]> git.karo-electronics.de Git - karo-tx-linux.git/blob - sound/x86/intel_hdmi_audio.c
ALSA: x86: Fix memory leak in had_build_channel_allocation_map()
[karo-tx-linux.git] / sound / x86 / intel_hdmi_audio.c
1 /*
2  *   intel_hdmi_audio.c - Intel HDMI audio driver
3  *
4  *  Copyright (C) 2016 Intel Corp
5  *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6  *              Ramesh Babu K V <ramesh.babu@intel.com>
7  *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8  *              Jerome Anand <jerome.anand@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; version 2 of the License.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  * ALSA driver for Intel HDMI audio
22  */
23
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/cacheflush.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
44
45 /*standard module options for ALSA. This module supports only one card*/
46 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
47 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
48
49 module_param_named(index, hdmi_card_index, int, 0444);
50 MODULE_PARM_DESC(index,
51                 "Index value for INTEL Intel HDMI Audio controller.");
52 module_param_named(id, hdmi_card_id, charp, 0444);
53 MODULE_PARM_DESC(id,
54                 "ID string for INTEL Intel HDMI Audio controller.");
55
56 /*
57  * ELD SA bits in the CEA Speaker Allocation data block
58  */
59 static const int eld_speaker_allocation_bits[] = {
60         [0] = FL | FR,
61         [1] = LFE,
62         [2] = FC,
63         [3] = RL | RR,
64         [4] = RC,
65         [5] = FLC | FRC,
66         [6] = RLC | RRC,
67         /* the following are not defined in ELD yet */
68         [7] = 0,
69 };
70
71 /*
72  * This is an ordered list!
73  *
74  * The preceding ones have better chances to be selected by
75  * hdmi_channel_allocation().
76  */
77 static struct cea_channel_speaker_allocation channel_allocations[] = {
78 /*                        channel:   7     6    5    4    3     2    1    0  */
79 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
80                                 /* 2.1 */
81 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
82                                 /* Dolby Surround */
83 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
84                                 /* surround40 */
85 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
86                                 /* surround41 */
87 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
88                                 /* surround50 */
89 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
90                                 /* surround51 */
91 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
92                                 /* 6.1 */
93 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
94                                 /* surround71 */
95 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
96
97 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
98 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
99 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
100 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
101 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
102 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
103 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
104 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
105 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
106 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
107 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
108 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
109 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
110 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
111 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
112 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
113 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
114 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
115 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
116 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
117 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
118 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
119 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
120 };
121
122 static const struct channel_map_table map_tables[] = {
123         { SNDRV_CHMAP_FL,       0x00,   FL },
124         { SNDRV_CHMAP_FR,       0x01,   FR },
125         { SNDRV_CHMAP_RL,       0x04,   RL },
126         { SNDRV_CHMAP_RR,       0x05,   RR },
127         { SNDRV_CHMAP_LFE,      0x02,   LFE },
128         { SNDRV_CHMAP_FC,       0x03,   FC },
129         { SNDRV_CHMAP_RLC,      0x06,   RLC },
130         { SNDRV_CHMAP_RRC,      0x07,   RRC },
131         {} /* terminator */
132 };
133
134 /* hardware capability structure */
135 static const struct snd_pcm_hardware had_pcm_hardware = {
136         .info = (SNDRV_PCM_INFO_INTERLEAVED |
137                 SNDRV_PCM_INFO_MMAP |
138                 SNDRV_PCM_INFO_MMAP_VALID |
139                 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
140         .formats = (SNDRV_PCM_FMTBIT_S16_LE |
141                     SNDRV_PCM_FMTBIT_S24_LE |
142                     SNDRV_PCM_FMTBIT_S32_LE),
143         .rates = SNDRV_PCM_RATE_32000 |
144                 SNDRV_PCM_RATE_44100 |
145                 SNDRV_PCM_RATE_48000 |
146                 SNDRV_PCM_RATE_88200 |
147                 SNDRV_PCM_RATE_96000 |
148                 SNDRV_PCM_RATE_176400 |
149                 SNDRV_PCM_RATE_192000,
150         .rate_min = HAD_MIN_RATE,
151         .rate_max = HAD_MAX_RATE,
152         .channels_min = HAD_MIN_CHANNEL,
153         .channels_max = HAD_MAX_CHANNEL,
154         .buffer_bytes_max = HAD_MAX_BUFFER,
155         .period_bytes_min = HAD_MIN_PERIOD_BYTES,
156         .period_bytes_max = HAD_MAX_PERIOD_BYTES,
157         .periods_min = HAD_MIN_PERIODS,
158         .periods_max = HAD_MAX_PERIODS,
159         .fifo_size = HAD_FIFO_SIZE,
160 };
161
162 /* Get the active PCM substream;
163  * Call had_substream_put() for unreferecing.
164  * Don't call this inside had_spinlock, as it takes by itself
165  */
166 static struct snd_pcm_substream *
167 had_substream_get(struct snd_intelhad *intelhaddata)
168 {
169         struct snd_pcm_substream *substream;
170         unsigned long flags;
171
172         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
173         substream = intelhaddata->stream_info.substream;
174         if (substream)
175                 intelhaddata->stream_info.substream_refcount++;
176         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
177         return substream;
178 }
179
180 /* Unref the active PCM substream;
181  * Don't call this inside had_spinlock, as it takes by itself
182  */
183 static void had_substream_put(struct snd_intelhad *intelhaddata)
184 {
185         unsigned long flags;
186
187         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
188         intelhaddata->stream_info.substream_refcount--;
189         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
190 }
191
192 /* Register access functions */
193 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
194 {
195         *val = ioread32(ctx->mmio_start + ctx->had_config_offset + reg);
196 }
197
198 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
199 {
200         iowrite32(val, ctx->mmio_start + ctx->had_config_offset + reg);
201 }
202
203 /*
204  * enable / disable audio configuration
205  *
206  * The normal read/modify should not directly be used on VLV2 for
207  * updating AUD_CONFIG register.
208  * This is because:
209  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
210  * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
211  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
212  * register. This field should be 1xy binary for configuration with 6 or
213  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
214  * causes the "channels" field to be updated as 0xy binary resulting in
215  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
216  * appropriate value when doing read-modify of AUD_CONFIG register.
