97_registered) {
1600                 soc_ac97_dev_unregister(codec);
1601                 codec->ac97_registered = 0;
1602         }
1603 }
1604 #endif
1605
1606 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1607 {
1608         struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1609         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1610         struct snd_soc_codec *codec;
1611         const char *temp;
1612         int ret = -ENODEV;
1613
1614         /* find CODEC from registered CODECs*/
1615         list_for_each_entry(codec, &codec_list, list) {
1616                 if (!strcmp(codec->name, aux_dev->codec_name)) {
1617                         if (codec->probed) {
1618                                 dev_err(codec->dev,
1619                                         "asoc: codec already probed");
1620                                 ret = -EBUSY;
1621                                 goto out;
1622                         }
1623                         goto found;
1624                 }
1625         }
1626         /* codec not found */
1627         dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1628         goto out;
1629
1630 found:
1631         if (!try_module_get(codec->dev->driver->owner))
1632                 return -ENODEV;
1633
1634         codec->card = card;
1635         codec->dapm.card = card;
1636
1637         soc_set_name_prefix(card, codec);
1638         if (codec->driver->probe) {
1639                 ret = codec->driver->probe(codec);
1640                 if (ret < 0) {
1641                         dev_err(codec->dev, "asoc: failed to probe CODEC");
1642                         return ret;
1643                 }
1644         }
1645
1646         soc_init_codec_debugfs(codec);
1647
1648         /* mark codec as probed and add to card codec list */
1649         codec->probed = 1;
1650         list_add(&codec->card_list, &card->codec_dev_list);
1651
1652         /* now that all clients have probed, initialise the DAI link */
1653         if (aux_dev->init) {
1654                 /* machine controls, routes and widgets are not prefixed */
1655                 temp = codec->name_prefix;
1656                 codec->name_prefix = NULL;
1657                 ret = aux_dev->init(&codec->dapm);
1658                 if (ret < 0) {
1659                         dev_err(codec->dev,
1660                                 "asoc: failed to init %s\n", aux_dev->name);
1661                         return ret;
1662                 }
1663                 codec->name_prefix = temp;
1664         }
1665
1666         /* Make sure all DAPM widgets are instantiated */
1667         snd_soc_dapm_new_widgets(&codec->dapm);
1668         snd_soc_dapm_sync(&codec->dapm);
1669
1670         /* register the rtd device */
1671         rtd->codec = codec;
1672         rtd->card = card;
1673         rtd->dev.parent = card->dev;
1674         rtd->dev.release = rtd_release;
1675         rtd->dev.init_name = aux_dev->name;
1676         ret = device_register(&rtd->dev);
1677         if (ret < 0) {
1678                 dev_err(codec->dev,
1679                         "asoc: failed to register aux runtime device %d\n",
1680                         ret);
1681                 return ret;
1682         }
1683         rtd->dev_registered = 1;
1684
1685         /* add DAPM sysfs entries for this codec */
1686         ret = snd_soc_dapm_sys_add(&rtd->dev);
1687         if (ret < 0)
1688                 dev_err(codec->dev,
1689                         "asoc: failed to add codec dapm sysfs entries\n");
1690
1691         /* add codec sysfs entries */
1692         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1693         if (ret < 0)
1694                 dev_err(codec->dev, "asoc: failed to add codec sysfs files\n");
1695
1696 out:
1697         return ret;
1698 }
1699
1700 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1701 {
1702         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1703         struct snd_soc_codec *codec = rtd->codec;
1704         int err;
1705
1706         /* unregister the rtd device */
1707         if (rtd->dev_registered) {
1708                 device_unregister(&rtd->dev);
1709                 rtd->dev_registered = 0;
1710         }
1711
1712         /* remove the CODEC */
1713         if (codec && codec->probed) {
1714                 if (codec->driver->remove) {
1715                         err = codec->driver->remove(codec);
1716                         if (err < 0)
1717                                 dev_err(codec->dev,
1718                                         "asoc: failed to remove %s\n",
1719                                         codec->name);
1720                 }
1721
1722                 /* Make sure all DAPM widgets are freed */
1723                 snd_soc_dapm_free(&codec->dapm);
1724
1725                 soc_cleanup_codec_debugfs(codec);
1726                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1727                 codec->probed = 0;
1728                 list_del(&codec->card_list);
1729                 module_put(codec->dev->driver->owner);
1730         }
1731 }
1732
1733 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1734                                     enum snd_soc_compress_type compress_type)
1735 {
1736         int ret;
1737
1738         if (codec->cache_init)
1739                 return 0;
1740
1741         /* override the compress_type if necessary */
1742         if (compress_type && codec->compress_type != compress_type)
1743                 codec->compress_type = compress_type;
1744         dev_dbg(codec->dev, "Cache compress_type for %s is %d\n",
1745                 codec->name, codec->compress_type);
1746         ret = snd_soc_cache_init(codec);
1747         if (ret < 0) {
1748                 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1749                         ret);
1750                 return ret;
1751         }
1752         codec->cache_init = 1;
1753         return 0;
1754 }
1755
1756
1757 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1758 {
1759         struct platform_device *pdev = to_platform_device(card->dev);
1760         struct snd_soc_codec *codec;
1761         struct snd_soc_codec_conf *codec_conf;
1762         enum snd_soc_compress_type compress_type;
1763         int ret, i;
1764
1765         mutex_lock(&card->mutex);
1766
1767         if (card->instantiated) {
1768                 mutex_unlock(&card->mutex);
1769                 return;
1770         }
1771
1772         /* bind DAIs */
1773         for (i = 0; i < card->num_links; i++)
1774                 soc_bind_dai_link(card, i);
1775
1776         /* bind completed ? */
1777         if (card->num_rtd != card->num_links) {
1778                 mutex_unlock(&card->mutex);
1779                 return;
1780         }
1781
1782         /* initialize the register cache for each available codec */
1783         list_for_each_entry(codec, &codec_list, list) {
1784                 if (codec->cache_init)
1785                         continue;
1786                 /* check to see if we need to override the compress_type */
1787                 for (i = 0; i < card->num_configs; ++i) {
1788                         codec_conf = &card->codec_conf[i];
1789                         if (!strcmp(codec->name, codec_conf->dev_name)) {
1790                                 compress_type = codec_conf->compress_type;
1791                                 if (compress_type && compress_type
1792                                     != codec->compress_type)
1793                                         break;
1794                         }
1795                 }
1796                 if (i == card->num_configs) {
1797                         /* no need to override the compress_type so
1798                          * go ahead and do the standard thing */
1799                         ret = snd_soc_init_codec_cache(codec, 0);
1800                         if (ret < 0) {
1801                                 mutex_unlock(&card->mutex);
1802                                 return;
1803                         }
1804                         continue;
1805                 }
1806                 /* override the compress_type with the one supplied in
1807                  * the machine driver */
1808                 ret = snd_soc_init_codec_cache(codec, compress_type);
1809                 if (ret < 0) {
1810                         mutex_unlock(&card->mutex);
1811                         return;
1812                 }
1813         }
1814
1815         /* card bind complete so register a sound card */
1816         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1817                         card->owner, 0, &card->snd_card);
1818         if (ret < 0) {
1819                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1820                         card->name);
1821                 mutex_unlock(&card->mutex);
1822                 return;
1823         }
1824         card->snd_card->dev = card->dev;
1825
1826 #ifdef CONFIG_PM
1827         /* deferred resume work */
1828         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1829 #endif
1830
1831         /* initialise the sound card only once */
1832         if (card->probe) {
1833                 ret = card->probe(pdev);
1834                 if (ret < 0)
1835                         goto card_probe_error;
1836         }
1837
1838         for (i = 0; i < card->num_links; i++) {
1839                 ret = soc_probe_dai_link(card, i);
1840                 if (ret < 0) {
1841                         pr_err("asoc: failed to instantiate card %s: %d\n",
1842                                card->name, ret);
1843                         goto probe_dai_err;
1844                 }
1845         }
1846
1847         for (i = 0; i < card->num_aux_devs; i++) {
1848                 ret = soc_probe_aux_dev(card, i);
1849                 if (ret < 0) {
1850                         pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1851                                card->name, ret);
1852                         goto probe_aux_dev_err;
1853                 }
1854         }
1855
1856         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1857                  "%s",  card->name);
1858         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1859                  "%s", card->name);
1860
1861         ret = snd_card_register(card->snd_card);
1862         if (ret < 0) {
1863                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1864                 goto probe_dai_err;
1865         }
1866
1867 #ifdef CONFIG_SND_SOC_AC97_BUS
1868         /* register any AC97 codecs */
1869         for (i = 0; i < card->num_rtd; i++) {
1870                         ret = soc_register_ac97_dai_link(&card->rtd[i]);
1871                         if (ret < 0) {
1872                                 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1873                                 goto probe_dai_err;
1874                         }
1875                 }
1876 #endif
1877
1878         card->instantiated = 1;
1879         mutex_unlock(&card->mutex);
1880         return;
1881
1882 probe_aux_dev_err:
1883         for (i = 0; i < card->num_aux_devs; i++)
1884                 soc_remove_aux_dev(card, i);
1885
1886 probe_dai_err:
1887         for (i = 0; i < card->num_links; i++)
1888                 soc_remove_dai_link(card, i);
1889
1890 card_probe_error:
1891         if (card->remove)
1892                 card->remove(pdev);
1893
1894         snd_card_free(card->snd_card);
1895
1896         mutex_unlock(&card->mutex);
1897 }
1898
1899 /*
1900  * Attempt to initialise any uninitialised cards.  Must be called with
1901  * client_mutex.
