]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/include/linux/compiler.h
tools include: Adopt __compiletime_error
[karo-tx-linux.git] / tools / include / linux / compiler.h
1 #ifndef _TOOLS_LINUX_COMPILER_H_
2 #define _TOOLS_LINUX_COMPILER_H_
3
4 #ifdef __GNUC__
5 #include <linux/compiler-gcc.h>
6 #endif
7
8 #ifndef __compiletime_error
9 # define __compiletime_error(message)
10 #endif
11
12 /* Optimization barrier */
13 /* The "volatile" is due to gcc bugs */
14 #define barrier() __asm__ __volatile__("": : :"memory")
15
16 #ifndef __always_inline
17 # define __always_inline        inline __attribute__((always_inline))
18 #endif
19
20 #ifdef __ANDROID__
21 /*
22  * FIXME: Big hammer to get rid of tons of:
23  *   "warning: always_inline function might not be inlinable"
24  *
25  * At least on android-ndk-r12/platforms/android-24/arch-arm
26  */
27 #undef __always_inline
28 #define __always_inline inline
29 #endif
30
31 #define __user
32 #define __rcu
33 #define __read_mostly
34
35 #ifndef __attribute_const__
36 # define __attribute_const__
37 #endif
38
39 #ifndef __maybe_unused
40 # define __maybe_unused         __attribute__((unused))
41 #endif
42
43 #ifndef __packed
44 # define __packed               __attribute__((__packed__))
45 #endif
46
47 #ifndef __force
48 # define __force
49 #endif
50
51 #ifndef __weak
52 # define __weak                 __attribute__((weak))
53 #endif
54
55 #ifndef likely
56 # define likely(x)              __builtin_expect(!!(x), 1)
57 #endif
58
59 #ifndef unlikely
60 # define unlikely(x)            __builtin_expect(!!(x), 0)
61 #endif
62
63 #define uninitialized_var(x) x = *(&(x))
64
65 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
66
67 #include <linux/types.h>
68
69 /*
70  * Following functions are taken from kernel sources and
71  * break aliasing rules in their original form.
72  *
73  * While kernel is compiled with -fno-strict-aliasing,
74  * perf uses -Wstrict-aliasing=3 which makes build fail
75  * under gcc 4.4.
76  *
77  * Using extra __may_alias__ type to allow aliasing
78  * in this case.
79  */
80 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
81 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
82 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
83 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
84
85 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
86 {
87         switch (size) {
88         case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
89         case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
90         case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
91         case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
92         default:
93                 barrier();
94                 __builtin_memcpy((void *)res, (const void *)p, size);
95                 barrier();
96         }
97 }
98
99 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
100 {
101         switch (size) {
102         case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
103         case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
104         case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
105         case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
106         default:
107                 barrier();
108                 __builtin_memcpy((void *)p, (const void *)res, size);
109                 barrier();
110         }
111 }
112
113 /*
114  * Prevent the compiler from merging or refetching reads or writes. The
115  * compiler is also forbidden from reordering successive instances of
116  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
117  * compiler is aware of some particular ordering.  One way to make the
118  * compiler aware of ordering is to put the two invocations of READ_ONCE,
119  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
120  *
121  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
122  * data types like structs or unions. If the size of the accessed data
123  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
124  * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
125  * compile-time warning.
126  *
127  * Their two major use cases are: (1) Mediating communication between
128  * process-level code and irq/NMI handlers, all running on the same CPU,
129  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
130  * mutilate accesses that either do not require ordering or that interact
131  * with an explicit memory barrier or atomic instruction that provides the
132  * required ordering.
133  */
134
135 #define READ_ONCE(x) \
136         ({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
137
138 #define WRITE_ONCE(x, val) \
139         ({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
140
141
142 #ifndef __fallthrough
143 # define __fallthrough
144 #endif
145
146 #endif /* _TOOLS_LINUX_COMPILER_H */