217  */
218 static void had_enable_audio(struct snd_intelhad *intelhaddata,
219                              bool enable)
220 {
221         /* update the cached value */
222         intelhaddata->aud_config.regx.aud_en = enable;
223         had_write_register(intelhaddata, AUD_CONFIG,
224                            intelhaddata->aud_config.regval);
225 }
226
227 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
228 static void had_ack_irqs(struct snd_intelhad *ctx)
229 {
230         u32 status_reg;
231
232         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
233         status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
234         had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
235         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
236 }
237
238 /* Reset buffer pointers */
239 static void had_reset_audio(struct snd_intelhad *intelhaddata)
240 {
241         had_write_register(intelhaddata, AUD_HDMI_STATUS,
242                            AUD_HDMI_STATUSG_MASK_FUNCRST);
243         had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
244 }
245
246 /*
247  * initialize audio channel status registers
248  * This function is called in the prepare callback
249  */
250 static int had_prog_status_reg(struct snd_pcm_substream *substream,
251                         struct snd_intelhad *intelhaddata)
252 {
253         union aud_cfg cfg_val = {.regval = 0};
254         union aud_ch_status_0 ch_stat0 = {.regval = 0};
255         union aud_ch_status_1 ch_stat1 = {.regval = 0};
256
257         ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
258                                           IEC958_AES0_NONAUDIO) >> 1;
259         ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
260                                           IEC958_AES3_CON_CLOCK) >> 4;
261         cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
262
263         switch (substream->runtime->rate) {
264         case AUD_SAMPLE_RATE_32:
265                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
266                 break;
267
268         case AUD_SAMPLE_RATE_44_1:
269                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
270                 break;
271         case AUD_SAMPLE_RATE_48:
272                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
273                 break;
274         case AUD_SAMPLE_RATE_88_2:
275                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
276                 break;
277         case AUD_SAMPLE_RATE_96:
278                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
279                 break;
280         case AUD_SAMPLE_RATE_176_4:
281                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
282                 break;
283         case AUD_SAMPLE_RATE_192:
284                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
285                 break;
286
287         default:
288                 /* control should never come here */
289                 return -EINVAL;
290         }
291
292         had_write_register(intelhaddata,
293                            AUD_CH_STATUS_0, ch_stat0.regval);
294
295         switch (substream->runtime->format) {
296         case SNDRV_PCM_FORMAT_S16_LE:
297                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
298                 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
299                 break;
300         case SNDRV_PCM_FORMAT_S24_LE:
301         case SNDRV_PCM_FORMAT_S32_LE:
302                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
303                 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
304                 break;
305         default:
306                 return -EINVAL;
307         }
308
309         had_write_register(intelhaddata,
310                            AUD_CH_STATUS_1, ch_stat1.regval);
311         return 0;
312 }
313
314 /*
315  * function to initialize audio
316  * registers and buffer confgiuration registers
317  * This function is called in the prepare callback
318  */
319 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
320                                struct snd_intelhad *intelhaddata)
321 {
322         union aud_cfg cfg_val = {.regval = 0};
323         union aud_buf_config buf_cfg = {.regval = 0};
324         u8 channels;
325
326         had_prog_status_reg(substream, intelhaddata);
327
328         buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
329         buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
330         buf_cfg.regx.aud_delay = 0;
331         had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
332
333         channels = substream->runtime->channels;
334         cfg_val.regx.num_ch = channels - 2;
335         if (channels <= 2)
336                 cfg_val.regx.layout = LAYOUT0;
337         else
338                 cfg_val.regx.layout = LAYOUT1;
339
340         if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
341                 cfg_val.regx.packet_mode = 1;
342
343         if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
344                 cfg_val.regx.left_align = 1;
345
346         cfg_val.regx.val_bit = 1;
347
348         /* fix up the DP bits */
349         if (intelhaddata->dp_output) {
350                 cfg_val.regx.dp_modei = 1;
351                 cfg_val.regx.set = 1;
352         }
353
354         had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
355         intelhaddata->aud_config = cfg_val;
356         return 0;
357 }
358
359 /*
360  * Compute derived values in channel_allocations[].
361  */
362 static void init_channel_allocations(void)
363 {
364         int i, j;
365         struct cea_channel_speaker_allocation *p;
366
367         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
368                 p = channel_allocations + i;
369                 p->channels = 0;
370                 p->spk_mask = 0;
371                 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
372                         if (p->speakers[j]) {
373                                 p->channels++;
374                                 p->spk_mask |= p->speakers[j];
375                         }
376         }
377 }
378
379 /*
380  * The transformation takes two steps:
381  *
382  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
383  *            spk_mask => (channel_allocations[])         => ai->CA
384  *
385  * TODO: it could select the wrong CA from multiple candidates.
386  */
387 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
388                                   int channels)
389 {
390         int i;
391         int ca = 0;
392         int spk_mask = 0;
393
394         /*
395          * CA defaults to 0 for basic stereo audio
396          */
397         if (channels <= 2)
398                 return 0;
399
400         /*
401          * expand ELD's speaker allocation mask
402          *
403          * ELD tells the speaker mask in a compact(paired) form,
404          * expand ELD's notions to match the ones used by Audio InfoFrame.
405          */
406
407         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
408                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
409                         spk_mask |= eld_speaker_allocation_bits[i];
410         }
411
412         /* search for the first working match in the CA table */
413         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
414                 if (channels == channel_allocations[i].channels &&
415                 (spk_mask & channel_allocations[i].spk_mask) ==
416                                 channel_allocations[i].spk_mask) {
417                         ca = channel_allocations[i].ca_index;
418                         break;
419                 }
420         }
421
422         dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
423
424         return ca;
425 }
426
427 /* from speaker bit mask to ALSA API channel position */
428 static int spk_to_chmap(int spk)
429 {
430         const struct channel_map_table *t = map_tables;
431
432         for (; t->map; t++) {
433                 if (t->spk_mask == spk)
434                         return t->map;
435         }
436         return 0;
437 }
438
439 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
440 {
441         int i, c;
442         int spk_mask = 0;
443         struct snd_pcm_chmap_elem *chmap;
444         u8 eld_high, eld_high_mask = 0xF0;
445         u8 high_msb;
446
447         kfree(intelhaddata->chmap->chmap);
448         intelhaddata->chmap->chmap = NULL;
449
450         chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
451         if (!chmap)
452                 return;
453
454         dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
455                 intelhaddata->eld[DRM_ELD_SPEAKER]);
456
457         /* WA: Fix the max channel supported to 8 */
458
459         /*
460          * Sink may support more than 8 channels, if eld_high has more than
461          * one bit set. SOC supports max 8 channels.