1902  */
1903 static void snd_soc_instantiate_cards(void)
1904 {
1905         struct snd_soc_card *card;
1906         list_for_each_entry(card, &card_list, list)
1907                 snd_soc_instantiate_card(card);
1908 }
1909
1910 /* probes a new socdev */
1911 static int soc_probe(struct platform_device *pdev)
1912 {
1913         struct snd_soc_card *card = platform_get_drvdata(pdev);
1914         int ret = 0;
1915
1916         /* Bodge while we unpick instantiation */
1917         card->dev = &pdev->dev;
1918         INIT_LIST_HEAD(&card->dai_dev_list);
1919         INIT_LIST_HEAD(&card->codec_dev_list);
1920         INIT_LIST_HEAD(&card->platform_dev_list);
1921
1922         soc_init_card_debugfs(card);
1923
1924         ret = snd_soc_register_card(card);
1925         if (ret != 0) {
1926                 dev_err(&pdev->dev, "Failed to register card\n");
1927                 return ret;
1928         }
1929
1930         return 0;
1931 }
1932
1933 /* removes a socdev */
1934 static int soc_remove(struct platform_device *pdev)
1935 {
1936         struct snd_soc_card *card = platform_get_drvdata(pdev);
1937         int i;
1938
1939                 if (card->instantiated) {
1940
1941                 /* make sure any delayed work runs */
1942                 for (i = 0; i < card->num_rtd; i++) {
1943                         struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1944                         run_delayed_work(&rtd->delayed_work);
1945                 }
1946
1947                 /* remove auxiliary devices */
1948                 for (i = 0; i < card->num_aux_devs; i++)
1949                         soc_remove_aux_dev(card, i);
1950
1951                 /* remove and free each DAI */
1952                 for (i = 0; i < card->num_rtd; i++)
1953                         soc_remove_dai_link(card, i);
1954
1955                 soc_cleanup_card_debugfs(card);
1956
1957                 /* remove the card */
1958                 if (card->remove)
1959                         card->remove(pdev);
1960
1961                 kfree(card->rtd);
1962                 snd_card_free(card->snd_card);
1963         }
1964         snd_soc_unregister_card(card);
1965         return 0;
1966 }
1967
1968 static int soc_poweroff(struct device *dev)
1969 {
1970         struct platform_device *pdev = to_platform_device(dev);
1971         struct snd_soc_card *card = platform_get_drvdata(pdev);
1972         int i;
1973
1974         if (!card->instantiated)
1975                 return 0;
1976
1977         /* Flush out pmdown_time work - we actually do want to run it
1978          * now, we're shutting down so no imminent restart. */
1979         for (i = 0; i < card->num_rtd; i++) {
1980                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1981                 run_delayed_work(&rtd->delayed_work);
1982         }
1983
1984         snd_soc_dapm_shutdown(card);
1985
1986         return 0;
1987 }
1988
1989 static const struct dev_pm_ops soc_pm_ops = {
1990         .suspend = soc_suspend,
1991         .resume = soc_resume,
1992         .poweroff = soc_poweroff,
1993 };
1994
1995 /* ASoC platform driver */
1996 static struct platform_driver soc_driver = {
1997         .driver         = {
1998                 .name           = "soc-audio",
1999                 .owner          = THIS_MODULE,
2000                 .pm             = &soc_pm_ops,
2001         },
2002         .probe          = soc_probe,
2003         .remove         = soc_remove,
2004 };
2005
2006 /* create a new pcm */
2007 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
2008 {
2009         struct snd_soc_codec *codec = rtd->codec;
2010         struct snd_soc_platform *platform = rtd->platform;
2011         struct snd_soc_dai *codec_dai = rtd->codec_dai;
2012         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
2013         struct snd_pcm *pcm;
2014         char new_name[64];
2015         int ret = 0, playback = 0, capture = 0;
2016
2017         /* check client and interface hw capabilities */
2018         snprintf(new_name, sizeof(new_name), "%s %s-%d",
2019                         rtd->dai_link->stream_name, codec_dai->name, num);
2020
2021         if (codec_dai->driver->playback.channels_min)
2022                 playback = 1;
2023         if (codec_dai->driver->capture.channels_min)
2024                 capture = 1;
2025
2026         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
2027         ret = snd_pcm_new(rtd->card->snd_card, new_name,
2028                         num, playback, capture, &pcm);
2029         if (ret < 0) {
2030                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
2031                 return ret;
2032         }
2033
2034         rtd->pcm = pcm;
2035         pcm->private_data = rtd;
2036         soc_pcm_ops.mmap = platform->driver->ops->mmap;
2037         soc_pcm_ops.pointer = platform->driver->ops->pointer;
2038         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2039         soc_pcm_ops.copy = platform->driver->ops->copy;
2040         soc_pcm_ops.silence = platform->driver->ops->silence;
2041         soc_pcm_ops.ack = platform->driver->ops->ack;
2042         soc_pcm_ops.page = platform->driver->ops->page;
2043
2044         if (playback)
2045                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2046
2047         if (capture)
2048                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2049
2050         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2051         if (ret < 0) {
2052                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2053                 return ret;
2054         }
2055
2056         pcm->private_free = platform->driver->pcm_free;
2057         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2058                 cpu_dai->name);
2059         return ret;
2060 }
2061
2062 /**
2063  * snd_soc_codec_volatile_register: Report if a register is volatile.
2064  *
2065  * @codec: CODEC to query.
2066  * @reg: Register to query.
2067  *
2068  * Boolean function indiciating if a CODEC register is volatile.
