]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/include/linux/compiler.h
8de163b17c0d00011d33083d247936d8265465e7
[karo-tx-linux.git] / tools / include / linux / compiler.h
1 #ifndef _TOOLS_LINUX_COMPILER_H_
2 #define _TOOLS_LINUX_COMPILER_H_
3
4 #ifdef __GNUC__
5 #include <linux/compiler-gcc.h>
6 #endif
7
8 /* Optimization barrier */
9 /* The "volatile" is due to gcc bugs */
10 #define barrier() __asm__ __volatile__("": : :"memory")
11
12 #ifndef __always_inline
13 # define __always_inline        inline __attribute__((always_inline))
14 #endif
15
16 #ifdef __ANDROID__
17 /*
18  * FIXME: Big hammer to get rid of tons of:
19  *   "warning: always_inline function might not be inlinable"
20  *
21  * At least on android-ndk-r12/platforms/android-24/arch-arm
22  */
23 #undef __always_inline
24 #define __always_inline inline
25 #endif
26
27 #define __user
28 #define __rcu
29 #define __read_mostly
30
31 #ifndef __attribute_const__
32 # define __attribute_const__
33 #endif
34
35 #ifndef __maybe_unused
36 # define __maybe_unused         __attribute__((unused))
37 #endif
38
39 #ifndef __packed
40 # define __packed               __attribute__((__packed__))
41 #endif
42
43 #ifndef __force
44 # define __force
45 #endif
46
47 #ifndef __weak
48 # define __weak                 __attribute__((weak))
49 #endif
50
51 #ifndef likely
52 # define likely(x)              __builtin_expect(!!(x), 1)
53 #endif
54
55 #ifndef unlikely
56 # define unlikely(x)            __builtin_expect(!!(x), 0)
57 #endif
58
59 #define uninitialized_var(x) x = *(&(x))
60
61 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
62
63 #include <linux/types.h>
64
65 /*
66  * Following functions are taken from kernel sources and
67  * break aliasing rules in their original form.
68  *
69  * While kernel is compiled with -fno-strict-aliasing,
70  * perf uses -Wstrict-aliasing=3 which makes build fail
71  * under gcc 4.4.
72  *
73  * Using extra __may_alias__ type to allow aliasing
74  * in this case.
75  */
76 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
77 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
78 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
79 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
80
81 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
82 {
83         switch (size) {
84         case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
85         case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
86         case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
87         case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
88         default:
89                 barrier();
90                 __builtin_memcpy((void *)res, (const void *)p, size);
91                 barrier();
92         }
93 }
94
95 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
96 {
97         switch (size) {
98         case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
99         case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
100         case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
101         case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
102         default:
103                 barrier();
104                 __builtin_memcpy((void *)p, (const void *)res, size);
105                 barrier();
106         }
107 }
108
109 /*
110  * Prevent the compiler from merging or refetching reads or writes. The
111  * compiler is also forbidden from reordering successive instances of
112  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
113  * compiler is aware of some particular ordering.  One way to make the
114  * compiler aware of ordering is to put the two invocations of READ_ONCE,
115  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
116  *
117  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
118  * data types like structs or unions. If the size of the accessed data
119  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
120  * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
121  * compile-time warning.
122  *
123  * Their two major use cases are: (1) Mediating communication between
124  * process-level code and irq/NMI handlers, all running on the same CPU,
125  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
126  * mutilate accesses that either do not require ordering or that interact
127  * with an explicit memory barrier or atomic instruction that provides the
128  * required ordering.
129  */
130
131 #define READ_ONCE(x) \
132         ({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
133
134 #define WRITE_ONCE(x, val) \
135         ({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
136
137
138 #ifndef __fallthrough
139 # define __fallthrough
140 #endif
141
142 #endif /* _TOOLS_LINUX_COMPILER_H */