462          * Refer eld_speaker_allocation_bits, for sink speaker allocation
463          */
464
465         /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
466         eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
467         if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
468                 /* eld_high & (eld_high-1): if more than 1 bit set */
469                 /* 0x1F: 7 channels */
470                 for (i = 1; i < 4; i++) {
471                         high_msb = eld_high & (0x80 >> i);
472                         if (high_msb) {
473                                 intelhaddata->eld[DRM_ELD_SPEAKER] &=
474                                         high_msb | 0xF;
475                                 break;
476                         }
477                 }
478         }
479
480         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
481                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
482                         spk_mask |= eld_speaker_allocation_bits[i];
483         }
484
485         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
486                 if (spk_mask == channel_allocations[i].spk_mask) {
487                         for (c = 0; c < channel_allocations[i].channels; c++) {
488                                 chmap->map[c] = spk_to_chmap(
489                                         channel_allocations[i].speakers[
490                                                 (MAX_SPEAKERS - 1) - c]);
491                         }
492                         chmap->channels = channel_allocations[i].channels;
493                         intelhaddata->chmap->chmap = chmap;
494                         break;
495                 }
496         }
497         if (i >= ARRAY_SIZE(channel_allocations))
498                 kfree(chmap);
499 }
500
501 /*
502  * ALSA API channel-map control callbacks
503  */
504 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
505                                 struct snd_ctl_elem_info *uinfo)
506 {
507         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
508         struct snd_intelhad *intelhaddata = info->private_data;
509
510         if (!intelhaddata->connected)
511                 return -ENODEV;
512         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
513         uinfo->count = HAD_MAX_CHANNEL;
514         uinfo->value.integer.min = 0;
515         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
516         return 0;
517 }
518
519 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
520                                 struct snd_ctl_elem_value *ucontrol)
521 {
522         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
523         struct snd_intelhad *intelhaddata = info->private_data;
524         int i;
525         const struct snd_pcm_chmap_elem *chmap;
526
527         if (!intelhaddata->connected)
528                 return -ENODEV;
529
530         mutex_lock(&intelhaddata->mutex);
531         if (!intelhaddata->chmap->chmap) {
532                 mutex_unlock(&intelhaddata->mutex);
533                 return -ENODATA;
534         }
535
536         chmap = intelhaddata->chmap->chmap;
537         for (i = 0; i < chmap->channels; i++)
538                 ucontrol->value.integer.value[i] = chmap->map[i];
539         mutex_unlock(&intelhaddata->mutex);
540
541         return 0;
542 }
543
544 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
545                                                 struct snd_pcm *pcm)
546 {
547         int err;
548
549         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
550                         NULL, 0, (unsigned long)intelhaddata,
551                         &intelhaddata->chmap);
552         if (err < 0)
553                 return err;
554
555         intelhaddata->chmap->private_data = intelhaddata;
556         intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
557         intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
558         intelhaddata->chmap->chmap = NULL;
559         return 0;
560 }
561
562 /*
563  * Initialize Data Island Packets registers
564  * This function is called in the prepare callback
565  */
566 static void had_prog_dip(struct snd_pcm_substream *substream,
567                          struct snd_intelhad *intelhaddata)
568 {
569         int i;
570         union aud_ctrl_st ctrl_state = {.regval = 0};
571         union aud_info_frame2 frame2 = {.regval = 0};
572         union aud_info_frame3 frame3 = {.regval = 0};
573         u8 checksum = 0;
574         u32 info_frame;
575         int channels;
576         int ca;
577
578         channels = substream->runtime->channels;
579
580         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
581
582         ca = had_channel_allocation(intelhaddata, channels);
583         if (intelhaddata->dp_output) {
584                 info_frame = DP_INFO_FRAME_WORD1;
585                 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
586         } else {
587                 info_frame = HDMI_INFO_FRAME_WORD1;
588                 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
589                 frame3.regx.chnl_alloc = ca;
590
591                 /* Calculte the byte wide checksum for all valid DIP words */
592                 for (i = 0; i < BYTES_PER_WORD; i++)
593                         checksum += (info_frame >> (i * 8)) & 0xff;
594                 for (i = 0; i < BYTES_PER_WORD; i++)
595                         checksum += (frame2.regval >> (i * 8)) & 0xff;
596                 for (i = 0; i < BYTES_PER_WORD; i++)
597                         checksum += (frame3.regval >> (i * 8)) & 0xff;
598
599                 frame2.regx.chksum = -(checksum);
600         }
601
602         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
603         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
604         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
605
606         /* program remaining DIP words with zero */
607         for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
608                 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
609
610         ctrl_state.regx.dip_freq = 1;
611         ctrl_state.regx.dip_en_sta = 1;
612         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
613 }
614
615 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
616 {
617         u32 maud_val;
618
619         /* Select maud according to DP 1.2 spec */
620         if (link_rate == DP_2_7_GHZ) {
621                 switch (aud_samp_freq) {
622                 case AUD_SAMPLE_RATE_32:
623                         maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
624                         break;
625
626                 case AUD_SAMPLE_RATE_44_1:
627                         maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
628                         break;
629
630                 case AUD_SAMPLE_RATE_48:
631                         maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
632                         break;
633
634                 case AUD_SAMPLE_RATE_88_2:
635                         maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
636                         break;
637
638                 case AUD_SAMPLE_RATE_96:
639                         maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
640                         break;
641
642                 case AUD_SAMPLE_RATE_176_4:
643                         maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
644                         break;
645
646                 case HAD_MAX_RATE:
647                         maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
648                         break;
649
650                 default:
651                         maud_val = -EINVAL;
652                         break;
653                 }
654         } else if (link_rate == DP_1_62_GHZ) {
655                 switch (aud_samp_freq) {
656                 case AUD_SAMPLE_RATE_32:
657                         maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
658                         break;
659
660                 case AUD_SAMPLE_RATE_44_1:
661                         maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
662                         break;
663
664                 case AUD_SAMPLE_RATE_48:
665                         maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
666                         break;
667
668                 case AUD_SAMPLE_RATE_88_2:
669                         maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
670                         break;
671
672                 case AUD_SAMPLE_RATE_96:
673                         maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
674                         break;
675
676                 case AUD_SAMPLE_RATE_176_4:
677                         maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
678                         break;
679
680                 case HAD_MAX_RATE:
681                         maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
682                         break;
683
684                 default:
685                         maud_val = -EINVAL;
686                         break;
687                 }
688         } else
689                 maud_val = -EINVAL;
690
691         return maud_val;
692 }
693
694 /*
695  * Program HDMI audio CTS value
696  *
697  * @aud_samp_freq: sampling frequency of audio data
698  * @tmds: sampling frequency of the display data
699  * @link_rate: DP link rate
700  * @n_param: N value, depends on aud_samp_freq
701  * @intelhaddata: substream private data
702  *
703  * Program CTS register based on the audio and display sampling frequency
704  */
705 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
706                          u32 n_param, struct snd_intelhad *intelhaddata)
707 {
708         u32 cts_val;
709         u64 dividend, divisor;
710
711         if (intelhaddata->dp_output) {
712                 /* Substitute cts_val with Maud according to DP 1.2 spec*/
713                 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
714         } else {
715                 /* Calculate CTS according to HDMI 1.3a spec*/
716                 dividend = (u64)tmds * n_param*1000;
717                 divisor = 128 * aud_samp_freq;
718                 cts_val = div64_u64(dividend, divisor);
719         }
720         dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
721                  tmds, n_param, cts_val);
722         had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
723 }
724
725 static int had_calculate_n_value(u32 aud_samp_freq)
726 {
727         int n_val;
728
729         /* Select N according to HDMI 1.3a spec*/
730         switch (aud_samp_freq) {
731         case AUD_SAMPLE_RATE_32:
732                 n_val = 4096;
733                 break;
734
735         case AUD_SAMPLE_RATE_44_1:
736                 n_val = 6272;
737                 break;
738
739         case AUD_SAMPLE_RATE_48:
740                 n_val = 6144;
741                 break;
742
743         case AUD_SAMPLE_RATE_88_2:
744                 n_val = 12544;
745                 break;
746
747         case AUD_SAMPLE_RATE_96:
748                 n_val = 12288;
749                 break;
750
751         case AUD_SAMPLE_RATE_176_4:
752                 n_val = 25088;
753                 break;
754
755         case HAD_MAX_RATE:
756                 n_val = 24576;
757                 break;
758
759         default:
760                 n_val = -EINVAL;
761                 break;
762         }
763         return n_val;
764 }
765
766 /*
767  * Program HDMI audio N value
768  *
769  * @aud_samp_freq: sampling frequency of audio data
770  * @n_param: N value, depends on aud_samp_freq
771  * @intelhaddata: substream private data
772  *
773  * This function is called in the prepare callback.