2069  */
2070 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
2071 {
2072         if (codec->driver->volatile_register)
2073                 return codec->driver->volatile_register(reg);
2074         else
2075                 return 0;
2076 }
2077 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2078
2079 /**
2080  * snd_soc_new_ac97_codec - initailise AC97 device
2081  * @codec: audio codec
2082  * @ops: AC97 bus operations
2083  * @num: AC97 codec number
2084  *
2085  * Initialises AC97 codec resources for use by ad-hoc devices only.
2086  */
2087 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2088         struct snd_ac97_bus_ops *ops, int num)
2089 {
2090         mutex_lock(&codec->mutex);
2091
2092         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2093         if (codec->ac97 == NULL) {
2094                 mutex_unlock(&codec->mutex);
2095                 return -ENOMEM;
2096         }
2097
2098         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2099         if (codec->ac97->bus == NULL) {
2100                 kfree(codec->ac97);
2101                 codec->ac97 = NULL;
2102                 mutex_unlock(&codec->mutex);
2103                 return -ENOMEM;
2104         }
2105
2106         codec->ac97->bus->ops = ops;
2107         codec->ac97->num = num;
2108
2109         /*
2110          * Mark the AC97 device to be created by us. This way we ensure that the
2111          * device will be registered with the device subsystem later on.
2112          */
2113         codec->ac97_created = 1;
2114
2115         mutex_unlock(&codec->mutex);
2116         return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2119
2120 /**
2121  * snd_soc_free_ac97_codec - free AC97 codec device
2122  * @codec: audio codec
2123  *
2124  * Frees AC97 codec device resources.
2125  */
2126 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2127 {
2128         mutex_lock(&codec->mutex);
2129 #ifdef CONFIG_SND_SOC_AC97_BUS
2130         soc_unregister_ac97_dai_link(codec);
2131 #endif
2132         kfree(codec->ac97->bus);
2133         kfree(codec->ac97);
2134         codec->ac97 = NULL;
2135         codec->ac97_created = 0;
2136         mutex_unlock(&codec->mutex);
2137 }
2138 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2139
2140 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2141 {
2142         unsigned int ret;
2143
2144         ret = codec->read(codec, reg);
2145         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2146         trace_snd_soc_reg_read(codec, reg, ret);
2147
2148         return ret;
2149 }
2150 EXPORT_SYMBOL_GPL(snd_soc_read);
2151
2152 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2153                            unsigned int reg, unsigned int val)
2154 {
2155         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2156         trace_snd_soc_reg_write(codec, reg, val);
2157         return codec->write(codec, reg, val);
2158 }
2159 EXPORT_SYMBOL_GPL(snd_soc_write);
2160
2161 /**
2162  * snd_soc_update_bits - update codec register bits
2163  * @codec: audio codec
2164  * @reg: codec register
2165  * @mask: register mask
2166  * @value: new value
2167  *
2168  * Writes new register value.
2169  *
2170  * Returns 1 for change else 0.
2171  */
2172 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2173                                 unsigned int mask, unsigned int value)
2174 {
2175         int change;
2176         unsigned int old, new;
2177
2178         old = snd_soc_read(codec, reg);
2179         new = (old & ~mask) | value;
2180         change = old != new;
2181         if (change)
2182                 snd_soc_write(codec, reg, new);
2183
2184         return change;
2185 }
2186 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2187
2188 /**
2189  * snd_soc_update_bits_locked - update codec register bits
2190  * @codec: audio codec
2191  * @reg: codec register
2192  * @mask: register mask
2193  * @value: new value
2194  *
2195  * Writes new register value, and takes the codec mutex.
2196  *
2197  * Returns 1 for change else 0.
2198  */
2199 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2200                                unsigned short reg, unsigned int mask,
2201                                unsigned int value)
2202 {
2203         int change;
2204
2205         mutex_lock(&codec->mutex);
2206         change = snd_soc_update_bits(codec, reg, mask, value);
2207         mutex_unlock(&codec->mutex);
2208
2209         return change;
2210 }
2211 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2212
2213 /**
2214  * snd_soc_test_bits - test register for change
2215  * @codec: audio codec
2216  * @reg: codec register
2217  * @mask: register mask
2218  * @value: new value
2219  *
2220  * Tests a register with a new value and checks if the new value is
2221  * different from the old value.
2222  *
2223  * Returns 1 for change else 0.
2224  */
2225 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2226                                 unsigned int mask, unsigned int value)
2227 {
2228         int change;
2229         unsigned int old, new;
2230
2231         old = snd_soc_read(codec, reg);
2232         new = (old & ~mask) | value;
2233         change = old != new;
2234
2235         return change;
2236 }
2237 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2238
2239 /**
2240  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2241  * @substream: the pcm substream
2242  * @hw: the hardware parameters
2243  *
2244  * Sets the substream runtime hardware parameters.
2245  */
2246 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2247         const struct snd_pcm_hardware *hw)
2248 {
2249         struct snd_pcm_runtime *runtime = substream->runtime;
2250         runtime->hw.info = hw->info;
2251         runtime->hw.formats = hw->formats;
2252         runtime->hw.period_bytes_min = hw->period_bytes_min;
2253         runtime->hw.period_bytes_max = hw->period_bytes_max;
2254         runtime->hw.periods_min = hw->periods_min;
2255         runtime->hw.periods_max = hw->periods_max;
2256         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2257         runtime->hw.fifo_size = hw->fifo_size;
2258         return 0;
2259 }
2260 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2261
2262 /**
2263  * snd_soc_cnew - create new control
2264  * @_template: control template
2265  * @data: control private data
2266  * @long_name: control long name
2267  *
2268  * Create a new mixer control from a template control.
2269  *
2270  * Returns 0 for success, else error.
2271  */
2272 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2273         void *data, char *long_name)
2274 {
2275         struct snd_kcontrol_new template;
2276
2277         memcpy(&template, _template, sizeof(template));
2278         if (long_name)
2279                 template.name = long_name;
2280         template.index = 0;
2281
2282         return snd_ctl_new1(&template, data);
2283 }
2284 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2285
2286 /**
2287  * snd_soc_add_controls - add an array of controls to a codec.
2288  * Convienience function to add a list of controls. Many codecs were
2289  * duplicating this code.
2290  *
2291  * @codec: codec to add controls to
2292  * @controls: array of controls to add
2293  * @num_controls: number of elements in the array
2294  *
2295  * Return 0 for success, else error.
2296  */
2297 int snd_soc_add_controls(struct snd_soc_codec *codec,
2298         const struct snd_kcontrol_new *controls, int num_controls)
2299 {
2300         struct snd_card *card = codec->card->snd_card;
2301         char prefixed_name[44], *name;
2302         int err, i;
2303
2304         for (i = 0; i < num_controls; i++) {
2305                 const struct snd_kcontrol_new *control = &controls[i];
2306                 if (codec->name_prefix) {
2307                         snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2308                                  codec->name_prefix, control->name);
2309                         name = prefixed_name;
2310                 } else {
2311                         name = control->name;
2312                 }
2313                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2314                 if (err < 0) {
2315                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2316                                 codec->name, name, err);
2317                         return err;
2318                 }
2319         }
2320
2321         return 0;
2322 }
2323 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2324
2325 /**
2326  * snd_soc_info_enum_double - enumerated double mixer info callback
2327  * @kcontrol: mixer control
2328  * @uinfo: control element information
2329  *
2330  * Callback to provide information about a double enumerated
2331  * mixer control.
2332  *
2333  * Returns 0 for success.