774  * It programs based on the audio and display sampling frequency
775  */
776 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
777                       struct snd_intelhad *intelhaddata)
778 {
779         int n_val;
780
781         if (intelhaddata->dp_output) {
782                 /*
783                  * According to DP specs, Maud and Naud values hold
784                  * a relationship, which is stated as:
785                  * Maud/Naud = 512 * fs / f_LS_Clk
786                  * where, fs is the sampling frequency of the audio stream
787                  * and Naud is 32768 for Async clock.
788                  */
789
790                 n_val = DP_NAUD_VAL;
791         } else
792                 n_val = had_calculate_n_value(aud_samp_freq);
793
794         if (n_val < 0)
795                 return n_val;
796
797         had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
798         *n_param = n_val;
799         return 0;
800 }
801
802 /*
803  * PCM ring buffer handling
804  *
805  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
806  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
807  * moves at each period elapsed.  The below illustrates how it works:
808  *
809  * At time=0
810  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
811  *  BD  | 0 | 1 | 2 | 3 |
812  *
813  * At time=1 (period elapsed)
814  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
815  *  BD      | 1 | 2 | 3 | 0 |
816  *
817  * At time=2 (second period elapsed)
818  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
819  *  BD          | 2 | 3 | 0 | 1 |
820  *
821  * The bd_head field points to the index of the BD to be read.  It's also the
822  * position to be filled at next.  The pcm_head and the pcm_filled fields
823  * point to the indices of the current position and of the next position to
824  * be filled, respectively.  For PCM buffer there are both _head and _filled
825  * because they may be difference when nperiods > 4.  For example, in the
826  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
827  *
828  * pcm_head (=1) --v               v-- pcm_filled (=5)
829  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
830  *       BD      | 1 | 2 | 3 | 0 |
831  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
832  *
833  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
834  * the hardware skips those BDs in the loop.
835  *
836  * An exceptional setup is the case with nperiods=1.  Since we have to update
837  * BDs after finishing one BD processing, we'd need at least two BDs, where
838  * both BDs point to the same content, the same address, the same size of the
839  * whole PCM buffer.
840  */
841
842 #define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
843 #define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
844
845 /* Set up a buffer descriptor at the "filled" position */
846 static void had_prog_bd(struct snd_pcm_substream *substream,
847                         struct snd_intelhad *intelhaddata)
848 {
849         int idx = intelhaddata->bd_head;
850         int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
851         u32 addr = substream->runtime->dma_addr + ofs;
852
853         addr |= AUD_BUF_VALID;
854         if (!substream->runtime->no_period_wakeup)
855                 addr |= AUD_BUF_INTR_EN;
856         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
857         had_write_register(intelhaddata, AUD_BUF_LEN(idx),
858                            intelhaddata->period_bytes);
859
860         /* advance the indices to the next */
861         intelhaddata->bd_head++;
862         intelhaddata->bd_head %= intelhaddata->num_bds;
863         intelhaddata->pcmbuf_filled++;
864         intelhaddata->pcmbuf_filled %= substream->runtime->periods;
865 }
866
867 /* invalidate a buffer descriptor with the given index */
868 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
869                               int idx)
870 {
871         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
872         had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
873 }
874
875 /* Initial programming of ring buffer */
876 static void had_init_ringbuf(struct snd_pcm_substream *substream,
877                              struct snd_intelhad *intelhaddata)
878 {
879         struct snd_pcm_runtime *runtime = substream->runtime;
880         int i, num_periods;
881
882         num_periods = runtime->periods;
883         intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
884         /* set the minimum 2 BDs for num_periods=1 */
885         intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
886         intelhaddata->period_bytes =
887                 frames_to_bytes(runtime, runtime->period_size);
888         WARN_ON(intelhaddata->period_bytes & 0x3f);
889
890         intelhaddata->bd_head = 0;
891         intelhaddata->pcmbuf_head = 0;
892         intelhaddata->pcmbuf_filled = 0;
893
894         for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
895                 if (i < intelhaddata->num_bds)
896                         had_prog_bd(substream, intelhaddata);
897                 else /* invalidate the rest */
898                         had_invalidate_bd(intelhaddata, i);
899         }
900
901         intelhaddata->bd_head = 0; /* reset at head again before starting */
902 }
903
904 /* process a bd, advance to the next */
905 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
906                                 struct snd_intelhad *intelhaddata)
907 {
908         int num_periods = substream->runtime->periods;
909
910         /* reprogram the next buffer */
911         had_prog_bd(substream, intelhaddata);
912
913         /* proceed to next */
914         intelhaddata->pcmbuf_head++;
915         intelhaddata->pcmbuf_head %= num_periods;
916 }
917
918 /* process the current BD(s);
919  * returns the current PCM buffer byte position, or -EPIPE for underrun.
920  */
921 static int had_process_ringbuf(struct snd_pcm_substream *substream,
922                                struct snd_intelhad *intelhaddata)
923 {
924         int len, processed;
925         unsigned long flags;
926
927         processed = 0;
928         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
929         for (;;) {
930                 /* get the remaining bytes on the buffer */
931                 had_read_register(intelhaddata,
932                                   AUD_BUF_LEN(intelhaddata->bd_head),
933                                   &len);
934                 if (len < 0 || len > intelhaddata->period_bytes) {
935                         dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
936                                 len);
937                         len = -EPIPE;
938                         goto out;
939                 }
940
941                 if (len > 0) /* OK, this is the current buffer */
942                         break;
943
944                 /* len=0 => already empty, check the next buffer */
945                 if (++processed >= intelhaddata->num_bds) {
946                         len = -EPIPE; /* all empty? - report underrun */
947                         goto out;
948                 }
949                 had_advance_ringbuf(substream, intelhaddata);
950         }
951
952         len = intelhaddata->period_bytes - len;
953         len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
954  out:
955         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
956         return len;
957 }
958
959 /* called from irq handler */
960 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
961 {
962         struct snd_pcm_substream *substream;
963
964         if (!intelhaddata->connected)
965                 return; /* disconnected? - bail out */
966
967         substream = had_substream_get(intelhaddata);
968         if (!substream)
969                 return; /* no stream? - bail out */
970
971         /* process or stop the stream */
972         if (had_process_ringbuf(substream, intelhaddata) < 0)
973                 snd_pcm_stop_xrun(substream);
974         else
975                 snd_pcm_period_elapsed(substream);
976
977         had_substream_put(intelhaddata);
978 }
979
980 /*
981  * The interrupt status 'sticky' bits might not be cleared by
982  * setting '1' to that bit once...