2334  */
2335 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2336         struct snd_ctl_elem_info *uinfo)
2337 {
2338         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2339
2340         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2341         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2342         uinfo->value.enumerated.items = e->max;
2343
2344         if (uinfo->value.enumerated.item > e->max - 1)
2345                 uinfo->value.enumerated.item = e->max - 1;
2346         strcpy(uinfo->value.enumerated.name,
2347                 e->texts[uinfo->value.enumerated.item]);
2348         return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2351
2352 /**
2353  * snd_soc_get_enum_double - enumerated double mixer get callback
2354  * @kcontrol: mixer control
2355  * @ucontrol: control element information
2356  *
2357  * Callback to get the value of a double enumerated mixer.
2358  *
2359  * Returns 0 for success.
2360  */
2361 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2362         struct snd_ctl_elem_value *ucontrol)
2363 {
2364         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2365         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2366         unsigned int val, bitmask;
2367
2368         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2369                 ;
2370         val = snd_soc_read(codec, e->reg);
2371         ucontrol->value.enumerated.item[0]
2372                 = (val >> e->shift_l) & (bitmask - 1);
2373         if (e->shift_l != e->shift_r)
2374                 ucontrol->value.enumerated.item[1] =
2375                         (val >> e->shift_r) & (bitmask - 1);
2376
2377         return 0;
2378 }
2379 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2380
2381 /**
2382  * snd_soc_put_enum_double - enumerated double mixer put callback
2383  * @kcontrol: mixer control
2384  * @ucontrol: control element information
2385  *
2386  * Callback to set the value of a double enumerated mixer.
2387  *
2388  * Returns 0 for success.
2389  */
2390 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2391         struct snd_ctl_elem_value *ucontrol)
2392 {
2393         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2394         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2395         unsigned int val;
2396         unsigned int mask, bitmask;
2397
2398         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2399                 ;
2400         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2401                 return -EINVAL;
2402         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2403         mask = (bitmask - 1) << e->shift_l;
2404         if (e->shift_l != e->shift_r) {
2405                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2406                         return -EINVAL;
2407                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2408                 mask |= (bitmask - 1) << e->shift_r;
2409         }
2410
2411         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2412 }
2413 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2414
2415 /**
2416  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2417  * @kcontrol: mixer control
2418  * @ucontrol: control element information
2419  *
2420  * Callback to get the value of a double semi enumerated mixer.
2421  *
2422  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2423  * used for handling bitfield coded enumeration for example.
2424  *
2425  * Returns 0 for success.
2426  */
2427 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2428         struct snd_ctl_elem_value *ucontrol)
2429 {
2430         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2431         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2432         unsigned int reg_val, val, mux;
2433
2434         reg_val = snd_soc_read(codec, e->reg);
2435         val = (reg_val >> e->shift_l) & e->mask;
2436         for (mux = 0; mux < e->max; mux++) {
2437                 if (val == e->values[mux])
2438                         break;
2439         }
2440         ucontrol->value.enumerated.item[0] = mux;
2441         if (e->shift_l != e->shift_r) {
2442                 val = (reg_val >> e->shift_r) & e->mask;
2443                 for (mux = 0; mux < e->max; mux++) {
2444                         if (val == e->values[mux])
2445                                 break;
2446                 }
2447                 ucontrol->value.enumerated.item[1] = mux;
2448         }
2449
2450         return 0;
2451 }
2452 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2453
2454 /**
2455  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2456  * @kcontrol: mixer control
2457  * @ucontrol: control element information
2458  *
2459  * Callback to set the value of a double semi enumerated mixer.
2460  *
2461  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2462  * used for handling bitfield coded enumeration for example.
2463  *
2464  * Returns 0 for success.
2465  */
2466 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2467         struct snd_ctl_elem_value *ucontrol)
2468 {
2469         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2470         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2471         unsigned int val;
2472         unsigned int mask;
2473
2474         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2475                 return -EINVAL;
2476         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2477         mask = e->mask << e->shift_l;
2478         if (e->shift_l != e->shift_r) {
2479                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2480                         return -EINVAL;
2481                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2482                 mask |= e->mask << e->shift_r;
2483         }
2484
2485         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2486 }
2487 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2488
2489 /**
2490  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2491  * @kcontrol: mixer control
2492  * @uinfo: control element information
2493  *
2494  * Callback to provide information about an external enumerated
2495  * single mixer.
2496  *
2497  * Returns 0 for success.
2498  */
2499 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2500         struct snd_ctl_elem_info *uinfo)
2501 {
2502         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2503
2504         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2505         uinfo->count = 1;
2506         uinfo->value.enumerated.items = e->max;
2507
2508         if (uinfo->value.enumerated.item > e->max - 1)
2509                 uinfo->value.enumerated.item = e->max - 1;
2510         strcpy(uinfo->value.enumerated.name,
2511                 e->texts[uinfo->value.enumerated.item]);
2512         return 0;
2513 }
2514 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2515
2516 /**
2517  * snd_soc_info_volsw_ext - external single mixer info callback
2518  * @kcontrol: mixer control
2519  * @uinfo: control element information
2520  *
2521  * Callback to provide information about a single external mixer control.
2522  *
2523  * Returns 0 for success.
2524  */
2525 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2526         struct snd_ctl_elem_info *uinfo)
2527 {
2528         int max = kcontrol->private_value;
2529
2530         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2531                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2532         else
2533                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2534
2535         uinfo->count = 1;
2536         uinfo->value.integer.min = 0;
2537         uinfo->value.integer.max = max;
2538         return 0;
2539 }
2540 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2541
2542 /**
2543  * snd_soc_info_volsw - single mixer info callback
2544  * @kcontrol: mixer control
2545  * @uinfo: control element information
2546  *
2547  * Callback to provide information about a single mixer control.
2548  *
2549  * Returns 0 for success.
2550  */
2551 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2552         struct snd_ctl_elem_info *uinfo)
2553 {
2554         struct soc_mixer_control *mc =
2555                 (struct soc_mixer_control *)kcontrol->private_value;
2556         int platform_max;
2557         unsigned int shift = mc->shift;
2558         unsigned int rshift = mc->rshift;
2559
2560         if (!mc->platform_max)
2561                 mc->platform_max = mc->max;
2562         platform_max = mc->platform_max;
2563
2564         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2565                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2566         else
2567                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2568
2569         uinfo->count = shift == rshift ? 1 : 2;
2570         uinfo->value.integer.min = 0;
2571         uinfo->value.integer.max = platform_max;
2572         return 0;
2573 }
2574 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2575
2576 /**
2577  * snd_soc_get_volsw - single mixer get callback
2578  * @kcontrol: mixer control
2579  * @ucontrol: control element information
2580  *
2581  * Callback to get the value of a single mixer control.
2582  *
2583  * Returns 0 for success.
2584  */
2585 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2586         struct snd_ctl_elem_value *ucontrol)
2587 {
2588         struct soc_mixer_control *mc =
2589                 (struct soc_mixer_control *)kcontrol->private_value;
2590         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2591         unsigned int reg = mc->reg;
2592         unsigned int shift = mc->shift;
2593         unsigned int rshift = mc->rshift;
2594         int max = mc->max;
2595         unsigned int mask = (1 << fls(max)) - 1;
2596         unsigned int invert = mc->invert;
2597
2598         ucontrol->value.integer.value[0] =
2599                 (snd_soc_read(codec, reg) >> shift) & mask;
2600         if (shift != rshift)
2601                 ucontrol->value.integer.value[1] =
2602                         (snd_soc_read(codec, reg) >> rshift) & mask;
2603         if (invert) {
2604                 ucontrol->value.integer.value[0] =
2605                         max - ucontrol->value.integer.value[0];
2606                 if (shift != rshift)
2607                         ucontrol->value.integer.value[1] =
2608                                 max - ucontrol->value.integer.value[1];
2609         }
2610
2611         return 0;
2612 }
2613 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2614
2615 /**
2616  * snd_soc_put_volsw - single mixer put callback
2617  * @kcontrol: mixer control
2618  * @ucontrol: control element information
2619  *
2620  * Callback to set the value of a single mixer control.
2621  *
2622  * Returns 0 for success.
2623  */
2624 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2625         struct snd_ctl_elem_value *ucontrol)
2626 {
2627         struct soc_mixer_control *mc =
2628                 (struct soc_mixer_control *)kcontrol->private_value;
2629         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2630         unsigned int reg = mc->reg;
2631         unsigned int shift = mc->shift;
2632         unsigned int rshift = mc->rshift;
2633         int max = mc->max;
2634         unsigned int mask = (1 << fls(max)) - 1;
2635         unsigned int invert = mc->invert;
2636         unsigned int val, val2, val_mask;
2637
2638         val = (ucontrol->value.integer.value[0] & mask);
2639         if (invert)
2640                 val = max - val;
2641         val_mask = mask << shift;
2642         val = val << shift;
2643         if (shift != rshift) {
2644                 val2 = (ucontrol->value.integer.value[1] & mask);
2645                 if (invert)
2646                         val2 = max - val2;
2647                 val_mask |= mask << rshift;
2648                 val |= val2 << rshift;
2649         }
2650         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2651 }
2652 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2653
2654 /**
2655  * snd_soc_info_volsw_2r - double mixer info callback
2656  * @kcontrol: mixer control
2657  * @uinfo: control element information
2658  *
2659  * Callback to provide information about a double mixer control that
2660  * spans 2 codec registers.
2661  *
2662  * Returns 0 for success.
2663  */
2664 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2665         struct snd_ctl_elem_info *uinfo)
2666 {
2667         struct soc_mixer_control *mc =
2668                 (struct soc_mixer_control *)kcontrol->private_value;
2669         int platform_max;
2670
2671         if (!mc->platform_max)
2672                 mc->platform_max = mc->max;
2673         platform_max = mc->platform_max;
2674
2675         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2676                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2677         else
2678                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2679
2680         uinfo->count = 2;
2681         uinfo->value.integer.min = 0;
2682         uinfo->value.integer.max = platform_max;
2683         return 0;
2684 }
2685 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2686
2687 /**
2688  * snd_soc_get_volsw_2r - double mixer get callback
2689  * @kcontrol: mixer control
2690  * @ucontrol: control element information
2691  *
2692  * Callback to get the value of a double mixer control that spans 2 registers.
2693  *
2694  * Returns 0 for success.
2695  */
2696 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2697         struct snd_ctl_elem_value *ucontrol)
2698 {
2699         struct soc_mixer_control *mc =
2700                 (struct soc_mixer_control *)kcontrol->private_value;
2701         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2702         unsigned int reg = mc->reg;
2703         unsigned int reg2 = mc->rreg;
2704         unsigned int shift = mc->shift;
2705         int max = mc->max;
2706         unsigned int mask = (1 << fls(max)) - 1;
2707         unsigned int invert = mc->invert;
2708
2709         ucontrol->value.integer.value[0] =
2710                 (snd_soc_read(codec, reg) >> shift) & mask;
2711         ucontrol->value.integer.value[1] =
2712                 (snd_soc_read(codec, reg2) >> shift) & mask;
2713         if (invert) {
2714                 ucontrol->value.integer.value[0] =
2715                         max - ucontrol->value.integer.value[0];
2716                 ucontrol->value.integer.value[1] =
2717                         max - ucontrol->value.integer.value[1];
2718         }
2719
2720         return 0;
2721 }
2722 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2723
2724 /**
2725  * snd_soc_put_volsw_2r - double mixer set callback
2726  * @kcontrol: mixer control
2727  * @ucontrol: control element information
2728  *
2729  * Callback to set the value of a double mixer control that spans 2 registers.
2730  *
2731  * Returns 0 for success.
2732  */
2733 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2734         struct snd_ctl_elem_value *ucontrol)
2735 {
2736         struct soc_mixer_control *mc =
2737                 (struct soc_mixer_control *)kcontrol->private_value;
2738         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2739         unsigned int reg = mc->reg;
2740         unsigned int reg2 = mc->rreg;
2741         unsigned int shift = mc->shift;
2742         int max = mc->max;
2743         unsigned int mask = (1 << fls(max)) - 1;
2744         unsigned int invert = mc->invert;
2745         int err;
2746         unsigned int val, val2, val_mask;
2747
2748         val_mask = mask << shift;
2749         val = (ucontrol->value.integer.value[0] & mask);
2750         val2 = (ucontrol->value.integer.value[1] & mask);
2751
2752         if (invert) {
2753                 val = max - val;
2754                 val2 = max - val2;
2755         }
2756
2757         val = val << shift;
2758         val2 = val2 << shift;
2759
2760         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2761         if (err < 0)
2762                 return err;
2763
2764         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2765         return err;
2766 }
2767 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2768
2769 /**
2770  * snd_soc_info_volsw_s8 - signed mixer info callback
2771  * @kcontrol: mixer control
2772  * @uinfo: control element information
2773  *
2774  * Callback to provide information about a signed mixer control.
2775  *
2776  * Returns 0 for success.
2777  */
2778 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2779         struct snd_ctl_elem_info *uinfo)
2780 {
2781         struct soc_mixer_control *mc =
2782                 (struct soc_mixer_control *)kcontrol->private_value;
2783         int platform_max;
2784         int min = mc->min;
2785
2786         if (!mc->platform_max)
2787                 mc->platform_max = mc->max;
2788         platform_max = mc->platform_max;
2789
2790         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2791         uinfo->count = 2;
2792         uinfo->value.integer.min = 0;
2793         uinfo->value.integer.max = platform_max - min;
2794         return 0;
2795 }
2796 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2797
2798 /**
2799  * snd_soc_get_volsw_s8 - signed mixer get callback
2800  * @kcontrol: mixer control
2801  * @ucontrol: control element information
2802  *
2803  * Callback to get the value of a signed mixer control.
2804  *
2805  * Returns 0 for success.
2806  */
2807 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2808         struct snd_ctl_elem_value *ucontrol)
2809 {
2810         struct soc_mixer_control *mc =
2811                 (struct soc_mixer_control *)kcontrol->private_value;
2812         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2813         unsigned int reg = mc->reg;
2814         int min = mc->min;
2815         int val = snd_soc_read(codec, reg);
2816
2817         ucontrol->value.integer.value[0] =
2818                 ((signed char)(val & 0xff))-min;
2819         ucontrol->value.integer.value[1] =
2820                 ((signed char)((val >> 8) & 0xff))-min;
2821         return 0;
2822 }
2823 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2824
2825 /**
2826  * snd_soc_put_volsw_sgn - signed mixer put callback
2827  * @kcontrol: mixer control
2828  * @ucontrol: control element information
2829  *
2830  * Callback to set the value of a signed mixer control.
2831  *
2832  * Returns 0 for success.
2833  */
2834 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2835         struct snd_ctl_elem_value *ucontrol)
2836 {
2837         struct soc_mixer_control *mc =
2838                 (struct soc_mixer_control *)kcontrol->private_value;
2839         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2840         unsigned int reg = mc->reg;
2841         int min = mc->min;
2842         unsigned int val;
2843
2844         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2845         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2846
2847         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2848 }
2849 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2850
2851 /**
2852  * snd_soc_limit_volume - Set new limit to an existing volume control.