983  */
984 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
985 {
986         int i;
987         u32 val;
988
989         for (i = 0; i < 100; i++) {
990                 /* clear bit30, 31 AUD_HDMI_STATUS */
991                 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
992                 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
993                         return;
994                 udelay(100);
995                 cond_resched();
996                 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
997         }
998         dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
999 }
1000
1001 /* Perform some reset procedure but only when need_reset is set;
1002  * this is called from prepare or hw_free callbacks once after trigger STOP
1003  * or underrun has been processed in order to settle down the h/w state.
1004  */
1005 static void had_do_reset(struct snd_intelhad *intelhaddata)
1006 {
1007         if (!intelhaddata->need_reset)
1008                 return;
1009
1010         /* Reset buffer pointers */
1011         had_reset_audio(intelhaddata);
1012         wait_clear_underrun_bit(intelhaddata);
1013         intelhaddata->need_reset = false;
1014 }
1015
1016 /* called from irq handler */
1017 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1018 {
1019         struct snd_pcm_substream *substream;
1020
1021         /* Report UNDERRUN error to above layers */
1022         substream = had_substream_get(intelhaddata);
1023         if (substream) {
1024                 snd_pcm_stop_xrun(substream);
1025                 had_substream_put(intelhaddata);
1026         }
1027         intelhaddata->need_reset = true;
1028 }
1029
1030 /*
1031  * ALSA PCM open callback
1032  */
1033 static int had_pcm_open(struct snd_pcm_substream *substream)
1034 {
1035         struct snd_intelhad *intelhaddata;
1036         struct snd_pcm_runtime *runtime;
1037         int retval;
1038
1039         intelhaddata = snd_pcm_substream_chip(substream);
1040         runtime = substream->runtime;
1041
1042         pm_runtime_get_sync(intelhaddata->dev);
1043
1044         if (!intelhaddata->connected) {
1045                 dev_dbg(intelhaddata->dev, "%s: HDMI cable plugged-out\n",
1046                         __func__);
1047                 retval = -ENODEV;
1048                 goto error;
1049         }
1050
1051         /* set the runtime hw parameter with local snd_pcm_hardware struct */
1052         runtime->hw = had_pcm_hardware;
1053
1054         retval = snd_pcm_hw_constraint_integer(runtime,
1055                          SNDRV_PCM_HW_PARAM_PERIODS);
1056         if (retval < 0)
1057                 goto error;
1058
1059         /* Make sure, that the period size is always aligned
1060          * 64byte boundary
1061          */
1062         retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1063                         SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1064         if (retval < 0)
1065                 goto error;
1066
1067         retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1068         if (retval < 0)
1069                 goto error;
1070
1071         /* expose PCM substream */
1072         spin_lock_irq(&intelhaddata->had_spinlock);
1073         intelhaddata->stream_info.substream = substream;
1074         intelhaddata->stream_info.substream_refcount++;
1075         spin_unlock_irq(&intelhaddata->had_spinlock);
1076
1077         return retval;
1078  error:
1079         pm_runtime_put(intelhaddata->dev);
1080         return retval;
1081 }
1082
1083 /*
1084  * ALSA PCM close callback
1085  */
1086 static int had_pcm_close(struct snd_pcm_substream *substream)
1087 {
1088         struct snd_intelhad *intelhaddata;
1089
1090         intelhaddata = snd_pcm_substream_chip(substream);
1091
1092         /* unreference and sync with the pending PCM accesses */
1093         spin_lock_irq(&intelhaddata->had_spinlock);
1094         intelhaddata->stream_info.substream = NULL;
1095         intelhaddata->stream_info.substream_refcount--;
1096         while (intelhaddata->stream_info.substream_refcount > 0) {
1097                 spin_unlock_irq(&intelhaddata->had_spinlock);
1098                 cpu_relax();
1099                 spin_lock_irq(&intelhaddata->had_spinlock);
1100         }
1101         spin_unlock_irq(&intelhaddata->had_spinlock);
1102
1103         pm_runtime_put(intelhaddata->dev);
1104         return 0;
1105 }
1106
1107 /*
1108  * ALSA PCM hw_params callback
1109  */
1110 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1111                              struct snd_pcm_hw_params *hw_params)
1112 {
1113         struct snd_intelhad *intelhaddata;
1114         unsigned long addr;
1115         int pages, buf_size, retval;
1116
1117         intelhaddata = snd_pcm_substream_chip(substream);
1118         buf_size = params_buffer_bytes(hw_params);
1119         retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1120         if (retval < 0)
1121                 return retval;
1122         dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1123                 __func__, buf_size);
1124         /* mark the pages as uncached region */
1125         addr = (unsigned long) substream->runtime->dma_area;
1126         pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1127         retval = set_memory_uc(addr, pages);
1128         if (retval) {
1129                 dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1130                         retval);
1131                 return retval;
1132         }
1133         memset(substream->runtime->dma_area, 0, buf_size);
1134
1135         return retval;
1136 }
1137
1138 /*
1139  * ALSA PCM hw_free callback
1140  */
1141 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1142 {
1143         struct snd_intelhad *intelhaddata;
1144         unsigned long addr;
1145         u32 pages;
1146
1147         intelhaddata = snd_pcm_substream_chip(substream);
1148         had_do_reset(intelhaddata);
1149
1150         /* mark back the pages as cached/writeback region before the free */
1151         if (substream->runtime->dma_area != NULL) {
1152                 addr = (unsigned long) substream->runtime->dma_area;
1153                 pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1154                                                                 PAGE_SIZE;
1155                 set_memory_wb(addr, pages);
1156                 return snd_pcm_lib_free_pages(substream);
1157         }
1158         return 0;
1159 }
1160
1161 /*
1162  * ALSA PCM trigger callback
1163  */
1164 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1165 {
1166         int retval = 0;
1167         struct snd_intelhad *intelhaddata;
1168
1169         intelhaddata = snd_pcm_substream_chip(substream);
1170
1171         spin_lock(&intelhaddata->had_spinlock);
1172         switch (cmd) {
1173         case SNDRV_PCM_TRIGGER_START:
1174         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1175         case SNDRV_PCM_TRIGGER_RESUME:
1176                 /* Disable local INTRs till register prgmng is done */
1177                 if (!intelhaddata->connected) {
1178                         dev_dbg(intelhaddata->dev,
1179                                 "_START: HDMI cable plugged-out\n");
1180                         retval = -ENODEV;
1181                         break;
1182                 }
1183
1184                 /* Enable Audio */
1185                 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1186                 had_enable_audio(intelhaddata, true);
1187                 break;
1188
1189         case SNDRV_PCM_TRIGGER_STOP:
1190         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1191                 /* Disable Audio */
1192                 had_enable_audio(intelhaddata, false);
1193                 intelhaddata->need_reset = true;
1194                 break;
1195
1196         default:
1197                 retval = -EINVAL;
1198         }
1199         spin_unlock(&intelhaddata->had_spinlock);
1200         return retval;
1201 }
1202
1203 /*
1204  * ALSA PCM prepare callback
1205  */
1206 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1207 {
1208         int retval;
1209         u32 disp_samp_freq, n_param;
1210         u32 link_rate = 0;
1211         struct snd_intelhad *intelhaddata;
1212         struct snd_pcm_runtime *runtime;
1213
1214         intelhaddata = snd_pcm_substream_chip(substream);
1215         runtime = substream->runtime;
1216
1217         if (!intelhaddata->connected) {
1218                 dev_dbg(intelhaddata->dev, "%s: HDMI cable plugged-out\n",
1219                         __func__);
1220                 retval = -ENODEV;
1221                 goto prep_end;
1222         }
1223
1224         dev_dbg(intelhaddata->dev, "period_size=%d\n",
1225                 (int)frames_to_bytes(runtime, runtime->period_size));
1226         dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1227         dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1228                 (int)snd_pcm_lib_buffer_bytes(substream));
1229         dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1230         dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1231
1232         had_do_reset(intelhaddata);
1233
1234         /* Get N value in KHz */
1235         disp_samp_freq = intelhaddata->tmds_clock_speed;
1236
1237         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1238         if (retval) {
1239                 dev_err(intelhaddata->dev,
1240                         "programming N value failed %#x\n", retval);
1241                 goto prep_end;
1242         }
1243
1244         if (intelhaddata->dp_output)
1245                 link_rate = intelhaddata->link_rate;
1246
1247         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1248                      n_param, intelhaddata);
1249
1250         had_prog_dip(substream, intelhaddata);
1251
1252         retval = had_init_audio_ctrl(substream, intelhaddata);
1253
1254         /* Prog buffer address */
1255         had_init_ringbuf(substream, intelhaddata);
1256
1257         /*
1258          * Program channel mapping in following order:
1259          * FL, FR, C, LFE, RL, RR
1260          */
1261
1262         had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1263
1264 prep_end:
1265         return retval;
1266 }
1267
1268 /*
1269  * ALSA PCM pointer callback
1270  */
1271 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1272 {
1273         struct snd_intelhad *intelhaddata;
1274         int len;
1275
1276         intelhaddata = snd_pcm_substream_chip(substream);
1277
1278         if (!intelhaddata->connected)
1279                 return SNDRV_PCM_POS_XRUN;
1280
1281         len = had_process_ringbuf(substream, intelhaddata);
1282         if (len < 0)
1283                 return SNDRV_PCM_POS_XRUN;
1284         len = bytes_to_frames(substream->runtime, len);
1285         /* wrapping may happen when periods=1 */
1286         len %= substream->runtime->buffer_size;
1287         return len;
1288 }
1289
1290 /*
1291  * ALSA PCM mmap callback
1292  */
1293 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1294                         struct vm_area_struct *vma)
1295 {
1296         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1297         return remap_pfn_range(vma, vma->vm_start,
1298                         substream->dma_buffer.addr >> PAGE_SHIFT,
1299                         vma->vm_end - vma->vm_start, vma->vm_page_prot);
1300 }
1301
1302 /*
1303  * ALSA PCM ops
1304  */
1305 static const struct snd_pcm_ops had_pcm_ops = {
1306         .open =         had_pcm_open,
1307         .close =        had_pcm_close,
1308         .ioctl =        snd_pcm_lib_ioctl,
1309         .hw_params =    had_pcm_hw_params,
1310         .hw_free =      had_pcm_hw_free,
1311         .prepare =      had_pcm_prepare,
1312         .trigger =      had_pcm_trigger,
1313         .pointer =      had_pcm_pointer,
1314         .mmap =         had_pcm_mmap,
1315 };
1316
1317 /* process mode change of the running stream; called in mutex */
1318 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1319 {
1320         struct snd_pcm_substream *substream;
1321         int retval = 0;
1322         u32 disp_samp_freq, n_param;
1323         u32 link_rate = 0;
1324
1325         substream = had_substream_get(intelhaddata);
1326         if (!substream)
1327                 return 0;
1328
1329         /* Disable Audio */
1330         had_enable_audio(intelhaddata, false);
1331
1332         /* Update CTS value */
1333         disp_samp_freq = intelhaddata->tmds_clock_speed;
1334
1335         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1336         if (retval) {
1337                 dev_err(intelhaddata->dev,
1338                         "programming N value failed %#x\n", retval);
1339                 goto out;
1340         }
1341
1342         if (intelhaddata->dp_output)
1343                 link_rate = intelhaddata->link_rate;
1344
1345         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1346                      n_param, intelhaddata);
1347
1348         /* Enable Audio */
1349         had_enable_audio(intelhaddata, true);
1350
1351 out:
1352         had_substream_put(intelhaddata);
1353         return retval;
1354 }
1355
1356 /* process hot plug, called from wq with mutex locked */
1357 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1358 {
1359         struct snd_pcm_substream *substream;
1360
1361         spin_lock_irq(&intelhaddata->had_spinlock);
1362         if (intelhaddata->connected) {
1363                 dev_dbg(intelhaddata->dev, "Device already connected\n");
1364                 spin_unlock_irq(&intelhaddata->had_spinlock);
1365                 return;
1366         }
1367
1368         intelhaddata->connected = true;
1369         dev_dbg(intelhaddata->dev,
1370                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1371                         __func__, __LINE__);
1372         spin_unlock_irq(&intelhaddata->had_spinlock);
1373
1374         /* Safety check */
1375         substream = had_substream_get(intelhaddata);
1376         if (substream) {
1377                 dev_dbg(intelhaddata->dev,
1378                         "Force to stop the active stream by disconnection\n");
1379                 /* Set runtime->state to hw_params done */
1380                 snd_pcm_stop_xrun(substream);
1381                 had_substream_put(intelhaddata);
1382         }
1383
1384         had_build_channel_allocation_map(intelhaddata);
1385
1386         snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1387 }
1388
1389 /* process hot unplug, called from wq with mutex locked */
1390 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1391 {
1392         struct snd_pcm_substream *substream;
1393
1394         substream = had_substream_get(intelhaddata);
1395
1396         spin_lock_irq(&intelhaddata->had_spinlock);
1397
1398         if (!intelhaddata->connected) {
1399                 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1400                 spin_unlock_irq(&intelhaddata->had_spinlock);
1401                 goto out;
1402
1403         }
1404
1405         /* Disable Audio */
1406         had_enable_audio(intelhaddata, false);
1407
1408         intelhaddata->connected = false;
1409         dev_dbg(intelhaddata->dev,
1410                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1411                         __func__, __LINE__);
1412         spin_unlock_irq(&intelhaddata->had_spinlock);
1413
1414         /* Report to above ALSA layer */
1415         if (substream)
1416                 snd_pcm_stop_xrun(substream);
1417
1418  out:
1419         snd_jack_report(intelhaddata->jack, 0);
1420         if (substream)
1421                 had_substream_put(intelhaddata);
1422         kfree(intelhaddata->chmap->chmap);
1423         intelhaddata->chmap->chmap = NULL;
1424 }
1425
1426 /*
1427  * ALSA iec958 and ELD controls
1428  */
1429
1430 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1431                                 struct snd_ctl_elem_info *uinfo)
1432 {
1433         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1434         uinfo->count = 1;
1435         return 0;
1436 }
1437
1438 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1439                                 struct snd_ctl_elem_value *ucontrol)
1440 {
1441         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1442
1443         mutex_lock(&intelhaddata->mutex);
1444         ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1445         ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1446         ucontrol->value.iec958.status[2] =
1447                                         (intelhaddata->aes_bits >> 16) & 0xff;
1448         ucontrol->value.iec958.status[3] =