2853  *
2854  * @codec: where to look for the control
2855  * @name: Name of the control
2856  * @max: new maximum limit
2857  *
2858  * Return 0 for success, else error.
2859  */
2860 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2861         const char *name, int max)
2862 {
2863         struct snd_card *card = codec->card->snd_card;
2864         struct snd_kcontrol *kctl;
2865         struct soc_mixer_control *mc;
2866         int found = 0;
2867         int ret = -EINVAL;
2868
2869         /* Sanity check for name and max */
2870         if (unlikely(!name || max <= 0))
2871                 return -EINVAL;
2872
2873         list_for_each_entry(kctl, &card->controls, list) {
2874                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2875                         found = 1;
2876                         break;
2877                 }
2878         }
2879         if (found) {
2880                 mc = (struct soc_mixer_control *)kctl->private_value;
2881                 if (max <= mc->max) {
2882                         mc->platform_max = max;
2883                         ret = 0;
2884                 }
2885         }
2886         return ret;
2887 }
2888 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2889
2890 /**
2891  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2892  *  mixer info callback
2893  * @kcontrol: mixer control
2894  * @uinfo: control element information
2895  *
2896  * Returns 0 for success.
2897  */
2898 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2899                         struct snd_ctl_elem_info *uinfo)
2900 {
2901         struct soc_mixer_control *mc =
2902                 (struct soc_mixer_control *)kcontrol->private_value;
2903         int max = mc->max;
2904         int min = mc->min;
2905
2906         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2907         uinfo->count = 2;
2908         uinfo->value.integer.min = 0;
2909         uinfo->value.integer.max = max-min;
2910
2911         return 0;
2912 }
2913 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2914
2915 /**
2916  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2917  *  mixer get callback
2918  * @kcontrol: mixer control
2919  * @uinfo: control element information
2920  *
2921  * Returns 0 for success.
2922  */
2923 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2924                         struct snd_ctl_elem_value *ucontrol)
2925 {
2926         struct soc_mixer_control *mc =
2927                 (struct soc_mixer_control *)kcontrol->private_value;
2928         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2929         unsigned int mask = (1<<mc->shift)-1;
2930         int min = mc->min;
2931         int val = snd_soc_read(codec, mc->reg) & mask;
2932         int valr = snd_soc_read(codec, mc->rreg) & mask;
2933
2934         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2935         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2936         return 0;
2937 }
2938 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2939
2940 /**
2941  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2942  *  mixer put callback
2943  * @kcontrol: mixer control
2944  * @uinfo: control element information
2945  *
2946  * Returns 0 for success.
2947  */
2948 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2949                         struct snd_ctl_elem_value *ucontrol)
2950 {
2951         struct soc_mixer_control *mc =
2952                 (struct soc_mixer_control *)kcontrol->private_value;
2953         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2954         unsigned int mask = (1<<mc->shift)-1;
2955         int min = mc->min;
2956         int ret;
2957         unsigned int val, valr, oval, ovalr;
2958
2959         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2960         val &= mask;
2961         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2962         valr &= mask;
2963
2964         oval = snd_soc_read(codec, mc->reg) & mask;
2965         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2966
2967         ret = 0;
2968         if (oval != val) {
2969                 ret = snd_soc_write(codec, mc->reg, val);
2970                 if (ret < 0)
2971                         return ret;
2972         }
2973         if (ovalr != valr) {
2974                 ret = snd_soc_write(codec, mc->rreg, valr);
2975                 if (ret < 0)
2976                         return ret;
2977         }
2978
2979         return 0;
2980 }
2981 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2982
2983 /**
2984  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2985  * @dai: DAI
2986  * @clk_id: DAI specific clock ID
2987  * @freq: new clock frequency in Hz
2988  * @dir: new clock direction - input/output.
2989  *
2990  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2991  */
2992 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2993         unsigned int freq, int dir)
2994 {
2995         if (dai->driver && dai->driver->ops->set_sysclk)
2996                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2997         else
2998                 return -EINVAL;
2999 }
3000 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3001
3002 /**
3003  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3004  * @dai: DAI
3005  * @div_id: DAI specific clock divider ID
3006  * @div: new clock divisor.
3007  *
3008  * Configures the clock dividers. This is used to derive the best DAI bit and
3009  * frame clocks from the system or master clock. It's best to set the DAI bit
3010  * and frame clocks as low as possible to save system power.
3011  */
3012 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3013         int div_id, int div)
3014 {
3015         if (dai->driver && dai->driver->ops->set_clkdiv)
3016                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
3017         else
3018                 return -EINVAL;
3019 }
3020 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3021
3022 /**
3023  * snd_soc_dai_set_pll - configure DAI PLL.
3024  * @dai: DAI
3025  * @pll_id: DAI specific PLL ID
3026  * @source: DAI specific source for the PLL
3027  * @freq_in: PLL input clock frequency in Hz
3028  * @freq_out: requested PLL output clock frequency in Hz
3029  *
3030  * Configures and enables PLL to generate output clock based on input clock.
3031  */
3032 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3033         unsigned int freq_in, unsigned int freq_out)
3034 {
3035         if (dai->driver && dai->driver->ops->set_pll)
3036                 return dai->driver->ops->set_pll(dai, pll_id, source,
3037                                          freq_in, freq_out);
3038         else
3039                 return -EINVAL;
3040 }
3041 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3042
3043 /**
3044  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3045  * @dai: DAI
3046  * @fmt: SND_SOC_DAIFMT_ format value.
3047  *
3048  * Configures the DAI hardware format and clocking.
3049  */
3050 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3051 {
3052         if (dai->driver && dai->driver->ops->set_fmt)
3053                 return dai->driver->ops->set_fmt(dai, fmt);
3054         else
3055                 return -EINVAL;
3056 }
3057 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3058
3059 /**
3060  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3061  * @dai: DAI
3062  * @tx_mask: bitmask representing active TX slots.
3063  * @rx_mask: bitmask representing active RX slots.
3064  * @slots: Number of slots in use.
3065  * @slot_width: Width in bits for each slot.
3066  *
3067  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3068  * specific.
3069  */
3070 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3071         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3072 {
3073         if (dai->driver && dai->driver->ops->set_tdm_slot)
3074                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3075                                 slots, slot_width);
3076         else
3077                 return -EINVAL;
3078 }
3079 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3080
3081 /**
3082  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3083  * @dai: DAI
3084  * @tx_num: how many TX channels
3085  * @tx_slot: pointer to an array which imply the TX slot number channel
3086  *           0~num-1 uses
3087  * @rx_num: how many RX channels
3088  * @rx_slot: pointer to an array which imply the RX slot number channel
3089  *           0~num-1 uses
3090  *
3091  * configure the relationship between channel number and TDM slot number.
3092  */
3093 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3094         unsigned int tx_num, unsigned int *tx_slot,
3095         unsigned int rx_num, unsigned int *rx_slot)
3096 {
3097         if (dai->driver && dai->driver->ops->set_channel_map)
3098                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3099                         rx_num, rx_slot);
3100         else
3101                 return -EINVAL;
3102 }
3103 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3104
3105 /**
3106  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3107  * @dai: DAI
3108  * @tristate: tristate enable
3109  *
3110  * Tristates the DAI so that others can use it.
3111  */
3112 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3113 {
3114         if (dai->driver && dai->driver->ops->set_tristate)
3115                 return dai->driver->ops->set_tristate(dai, tristate);
3116         else
3117                 return -EINVAL;
3118 }
3119 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3120
3121 /**
3122  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3123  * @dai: DAI
3124  * @mute: mute enable
3125  *
3126  * Mutes the DAI DAC.
3127  */
3128 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3129 {
3130         if (dai->driver && dai->driver->ops->digital_mute)
3131                 return dai->driver->ops->digital_mute(dai, mute);
3132         else
3133                 return -EINVAL;
3134 }
3135 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3136
3137 /**
3138  * snd_soc_register_card - Register a card with the ASoC core
3139  *
3140  * @card: Card to register
3141  *
3142  * Note that currently this is an internal only function: it will be
3143  * exposed to machine drivers after further backporting of ASoC v2
3144  * registration APIs.
3145  */
3146 static int snd_soc_register_card(struct snd_soc_card *card)
3147 {
3148         int i;
3149
3150         if (!card->name || !card->dev)
3151                 return -EINVAL;
3152
3153         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3154                             (card->num_links + card->num_aux_devs),
3155                             GFP_KERNEL);
3156         if (card->rtd == NULL)
3157                 return -ENOMEM;
3158         card->rtd_aux = &card->rtd[card->num_links];
3159
3160         for (i = 0; i < card->num_links; i++)
3161                 card->rtd[i].dai_link = &card->dai_link[i];
3162
3163         INIT_LIST_HEAD(&card->list);
3164         card->instantiated = 0;
3165         mutex_init(&card->mutex);
3166
3167         mutex_lock(&client_mutex);
3168         list_add(&card->list, &card_list);
3169         snd_soc_instantiate_cards();
3170         mutex_unlock(&client_mutex);
3171
3172         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3173
3174         return 0;
3175 }
3176
3177 /**
3178  * snd_soc_unregister_card - Unregister a card with the ASoC core
3179  *
3180  * @card: Card to unregister
3181  *
3182  * Note that currently this is an internal only function: it will be
3183  * exposed to machine drivers after further backporting of ASoC v2
3184  * registration APIs.
3185  */
3186 static int snd_soc_unregister_card(struct snd_soc_card *card)
3187 {
3188         mutex_lock(&client_mutex);
3189         list_del(&card->list);
3190         mutex_unlock(&client_mutex);
3191         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3192
3193         return 0;
3194 }
3195
3196 /*
3197  * Simplify DAI link configuration by removing ".-1" from device names
3198  * and sanitizing names.
3199  */
3200 static inline char *fmt_single_name(struct device *dev, int *id)
3201 {
3202         char *found, name[NAME_SIZE];
3203         int id1, id2;
3204
3205         if (dev_name(dev) == NULL)
3206                 return NULL;
3207
3208         strncpy(name, dev_name(dev), NAME_SIZE);
3209
3210         /* are we a "%s.%d" name (platform and SPI components) */
3211         found = strstr(name, dev->driver->name);
3212         if (found) {
3213                 /* get ID */
3214                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3215
3216                         /* discard ID from name if ID == -1 */
3217                         if (*id == -1)
3218                                 found[strlen(dev->driver->name)] = '\0';
3219                 }
3220
3221         } else {
3222                 /* I2C component devices are named "bus-addr"  */
3223                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3224                         char tmp[NAME_SIZE];
3225
3226                         /* create unique ID number from I2C addr and bus */
3227                         *id = ((id1 & 0xffff) << 16) + id2;
3228
3229                         /* sanitize component name for DAI link creation */
3230                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3231                         strncpy(name, tmp, NAME_SIZE);
3232                 } else
3233                         *id = 0;
3234         }
3235
3236         return kstrdup(name, GFP_KERNEL);
3237 }
3238
3239 /*
3240  * Simplify DAI link naming for single devices with multiple DAIs by removing
3241  * any ".-1" and using the DAI name (instead of device name).
3242  */
3243 static inline char *fmt_multiple_name(struct device *dev,
3244                 struct snd_soc_dai_driver *dai_drv)
3245 {
3246         if (dai_drv->name == NULL) {
3247                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3248                                 dev_name(dev));
3249                 return NULL;
3250         }
3251
3252         return kstrdup(dai_drv->name, GFP_KERNEL);
3253 }
3254
3255 /**
3256  * snd_soc_register_dai - Register a DAI with the ASoC core
3257  *
3258  * @dai: DAI to register
3259  */
3260 int snd_soc_register_dai(struct device *dev,
3261                 struct snd_soc_dai_driver *dai_drv)
3262 {
3263         struct snd_soc_dai *dai;
3264
3265         dev_dbg(dev, "dai register %s\n", dev_name(dev));
3266
3267         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3268         if (dai == NULL)
3269                         return -ENOMEM;
3270
3271         /* create DAI component name */
3272         dai->name = fmt_single_name(dev, &dai->id);
3273         if (dai->name == NULL) {
3274                 kfree(dai);
3275                 return -ENOMEM;
3276         }
3277
3278         dai->dev = dev;
3279         dai->driver = dai_drv;
3280         if (!dai->driver->ops)
3281                 dai->driver->ops = &null_dai_ops;
3282
3283         mutex_lock(&client_mutex);
3284         list_add(&dai->list, &dai_list);
3285         snd_soc_instantiate_cards();
3286         mutex_unlock(&client_mutex);
3287
3288         pr_debug("Registered DAI '%s'\n", dai->name);
3289
3290         return 0;
3291 }
3292 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3293
3294 /**
3295  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3296  *
3297  * @dai: DAI to unregister
3298  */
3299 void snd_soc_unregister_dai(struct device *dev)
3300 {
3301         struct snd_soc_dai *dai;
3302
3303         list_for_each_entry(dai, &dai_list, list) {
3304                 if (dev == dai->dev)
3305                         goto found;
3306         }
3307         return;
3308
3309 found:
3310         mutex_lock(&client_mutex);
3311         list_del(&dai->list);
3312         mutex_unlock(&client_mutex);
3313
3314         pr_debug("Unregistered DAI '%s'\n", dai->name);
3315         kfree(dai->name);
3316         kfree(dai);
3317 }
3318 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3319
3320 /**
3321  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3322  *
3323  * @dai: Array of DAIs to register
3324  * @count: Number of DAIs
3325  */
3326 int snd_soc_register_dais(struct device *dev,
3327                 struct snd_soc_dai_driver *dai_drv, size_t count)
3328 {
3329         struct snd_soc_dai *dai;
3330         int i, ret = 0;
3331
3332         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3333
3334         for (i = 0; i < count; i++) {
3335
3336                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3337                 if (dai == NULL) {
3338                         ret = -ENOMEM;
3339                         goto err;
3340                 }
3341
3342                 /* create DAI component name */
3343                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3344                 if (dai->name == NULL) {
3345                         kfree(dai);
3346                         ret = -EINVAL;
3347                         goto err;
3348                 }
3349
3350                 dai->dev = dev;
3351                 dai->driver = &dai_drv[i];
3352                 if (dai->driver->id)
3353                         dai->id = dai->driver->id;
3354                 else
3355                         dai->id = i;
3356                 if (!dai->driver->ops)
3357                         dai->driver->ops = &null_dai_ops;
3358
3359                 mutex_lock(&client_mutex);
3360                 list_add(&dai->list, &dai_list);
3361                 mutex_unlock(&client_mutex);
3362
3363                 pr_debug("Registered DAI '%s'\n", dai->name);
3364         }
3365
3366         snd_soc_instantiate_cards();
3367         return 0;
3368
3369 err:
3370         for (i--; i >= 0; i--)
3371                 snd_soc_unregister_dai(dev);
3372
3373         return ret;
3374 }
3375 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3376
3377 /**
3378  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3379  *
3380  * @dai: Array of DAIs to unregister
3381  * @count: Number of DAIs
3382  */
3383 void snd_soc_unregister_dais(struct device *dev, size_t count)
3384 {
3385         int i;
3386
3387         for (i = 0; i < count; i++)
3388                 snd_soc_unregister_dai(dev);
3389 }
3390 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3391
3392 /**
3393  * snd_soc_register_platform - Register a platform with the ASoC core
3394  *
3395  * @platform: platform to register
3396  */
3397 int snd_soc_register_platform(struct device *dev,
3398                 struct snd_soc_platform_driver *platform_drv)
3399 {
3400         struct snd_soc_platform *platform;
3401
3402         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3403
3404         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3405         if (platform == NULL)