1449                                         (intelhaddata->aes_bits >> 24) & 0xff;
1450         mutex_unlock(&intelhaddata->mutex);
1451         return 0;
1452 }
1453
1454 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1455                                 struct snd_ctl_elem_value *ucontrol)
1456 {
1457         ucontrol->value.iec958.status[0] = 0xff;
1458         ucontrol->value.iec958.status[1] = 0xff;
1459         ucontrol->value.iec958.status[2] = 0xff;
1460         ucontrol->value.iec958.status[3] = 0xff;
1461         return 0;
1462 }
1463
1464 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1465                                 struct snd_ctl_elem_value *ucontrol)
1466 {
1467         unsigned int val;
1468         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1469         int changed = 0;
1470
1471         val = (ucontrol->value.iec958.status[0] << 0) |
1472                 (ucontrol->value.iec958.status[1] << 8) |
1473                 (ucontrol->value.iec958.status[2] << 16) |
1474                 (ucontrol->value.iec958.status[3] << 24);
1475         mutex_lock(&intelhaddata->mutex);
1476         if (intelhaddata->aes_bits != val) {
1477                 intelhaddata->aes_bits = val;
1478                 changed = 1;
1479         }
1480         mutex_unlock(&intelhaddata->mutex);
1481         return changed;
1482 }
1483
1484 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1485                             struct snd_ctl_elem_info *uinfo)
1486 {
1487         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1488         uinfo->count = HDMI_MAX_ELD_BYTES;
1489         return 0;
1490 }
1491
1492 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1493                            struct snd_ctl_elem_value *ucontrol)
1494 {
1495         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1496
1497         mutex_lock(&intelhaddata->mutex);
1498         memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1499                HDMI_MAX_ELD_BYTES);
1500         mutex_unlock(&intelhaddata->mutex);
1501         return 0;
1502 }
1503
1504 static const struct snd_kcontrol_new had_controls[] = {
1505         {
1506                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1507                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1508                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1509                 .info = had_iec958_info, /* shared */
1510                 .get = had_iec958_mask_get,
1511         },
1512         {
1513                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1514                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1515                 .info = had_iec958_info,
1516                 .get = had_iec958_get,
1517                 .put = had_iec958_put,
1518         },
1519         {
1520                 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1521                            SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1522                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1523                 .name = "ELD",
1524                 .info = had_ctl_eld_info,
1525                 .get = had_ctl_eld_get,
1526         },
1527 };
1528
1529 /*
1530  * audio interrupt handler
1531  */
1532 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1533 {
1534         struct snd_intelhad *ctx = dev_id;
1535         u32 audio_stat, audio_reg;
1536
1537         audio_reg = AUD_HDMI_STATUS;
1538         had_read_register(ctx, audio_reg, &audio_stat);
1539
1540         if (audio_stat & HDMI_AUDIO_UNDERRUN) {
1541                 had_write_register(ctx, audio_reg, HDMI_AUDIO_UNDERRUN);
1542                 had_process_buffer_underrun(ctx);
1543         }
1544
1545         if (audio_stat & HDMI_AUDIO_BUFFER_DONE) {
1546                 had_write_register(ctx, audio_reg, HDMI_AUDIO_BUFFER_DONE);
1547                 had_process_buffer_done(ctx);
1548         }
1549
1550         return IRQ_HANDLED;
1551 }
1552
1553 /*
1554  * monitor plug/unplug notification from i915; just kick off the work
1555  */
1556 static void notify_audio_lpe(struct platform_device *pdev)
1557 {
1558         struct snd_intelhad *ctx = platform_get_drvdata(pdev);
1559
1560         schedule_work(&ctx->hdmi_audio_wq);
1561 }
1562
1563 /* the work to handle monitor hot plug/unplug */
1564 static void had_audio_wq(struct work_struct *work)
1565 {
1566         struct snd_intelhad *ctx =
1567                 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1568         struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1569
1570         pm_runtime_get_sync(ctx->dev);
1571         mutex_lock(&ctx->mutex);
1572         if (!pdata->hdmi_connected) {
1573                 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG\n",
1574                         __func__);
1575                 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1576                 had_process_hot_unplug(ctx);
1577         } else {
1578                 struct intel_hdmi_lpe_audio_eld *eld = &pdata->eld;
1579
1580                 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1581                         __func__, eld->port_id, pdata->tmds_clock_speed);
1582
1583                 switch (eld->pipe_id) {
1584                 case 0:
1585                         ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
1586                         break;
1587                 case 1:
1588                         ctx->had_config_offset = AUDIO_HDMI_CONFIG_B;
1589                         break;
1590                 case 2:
1591                         ctx->had_config_offset = AUDIO_HDMI_CONFIG_C;
1592                         break;
1593                 default:
1594                         dev_dbg(ctx->dev, "Invalid pipe %d\n",
1595                                 eld->pipe_id);
1596                         break;
1597                 }
1598
1599                 memcpy(ctx->eld, eld->eld_data, sizeof(ctx->eld));
1600
1601                 ctx->dp_output = pdata->dp_output;
1602                 ctx->tmds_clock_speed = pdata->tmds_clock_speed;
1603                 ctx->link_rate = pdata->link_rate;
1604
1605                 had_process_hot_plug(ctx);
1606
1607                 /* Process mode change if stream is active */
1608                 had_process_mode_change(ctx);
1609         }
1610         mutex_unlock(&ctx->mutex);
1611         pm_runtime_put(ctx->dev);
1612 }
1613
1614 /*
1615  * Jack interface
1616  */
1617 static int had_create_jack(struct snd_intelhad *ctx)
1618 {
1619         int err;
1620
1621         err = snd_jack_new(ctx->card, "HDMI/DP", SND_JACK_AVOUT, &ctx->jack,
1622                            true, false);
1623         if (err < 0)
1624                 return err;
1625         ctx->jack->private_data = ctx;
1626         return 0;
1627 }
1628
1629 /*
1630  * PM callbacks
1631  */
1632
1633 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1634 {
1635         struct snd_intelhad *ctx = dev_get_drvdata(dev);
1636         struct snd_pcm_substream *substream;
1637
1638         substream = had_substream_get(ctx);
1639         if (substream) {
1640                 snd_pcm_suspend(substream);
1641                 had_substream_put(ctx);
1642         }
1643
1644         return 0;
1645 }
1646
1647 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1648 {
1649         struct snd_intelhad *ctx = dev_get_drvdata(dev);
1650         int err;
1651
1652         err = hdmi_lpe_audio_runtime_suspend(dev);
1653         if (!err)
1654                 snd_power_change_state(ctx->card, SNDRV_CTL_POWER_D3hot);
1655         return err;
1656 }
1657
1658 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1659 {
1660         struct snd_intelhad *ctx = dev_get_drvdata(dev);
1661
1662         snd_power_change_state(ctx->card, SNDRV_CTL_POWER_D0);
1663         return 0;
1664 }
1665
1666 /* release resources */
1667 static void hdmi_lpe_audio_free(struct snd_card *card)
1668 {
1669         struct snd_intelhad *ctx = card->private_data;
1670
1671         cancel_work_sync(&ctx->hdmi_audio_wq);
1672
1673         if (ctx->mmio_start)
1674                 iounmap(ctx->mmio_start);
1675         if (ctx->irq >= 0)
1676                 free_irq(ctx->irq, ctx);
1677 }
1678
1679 /*
1680  * hdmi_lpe_audio_probe - start bridge with i915
1681  *
1682  * This function is called when the i915 driver creates the
1683  * hdmi-lpe-audio platform device.