3406                         return -ENOMEM;
3407
3408         /* create platform component name */
3409         platform->name = fmt_single_name(dev, &platform->id);
3410         if (platform->name == NULL) {
3411                 kfree(platform);
3412                 return -ENOMEM;
3413         }
3414
3415         platform->dev = dev;
3416         platform->driver = platform_drv;
3417
3418         mutex_lock(&client_mutex);
3419         list_add(&platform->list, &platform_list);
3420         snd_soc_instantiate_cards();
3421         mutex_unlock(&client_mutex);
3422
3423         pr_debug("Registered platform '%s'\n", platform->name);
3424
3425         return 0;
3426 }
3427 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3428
3429 /**
3430  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3431  *
3432  * @platform: platform to unregister
3433  */
3434 void snd_soc_unregister_platform(struct device *dev)
3435 {
3436         struct snd_soc_platform *platform;
3437
3438         list_for_each_entry(platform, &platform_list, list) {
3439                 if (dev == platform->dev)
3440                         goto found;
3441         }
3442         return;
3443
3444 found:
3445         mutex_lock(&client_mutex);
3446         list_del(&platform->list);
3447         mutex_unlock(&client_mutex);
3448
3449         pr_debug("Unregistered platform '%s'\n", platform->name);
3450         kfree(platform->name);
3451         kfree(platform);
3452 }
3453 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3454
3455 static u64 codec_format_map[] = {
3456         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3457         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3458         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3459         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3460         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3461         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3462         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3463         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3464         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3465         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3466         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3467         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3468         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3469         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3470         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3471         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3472 };
3473
3474 /* Fix up the DAI formats for endianness: codecs don't actually see
3475  * the endianness of the data but we're using the CPU format
3476  * definitions which do need to include endianness so we ensure that
3477  * codec DAIs always have both big and little endian variants set.
3478  */
3479 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3480 {
3481         int i;
3482
3483         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3484                 if (stream->formats & codec_format_map[i])
3485                         stream->formats |= codec_format_map[i];
3486 }
3487
3488 /**
3489  * snd_soc_register_codec - Register a codec with the ASoC core
3490  *
3491  * @codec: codec to register
3492  */
3493 int snd_soc_register_codec(struct device *dev,
3494                 struct snd_soc_codec_driver *codec_drv,
3495                 struct snd_soc_dai_driver *dai_drv, int num_dai)
3496 {
3497         size_t reg_size;
3498         struct snd_soc_codec *codec;
3499         int ret, i;
3500
3501         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3502
3503         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3504         if (codec == NULL)
3505                 return -ENOMEM;
3506
3507         /* create CODEC component name */
3508         codec->name = fmt_single_name(dev, &codec->id);
3509         if (codec->name == NULL) {
3510                 kfree(codec);
3511                 return -ENOMEM;
3512         }
3513
3514         if (codec_drv->compress_type)
3515                 codec->compress_type = codec_drv->compress_type;
3516         else
3517                 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3518
3519         INIT_LIST_HEAD(&codec->dapm.widgets);
3520         INIT_LIST_HEAD(&codec->dapm.paths);
3521         codec->write = codec_drv->write;
3522         codec->read = codec_drv->read;
3523         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3524         codec->dapm.dev = dev;
3525         codec->dapm.codec = codec;
3526         codec->dev = dev;
3527         codec->driver = codec_drv;
3528         codec->num_dai = num_dai;
3529         mutex_init(&codec->mutex);
3530
3531         /* allocate CODEC register cache */
3532         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3533                 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3534                 /* it is necessary to make a copy of the default register cache
3535                  * because in the case of using a compression type that requires
3536                  * the default register cache to be marked as __devinitconst the
3537                  * kernel might have freed the array by the time we initialize
3538                  * the cache.
3539                  */
3540                 codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3541                                               reg_size, GFP_KERNEL);
3542                 if (!codec->reg_def_copy) {
3543                         ret = -ENOMEM;
3544                         goto fail;
3545                 }
3546         }
3547
3548         for (i = 0; i < num_dai; i++) {
3549                 fixup_codec_formats(&dai_drv[i].playback);
3550                 fixup_codec_formats(&dai_drv[i].capture);
3551         }
3552
3553         /* register any DAIs */
3554         if (num_dai) {
3555                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3556                 if (ret < 0)
3557                         goto fail;
3558         }
3559
3560         mutex_lock(&client_mutex);
3561         list_add(&codec->list, &codec_list);
3562         snd_soc_instantiate_cards();
3563         mutex_unlock(&client_mutex);
3564
3565         pr_debug("Registered codec '%s'\n", codec->name);
3566         return 0;
3567
3568 fail:
3569         kfree(codec->reg_def_copy);
3570         codec->reg_def_copy = NULL;
3571         kfree(codec->name);
3572         kfree(codec);
3573         return ret;
3574 }
3575 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3576
3577 /**
3578  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3579  *
3580  * @codec: codec to unregister
3581  */
3582 void snd_soc_unregister_codec(struct device *dev)
3583 {
3584         struct snd_soc_codec *codec;
3585         int i;
3586
3587         list_for_each_entry(codec, &codec_list, list) {
3588                 if (dev == codec->dev)
3589                         goto found;
3590         }
3591         return;
3592
3593 found:
3594         if (codec->num_dai)
3595                 for (i = 0; i < codec->num_dai; i++)
3596                         snd_soc_unregister_dai(dev);
3597
3598         mutex_lock(&client_mutex);
3599         list_del(&codec->list);
3600         mutex_unlock(&client_mutex);
3601
3602         pr_debug("Unregistered codec '%s'\n", codec->name);
3603
3604         snd_soc_cache_exit(codec);
3605         kfree(codec->reg_def_copy);
3606         kfree(codec->name);
3607         kfree(codec);
3608 }
3609 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3610
3611 static int __init snd_soc_init(void)
3612 {
3613 #ifdef CONFIG_DEBUG_FS
3614         debugfs_root = debugfs_create_dir("asoc", NULL);
3615         if (IS_ERR(debugfs_root) || !debugfs_root) {
3616                 printk(KERN_WARNING
3617                        "ASoC: Failed to create debugfs directory\n");
3618                 debugfs_root = NULL;
3619         }
3620
3621         if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3622                                  &codec_list_fops))
3623                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3624
3625         if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3626                                  &dai_list_fops))
3627                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3628
3629         if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3630                                  &platform_list_fops))
3631                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3632 #endif
3633
3634         return platform_driver_register(&soc_driver);
3635 }
3636 module_init(snd_soc_init);
3637
3638 static void __exit snd_soc_exit(void)
3639 {
3640 #ifdef CONFIG_DEBUG_FS
3641         debugfs_remove_recursive(debugfs_root);
3642 #endif
3643         platform_driver_unregister(&soc_driver);
3644 }
3645 module_exit(snd_soc_exit);
3646
3647 /* Module information */
3648 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3649 MODULE_DESCRIPTION("ALSA SoC Core");
3650 MODULE_LICENSE("GPL");
3651 MODULE_ALIAS("platform:soc-audio");