1684  */
1685 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1686 {
1687         struct snd_card *card;
1688         struct snd_intelhad *ctx;
1689         struct snd_pcm *pcm;
1690         struct intel_hdmi_lpe_audio_pdata *pdata;
1691         int irq;
1692         struct resource *res_mmio;
1693         int i, ret;
1694
1695         pdata = pdev->dev.platform_data;
1696         if (!pdata) {
1697                 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1698                 return -EINVAL;
1699         }
1700
1701         /* get resources */
1702         irq = platform_get_irq(pdev, 0);
1703         if (irq < 0) {
1704                 dev_err(&pdev->dev, "Could not get irq resource\n");
1705                 return -ENODEV;
1706         }
1707
1708         res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1709         if (!res_mmio) {
1710                 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1711                 return -ENXIO;
1712         }
1713
1714         /* create a card instance with ALSA framework */
1715         ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1716                            THIS_MODULE, sizeof(*ctx), &card);
1717         if (ret)
1718                 return ret;
1719
1720         ctx = card->private_data;
1721         spin_lock_init(&ctx->had_spinlock);
1722         mutex_init(&ctx->mutex);
1723         ctx->connected = false;
1724         ctx->dev = &pdev->dev;
1725         ctx->card = card;
1726         ctx->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
1727         strcpy(card->driver, INTEL_HAD);
1728         strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1729         strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1730
1731         ctx->irq = -1;
1732         ctx->tmds_clock_speed = DIS_SAMPLE_RATE_148_5;
1733         INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1734
1735         card->private_free = hdmi_lpe_audio_free;
1736
1737         /* assume pipe A as default */
1738         ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
1739
1740         platform_set_drvdata(pdev, ctx);
1741
1742         dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1743                 __func__, (unsigned int)res_mmio->start,
1744                 (unsigned int)res_mmio->end);
1745
1746         ctx->mmio_start = ioremap_nocache(res_mmio->start,
1747                                           (size_t)(resource_size(res_mmio)));
1748         if (!ctx->mmio_start) {
1749                 dev_err(&pdev->dev, "Could not get ioremap\n");
1750                 ret = -EACCES;
1751                 goto err;
1752         }
1753
1754         /* setup interrupt handler */
1755         ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1756                           pdev->name, ctx);
1757         if (ret < 0) {
1758                 dev_err(&pdev->dev, "request_irq failed\n");
1759                 goto err;
1760         }
1761
1762         ctx->irq = irq;
1763
1764         ret = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS,
1765                           MAX_CAP_STREAMS, &pcm);
1766         if (ret)
1767                 goto err;
1768
1769         /* setup private data which can be retrieved when required */
1770         pcm->private_data = ctx;
1771         pcm->info_flags = 0;
1772         strncpy(pcm->name, card->shortname, strlen(card->shortname));
1773         /* setup the ops for playabck */
1774         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1775
1776         /* only 32bit addressable */
1777         dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1778         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1779
1780         /* allocate dma pages;
1781          * try to allocate 600k buffer as default which is large enough
1782          */
1783         snd_pcm_lib_preallocate_pages_for_all(pcm,
1784                         SNDRV_DMA_TYPE_DEV, NULL,
1785                         HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1786
1787         /* create controls */
1788         for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1789                 ret = snd_ctl_add(card, snd_ctl_new1(&had_controls[i], ctx));
1790                 if (ret < 0)
1791                         goto err;
1792         }
1793
1794         init_channel_allocations();
1795
1796         /* Register channel map controls */
1797         ret = had_register_chmap_ctls(ctx, pcm);
1798         if (ret < 0)
1799                 goto err;
1800
1801         ret = had_create_jack(ctx);
1802         if (ret < 0)
1803                 goto err;
1804
1805         ret = snd_card_register(card);
1806         if (ret)
1807                 goto err;
1808
1809         spin_lock_irq(&pdata->lpe_audio_slock);
1810         pdata->notify_audio_lpe = notify_audio_lpe;
1811         pdata->notify_pending = false;
1812         spin_unlock_irq(&pdata->lpe_audio_slock);
1813
1814         pm_runtime_set_active(&pdev->dev);
1815         pm_runtime_enable(&pdev->dev);
1816
1817         dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1818         schedule_work(&ctx->hdmi_audio_wq);
1819
1820         return 0;
1821
1822 err:
1823         snd_card_free(card);
1824         return ret;
1825 }
1826
1827 /*
1828  * hdmi_lpe_audio_remove - stop bridge with i915
1829  *
1830  * This function is called when the platform device is destroyed.
1831  */
1832 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1833 {
1834         struct snd_intelhad *ctx = platform_get_drvdata(pdev);
1835
1836         snd_card_free(ctx->card);
1837         return 0;
1838 }
1839
1840 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1841         SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1842         SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend, NULL, NULL)
1843 };
1844
1845 static struct platform_driver hdmi_lpe_audio_driver = {
1846         .driver         = {
1847                 .name  = "hdmi-lpe-audio",
1848                 .pm = &hdmi_lpe_audio_pm,
1849         },
1850         .probe          = hdmi_lpe_audio_probe,
1851         .remove         = hdmi_lpe_audio_remove,
1852 };
1853
1854 module_platform_driver(hdmi_lpe_audio_driver);
1855 MODULE_ALIAS("platform:hdmi_lpe_audio");
1856
1857 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1858 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1859 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1860 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1861 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1862 MODULE_LICENSE("GPL v2");
1863 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");